Stroboscopic quantum optomechanics

Research output: Contribution to journalJournal articleResearchpeer-review


We consider an optomechanical cavity that is driven stroboscopically by a train of short pulses. By suitably choosing the interpulse spacing we show that ground-state cooling and mechanical squeezing can be achieved, even in the presence of mechanical dissipation and for moderate radiation-pressure interaction. We provide a full quantum-mechanical treatment of stroboscopic backaction-evading measurements, for which we give a simple analytic insight, and discuss preparation and verification of squeezed mechanical states. We further consider stroboscopic driving of a pair of noninteracting mechanical resonators coupled to a common cavity field, and show that they can be simultaneously cooled and entangled. Stroboscopic quantum optomechanics extends measurement-based quantum control of mechanical systems beyond the good-cavity limit.

Original languageEnglish
Article number023241
JournalPhysical Review Research
Issue number2
Number of pages13
Publication statusPublished - 28 May 2020

Bibliographical note

Hy Q

    Research areas


ID: 255449591