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Photonic nanostructures provide a means of tailoring the interaction between light and matter and the
past decade has witnessed tremendous experimental and theoretical progress on this subject. In
particular, the combination with semiconductor quantum dots has proven successful. This manuscript
reviews quantum optics with excitons in single quantum dots embedded in photonic nanostructures.
The ability to engineer the light-matter interaction strength in integrated photonic nanostructures
enables a range of fundamental quantum-electrodynamics experiments on, e.g., spontaneous-
emission control, modified Lamb shifts, and enhanced dipole-dipole interaction. Furthermore,
highly efficient single-photon sources and giant photon nonlinearities may be implemented with
immediate applications for photonic quantum-information processing. This review summarizes the
general theoretical framework of photon emission including the role of dephasing processes and
applies it to photonic nanostructures of current interest, such as photonic-crystal cavities and
waveguides, dielectric nanowires, and plasmonic waveguides. The introduced concepts are generally
applicable in quantum nanophotonics and apply to a large extent also to other quantum emitters, such
as molecules, nitrogen vacancy centers, or atoms. Finally, the progress and future prospects of
applications in quantum-information processing are considered.
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I. INTRODUCTION

Quantum electrodynamics (QED) studies the interaction
between light and matter at the most fundamental level where
single quanta of light (photons) and single entities of matter
(quantum emitters) are controllably coupled. Founded by Paul
Dirac in the 1920s, the theory of QED encompasses intriguing
quantum phenomena such as quantum superposition states
and entanglement and has proven to be remarkably precise.
The progress on QED experiments with atoms and photons
has spun out of research on atomic spectroscopy. A remark-
able experimental frontrunner was the demonstration of the
Lamb shift (Lamb and Retherford, 1947) proving that the
anticipated degeneracy of the 2S1=2 and 2P1=2 states of atomic
hydrogen was lifted. The Lamb shift can be interpreted as
being due to the interaction of the emitter with the quantum
vacuum and its experimental demonstration stimulated further
developments of QED, notably leading to renormalization
theory. The Casimir effect constitutes another landmark in the
history of QED; it describes how two mirrors experience an
attractive force due to the radiation pressure of vacuum
(Casimir, 1948). The development of tools for experimenting
with single photons and single atoms started in the 1970s
following the invention of the laser. The first experimental
demonstration that an excited atom emits a single photon at a
time was reported by Kimble, Dagenais, and Mandel (1977),
which marked the birth of experimental quantum optics. Since
then a range of exciting experiments on fundamental aspects
of light-matter interaction at the single-photon level has
appeared using atoms where, e.g., cavities can be exploited
for increasing the interaction strength. For a recent review of
atom-based cavity QED including a historical account of the
field, see Haroche (2013).
In parallel with the development of atomic QED, major

research efforts have been focused on solid-state alternatives.
Solid-state systems have the obvious experimental asset that
the elaborate experimental techniques needed for trapping and
cooling single atoms are not required. Both the emitter and the
optical environment can be engineered to enhance the photon-
emitter coupling, and consequently two different research
disciplines have merged into solid-state QED. The first is
material-science research, which has developed methods to
synthesize solid-state single-photon emitters with excellent
optical properties. In particular, the discovery of photolumi-
nescence from single self-assembled quantum dots (Marzin
et al., 1994) embedded in GaAs, where atomically smooth
heterostructures can be grown with molecular-beam epitaxy,
was the first in a series of major breakthroughs. Since then
growth methods have developed tremendously and today
quantum dots can be tailored to have excellent optical
properties. The second is nanophotonics research where the
optical environment of the emitter is engineered by nano-
fabrication methods, which builds on the original insight of
Purcell that radiative processes are not immutable properties
of the emitter, but can be controlled by the environment
(Purcell, 1946). Pioneering solid-state QED experiments were
carried out by Drexhage (1970), who showed that the radiative
lifetime of europium ions is influenced by the presence of a
nearby dielectric interface. This experiment constitutes the
first example that the light-matter coupling efficiency can be

tailored by structuring the environment of the emitter, which is
the essence of modern research in solid-state QED. Today
experimental techniques have matured very significantly, and
experiments are routinely performed on single solid-state
quantum emitters in highly complex photonic nanostructures;
this article reviews the progress. We are concerned here with
quantum emitters at optical frequencies and the majority of the
considered examples pertain to quantum dots. Nonetheless
most of the concepts are of much broader scope and apply
equally well to other solid-state emitters and atoms, or to two-
level emitters implemented in superconducting circuits.
The research field of solid-state QED has widespread and

far-ranging implications and applications. For instance, QED
systems are widely proposed for quantum-information
processing and optimized photon-matter interfaces are at
the heart of photonic devices such as lasers and solar cells.
An outstanding challenge in quantum physics today is to
construct scalable quantum networks that exploit quantum
parallelism for encoding and processing information. To this
end, a variety of different physical systems exploiting either
photon or matter degrees of freedom have been considered
(Nielsen and Chuang, 2000), and each system has pros and
cons: photons are robust carriers of quantum information over
long distances but tend to interact weakly, which makes
quantum-computing protocols experimentally demanding
(Kok et al., 2007). In contrast, e.g., electrons confined in
quantum dots may interact very strongly but this also makes
the system vulnerable to decoherence processes from the
environment and the interaction has limited spatial range
(Hanson et al., 2007). An efficient quantum interface between
light and matter implemented in a scalable quantum archi-
tecture is therefore expected to have wide applications in
quantum-information processing (Kimble, 2008) since it
allows encoding quantum information in both light and matter
variables, thus potentially benefiting from the advantages of
each system.
The main challenge in order to realize efficient light-matter

interfaces is that the interaction between a single photon and a
single emitter tends to be very weak. A natural photon-emitter
process is that of spontaneous emission: a single two-level
emitter with an electron prepared in the excited state under-
goes a transition to the ground state by emitting a single
photon. Spontaneous emission constitutes an example of a
general class of quantum-mechanics problems, where a simple
quantum system is coupled to a large reservoir since the
emitter comprises only two states while the photon can be
emitted to any of a continuum of optical states each charac-
terized by different wave vectors. Consequently, the challenge
for efficient photon-emitter interfacing is to strongly enhance
the coupling to one preferred mode and/or suppress the
coupling to all unwanted modes. High-finesse optical cavities
have been a popular approach for accomplishing this and
significant experimental progress has been obtained within the
last few decades with single atoms (Haroche, 2013). In recent
years, solid-state alternatives have emerged with the benefit
that the systems can be engineered by modern nanofabrication
techniques. This leads to a whole range of new design
strategies based on dielectric and metallic nanostructures
including waveguides and nanocavities. Two different classes
of solid-state single-photon emitters have been considered,
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using either superconducting circuits emitting in the micro-
wave regime (Wallraff et al., 2004) or two-level quantum
emitters with optical transitions, e.g., semiconductor quantum
dots (Michler et al., 2000), nitrogen vacancy centers in
diamond (Kurtsiefer et al., 2000), or single molecules
(Lounis and Moerner, 2000). A benefit of optical methods
is that many functionalities can be highly integrated on a
photonic chip (O’Brien, Furusawa, and Vuckovic, 2009) since
the wavelength of the electromagnetic radiation determines
the typical length scale of the building blocks. As a conse-
quence, highly integrated and engineered photonic circuits
could potentially be constructed, which is a quest in the
burgeoning research field of quantum nanophotonics.
A variety of different optical emitters has been studied in

nanophotonic experiments including laser-cooled and trapped
atoms, rare-earth ions, single molecules, impurity centers
(e.g., nitrogen vacancy centers), colloidal quantum dots,
and self-assembled quantum dots. In this review, most of
the discussed examples concern epitaxially grown III-V
semiconductor quantum dots (primarily InGaAs or GaAs)
that typically emit in the near infrared. These emitters
constitute many-particle mesoscopic systems that contain rich
and exciting quantum physics. The present knowledge of and
control over InGaAs quantum dots, regarding level structure,
emission dynamics, stability, and coherence, is now suffi-
ciently mature that a serious exploration of their potential in
quantum optics and quantum-information processing seems
viable. It should be stressed that such experiments are carried
out at cryogenic conditions, typically at a temperature of 4 K,
which is necessary to prevent thermal depopulation and
achieve sufficiently good coherence properties as required
in most quantum-optics experiments. In contrast, room-
temperature experiments with solid-state emitters often suffer
from severe decoherence due to Coulomb and phonon-
induced scattering that makes coherent photon-emitter experi-
ments inefficient. The ability to tailor light-matter interfaces at
room temperature may nonetheless find a range of other
important applications, e.g., in the context of light harvesting
or efficient light sources. We emphasize that while the present
review is focused on the quantum aspects of light-matter
interaction, many of the discussed concepts are generally
applicable and could equally well be exploited in room-
temperature applications.

II. SEMICONDUCTOR QUANTUM DOTS

The existence of a discrete and anharmonic electronic
spectrum is the prerequisite for many quantum-optics experi-
ments since it enables generating single photons when an
electron undergoes a transition between two levels. An
obvious choice is a single atom, which represents a clean
quantum system with discrete electronic states. The ability to
create discrete electronic states in a solid-state system enables
a range of new opportunities for integrated quantum-optics
experiments, and this can be achieved in a quantum dot. A
quantum dot is a semiconductor “artificial atom” that although
consisting of tens of thousands of atoms has optical properties
similar to single atoms due to the quantum confinement of
electrons to a nanometer length scale. Since quantum dots are

solid-state emitters they can readily be implemented in
photonic nanostructures such as nanowires, plasmonic nano-
antennas, and photonic crystals, as discussed in the following
sections. Figure 1 indicates the size of a quantum dot relative
to a single atom and a typical photonic nanostructure. In this
section we briefly review the structural and optical properties
of quantum dots. Unless explicitly indicated, we are solely
considering quantum dots in the family of InAs/GaAs/AlAs
III-V semiconductors, which are grown by epitaxial methods.

A. Growth and structural properties

One of the important experimental advantages of quantum
dots is that they are made from semiconductor materials for
which a wealth of growth and processing technology has been
developed over the past decades. Sophisticated crystal-growth
procedures combined with semiconductor processing methods
such as electron-beam lithography, etching, and deposition
constitute the generic nanofabrication platform on which the
significant experimental progress within quantum nanopho-
tonics during the past decades is built. In this section we
discuss the most common methods for growing quantum dots
and the impact of the growth method on their optical
properties.

(a) (b)

(c) 

FIG. 1 (color online). Characteristic size of a quantum dot
relative to a single atom and a photonic crystal. A single atom
(a) measures a few angstrom while self-assembled InGaAs
quantum dots (b) typically have dimensions of tens of nanometer
and consist of approximately 105 atoms. The micrograph in (b)
shows an uncapped quantum dot obtained by scanning tunneling
microcopy. Single quantum dots can be embedded in photonic
nanostructures for quantum-optics experiments, an example of
which is (c) that shows a scanning electron micrograph image of a
photonic-crystal waveguide, where the photonic lattice constant
typically is around 250 nm. (b) From Márquez, Geelhaar, and
Jacobi, 2001.
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Since semiconductors are very sensitive to impurities and
defects, quantum dots are fabricated by epitaxial methods
such as molecular-beam epitaxy, where heterostructures are
grown with monolayer precision under ultrahigh-vacuum
conditions (Shchukin and Bimberg, 1999; Stangl, Holý,
and Bauer, 2004; Biasiol and Heun, 2011). The most common
approach for InGaAs quantum dots is the Stranski-Krastanov
method that relies on the self-assembly of InAs or InGaAs
quantum dots on a GaAs surface due to the 7% larger lattice
constant of InAs compared to that of GaAs. As a consequence,
only a thin wetting layer of InAs can be deposited on GaAs
before the strain is relaxed by the nucleation of quantum dots
in the form of randomly positioned islands as shown in
Fig. 2(a). In order to protect the quantum dots from oxidation
and to prevent interaction with surface states, a GaAs capping
layer is grown atop the quantum dots. While Stranski-
Krastanov quantum dots have a pyramidal shape before
capping, cf. Fig. 1(b), they develop the shape of a truncated
pyramid after capping (Eisele et al., 2008) due to a significant
material intermixing as shown in Fig. 2(d). This in turn leads
to an inhomogeneous indium distribution and a strain that
varies throughout the quantum dot. Typically, quantum dots
are grown with heights in the range of 1–10 nm and in-plane
sizes in the range of 10–70 nm. Controlling the size and
therefore the quantum confinement as well as the material
composition enables tailoring the emission wavelength. Size
variations between different quantum dots within a single
growth run are inevitable, i.e., a quantum-dot ensemble will be
inhomogeneously broadened, implying that individual tuning
of single quantum dots would generally be required in order to
couple them mutually. It has been found that the indium is

concentrated in an inverted pyramid inside the quantum dot
(Liu et al., 2000), which leads to variations in the confinement
potential along the growth axis as indicated in Fig. 2(e), where
also schematic electron and hole envelope wave functions are
shown. Notably, the hole resides above the electron and this
leads to a significant static electric dipole along the growth
axis (Fry et al., 2000).
Quantum dots may also form by growing a thin quantum

well but terminating the growth, while the lower and upper
monolayers of the quantum well are formed (Gammon et al.,
1996) leading to monolayer fluctuations as shown in
Figs. 2(b) and 2(f) with a confinement potential as indicated
in Fig. 2(g). This allows growing practically unstrained GaAs
quantum dots embedded in AlGaAs and these interface-
fluctuation quantum dots can be larger in the plane
perpendicular to the growth direction than typical Stranski-
Krastanov quantum dots. Interface-fluctuation quantum dots
benefit from a relatively narrow inhomogeneous broadening
and predictable wave functions along the growth direction as
compared to Stranski-Krastanov quantum dots since inter-
mixing is absent. However, the integration in optical nano-
structures is more challenging since they are embedded in
AlGaAs, whose surface is prone to oxidation. They are
particularly promising for obtaining quantum dots with an
enhanced oscillator strength as discussed in Sec. II.E.2.
Droplet epitaxy is an emerging growth technique, where

droplets of gallium are saturated with arsenic, resulting in
relatively large and low-density GaAs quantum dots in
AlGaAs as shown in Fig. 2(c). Since droplet epitaxy quantum
dots are embedded in AlGaAs surroundings, the above
mentioned challenges pertain to their integration in photonic

FIG. 2 (color). Structural properties of quantum dots. (a)–(c) Atomic-force micrographs (AFMs) of uncapped quantum dots for
(a) Stranski-Krastanov quantum dots of InAs, (b) interface fluctuations of GaAs, and (c) droplet epitaxy quantum dots of GaAs
displaying the surface topography with bright (dark) colors indicating high (low) features. (d), (f), and (h) illustrate the confinement
potentials, where dark, neutral, and bright gray indicate AlGaAs, GaAs, and InAs, respectively, for the three types of quantum dots
shown above. The electron (hole) wave function is shown as a shaded blue (red) oval. For interface-fluctuation quantum dots (f) the in-
plane motion of electrons and holes may become correlated as shown by the purple exciton wave function and could lead to a giant
oscillator strength. (e), (g), and (i) illustrate the wave functions along the growth axis z for the respective type of quantum dots. For
Stranski-Krastanov quantum dots, an asymmetric confinement potential leads to a significant offset between the electron and hole.
(b) From Peter et al., 2005. (c) From Mano et al., 2009.
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nanostructures as well. Since the AlGaAs capping layer is
often grown at low temperatures, a high-temperature post-
growth annealing is required to make them optically active
and the demonstrated quantum efficiency cannot
yet compete with Stranski-Krastanov quantum dots
(Tighineanu et al., 2013), although narrow linewidths have
been reported (Mano et al., 2009; Sallen et al., 2011). The
postgrowth annealing results in intermixing and the resulting
confinement is therefore smaller than the apparent size as
shown in Figs. 2(h) and 2(i).
In quantum-optics experiments it is often required to isolate

a single quantum dot, which may be achieved by various
methods, such as etching away the material surrounding a
single quantum dot or evaporating an opaque metallic aperture
masking other quantum dots. Such methods may modify the
optical properties in adverse ways and are therefore not
generally compatible with nanophotonic devices, such as
waveguides or cavities. The most versatile experimental
approach at present is to use samples with a low quantum-
dot density combined with confocal microscopy. The main
drawback of the standard growth methods is that the lateral
positions of the quantum dots are not controlled and it has
proven a successful strategy to deterministically align nano-
photonic structures to a single quantum dot that is first located
by microscopy techniques (Badolato et al., 2005; Hennessy
et al., 2007; Dousse et al., 2008; Thon et al., 2009; Kojima
et al., 2013).
It would generally be ideal to grow periodic arrays of

quantum dots for deterministic and scalable integration with
photonic nanostructures and many approaches are presently
studied. This is currently an active field of crystal-growth
research (Kiravittaya, Rastelli, and Schmidt, 2009) and relies
on growing quantum dots on patterned substrates obtained,
e.g., by electron-beam lithography, and subsequently etching
small recesses creating nucleation sites for quantum dots. This
processing leads to challenges because impurities and defects
are introduced and growing high-quality material immediately
atop the regrowth interface is difficult. Therefore a common
approach involves growing a seed layer of quantum dots that
is optically inactive due to defects at the regrowth interface but
introduces a suitable amount of strain so that another
quantum-dot layer can be grown atop. The optical quality
of positioned quantum dots tends to be lower than that of
Stranski-Krastanov quantum dots giving broader linewidths
and lower quantum efficiency (Albert et al., 2010) and
patterned regrowth of quantum dots is not yet widely applied
in quantum-nanophotonics experiments. Recent promising
progress includes the demonstration of emission of indistin-
guishable (Jöns et al., 2013) and polarization-entangled
(Juska et al., 2013) photons although the yield, i.e., the
fraction of sites with an optically active high-quality quantum
dot, is so far below unity. It is nonetheless anticipated that
future progress eventually will render positioned quantum
dots indispensable for more controlled experiments (Gallo
et al., 2008) and for scaling up quantum architectures. It
should also be mentioned that even if the inherent optical
properties of positioned quantum dots do not reach the quality
of Stranski-Krastanov material, the Purcell effect (see
Sec. IV.C) or resonant excitation (see Sec. V.C) can be

employed to enhance the effective quantum efficiency or
reduce the effects of linewidth broadening, respectively.
The material composition and size determine the energy

range of the emission spectrum of quantum dots. In particular,
the lowest-energy transition of InAs quantum dots typically
falls in the range of 850 to 1000 nm, while GaAs quantum dots
typically emit at around 670 to 760 nm. The choice of material
also affects photonic properties, in particular, through the real
part of the index of refraction. Also bulk and surface
absorption are strongly material dependent and play an
important role for the performance of nanophotonic devices
(Michael et al., 2007). In general, longer wavelengths imply
that fabrication of nanostructures is easier and that the relative
importance of fabrication imperfections is reduced.
Furthermore, the material absorption is smaller at longer
wavelengths, which therefore allow for, e.g., higher Q factors
of optical nanocavities. On the other hand, silicon-based
photodetectors such as avalanche photodiodes are much more
efficient at shorter wavelengths and therefore lead to higher
photon-count rates, although this obstacle may be overcome
by the use of superconducting detectors. A trade-off between
these factors determines the most ideal wavelength for a given
experimental setting.

B. Excitons in quantum dots

The fundamental optical excitation in a quantum dot
consists of an electron in the conduction band and a hole
in the valence band. In bulk semiconductors and quantum
wells there is an important distinction between an uncorrelated
electron-hole pair and an exciton, which is an electron-hole
pair bound by direct and exchange Coulomb interaction. In
quantum dots this distinction is often not required. In small
quantum dots, the motion of electrons and holes is dominated
by quantum confinement, which implies that they are mutu-
ally independent, but exciton effects are required to explain
the fine structure. The optically active states in quantum dots
are therefore always excitonic. A further discussion of the
effects of Coulomb interaction and confinement is given in
Sec. II.E.2.
The unfilled orbital shells of atomic Al, Ga, In, and As are

3s23p, 4s24p, 5s25p, and 4s24p3, respectively, so predomi-
nantly covalent bonds are formed in GaAs and in the other
relevant binary and ternary alloys. This leads to tetrahedral
bonds and a zinc-blende crystal structure and in the absence of
spin-orbit effects there would be three degenerate valence
bands. Including spin orbit, the split-off valence band is
shifted to lower energy but the light- and heavy-hole bands
remain degenerate (Yu and Cardona, 2010). The heterojunc-
tions of InGaAs in GaAs and GaAs in AlGaAs have type-I
energy-band alignment, which ensures carrier confinement at
both the conduction- and the valence-band edge. This is
essential for the efficient interaction with light and allows for
quantized states for both electrons and holes. The aspect ratio
of quantum dots is larger than unity and the dominant
quantization axis is the growth direction. This lifts the
heavy-hole–light-hole degeneracy so that the transitions from
the conduction band to the heavy-hole band have the lowest
energy. Strain plays a major role in InGaAs quantum dots and
lifts the degeneracy further. While neglecting the light-hole

Peter Lodahl, Sahand Mahmoodian, and Søren Stobbe: Interfacing single photons and single quantum … 351

Rev. Mod. Phys., Vol. 87, No. 2, April–June 2015



band is often a good approximation, a substantial band mixing
can occur in quantum dots with a pronounced structural
asymmetry (Belhadj et al., 2010). Sophisticated numerical
models have been developed in order to encompass these
effects, such as the k · p method (Stier, Grundmann, and
Bimberg, 1999), which is a continuum theory and the
empirical pseudopotential theory (Bester, 2009), which is
an atomistic approach. Despite these significant advances, the
comparison to experiments is limited by the lack of knowl-
edge about the exact atomic configuration of quantum dots.
Such information could be extracted using, e.g., high-
resolution transmission electron microscopy or scanning
tunneling microscopy, but these techniques are time consum-
ing and often destructive and therefore challenging to combine
with optical spectroscopy. Fortunately, under the conditions
relevant for quantum-optics experiments, i.e., quantum dots
with a large aspect ratio at low temperatures and small carrier
populations, many features of quantum dots can be described
remarkably well by using a simple two-band effective-mass
model where only the heavy-hole valence band and the
conduction band are included. We restrict the discussion in
this review to such a model. In the effective-mass approxi-
mation, the electronic energy bands are taken into account by
the band-edge effective mass of the carriers. We are mainly
concerned with quantum dots of sizes where the energy-level
spacing is large compared to the Coulomb energy. In this case,
Coulomb effects may be included perturbatively and the
motion of the carriers in the conduction and valence bands
may be considered independent. This is known as the strong-
confinement regime and throughout this review we restrict the
discussion to this regime unless explicitly noted. It should be
noted that in quantum dots the energy-level spacing may
actually be comparable to the Coulomb energy leading to a
complex interplay between confinement and Coulomb inter-
action, which is denoted the intermediate-confinement regime.
However, the strong-confinement model has so far been able
to describe experiments successfully.

C. The transition matrix element

The key property of a quantum emitter determining the
strength of its interaction with light is the transition matrix
element between the ground and excited states. This may also
be expressed as a transition dipole moment or an oscillator
strength. For atoms this is an immutable intrinsic property but
for quantum dots it may be controlled by modifying the
exciton wave function. Here we discuss the physics under-
lying the transition matrix element of quantum dots.
The quantum state of an electron in the conduction band c

or heavy-hole valence band v consists of three parts,

jΨc=vi ¼ jFc=vijuc=vijαc=vi; ð1Þ

where jFc=vi, juc=vi, and jαc=vi is the envelope wave function,
the electronic Bloch function evaluated at the Γ point
of the band structure, and the spin state, respectively. The
envelope wave function is obtained from the effective-mass
Schrödinger equation

−
ℏ2

2m0

∇ ·

�
1

m�ðrÞ∇Fc=vðrÞ
�
þ Vc=vðrÞFc=vðrÞ

¼ ðE − Ec=vÞFc=vðrÞ;

wherem0 is the electron rest mass andm�ðrÞ is the anisotropic
effective mass, which in general is a tensor but here taken to be
scalar for simplicity. Vc=vðrÞ is the confinement potential, E is
the electron eigenenergy, and Ec=v is the band-edge energy.
Optical transitions are induced by the minimal-coupling

Hamiltonian, which in the generalized Coulomb gauge and the
dipole approximation can be written as

Hðr0; tÞ ¼ −
q
m0

p ·Aðr0; tÞ;

where q is the elementary charge, p ¼ −iℏ∇ is the momen-
tum operator, and Aðr0; tÞ is the vector potential of the
electromagnetic field that is evaluated at the position of the
quantum dot r0. The relevant quantity for spontaneous
emission is therefore the momentum matrix element P ¼
hΨvjpjΨci that follows from Eq. (1),

P ¼ hFvjFcihuvjpjuciuchαvjαci; ð2Þ

leading to three selection rules for optical transitions: (i) the
envelope wave functions must have the same parity, (ii) the
Bloch functions must have opposite parity, and (iii) the
electron spin must remain unchanged. The Bloch matrix
element is huvjpjuciuc ¼ V−1

uc

R
uc d

3ru�vðrÞpucðrÞ, where Vuc

is the volume of a unit cell, and depends only on bulk material
properties as is quantified by the Kane energy to be introduced
later. Formally the selection rules can be relaxed by band
mixing, but experimentally transitions obeying them have
been observed to dominate (Johansen et al., 2008). The first
selection rule is only approximately valid since parity often is
not a good quantum number for quantum-dot envelope
functions.
The electronic states are commonly described in the

equivalent electron-hole picture in which the valence-band
states are transformed to the hole picture according to
jFhi ¼ jFvi�, juhi ¼ juvi�, and jαhi ¼ jαvi�. In this picture
the decay of an electron from the conduction band to the
valence band is viewed as the recombination of an electron
and a hole and we define the electron and hole pseudospin
states, which describe the total angular momentum of the
Bloch functions and the spin, i.e., j↑i ¼ jucij↑ei,
j↓i ¼ jucij↓ei, j⇑i ¼ juhij↑hi, and j⇓i ¼ juhij↓hi. Here
the arrows with subscripts denote the projected spin so that,
e.g., j↑ei is an electron with Sz ¼ þ1=2, where z is along the
growth direction. A quadruplet of exciton states is formed
enabling dipole-allowed transitions for the states j⇑↓i and
j⇓↑i, and dipole-forbidden transitions for j⇑↑i and j⇓↓i. It is
common practice to suppress the envelope wave function in
the notation because they contribute only to the matrix
element with a prefactor, i.e., the wave-function overlap.
The evaluation of the corresponding dipole matrix elements is
obtained by converting back to the electron picture and using
Eq. (2). To summarize the implications of the notation with an
example, the matrix element P ¼ hgjpj⇑↓i for transitions
between the state j⇑↓i and the state void of excitations,

352 Peter Lodahl, Sahand Mahmoodian, and Søren Stobbe: Interfacing single photons and single quantum …

Rev. Mod. Phys., Vol. 87, No. 2, April–June 2015



i.e., the quantum-dot ground state jgi corresponds to
P ¼ hFvjFcihuvjpjuciuc.
The Bloch functions inherit the symmetry of the atomic

orbitals: the conduction-band Bloch functions have s
symmetry and the valence band has p symmetry. Hence we
define j↑i ¼ jusij↑ei, j↓i ¼ jusij↓ei, j⇑i¼−ð1= ffiffiffi

2
p Þðjuxiþ

ijuyiÞj↑hi, and j⇓i¼ð1= ffiffiffi
2

p Þðjuxi−ijuyiÞj↓hi, where us, ux,
anduy denote functionswith even parity, oddparity along x, and
odd parity along y, respectively. With these definitions we
obtain for j⇑↓i that

P ¼ −hFvjFcihuxjpxjusiuc
1ffiffiffi
2

p ðêx þ iêyÞ;

where êx (êy) is a unit vector along x (y). Evidently, the
polarization of the dipole moment is given by the term
ð1= ffiffiffi

2
p Þðêx þ iêyÞ, which describes circular polarization. The

magnitude of the dipole moment depends on thewave-function
overlap hFvjFci, which can be controlled by, e.g., external static
electric fields, and the Bloch matrix element huxjpxjusiuc. The
latter is an entirely bulk semiconductor quantity given by the

Kane energy EP ¼ 2jhuxjpjusiucj2=m0 ¼ 2jhuyjpjusiucj2=m0

(Vurgaftman, Meyer, and Ram-Mohan, 2001).
Quantum dots are most often grown on (001) substrates

where the symmetry leads to in-plane anisotropic confinement
potentials even for rotationally symmetric quantum dots
(Bester, Nair, and Zunger, 2003) and typically an in-plane
structural asymmetry is also present. The preferential elonga-
tion is along ½11̄0�, which is also apparent from Fig. 2(b). The
exchange interaction splits the four excitonic states into two
doublets, which are separated by the dark-bright energy
splitting (Bayer et al., 2002): the dark-exciton doublets jXdi¼
ð1= ffiffiffi

2
p Þðj⇑↑i− j⇓↓iÞ and jYdi¼ ð1= ffiffiffi

2
p Þðj⇑↑iþ j⇓↓iÞ, and

the bright exciton doublets jXbi ¼ ð1= ffiffiffi
2

p Þðj⇑↓i − j⇓↑iÞ and
jYbi ¼ ð1= ffiffiffi

2
p Þðj⇑↓i þ j⇓↑iÞ. Furthermore, the exchange

interaction splits the bright doublet due to the reduced in-
plane symmetry with a fine-structure splitting ΔEfss typically
on the order of 10–100 μeV (Seguin et al., 2005). The
splitting between the two dark excitons is of the order of
1 μeV (Poem et al., 2010). The resulting excitonic states are
shown in Fig. 3 along with the radiative transitions as well as

FIG. 3 (color online). The lowest-energy confined states in quantum dots and the transitions between them. The full (empty) circles
indicate the electron (hole) configuration in the conduction (valence) band s shells of the quantum dot. The pseudospin states are
discussed in the text. The biexciton may decay to one of the two bright exciton states by emission of a horizontally (H) or vertically (V)
polarized photon. The negative (positive) trion decays to a single electron (hole) by emission of circularly polarized light with the
helicity depending on the additional carrier. Furthermore, spin-flip processes (gray arrows) couple bright and dark excitons.
Nonradiative processes (black arrows) are generally present and can for some transitions be dominant; here only the nonradiative decays
of the bright excitons are indicated explicitly. Note that the ordering of the states in the figure follows the occupancy, while the emission
energies of the radiative excitonic complexes depend not only on the occupancy but also on confinement and correlation effects.
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the spin-flip and nonradiative transitions that are discussed
further later. Using the procedure outlined previously, it is
straightforward to show that jXbi and jYbi have linearly
polarized dipole transitions to the ground state with orienta-
tions along x and y, respectively.

D. Multiexcitonic states

Quantum dots can contain multiple electrons and/or holes
leading to additional transitions with different optical proper-
ties than single neutral excitons. The simplest examples of
multiexcitonic states are trions and biexcitons that are useful
in quantum-optics experiments requiring multilevel schemes.
Multiple bound states may exist as solutions to the

effective-mass equation for both the conduction and valence
bands and these eigenstates are commonly denoted s, p, and
d shells, etc., in analogy with the convention in atomic physics
and not to be confused with the symmetries of the Bloch
functions discussed earlier. We note that the approximate
selection rule for the envelope functions implies that only
transitions between the same shell in the conduction and the
valence band need to be considered. Excitons in higher-lying
states are often not relevant for optical emission because they
decay to the s shells on a few-picosecond time scale by
emission of phonons but depending on the type of excitation
in a given experiment they may affect the decay cascade
toward the s shells. In the following we consider only the
s shells. Here only four types of excitonic quasiparticles exist
due to the Pauli exclusion principle: the neutral exciton, the
negative trion (two electrons and one hole), the positive trion
(one electron and two holes), and the biexciton (two electrons
and two holes). The charge configuration, pseudospin state,
and dipole-allowed transitions of these states are shown in
Fig. 3 and are discussed further later. We note that non-
radiative processes have not been studied systematically for
trions and biexcitons.

The exchange interaction vanishes for the trions due to
Kramer’s theorem according to which a system with an odd
number of fermions is at least twofold degenerate if it is
governed by a Hamiltonian that is symmetric under time
reversal (Messiah, 1999), which is the case for a trion in
the absence of external magnetic fields. The state of the
two identical carriers must be antisymmetrized because
trions are fermions. The negative trion is given by jX−i ¼
ð1= ffiffiffi

2
p Þðj↑↓i − j↓↑iÞjuhijαhi, where jαhi is the hole-spin

state. For the positive trion jXþi ¼ ð1= ffiffiffi
2

p Þðj⇑⇓i−
j⇓⇑iÞjucijαei, where jαei is the electron-spin state. The
transition matrix elements for the decay of a trion to a single
electron or hole are circularly polarized with the helicity
depending on the spin of the additional carrier. As opposed to
excitons they have no corresponding dark states. The addi-
tional carrier in trions may be prepared in a spin eigenstate and
trions are therefore particularly relevant for spin physics.
Quantum-dot spin physics was recently reviewed by
Warburton (2013) and Urbaszek et al. (2013).
Biexcitons have the pseudospin configuration jXXi ¼

j⇑⇓↑↓i and they can decay radiatively to either of the bright
excitons. Depending on which exciton it decays to, a cascade
of either two horizontally polarized or two vertically polarized
photons is triggered, i.e., the emitted photonic state is
jHXXijHXi or jVXXijVXi; cf. Fig. 4(c). Since biexcitons
contain two excitons they are observed at higher excitation
densities and decay approximately twice as fast as excitons
since they have twice the number of radiative decay channels.
If the fine-structure splitting is much smaller than the natural
linewidth, biexcitons are a source of polarization-entangled
photons because the emission cascade leads to the entangled
photonic state ð1= ffiffiffi

2
p ÞðjσþXXijσ−Xi þ jσ−XXijσþXXiÞ, where σþ

and σ− denote left- and right-hand circular polarization,
respectively (Benson et al., 2000). The fine-structure splitting
can be reduced by growing quantum dots on the higher-
symmetry (111) substrates (Juska et al., 2013; Kuroda et al.,

(a) (b) (c)

FIG. 4 (color online). Examples of excitonic level schemes in quantum dots of relevance for quantum-optics experiments. (a) The most
basic three-level optical transition scheme of a single bright exciton jXbi that can emit a photon by decaying radiatively to the ground
state jgi. Also nonradiative decay processes and coupling to the dark exciton state jXdi through spin-flip processes may occur. The dark
state can also recombine nonradiatively. This level scheme leads to a biexponential decay of the emitted intensity and holds also for the
other bright exciton jYbi (not shown). (b) Optical V scheme formed by the two bright exciton states that decay to the ground state. The
two orthogonally polarized bright excitons are split by the fine-structure splitting ΔEfss. The nonradiative processes and dark states
indicated in (a) are excluded for simplicity. (c) Four-level scheme formed by the biexciton level, the two bright exciton levels, and the
ground state. The biexciton decays through a cascaded process of either emitting two horizontally or two vertically polarized photons.
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2013) or by applying various tuning schemes, such as electric
fields (Bennett et al., 2010).

E. Optical properties of quantum dots

Quantum dots are reliable sources of photons for quantum
optics and various level schemes can be realized by different
excitation and detection strategies. Figure 4 summarizes the
most relevant levels and decay processes. In many applica-
tions the three-level scheme of Fig. 4(a) is applied, which
suffices for describing single-photon emission. We consider
this level scheme throughout the review unless otherwise
noted. In this case we define the excited state jei ¼ jXbi. In
the following we discuss the key figures of merit of the three-
level system and elaborate on the single-photon-emission
properties and coherence in Sec. II.F.

1. Quantum-dot decay dynamics

A detailed understanding of the dynamics of quantum dots
is essential in order to exploit them as reliable photon sources
in quantum-photonics applications. The various exciton states
can be coupled by spin-flip processes where, e.g., an
exchange-mediated process between electron and hole
(Roszak et al., 2007) or spin-orbit coupling (Liao,
Climente, and Cheng, 2011) flips the spin of the exciton
while longitudinal acoustic (LA) phonons provide or remove
the energy difference between the two states. Spin-flip
processes are generally much slower than the radiative decay
processes so it is a good approximation to include only spin
flips between jXbi and jXdi as well as between jYbi and jYdi.
Transitions between jXb=di and jYb=di require changing the
spin of both the electron and the hole and are therefore
negligible. This implies that jXb=di and jYb=di are decoupled
and lead to two identical three-level schemes of the form
shown in Fig. 4(a). This constitutes the basic level scheme
relevant for many quantum-photonics experiments employing
a single (neutral) exciton in a quantum dot. For the case of
nonresonant excitation where both bright and dark exciton
states are populated, the population ρb of the bright exciton
follows a biexponential decay (Smith et al., 2005; Wang,
Stobbe, and Lodahl, 2011),

ρbðtÞ ¼ Afe−γft þ Ase−γst; ð3Þ

with the fast and slow decay rates

γf ¼ γrad;b=2þ γnrad;b þ γdb þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2rad;b=4þ γ2db

q
and

γs ¼ γrad;b=2þ γnrad;b þ γdb −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2rad;b=4þ γ2db

q
;

and corresponding amplitudes

Af ¼ ρbð0Þ
�
1þ γrad;b

γf − γs

�
=2 − ρdð0Þ

γdb
γf − γs

;

and

As ¼ ρbð0Þ
�
1 −

γrad;b
γf − γs

�
=2þ ρdð0Þ

γdb
γf − γs

.

Here γrad;b denotes the radiative decay rate for the bright
exciton, γnrad;b (γnrad;d) denotes the nonradiative decay rate of
the bright (dark) exciton, and γdb is the bright-dark spin-flip
rate. The initial population of bright and dark excitons can be
assumed identical, i.e., ρbð0Þ ¼ ρdð0Þ ¼ 0.5 for weak non-
resonant excitation although corrections to this assumption
may be imposed by the decay cascade involving higher-
excited states in the quantum dot (Poem et al., 2010). It has
been found experimentally that the recombination of dark
excitons is dominated by nonradiative processes and that
γnrad;b ≈ γnrad;d (Johansen et al., 2010), i.e., the intrinsic
nonradiative decay rates of bright and dark exciton states
are approximately equal, which reflects the fact that the
binding energies of bright and dark excitons are very similar.
This approximation has been used to obtain Eq. (3). We note
that with externally appplied strain, light- and heavy-hole
mixing (Huo et al., 2014) may lead to a radiative contribution
to the recombination of dark excitons. Since most experiments
are carried out at temperatures where the thermal energy
exceeds the energy splitting between dark and bright states
(kBT > ΔEdb), the probability of emission and absorption of
phonons is approximately equal and it is a good approxima-
tion to assume γbd ≈ γdb, which has also been assumed to
reach the simplified dynamics of Eq. (3).
By fitting experimental decay curves with the biexponential

model of Eq. (3), the radiative, nonradiative, and spin-flip
rates can be extracted for a single quantum dot. With this
method, single quantum dots can be employed for mapping
the local light-matter interaction strength, as discussed in
Sec. IV.C. Considerable variations in the spin-flip and non-
radiative rates are generally found across a quantum-dot
ensemble and between different growth runs, and the
described quantitative method of determining these processes
is thus required. We note that trions and biexcitons do not have
a fine structure implying that their population dynamics
follows a single-exponential decay with no direct access to
the nonradiative rates.

2. The oscillator strength

The intrinsic capability of a dipole emitter to interact with
light is characterized by the magnitude of the transition
momentum matrix element P as introduced previously. In
the dipole and rotating-wave approximations this is equivalent
to retaining only the dipole term in the multipolar gauge
(Craig and Thirunamachandran, 1998). In this approximation,
the interaction Hamiltonian can be expressed in terms of the
transition dipole-moment operator d ¼ qr and the electric-
field amplitudeEðr0; tÞ evaluated at the position of the emitter
r0 asH ¼ −d · Eðr0; tÞ. This description is common in atomic
physics, where the dipole approximation is an excellent
approximation but verifying its validity for quantum dots is
nontrivial as discussed in Sec. IV.E. The dipole matrix element
is related to the momentum matrix element via P ¼ im0ω0r,
where ℏω0 is the optical transition energy. The optical
transition strength is commonly quantified by the oscillator
strength, which is a dimensionless parameter defined as the
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decay rate in a homogeneous medium divided by the decay
rate of a classical oscillator. It can be expressed as

f ¼ 2

ℏω0m0

jPj2 ¼ EP

ℏω0

jhFvjFcij2: ð4Þ

A large oscillator strength is desirable since it increases the
light-matter interaction strength and therefore increases the
generation rate of single photons. A large oscillator strength
also reduces the relative impact of other interactions that may
give rise to undesired effects, such as phonon-dephasing or
nonradiative decay. Evidently the squared wave-function
overlap Oeh ¼ jhFvjFcij2 must be maximized to enhance
the oscillator strength; cf. the discussion of Fig. 5.
While the wave-function overlap cannot exceed unity

and thus sets the upper limit for the oscillator strength, the
strong-confinement model underlying Eq. (4) is valid only
when the Coulomb interaction can be neglected or included

perturbatively. For large quantum dots with a radius larger
than the exciton Bohr radius, this assumption breaks down.
The exciton Bohr radius is

a0 ¼
4πϵ0ϵrℏ2

q2m0m
;

where ϵ0 denotes the vacuum permittivity, ϵr is the relative
static permittivity of the material, and the reduced mass is
defined as

m ¼ memhh

me þmhh

with the electron (hole) effective mass me (mhh). The exciton
Bohr radius in nanostructures is modified by confinement and
in quantum dots, where the quantization along the growth axis
is dominant, the Bohr radius is reduced by a factor of ≃2

(Bastard et al., 1982). When the quantum-dot radius is much
larger than the exciton Bohr radius the exciton is weakly
confined leading to a hydrogenlike state. In the weak-confine-
ment regime, the oscillator strength turns out to be propor-
tional to the exciton volume (Hanamura, 1988; Andreani,
Panzarini, and Gérard, 1999; Stobbe et al., 2012) or, for a
disk-shaped quantum dot, to the area, i.e.,

f ¼ 8
EP

ℏω

�
L
a0

�
2

: ð5Þ

This remarkable phenomenon is known as the giant-oscillator-
strength effect and may be considered an analog of super-
radiance. It implies that the oscillator strength can be
significantly enhanced by increasing the lateral extent of
the quantum dot. This prediction has led to significant
experimental efforts to observe the giant-oscillator-strength
effect, which is challenging since nonradiative processes
could mask the effect. The indirect extraction of the oscillator
strength in large InGaAs quantum dots obtained from the
founding work on strong coupling in cavity QED
(Reithmaier et al., 2004) has turned out to be inconsistent
with direct measurements of the oscillator strength from time-
resolved spectroscopy, since nonradiative recombination was
found to be relevant (Stobbe et al., 2010). This discrepancy is
likely a result of the influence of additional excitons
feeding the cavity, as discussed in further detail in
Sec. VII. Indications of a large oscillator strength have been
reported for GaAs interface-fluctuation quantum dots from
time-resolved experiments (Hours et al., 2005; Peter
et al., 2005).

3. The quantum efficiency

Exciton-recombination processes in quantum dots may
suffer from nonradiative contributions, which add undesirable
losses to the radiative decay. The relative strength of the
radiative and the nonradiative decays is quantified by the
fraction of recombination events leading to photon emission,
i.e., the quantum efficiency,

η ¼ γhomrad

γhomrad þ γnrad
; ð6Þ
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FIG. 5 (color online). Emission-energy dependence of funda-
mental quantum-optical properties of quantum dots. (a) Emission
spectrum of an InGaAs quantum-dot ensemble. (b) Total decay
rate γtot, which is the sum of the radiative γrad and nonradiative
γnrad decay rates. The solid lines are, respectively, a fit to the
radiative rate using the effective-mass equation with the quantum-
dot heights shown in the upper scale, a fit to the nonradiative rate
using a scaling model, and their sum. (c) Quantum efficiency,
(d) oscillator strength, and (e) wave-function overlap where the
data points (solid lines) are directly extracted from the data
(theory) in (b). The wave-function overlap governs the radiative
properties of excitons. From Johansen et al., 2008 and Stobbe
et al., 2009.
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where γhomrad is the radiative decay rate in a homogeneous
reference medium, e.g., GaAs in the case of Stranski-Krastanov
quantum dots. In optics applications it is desirable to have η≃ 1.
Measuring the quantum efficiency can be challenging since

it is nontrivial to separate radiative and nonradiative processes.
For example, if γdb ≪ γrad, which is typically the case, the fast
decay rate probed in a time-resolved photoluminescence
experiment is γf ¼ γrad þ γnrad. Figure 5 shows experimental
data on the key optical properties of quantum dots where a
systematic variation in the projected local density of optical
states (LDOS, discussed at length in Sec. IV) was used to
modify the radiative rate while leaving the nonradiative decay
unaffected (Johansen et al., 2008) and thus enabling their
separation. The energy dependence of the total decay rate
across the emission spectrum of the quantum-dot ensemble
[Fig. 5(a)] is shown in Fig. 5(b) and turns out to be influenced
by the variation in γnrad as reflected in the drop in quantum
efficiency for high energies shown in Fig. 5(c). The radiative
rate γrad and thus also the oscillator strength [cf. Fig. 5(d)]
were successfully modeled by Eq. (4) which predicts that they
are proportional to the overlap of the envelope wave functions
as shown in Fig. 5(e). The observed energy dependence is due
to the different effective masses of electrons and holes such
that the wave-function confinement inside the quantum dot
differs with energy. While this detailed information was
extracted for an ensemble of quantum dots by applying a
controlled modification of the LDOS, the radiative and non-
radiative rates can also be extracted at the single quantum-dot
level by recording the biexponential decay dynamics.
Little is known about the physical mechanism of non-

radiative processes in quantum dots but the few existing
experiments (Stobbe et al., 2009) indicate that the non-
radiative decay rate scales with the surface-to-volume ratio
of the quantum dot. This shows that charge trapping at lattice
defects at the interface between the quantum dot and the
surroundings is likely a contribution to nonradiative recombi-
nation in Stranski-Krastanov quantum dots; this finding is
consistent with the large variation in the nonradiative decay
rate between different quantum dots that is typically found.
Recently mesoscopic light-matter interaction effects were also
found to contribute to this additional decay process
(Tighineanu, Sørensen et al., 2014); for a further discussion
of these effects, see Sec. IV.E. Since the LDOS can be
strongly altered in photonic nanostructures it is sometimes
convenient to define an effective quantum efficiency ηeff ¼
γrad=ðγrad þ γnradÞ, which is the quantum efficiency of the
emitter at a particular position, wavelength, and orientation in
a photonic structure. Since ηeff may be significantly enhanced
by enhancing the LDOS, the influence of nonradiative effects
may be partially suppressed.

4. Excitation schemes and tuning

One of the simplest yet powerful experimental techniques
for assessing the optical properties of quantum dots is
photoluminescence spectroscopy, where the quantum dot is
optically excited and the spontaneous emission recorded with
a spectrometer equipped with a charged-coupled-device cam-
era. The excitation energy can be either (1) above band, i.e.,
above the band gap of the barrier material, (2) quasiresonant,

i.e., matching an excited excitonic state or continuum of states
in the wetting layer, or (3) resonant, i.e., exactly matching the
energy of the exciton transition under investigation. Detailed
spectroscopic insight is obtained by monitoring the emission
from the exciton while scanning the laser wavelength, which
is known as photoluminescence excitation spectroscopy.
Resonant excitation is particularly challenging and has been
demonstrated only rather recently because the strong excita-
tion laser must be efficiently filtered. Resonant excitation is
discussed in detail in Sec. V. An alternative approach is to
embed the quantum dots in a diode and mask the wafer surface
with opaque metal except a small aperture atop the quantum
dot, which allows probing resonant-excitation properties in
the photocurrent. The diode may also be used in forward bias
to create a single-photon light-emitting diode (Yuan et al.,
2002; Salter et al., 2010), which is appealing for certain
applications. The drawback of electroluminescence is that the
energy and polarization of the injected carriers is more
difficult to control as compared to controlling an excitation
laser although there is currently significant progress (Conterio
et al., 2013). Nonetheless the ability to electrically excite a
quantum dot distinguishes them from other optical emitters
and may become of major practical relevance.
For many applications in quantum nanophotonics, precise

spectral tuning of quantum dots is required. For instance, in
the case of a cavity with aQ factor of 104, the cavity linewidth
is approximately 0.1 nm and the observation of cavity-QED
effects requires tuning the quantum dot into resonance with
the mode to this precision. A wide tuning range is generally
required since a quantum-dot ensemble is usually strongly
inhomogenously broadened (can be up to 50–100 nm) and
fabrication imperfections also lead to a significant spread in
the actual cavity-resonance frequencies. One possible mecha-
nism exploits temperature tuning where both the cavity-
resonance and exciton-transition energies shift in the same
direction (redshift with increasing temperature) but at a
different rate so that they may be tuned into mutual resonance
(Englund et al., 2007). This has proven to be a very useful
method that is easy to implement but may compromise
coherence properties since increasing the temperature also
increases the phonon population leading to dephasing.
Another option is tuning with magnetic fields (Stevenson
et al., 2006), which depending on the orientation of the field
relative to the quantum dot also changes the fine structure and
the optical selection rules (Bayer et al., 2002). However, this
method has rather limited tuning range and it appears
unfeasible to apply large local magnetic fields to individual
quantum dots. Another option is adsorption of inert gasses,
which changes the dielectric environment that in turn spec-
trally shifts the optical response of the nanostructures while
leaving the quantum dots unaffected. This works well for
photonic crystals due to the relatively large field amplitude in
the holes where the gas is adsorbed. However, for more
advanced applications involving multiple quantum dots to be
independently tuned, this method is not useful. Applying
external strain enables not only tuning of the energy levels but
also allows modifying the underlying electronic band structure
to create light-hole excitons (Huo et al., 2014). However, it
appears challenging to integrate such strain tuning with high-
quality photonic nanostructures. The most appealing tuning
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mechanism is to apply a static electric field to tune the
quantum dots via the quantum-confined Stark effect. Electric
fields may be readily applied between doped layers below and
above the quantum dots forming a vertical p-i-n diode, which
under reverse bias can be used to apply large fields. With a
proper device design involving the tunneling barriers, a tuning
range of 25 meV corresponding to 18 nm (Bennett et al.,
2010) was demonstrated. The doping levels can be so small
that absorptive losses do not limit the Q factor of cavities or
the transmission of waveguides. Independent tuning of multi-
ple quantum dots could be achieved by etching isolation
trenches (Winger et al., 2011) or by local dopant implantation
(Ellis et al., 2011).

F. Coherent single-photon emission from quantum dots

Quantum dots are mesoscopic emitters embedded in a
solid-state environment and a number of processes not
encountered in atomic physics play an important role in the
single-photon emission from quantum dots. In particular,
phonons, charge fluctuations associated with lattice defects
or impurities, and spin fluctuations in the ensemble of nuclei
give rise to dephasing, spin-flip, and nonradiative decay
processes. Such processes can influence the quality of the
single-photon emission from quantum dots and, in particular,
determine the coherence properties. Highly coherent single
photons are required for quantum-information processing
applications and in the present section we briefly outline
the main decoherence processes and governing parameters for
quantum dots.
In order to assess the quality of a single-photon source it is

essential to develop precise experimental methods. To this
end, the photon statistics of a quantum state of light is
determined by recording the second-order correlation function
defined as

gð2ÞðτÞ ¼ hâ†ðtÞâ†ðtþ τÞâðtþ τÞâðtÞi
hâ†ðtÞâðtÞi2 ; ð7Þ

where â and â† are annihilation and creation operators for the
optical mode probed in the experiment and τ is a time delay
introduced in between two subsequent measurements of the
number of photons at time t and tþ τ, respectively.
Experimentally, gð2ÞðτÞ can be recorded by dividing the light
beam on a beam splitter and recording with two different
photodetectors the number of photons with an electronically
controlled delay in each path. This is referred to as theHanbury-
Brown-Twiss setup. Thevalue at τ ¼ 0 is particularly important
because it directly determines the quality of the single-photon
source. For Fock states, gð2Þð0Þ ¼ 1 − 1=n, where n is the
number of photons and thus gð2Þð0Þ ¼ 0 for a true single-photon
source. For a coherent state, gð2Þð0Þ ¼ 1 and for a thermal state,
gð2Þð0Þ ¼ 2. Consequently, gð2Þð0Þ can be employed as a
measure of the single-photon purity of a light source. In the
case of quantum dots, the recombination of a single exciton
generates a single photon, but the recorded signal may be
polluted by photons emitted through other recombination
processes on different transitions. In experiments, much effort
is devoted to the selective excitation of a single exciton in a

quantum dot and the subsequent spectral filtering of the emitted
light in order to suppress any multiphoton contributions from
other emission processes.
Information about the coherence of the emitter can be

obtained from the spontaneous-emission spectrum. A number
of different dephasing mechanisms will in general influence a
quantum dot that can be included at various levels of
sophistication when modeling experimental data. In the
simplest approximation, the dephasing reservoir is assumed
to be Markovian and described by a single rate γdp. In this case
the emission spectrum exhibits the well-known Lorentzian
form with a linewidth determined by the spontaneous-emis-
sion lifetime and dephasing times according to

1

T2

¼ 1

2T1

þ 1

T�
2

; ð8Þ

where T2 is the total coherence time (i.e., the inverse line-
width), T1 ¼ 1=γtot is the inverse total decay rate of the
emitter, and T�

2 ¼ 1=γdp is the pure-dephasing time. We note
that due to dephasing the coherence of the emitter usually
decays faster than the population. In the absence of dephasing,
1=T�

2 ¼ 0, the twofold slowdown of coherence relative to
population reflects that the former depends linearly on the
complex expansion coefficient of the excited state of the
emitter while the latter depends quadratically. The theory of
spontaneous-emission dynamics and coherence is treated in
detail in Secs. IV.A and IV.B. The pure-dephasing model
captures the basic feature of a broadening of the emission
spectrum and may be used to describe, e.g., the broadening of
the zero-phonon line of the emission spectrum (Muljarov and
Zimmermann, 2004). Other dephasing processes in quantum
dots include charge-fluctuation noise and spin noise from the
coupling of the exciton to the spins of the nuclei (Kuhlmann,
Houel et al., 2013). The charge noise arises from the presence
of a fluctuating distribution of charges in the vicinity of the
quantum dot and leads to slow (longer than milliseconds)
spectral diffusion of the quantum-dot resonance. To a large
extent, this can be overcome by applying resonant excitation
on electrically contacted quantum dots whereby near-trans-
form-limited optical transitions have been observed
(Kuhlmann, Prechtel et al., 2013). Residual spectral diffusion
can be overcome by locking the quantum dot to a stable
reference (Prechtel et al., 2013). It should be emphasized that
an adequate description of these dephasing processes would
include how the functional form of the emission spectrum is
modified by the dephasing, which is not included in the pure-
dephasing model where the emission spectrum remains
Lorentzian. Furthermore, phonon broadening is generally
much faster (picosecond time scales) than the emitter lifetime
and therefore also not captured by the pure-dephasing model.
The phonon sidebands of the emission spectra are dis-
cussed later.
Another experimental test of single-photon coherence

exploits a Hong-Ou-Mandel (HOM) interferometer. In such
an experiment, two single photons are interfered on a 50=50
beam splitter and the two outputs are recorded with single-
photon detectors as shown in Fig. 6(a). This constitutes a
generalization of the Hanbury-Brown-Twiss setup to a case
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where two input beams are incident on the beam splitter as
opposed to just one. The degree of indistinguishability for a
photon source that can be extracted with a Hong-Ou-Mandel
interferometer is defined as (Bylander, Robert-Philip, and
Abram, 2003; Kiraz, Atatüre, and Imamoğlu, 2004; Kaer
et al., 2013)

I ¼
R∞
0 dt

R∞
0 dτjhâ†ðtþ τÞâðtÞij2R

∞
0 dt

R
∞
0 dτhâ†ðtþ τÞâðtþ τÞihâ†ðtÞâðtÞi

¼ γtot
γtot þ 2γdp

¼ T2

2T1

; ð9Þ

where the expressions in the second line hold for the case of
pure (i.e., Markovian) dephasing. The lack of any coincidence
detection events in a Hong-Ou-Mandel measurement signifies
that the two photons are fully indistinguishable, which is only
the case if they are fully coherent. Such single-photon
quantum interference is a direct ingredient in many quan-
tum-information protocols and therefore an important test of a
single-photon source. With quantum dots, Hong-Ou-Mandel

interferometry has been performed by interfering two con-
secutively emitted photons from the same quantum dots;
see Fig. 6(b). The photons were found to be partly indis-
tinguishable, which is a consequence of dephasing of the
quantum-dot levels. The degree of indistinguishability is
determined from the peak area of the coincidence events
detected when two consecutively emitted photons meet on the
beam splitter. As opposed to the emission spectrum, which is
sensitive to the slow spectral-diffusion processes, indistin-
guishability measurements on two consecutively emitted
photons from the same source are sensitive only to fast
dephasing occurring on a time scale shorter than or similar
to the time delay between the two photons, such as phonon
processes. As a consequence, a quantum-dot transition suffer-
ing from slow spectral diffusion, which is often the case for
nonresonant excitation schemes, may still be capable of
emitting highly indistinguishable photons.
In the following we discuss further dephasing induced by

phonons that is unavoidable for quantum dots since they are
embedded in a solid-state material. It should be emphasized
that at elevated temperatures additional effects play a role,
such as Coulomb-induced scattering to wetting layer states
(Steinhoff et al., 2012), but such effects are outside the scope
of the present account; for further details, see Kira and Koch
(2011). By cooling down the quantum dots to close to zero
absolute temperature, the influence of phonons can be
strongly suppressed, although spontaneous emission of pho-
nons prevails. LA phonons are a major broadband source of
dephasing for quantum dots. A quantum dot can absorb or
emit phonons through inelastic processes that generally
require a description of coupling to a non-Markovian reser-
voir. LA phonons induce an asymmetric broadening of the
emission spectrum reflecting that the probability of absorbing
(emitting) a phonon of frequency Ωk is proportional to nk
(nk þ 1), where nk is the phonon occupation at the relevant
wave vector k. A typical LA-phonon energy that leads to
phonon sidebands of a quantum dot is about 1 meV (Madsen
et al., 2013), where the relevant phonon energy decreases with
the size of the exciton. At a temperature of 10 K, we estimate
nΩk

¼ 1=ðexp ½ℏΩk=kBT� − 1Þ ≈ 0.46. The coupling between
an exciton in a quantum dot and a phonon reservoir can be
described by the interaction Hamiltonian (Mahan, 2000;
Krummheuer, Axt, and Kuhn, 2002; Kaer et al., 2012)

Ĥph ¼
X
k

ℏðMk
g σ̂−σ̂þ þMk

e σ̂þσ̂−Þðd̂†−k þ d̂kÞ; ð10Þ

where d̂k and d̂†k are bosonic annihilation and creation
operators for the phononic mode k, and the raising and
lowering operators σ̂� for the quantum dot are introduced in
Sec. IV.A. The quantum-dot-phonon interaction strength is
defined as

Mk
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏk

2dmcsV

s
Di

Z
drjψ iðrÞj2e−ik·r; ð11Þ

with i ¼ fe; gg and where a linear LA-phonon dispersion
relation Ωk ¼ jkjcs is assumed for the relevant frequency
range with cs the angular-averaged speed of sound.
Furthermore, dm is the mass density, V is the quantization

(a)

(b)

FIG. 6. (a) Sketch of a Hong-Ou-Mandel (HOM) interferometer
capable of measuring the degree of indistinguishability of two
consecutively emitted photons from a quantum dot. The setup
employs an asymmetric Michelson-Morley interferometer for
compensating the path-length difference between the two pho-
tons enabling them to meet in one-quarter of all incidences at the
second passage through the beam splitter and thus to interfere.
The quantum interference is gauged by recording the correlation
function gð2ÞðτÞ. (b) Example of HOM measurements for a
quantum dot in a micropillar cavity. For distinguishable pairs
of photons a five-peak spectrum with peak area ratios of
1∶2∶2∶2∶1 from the two encounters of the beam splitter is
expected. A strong suppression of the central peak (labeled 3)
relative to the neighboring peaks (1-2) and (4-5) is the exper-
imental evidence for quantum interference of the two photons that
is possible only for (partly) indistinguishable photons. From
Santori et al., 2002.
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volume of the phonon modes, and Di and ψ i are the
deformation potential and electronic wave function for the
state i, respectively. The quantum-dot-phonon interaction
strength depends sensitively on the quantum-dot size since
it is proportional to the spatial Fourier transform of the wave
function for the electron in either the ground or excited state.
As a consequence, large excitons are more robust to dephasing
compared to smaller excitons. Figure 7 shows examples of
calculated spontaneous-emission spectra for a single quantum
dot at various temperatures clearly demonstrating the asym-
metric broadening due to LA phonons.

III. PHOTONIC NANOSTRUCTURES

The essential challenge for quantum-optics experiments at
the single-photon level is to strongly enhance and control the
interaction between light and matter such that an emitted
single photon preferentially couples to one well-defined
optical mode. To this end, photonic nanostructures are well
suited due to their ability to tailor the electromagnetic field on
a length scale that can be made a fraction of the optical
wavelength. Photonic nanostructures with excellent optical
properties can be fabricated with modern nanofabrication
methods such as molecular-beam epitaxy, electron-beam
lithography, and etching. In the present section we introduce
the various types of photonic nanostructures that have been
employed in QED experiments and compare their relevant
figures of merit.

A. Photonic crystals

Photonic crystals are inhomogeneous dielectric materials
where the refractive index is modulated periodically on a
length scale determined by the optical wavelength. In such a

structure, light propagation is controlled by optical Bragg
scattering of light, which is the optical analog of electron
Bragg diffraction employed in crystallographic experiments
on solids. The strength of Bragg scattering increases with the
refractive-index contrast of the materials composing the
photonic crystal. Furthermore, any optical loss such as
absorption is detrimental to the functionality of a photonic
crystal since it suppresses light interference and therefore
Bragg scattering.
A photonic crystal can be described by a spatially periodic

dielectric permittivity ϵðrÞ that in general has both a real and
an imaginary part where the latter is linked to the absorption.
The most effective photonic crystals are typically made from
semiconductor materials and constructed for a frequency
range where absorption is sufficiently small such that it can
be ignored to a good approximation, i.e., Im½ϵðrÞ� ≈ 0.
Furthermore, for the narrow band frequency applications that
are usually considered in the context of quantum optics, any
frequency dependence of the dielectric permittivity can be
ignored. Here we mainly consider semiconductor materials
such as gallium arsenide or silicon with the large refractive
index of n ¼ ffiffiffi

ϵ
p

∼ 3.5, where large-contrast photonic crystals
can be obtained, e.g., by etching air voids.
A multitude of photonic crystals with different crystal

symmetries or material compositions and based on different
fabrication strategies have been studied over the years since
photonic crystals were first proposed (Bykov, 1975; John,
1987; Yablonovitch, 1987). Here we are mainly concerned
with photonic-crystal membranes made of GaAs as illustrated
schematically in Fig. 8(a). These structures have proven well
suited for quantum-optics experiments since they can be
fabricated with high precision and InGaAs quantum dots
with good optical properties can be naturally incorporated. For
a thorough review of photonic crystals including details on
fabrication, optical experiments, and numerical modeling, see
Busch et al. (2007) and Joannopoulos et al. (2008).
The optical modes of a photonic crystal obey Bloch’s

theorem, i.e., the electric field satisfies (Joannopoulos et al.,
2008)

EkðrþRÞ ¼ EkðrÞeik·R; ð12Þ

where k is a Bloch wave vector and R is any vector in the
Bravais lattice spanning the periodic photonic crystal. The
Bloch modes are generally strongly dispersive, as can be seen
in the dispersion diagram in Fig. 8(a) that plots the frequency
versus k for various high-symmetry directions in the recip-
rocal lattice. This strong structural dispersion can be employed
for tailoring light propagation, and slow light can be obtained,
as considered in further detail in Sec. VI. A photonic band gap
opens if Bragg scattering is so pronounced that no modes exist
for a range of frequencies. A complete photonic band gap
inhibiting all modes for any propagation direction and
polarization can be obtained only in photonic crystals with
periodicity in all three dimensions, and even then only for very
high refractive-index contrasts and certain crystal lattices.
Importantly, even in lower-dimensional photonic-crystal
structures, pronounced pseudogaps exist that modify major
parts of the optical modes. Consequently, the density of
optical states can be strongly modified, which is the basis

FIG. 7 (color online). Calculated normalized emission spectrum
(logarithmic scale) for a quantum dot coupled to an LA-phonon
reservoir at different temperatures. The phonon sidebands are
highly asymmetric at low temperatures. The parameters used are
experimental values reported in Madsen et al. (2013). Note that
the peak of each spectrum is normalized to unity. The inset shows
the fraction of the intensity in the sidebands as a function of
temperature.
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for all quantum-optics applications of photonic crystals.
Photonic-crystal membranes (cf. Fig. 8) have proven to be
particularly well suited. In these structures the propagation of
light in the plane of the membrane is suppressed due to the 2D
photonic band gap, while leakage out of the structure is
restricted to a narrow cone of wave vectors in the case of a
high-refractive-index-contrast semiconductor-air interface. In

quantum-optics experiments the relevant leakage rate is that
experienced by a quantum emitter in the nanostructure that is
generally strongly dependent on emitter position and fre-
quency. The photonic-crystal membranes have the obvious
experimental advantage compared to full 3D photonic crystals
that embedded quantum emitters can conveniently be probed
by laser excitation from the top of the membrane, which
enables spectroscopy on a single emitter. Furthermore, very
mature planar fabrication methods can be readily employed to
obtain high-quality photonic crystals.
In quantum-optics experiments with dipole emitters, the

LDOS is the relevant quantity that determines spontaneous
emission and more generally the local light-matter interaction
strength. It specifies the number of optical states at the
frequency ω per frequency bandwidth and volume as expe-
rienced by the emitter and is defined as

ρðr0;ω; êdÞ ¼
X
k

jêd · u�
kðr0Þj2δðω − ωkÞ; ð13Þ

where r0 is the position of the emitter and êd is a unit vector
specifying the orientation of the transition dipole moment.
The normalized mode functions ukðrÞ in which the electric
field is expanded are described in Sec. IV.A. The LDOS is
obtained by summing over all the mode functions with
eigenfrequencies ωk that enter through a Dirac delta function
δðω − ωkÞ. The LDOS was first introduced by Sprik, van
Tiggelen, and Lagendijk (1996) and subsequently evaluated
for the case of photonic crystals by Busch and John (1998).
The LDOS in a photonic crystal is strongly dependent on

position and orientation. Figure 8(d) shows an example of a
calculation of the frequency dependence of the LDOS for a
GaAs photonic-crystal membrane. A frequency region with a
strongly suppressed LDOS is revealed, which corresponds to
the 2D photonic band gap for the transverse-electric-like (TE-
like) fields in which case ðEx; Ey;HzÞ are the dominant fields
that are even functions with respect to z ¼ 0. In the band gap,
a dipole oriented in the plane of the membrane will therefore
radiate only weakly via the small residual coupling to the
nonguided radiation modes that are found above the light line
in the dispersion diagram in Fig. 8(a). The high refractive
index of GaAs ensures that the coupling to radiation modes is
strongly suppressed. Indeed Fig. 8(b) shows that the LDOS
can be inhibited by up to a factor of 160 relative to that of a
homogenous medium of GaAs. Furthermore, the periodic
spatial dependence of the inhibition factor in the photonic-
crystal lattice is displayed for the two orthogonal in-plane
dipole orientations that are relevant for quantum dots. While
both dipoles are found to be suppressed at all positions
compared to the case of a homogeneous medium, a strong
anticorrelation is generally observed, i.e., two orthogonally
polarized dipoles would observe a very different LDOS. The
ability to suppress the coupling to unwanted leaky modes by
more than 2 orders of magnitude is the main asset of photonic-
crystal membranes in quantum-optics experiments, which was
first realized by Koenderink et al. (2006). As discussed in
Secs. VI and VII, by introducing waveguides and cavities in
the photonic crystals, the coupling to a preferred optical mode
can be enhanced significantly. As a consequence, photonic
crystals offer the possibility to tailor the local light-matter

Band gap

FIG. 8 (color online). (a) Band diagram of a triangular-lattice
photonic-crystal membrane (shown in the left inset) for TE-like
modes with membrane refractive index n ¼ 3.5 (corresponding to
GaAs), hole radius to lattice constant ratio of r=a ¼ 1=3, and
membrane thickness t ¼ 2a=3. The high-symmetry points of the
Brillouin zone are shown in the bottom inset. The large shaded area
indicates the continuum of unbounded radiation modes inside the
light cone, and the shading in the middle shows the 2D photonic
band-gap area. (b), (c) Spatial map in the x-y (z ¼ 0) plane of the
inhibition factor ρhom=ρ at a scaled frequency ofωa=2πc ¼ 0.2838
for (b) an x dipole and (c) a y dipole, where ρhom ¼ nω2=3π2c3 is
the density of states for a homogeneous medium of GaAs.
(d) Frequency dependence of the LDOS ρ=ρhom plotted on a
logarithmic scale for an x dipole and a y dipole positioned in a
photonic-crystal membrane at the crosses shown in (b) and (c).
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interaction strength by 3–4 orders of magnitude by combining
suppression of unwanted leaky modes with enhancement of a
single mode. With this approach a nearly perfect photon-
emitter interface may be obtained, the physics of which is the
main objective of this review.

B. Photonic cavities

Resonating light in a cavity provides a way of enhancing
light-matter interaction since the coupling to one localized
mode can be strongly enhanced compared to all other modes.
In photonic nanostructures the cavities can have very small
mode volumes, which enhances the interaction strength. The
two decisive cavity-QED figures of merit are the quality factor
Q and the effective mode volume V of the localized quasi-
mode. In the following, various nanophotonic approaches to
high-Q and small-V cavities are reviewed.
Micropillar cavities have been widely exploited as high-Q

cavities. They can be fabricated by epitaxial growth of
alternating layers of refractive indices n1 and n2 (e.g.,
GaAs and AlGaAs) each of thickness λ=4ni, i ¼ 1, 2, and
by subsequently etching a micropillar with a typical diameter
of a few microns and a height of around 10 μm. The
alternating layers form a Bragg mirror with a reflectivity that
is controlled by the number of layers. An extended spacer
layer of length, e.g., λ=n1 in between two such Bragg mirrors
forms a highly localized cavity mode where quantum dots can

be positioned; see Table I(a). The two Bragg mirrors are often
grown with different numbers of layers in order to make a one-
sided cavity consisting of a highly reflecting mirror and an
outcoupling mirror with an optimized transmission. The
diameter of the micropillar is chosen to restrict the lateral
extension of the guided mode confined in the high-index
material, which leads to a small mode volume. Choosing the
diameter below 1 − 2 μm, however, is found to significantly
reduce Q due to the sensitivity to sidewall roughness
(Gazzano, de Vasconcellos et al., 2013). Typical mode
volumes accessible in micropillar cavities are at the level of
∼10ðλ=nÞ3 and tapered cavities have recently been proposed
as a way of localizing light even better (Lermer et al., 2012).
Highly localized cavity modes can be obtained by intro-

ducing defects in photonic-crystal membranes and a multitude
of different design possibilities have been explored in the
literature. Indeed this flexibility of being able to tailor a cavity
mode by controlling the geometry of the photonic crystal and
the defect area provides a very important asset of the photonic-
crystal platform. One of the most successful and important
designs so far is the L3 cavity that is obtained from a 2D
triangular lattice in a photonic-crystal membrane by leaving
out three holes [cf. Table I(b)], leading to a mode volume of
less than ∼ðλ=nÞ3. It was realized that the Q factor can be
significantly boosted by more than an order of magnitude by
displacing the holes at each end of the cavity by just a fraction
of a lattice constant, whereby leakage to radiation modes can

TABLE I. Overview of nanophotonic cavities. Each panel displays a scanning electron micrograph of a real device along with a sketch
illustrating the operational principle for a quantum emitter coupling to the structure. Furthermore, state-of-the-art experimental results are listed,
to be discussed in Sec. VII. (a) Micropillar cavity. From Reithmaier et al., 2004. The Bragg stack above and below the center of the pillar
confines light to the central region as shown in the inset. (b) Modified photonic-crystal L3 cavity implemented in a membrane. The photonic
band gap localizes light in the defect region and the schematic shows how a quantum dot preferentially emits into the cavity mode. (c) A
nanobeam cavity. From Ohta et al., 2011. The cavity mode is confined by 1D Bragg diffraction in the high-refractive-index material of the
nanorod. (d) Microdisk cavity. From Srinivasan and Painter, 2007. The emitter couples to optical modes that travel circularly around the
microdisk. The asterisk ( �) indicates that in these cases γ was extracted from spectral rather than time-resolved data, i.e., it will be enlargened by
dephasing processes.

(a) Micropillar cavity (b) Photonic-crystal cavity (c) Nanobeam cavity (d) Microdisk cavity

(Reithmaier et al., 2004) (Ohta et al., 2011) (Srinivasan and Painter, 2007)

g=2π ¼ 4 GHz g=2π ¼ 22 GHz g=2π ¼ 27 GHz g=2π ¼ 3 GHz
κ=2π ∼ 5 GHz κ=2π ∼ 11 GHz κ=2π ¼ 13 GHz κ=2π ¼ 1 GHz
γ=2π ∼ 4 GHz� γ=2π < 0.1 GHz γ=2π ∼ 3 GHz� γ=2π ∼ 0.6 GHz
Q ∼ 6 × 104 Q ∼ 3 × 104 Q ¼ 3 × 104 Q ¼ 4 × 105

(Loo et al., 2010) (Hennessy et al., 2007) (Ohta et al., 2011) (Srinivasan and Painter, 2007)
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be strongly suppressed (Akahane et al., 2003). This remark-
able sensitivity to the detailed design reflects the large
potential of photonic-crystal cavities. A cavity Q factor of
2 × 106 has been observed experimentally in modified L3
cavities in silicon at a wavelength of 1.55 μm (Lai et al.,
2014). Lower Q factors are generally observed for GaAs
cavities since they are matched to the shorter wavelength of
InGaAs quantum dots of around 950 nm and therefore more
sensitive to fabrication imperfections, residual scattering, and
absorption due to the embedded quantum dots, as well as bulk
and surface absorption, which is more pronounced at shorter
wavelengths (Michael et al., 2007). A cavity Q factor of
3 × 104 has been reported in a GaAs L3 cavity containing a
single quantum dot (Hennessy et al., 2007).
A number of different photonic-crystal cavity structures

have been considered that potentially have higher Q factors
including waveguide heterostructures (Song et al., 2005) for
which a Q factor of 5.5 × 104 in a GaAs cavity with quantum
dots has been reported (Ota et al., 2011), nanobeam cavities
(Ohta et al., 2011), or even random Anderson-localized modes
in photonic-crystal waveguides due to naturally occurring
fabrication imperfections (Topolancik, Ilic, and Vollmer,
2007; Smolka et al., 2011). The nanobeam cavity displayed
in Table I(c) is a 1D photonic crystal consisting of etched
holes in a narrow and thin membrane with a central defect area
defining the cavity region. Finally microdisk cavities [see
Table I(d)] constitute another class of resonators where the
trapping of light is due to total internal reflection rather than
Bragg scattering. In a microdisk cavity the light is confined to
the rim of the disk in a whispering-gallery mode that can have
a very high Q, generally, however, at the expense of larger
mode volume compared to cavities employing Bragg scatter-
ing. Table I summarizes the various cavity configurations
including figures of merit in relation to their usage for cavity-
QED experiments. Such cavity-QED experiments employing
single quantum dots are reviewed in Sec. VII.

C. Nanophotonic waveguides

Nanophotonic waveguides enable routing photons between
different locations on an optical chip and could therefore be
applied in integrated quantum networks for connecting sta-
tionary qubits (e.g., encoded in quantum dots) with flying
qubits (photons). Nanophotonic waveguides can be highly
dispersive, which may be employed for enhancing light-
matter interaction as an alternative to the cavity case. In a
waveguide, the quantum emitter can efficiently and over a
wide bandwidth couple single photons directly to a propa-
gating optical mode for immediate applications without the
necessity of coupling out of a localized mode, which would be
the case for high-Q cavities. In reality low-Q extended cavities
may constitute the best compromise in order to obtain both a
large Purcell enhancement and highly efficient and broadband
coupling.
Waveguides can readily be implemented in photonic-crystal

membranes. The most simple design consists of leaving out a
row of holes along the Γ-K direction of a triangular lattice,
which is referred to as a W1 waveguide; see Table II(a).
[Figure 16(a) displays the projected dispersion diagram for a
photonic-crystal waveguide membrane.] The bands arising in

the 2D band-gap region correspond to propagating modes that
are spatially confined to the waveguide. These guided modes
are highly dispersive; i.e., the group velocity of light vgðωÞ ¼
j∇kωj varies with frequency. The group velocity can be
strongly reduced in a photonic-crystal waveguide and in
general be tailored by controlling the structural parameters
of the photonic lattice. Furthermore, since the waveguide
modes appear below the light line in the dispersion diagram
(cf. Fig. 16), an ideal photonic-crystal waveguide features
lossless propagation. In reality, unavoidable fabrication imper-
fections (cf. Sec. III.D) induce a finite leak rate of coupling
vertically out of the waveguide. Two main features of the
photonic-crystal waveguides are important for their quantum-
optics applications: the ability to suppress the coupling to
radiation modes due to the band gap and the simultaneous
enhancement of coupling to the photonic-crystal waveguide
mode that is enhanced by slow light. This is considered in
detail in Sec. VI. A number of other potential applications of
photonic-crystal waveguides for integrated photonics have
been envisioned that exploit a photonic band-gap guiding of
light. For a review of this topic, see Joannopoulos
et al. (2008).
Photonic nanowires constitute another class of waveguide-

type photonic nanostructure. They are extended cylindrical
rods of a high-refractive-index dielectric material; see
Table II(b). Photonic nanowires can either be fabricated by
etching or be epitaxially grown, e.g., in the form of GaAs
nanowires with embedded quantum dots. For diameters in the
range of 150–300 nm the nanowire supports a single well-
confined guided mode at 950 nm (Friedler et al., 2009), which
is a typical wavelength for InGaAs quantum dots. The
bandwidth of this mode is up to 70 nm, which makes
nanowires insensitive to the wavelength of the employed
emitter. As opposed to photonic-crystal waveguides, the mode
of the nanowire is weakly dispersive, which means that slow-
light enhancement of light-matter interaction cannot be
obtained. Therefore applications of nanowires in quantum
optics are primarily based on the ability to suppress leaky
modes rather than enhancing a single mode, which makes
them less sensitive to fabrication imperfections at the expense
of a less efficient light-matter coupling strength compared to
photonic-crystal waveguides.
Finally, metallic waveguide structures can guide light even

for a wire diameter that is just a small fraction of the optical
wavelength in free space. Such subwavelength guidance can
potentially lead to a very large electromagnetic field strength
per photon, as required in quantum-optics experiments. In
metallic waveguides, the light is guided in the form of surface-
plasmon polaritons that are surface waves confined to a metal-
dielectric interface that propagate along the interface while
being exponentially damped in the direction perpendicular to
the interface. An example of a plasmonic nanowire is shown in
Table II(c). Just like dielectric nanowires, the response of
plasmonic nanowires is broadband, with the added benefit that
the strong field confinement and dispersion of plasmons imply
that the light-matter interaction strength can be strongly
enhanced. Unfortunately, plasmonic nanowaveguides are
inherently lossy due to absorption in the metal, so while they
may be useful for locally enhancing light-matter interaction,
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the subsequent guiding of photons is preferably carried out in
dielectric structures. To accommodate this point, plasmon-
based quantum circuits have been proposed where the
plasmon mode is adiabatically coupled to a dielectric wave-
guide (Chang et al., 2006). Another possibility is to use a slot
waveguide created by placing two plasmon waveguides next
to each other where a plasmon mode can form in the gap
region between the waveguides with enhanced propagation
length. Plasmon nanowires can be fabricated by, e.g., chemi-
cal synthesis of crystalline structures, metal evaporation in
trenches written by electron-beam lithography, or etching
of thin metal films. While the theoretical potential of plas-
monic nanostructures seems promising (Chang et al., 2006),
the fabrication of high-quality plasmonic waveguides still
remains a challenge given the design, material, and fabrication
restrictions presently valid (Chen et al., 2010). Consequently,
at present dielectric waveguides are advantageous for
quantum-optics applications.

D. The role of fabrication imperfections

Photonic nanostructures can be fabricated by a range of
different techniques using either top-down approaches such as
electron-beam lithography and etching or bottom-up
approaches based on self-assembly of nanoscale objects.
Almost all the examples of nanostructures discussed here
are fabricated by patterning semiconductor substrates by
electron-beam lithography followed by reactive-ion and/or
wet-chemical etching. These methods are compatible with
self-assembled quantum dots and are also most commonly
employed for fabricating integrated photonic circuits. A
detailed account of the various fabrication methods is outside
the scope of this review, but for further details see Busch et al.
(2007), and references therein. Common for all methods is
that statistical imperfections are unavoidably introduced dur-
ing the fabrication process, which potentially can reduce the
functionality of the device by, e.g., inducing unwanted optical

TABLE II. Overview of nanophotonic waveguides. Each panel displays a scanning electron micrograph of a real device with a sketch
illustrating the operational principle for a quantum emitter coupling to the structure, as well as experimentally measured (theoretically
calculated) β factors and Purcell factors Fe

P and βe (Ft
P and βt), as discussed in Sec. VI. The bottom panel shows the references for the Purcell

and β factors. (a) Photonic-crystal waveguide membrane containing a single layer of quantum dots in the center of the membrane (indicated by
triangles). From Sapienza et al., 2010. (b) Photonic nanowire made of GaAs containing an InAs quantum dot (illustrated by a triangle). The
upper part of the nanowire is tapered in order to maximize the outcoupling efficiency and a gold mirror is embedded in the structure below the
nanowire. From Claudon et al., 2010. The stated value of the experimental β factor represents a lower bound determined from estimates of the
total outcoupling efficiency. (c) Plasmonic nanowire made of silver that is coupled to a single quantum dot (placed within the circle). From
(Akimov et al., 2007.

(a) Photonic-crystal waveguide (b) Photonic nanowire (c) Plasmonic nanowire

(Sapienza et al., 2010) (Claudon et al., 2010) (Akimov et al., 2007)

βe ¼ 0.98a βe ≳ 0.72c βe ∼ 0.7e

Fe
P ¼ 5

a Fe
P ¼ 1.5c Fe

P ¼ 2.5e

βt → 1
b βt ∼ 0.95d βt ∼ 1

f

Ft
P → ∞b Ft

P ∼ 1.7d Ft
P ∼ 500

f

aArcari et al., 2014.
bRao and Hughes, 2007b.
cClaudon et al., 2010.
dBleuse et al., 2011.
eAkimov et al., 2007.
fChang et al., 2006.
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loss. The fabrication imperfections can be of various sorts
including roughness, polydispersity, displacements, vacan-
cies, etc. Such random imperfections are treated by means of
statistical physics and eventually can lead to pronounced
random multiple scattering of light even for subwavelength
features because high-refractive-index-contrast composites
induce large scattering cross sections. In state-of-the-art
dielectric photonic nanostructures the amount of fabrication
imperfections can be reduced to a standard deviation at the
level of a few nanometers (Garcia et al., 2013). The relevance
of such an amount of imperfections is fully dependent on the
actual device under consideration, and the role of fabrication
imperfections should be addressed individually for each
application.
Extensive theoretical and experimental work has been

carried out on the role of fabrication imperfections in
photonic-crystal waveguides (Hughes et al., 2005;
Mazoyer, Hugonin, and Lalanne, 2009; Garcia et al.,
2013). Imperfections lead to two effects: the backscattering
of the propagating mode into the counterpropagating direc-
tion in the waveguide and out-of-plane scattering due to
coupling to leaky modes that are above the light line. The
former (latter) is characterized by an average length lback
(lleak) leading to a total extinction length 1=lext ¼ 1=lback þ
1=lleak that determines how the average intensity decays
along the waveguide. It should be emphasized that while a
single realization of imperfections leads to a complex
intensity speckle pattern, the extinction length predicts
how light decays on average and is obtained after an
ensemble average over configurations of disorder. The
backscattering length is strongly dispersive in the pho-
tonic-crystal waveguide and in a perturbative description
was predicted to scale as lback ∝ v2g (Hughes et al., 2005). In
the context of 1D Anderson localization the backscattering
length is referred to as the localization length and has been
measured to be below 10 μm in the slow-light regime of
state-of-the-art photonic-crystal waveguides (Smolka et al.,
2011), which has been the basis for experiments on cavity
QED with Anderson-localized modes (Sapienza et al.,
2010). The resulting average loss length associated with
out-of-plane leakage was found to be around 700 μm. By
operating outside the slow-light regime, the propagation
distance can be significantly increased. Alternatively,
waveguides shorter than the backscattering length can be
applied, such that the strong light-matter interaction achiev-
able in photonic waveguides can be exploited without
suffering from Anderson-localization effects. This will be
the setting of the description of waveguide quantum optics
of Sec. VI.

IV. SPONTANEOUS EMISSION OF SINGLE PHOTONS
FROM SOLID-STATE EMITTERS IN PHOTONIC
NANOSTRUCTURES

Much of the physics discussed in this review concerns a
single quantum emitter that is emitting (or absorbing) a
single quantum of light, a photon, into (or from) an
engineered photonic environment. In this section we
describe a general theoretical framework for this setting,
which is illustrated in Fig. 9 and encompasses photon

emission in any inhomogeneous photonic nanostructure.
The quantum emitter is described as a two-level dipole
emitter but the formalism can be readily generalized to
describe more complex level schemes; cf. the discussion of
quantum-dot level schemes in Sec. II.E. The coupling to the
photonic nanostructure is described by the projected LDOS,
which quantifies the magnitude of vacuum fluctuations
responsible for spontaneous emission of photons. The
LDOS is linked to the electric-field Green’s tensor that
contains all details about the spatiotemporal properties of the
electromagnetic field.
In the following, the basics of the LDOS formalism is

discussed in some detail, since it is a powerful and
generally applicable framework for QED in any nano-
photonic structure and turns out not to be textbook material.
Key quantities addressed include the spontaneous-emission
spectrum and dynamics beyond the Markov approximation.
The Markov approximation holds when radiation back-
action from the reservoir is negligible, but may break down
in, e.g., photonic crystals and nanocavities due to the large
local electromagnetic-field strength and the strongly dis-
persive behavior. Photonic nanostructures can be employed
for tailoring the quantum vacuum and thereby to control
fundamental QED processes and interactions like sponta-
neous emission, the Lamb shift, Casimir forces, or dipole-
dipole interactions (Milonni, 1993). In particular, we
explain in the following how the Lamb shift of electronic
transitions can be strongly modified in photonic nano-
structures. Another benefit of the LDOS formalism is that
the spontaneous-emission rates are rigorously introduced.
This contrasts more specific QED models, such as the
commonly used dissipative Jaynes-Cummings (JC) model
of cavity QED discussed in Sec. VII, where spontaneous-
emission rates are included as phenomenological
parameters.

Nanophotonic 
structure QD

FIG. 9 (color online). Illustration of spontaneous emission from
a two-level emitter in a photonic medium. Single photons (wave
packets) are emitted one at a time from a quantum dot (QD)
placed in a nanophotonic structure. For a full description of
spontaneous emission in nanophotonics, the potential influence
of the backaction (indicated by arrows) of the vacuum electric
field on the quantum emitter must be accounted for, which can
lead to intricate nonexponential dynamics and modified emission
spectra.
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A. Equations of motion for spontaneous emission in the
local-density-of-states description

We consider a single two-level dipole emitter with the
excited state jei and ground state jgi separated by the
transition frequency ω0 and coupled to a continuum of optical
modes at frequencies ωk. The total Hamiltonian in the
rotating-wave approximation is

Ĥtot ¼
X
k

ℏωkâ
†
kâk þ 1

2
ℏω0σ̂z

þ
X
k

½ℏgkσ̂þâkeiðω0−ωkÞt þ H:c:�; ð14Þ

where âk, â
†
k are annihilation and creation operators, respec-

tively, for photons in the mode k and σ̂z ¼ jeihej − jgihgj,
σ̂þ ¼ jeihgj are the emitter-population inversion and raising
operators, respectively. The coupling rate to each optical mode
is gkðr0Þ ¼ id ·E�

kðr0Þ=ℏ, which contains the transition
dipole moment of the emitter and the local electric field at
the position of the emitter Ekðr0Þ for the mode specified by k
and there are two polarization components for each wave
vector. H.c. denotes the Hermitian conjugate of the preceding
term. As mentioned in Sec. II.C, the p ·A interaction
Hamiltonian is often used in solid-state quantum optics and
leads also to Eq. (14). Dephasing processes are omitted in the
following but Markovian dephasing can be readily imple-
mented through a non-Hermitian term in the Hamiltonian,
which is valid in a Monte Carlo wave-function description of
spontaneous emission (Meystre and Sargent, 2007).
Furthermore, a thorough discussion of field quantization in
a dielectric medium is outside the scope of the present
account, but further information can be found in Wubs,
Suttorp, and Lagendijk (2003).
The equation of motion for the excited state of the emitter

can be formulated as

∂ce
∂t ¼ −

X
k

jgkðr0Þj2
Z

t

0

dt0ceðt0ÞeiΔkðt−t0Þ

− i
X
k

g�kðr0Þcg;kð0ÞeiΔkt; ð15Þ

withΔk ¼ ω0 − ωk and where the combined quantum state of
light and matter has been expanded as jΨðtÞi ¼ ceðtÞje;
f0gi þP

kcg;kðtÞjg; f1kgi. Here jf0gi is the collective vac-
uum state of all modes in the radiation reservoir and jf1kj

gi ¼
j0k1

; 0k2
;…; 1kj

;…i corresponds to one photon in the mode
with wave vector kj. By the restriction of having only a single
excitation in the system, the formalism is suitable for
describing spontaneous emission or single-photon absorption.
In photonic nanostructures the interaction strength and thus
the dynamics depends on the position of the emitter r0, but this
argument has been omitted in ceðtÞ and cg;kðtÞ for simplicity
of notation. The last term in Eq. (15) vanishes in the case of
spontaneous emission [cg;kð0Þ ¼ 0], but it can readily be
included for describing single-photon absorption, as was
detailed in Chen et al. (2011) for the case of a 1D waveguide
geometry.

The quantized electromagnetic field is expanded according
to

Êðr; tÞ ¼
X
k

½EkðrÞâke−iωkt þ H:c:�; ð16Þ
where

EkðrÞ ¼
ffiffiffiffiffiffiffiffi
ℏωk

2ϵ0

s
ukðrÞ

defines the field amplitude entering in the local coupling rate
gkðr0Þ. The mode functions ukðrÞ constitute a normalized set
of basis functions used to expand the field and obey the wave
equation (Yao, Manga Rao, and Hughes, 2010; Novotny and
Hecht, 2012)

∇ × ∇ × ukðrÞ −
ω2
k

c2
ϵðrÞukðrÞ ¼ 0; ð17Þ

with a generalized normalization condition given byR
d3rϵðrÞukðrÞ · u�

k0 ðrÞ ¼ δkk0 . In photonic crystals a con-
venient choice of basis functions is Bloch modes. It is useful

to express the electric field in terms of the Green’s tensor G
↔
,

which solves Maxwell’s wave equation in the photonic
medium for a delta-function source term (Yao, Manga Rao,
and Hughes, 2010; Novotny and Hecht, 2012), i.e.,

∇×∇×G
↔ðr;r0;ωÞ−ω2

c2
ϵðrÞG↔ðr;r0;ωÞ¼ω2

c2
I
↔
δðr− r0Þ; ð18Þ

where I
↔

is the unit tensor. Here the case of no free charges
is considered where the generalized transversal condition

∇ · ½ϵðrÞG↔� ¼ 0 applies. Furthermore, longitudinal compo-
nents in the Green’s tensor contribute only in absorptive
media [ImðϵÞ > 0] leading to nonradiative decay, which
generally should be minimized in quantum-photonics appli-
cations. The Green’s tensor can be expanded in the mode
functions according to

G
↔ðr; r0;ωÞ ¼

X
k

ω2
ukðrÞ ⊗ u�

kðr0Þ
ω2
k − ω2

; ð19Þ

where ⊗ denotes the outer product. The electric field radiated
by a dipole source at r0 can be obtained in the Green-tensor
formalism from

Êðr;ωÞ ¼ 1

ϵ0
G
↔ðr; r0;ωÞ · d̂ðωÞ; ð20Þ

where d̂ðωÞ ¼ d½σ̂þðωÞ þ σ̂−ðωÞ�.
The equation of motion for the emitter, Eq. (15), can now be

expressed in terms of the Green’s tensor. It follows from
Eq. (19) that (Barnett et al., 1996)

Im½ê�d ·G
↔ðr; r;ωÞ · êd� ¼

πω

2

X
k

jêd · u�
kðrÞj2δðω − ωkÞ

¼ πω

2
ρðr;ω; êdÞ; ð21Þ

which links the summation over the radiation reservoir in
Eq. (15) to the LDOS, which was defined in Eq. (13). It
follows consequently that
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∂ce
∂t ¼ −

d2

2ϵ0ℏ

Z
∞

0

dωωρðr0;ω; êdÞ
Z

t

0

dt0ceðt0ÞeiΔkðt−t0Þ:

ð22Þ

Equation (22) provides a complete description of spontaneous
emission in any inhomogeneous photonic environment and
accounts fully for the backaction of the vacuum electric field
of the environment, which enters through the LDOS. The
LDOS is the mode density that is “seen” by a dipole emitter. It
is a classical quantity obtained by solving Maxwell’s equa-
tions but it also determines the mode density of the vacuum
electromagnetic field that is required to describe spontaneous
emission. Thus, the variance of the projected vacuum electric
field (the “vacuum fluctuations”) is given by

Δ(Êðr;ωÞ · êd) ¼
X
k

jêd · E�
kðrÞj2δðω − ωkÞ ð23Þ

¼ ℏω
2ϵ0

ρðr;ω; êdÞ; ð24Þ

which is indeed proportional to the LDOS. It should be
emphasized that while the applied wave-function approach
fully accounts for non-Markovian coupling to the photonic
reservoir, any non-Markovian dephasing processes cannot be
captured by such a formalism. Non-Markovian dephasing is
most appropriately treated by density-operator theory;
cf. Sec. VII.B.2.
It is instructive to express Eq. (22) as

∂ceðtÞ
∂t ¼ −

Z
t

0

dt0ceðt0ÞKðr0; t − t0; êdÞ; ð25Þ

with the introduction of the memory kernel (Vats, John, and
Busch, 2002)

Kðr; t − t0; edÞ ¼
d2

2ϵ0ℏ

Z
∞

0

dωeiðω0−ωÞðt−t0Þωρðr;ω; êdÞ:
ð26Þ

The kernel expresses the memory of the radiation reservoir,
i.e., to what extent the state of the reservoir at previous times t0

influences ceðtÞ. A special and simple case is that of Wigner-
Weisskopf theory that holds when ωρðωÞ varies insignifi-
cantly over the linewidth of the emitter such that the memory
kernel can be approximated as

KWWðr; t − t0; êdÞ ≈
πd2ω0ρðr;ω0; êdÞ

ϵ0ℏ
δðt − t0Þ: ð27Þ

In this case the memory kernel is singular, i.e., the radiation
reservoir is memoryless. This is also referred to as the Markov
approximation, where backaction from the radiation reservoir
is negligible and the population of the excited state of the
emitter decays exponentially in time with a radiative rate of

γradðr0;ω0;dÞ ¼
πd2

ϵ0ℏ
ω0ρðr0;ω0; êdÞ: ð28Þ

The corresponding emission spectrum is a Lorentzian of width
γrad, as explained in Sec. IV.B. The power emitted by the
dipole is also proportional to the LDOS because for continu-
ous-wave excitation the radiated power is P ¼ ℏω0γrad.
Equation (28) shows that spontaneous emission can be
controlled by modifying the LDOS, which is essential in
quantum nanophotonics for engineering the light-matter
interaction strength. This is elaborated on in further detail
in Sec. IV.C.

B. The spontaneous-emission spectrum and the Lamb shift

The spontaneous-emission spectrum is another important
measurable quantity modified by interaction with the radiation
reservoir. Following the approach by Vats, John, and Busch
(2002), the Fourier transform of Eq. (25) is

~ceðΩ − ω0Þ ¼
1

~KðΩ − ω0Þ − iðΩ − ω0Þ
; ð29Þ

where ceðt → ∞Þ ¼ 0 is assumed, i.e., the population decays
to the radiation reservoir at very long times. The Fourier
transform of the memory kernel is

~KðΩ − ω0Þ ¼
Z

∞

0

dτKðτÞeiðΩ−ω0Þτ

¼ d2

2ϵ0ℏ

Z
∞

0

dωωρðωÞ
Z

∞

0

dτeiðΩ−ωÞτ; ð30Þ

where the explicit dependence of the LDOS on position and
dipole orientation (cf. Sec. III.A) is omitted for brevity. The
emission spectrum is obtained after using the Wiener-
Khintchine theorem that applies since the radiation reservoir
is described by a stationary and ergodic statistical process
(Mandel and Wolf, 1995; Cui and Raymer, 2006; Meystre and
Sargent, 2007)1

SeðΩÞ ∝ j~ceðΩ − ω0Þj2

¼ 1

½Ω − ω0 − ΔLðΩÞ�2 þ χ2Ω2ρ2ðΩÞ ; ð31Þ

where χ ¼ πd2=2ϵ0ℏ. This expression for the emission
spectrum is valid to all orders in the light-matter coupling
strength and thus extends beyond the Markovian Wigner-
Weisskopf theory that is usually considered.
The emission spectrum contains a Lamb shift

ΔLðΩÞ ¼
d2

2ϵ0ℏ
P
�Z

∞

0

dω
ωρðωÞ
Ω − ω

�
ð32Þ

that is obtained as a principal-value integration over all
frequencies of a function that contains the LDOS. By using
the Kramers-Kronig relations, the Lamb shift can alternatively

be shown to be proportional to Re½ê�d · G
↔ðr; r;ωÞ · êd�. The

1Equation (31) is derived using the mathematical identityR∞
0 dτeiðΩ−ωÞτ ¼ πδðΩ − ωÞ þ iPð1=Ω − ωÞ, where Pð� � �Þ denotes
the principal-value part.
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theory captures the fact that the Lamb shift can be modified in
photonic nanostructures, and an anomalous Lamb shift was
first predicted in highly dispersive photonic crystals by John
and Wang (1991). It should be mentioned that the total Lamb
shift diverges because for sufficiently high frequencies all
photonic structures may be approximated as homogeneous
media, where ρðωÞ ∝ ω2 and the integration extends to
infinity in Eq. (32). One approach for obtaining the absolute
value of the Lamb shift applies a cutoff on the divergent
integrals at the relativistic Compton frequency; a discussion of
this issue can be found in Vats, John, and Busch (2002) and
will not be considered further here where we focus on the
relative modifications of the Lamb shift induced by LDOS
variations. We note also that measurements of the absolute
Lamb shift with quantum dots seem outside immediate reach
because it would require an accurate reference calculation
without the vacuum effects, which likely would require
precise knowledge of the exciton energy levels that would
be sensitive to the detailed configuration of the many atoms
constituting the quantum dot. The relative Lamb shift, how-
ever, is usually finite since the LDOS of an inhomogeneous
photonic structure would differ only from that of a homo-
geneous medium over the finite frequency range that it is
tailored for. Interestingly, in the full non-Markovian theory
considered here, the Lamb shift is seen not just to be a single-
valued detuning of the optical transition, but rather a function
of the observation frequency Ω. Consequently, different
frequency components of the emission spectrum are shifted
by different amounts and the “Lamb-shift function” would
generally be a more adequate term. Examples of the modi-
fication of the Lamb shift in photonic-crystal waveguides and
cavities are considered in Secs. VI and VII.
The frequency-dependent Lamb shift and LDOS entering in

the emission spectrum of Eq. (31) lead to non-Lorentzian line
shapes, which is the spectral signature of coupling to a non-
Markovian radiation reservoir. The corresponding dynamic
signature is a nonexponential decay of the emitter. As a
limiting case, the Wigner-Weisskopf result is found when the
Lamb shift and ΩρðΩÞ both can be assumed to vary insig-
nificantly over the linewidth of the emitter,

SWW
e ðΩÞ ∝ 1

½Ω − ω0 − ΔLðω0Þ�2 þ γ2rad=4
: ð33Þ

In this case the Lamb shift is a single-valued number that
merely redefines the quantum-dot transition frequency, and
the emission spectrum is of the well-known Lorentzian
functional form.

C. Control of spontaneous emission

The established link between the spontaneous-emission
dynamics and the LDOS opens a way of controlling sponta-
neous emission by altering the surrounding medium of the
emitter. To this end, photonic crystals are particularly well
suited since the LDOS may be strongly modulated. In many
cases, the Wigner-Weisskopf approximation is excellent such
that a two-level emitter decays exponentially in time with the
rate of Eq. (28). Figure 8 shows examples of simulations of the
LDOS for a photonic-crystal membrane made of GaAs, where

very pronounced spatial and spectral variations are found. The
spatial variations reflect the strong modulation of the local
electric field in the photonic crystal and a sensitive depend-
ence on dipole orientation is also found. The frequency-
dependent LDOS reveals the presence of a 2D band gap in the
scaled-frequency interval of ωa=2πc ¼ a=λ ¼ ½0.254; 0.361�,
where the LDOS is strongly suppressed for all positions. In the
band gap the LDOS can be inhibited by up to a factor of 160
relative to the level of a homogeneous medium while at the
edge of the band gap the LDOS rises drastically and can be
enhanced. Photonic crystals with periodicity in all three
dimensions could potentially induce even stronger LDOS
modifications than in the membrane structures since ideally a
band gap with a vanishing LDOS could open in the case of a
sufficiently high refractive-index contrast. So far, quantum-
optics experiments using single quantum emitters have been
lacking in 3D photonic crystals since it is challenging to
optically address a single emitter inside these structures. One
exception has been the work of Barth et al. (2006) on weakly
scattering 3D photonic crystals where single-emitter spectros-
copy was achieved.
The experimental progress on spontaneous-emission con-

trol has been significant during the last decade. Early work
demonstrated both inhibition and enhancement of the decay
dynamics for varying lattice constants in 3D inverse-opal
photonic crystals infiltrated by an ensemble of colloidal
quantum dots operated at room temperature (Lodahl et al.,
2004). This work has subsequently been extended to the case
of 3D inverse-woodpile silicon photonic crystals where a
tenfold inhibition was reported (Leistikow et al., 2011).
Subsequently, inhibition of spontaneous emission in GaAs
photonic-crystal membranes was demonstrated with a single
quantum dot (Kaniber et al., 2008) and an inhibition factor of
70 was achieved (Wang, Stobbe, and Lodahl, 2011).
The relation between the LDOS and the radiative decay rate

that is valid for a dipole emitter [Eq. (28)] provides a way of
experimentally recording the LDOS. To this end, single
InGaAs quantum dots are suitable LDOS probes since it
has been explicitly demonstrated how radiative and non-
radiative processes can be separated by taking advantage of
the exciton fine structure, as discussed in detail in Sec. II.E.
This is especially appealing since unavoidable imperfections
induced during fabrication of the photonic nanostructure (e.g.,
surface roughness) may alter the LDOS. Quantum dots can be
used to probe the LDOS when the Wigner-Weisskopf theory
and the dipole approximation are valid. The former is often a
good approximation apart from the case of high-Q cavities
and potentially near photonic-band edges. For the latter, the
extended size of quantum dots and lack of rotational sym-
metry imply that the dipole approximation may fail in
photonic nanostructures. It turns out that for photonic-crystal
membranes with quantum dots positioned in the center of the
membrane, the dipole approximation is very accurate even for
large quantum dots. We discuss effects beyond the dipole
approximation in further detail in Sec. IV.E.
Based on Eq. (28), the LDOS can be expressed as

ρðr;ω; êdÞ ¼
nω2

3π2c3
FPðr;ω; êdÞ; ð34Þ
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where the Purcell factor is defined as

FPðr;ω; êdÞ ¼
γradðr;ω; êdÞ
γhomrad ðωÞ ; ð35Þ

i.e., the ratio between the radiative decay rate of the dipole
emitter at position r to the radiative rate of an identical emitter
placed in a homogeneous medium of refractive index n. This
constitutes a generalization of the Purcell factor originally
formulated for cavities (Purcell, 1946) (cf. Sec. VII) to the
case of arbitrary nanophotonic structures. In photonic crystals
the Purcell factor can be either below unity (suppression of
spontaneous emission) or above unity (enhancement of
spontaneous emission) while in a cavity the Purcell factor
is usually above unity due to coupling to the cavity mode. The
LDOS can be obtained from measurements of the Purcell
factor and Fig. 10 displays the experimental mapping of the
frequency dependence of the LDOS of a photonic-crystal
membrane. In this experiment individual quantum dots with
similar emission wavelengths were spectrally selected while
varying the lattice constant a of the photonic crystal in order to
record the LDOS as a function of the scaled frequency a=λ. A
very pronounced suppression of the LDOS for two different
dipole projections was observed in the region of the 2D
photonic band gap. The largest recorded spontaneous-
emission inhibition factor (the inverse of the Purcell factor)
was 70. The point-to-point fluctuations reveal the spatial
variation of the LDOS within the unit cell of the photonic

crystal as probed by quantum dots at different positions and
are in accordance with numerical simulations of the LDOS
extrema (Koenderink et al., 2006). The good agreement
between experiment and theory illustrates that inhibition of
spontaneous emission in photonic-crystal membranes is
robust to fabrication imperfections, which has been confirmed
in systematic experiments where imperfections were deliber-
ately introduced (García et al., 2012).
The experimental mapping of the spatial variation of the

LDOS is challenging since techniques for positioning or
locating a single quantum dot with nanometer precision
relative to a photonic nanostructure are tedious; cf. the
discussion in Sec. II.A. Another approach is to vary the
location of the emitter, which is possible only for emitters
positioned on the surface of the nanostructures and therefore
not suitable for epitaxially grown quantum dots. To this end,
experimental progress has been obtained by attaching a
dielectric bead containing fluorescent molecules to a scanning
probe (Frimmer, Chen, and Koenderink, 2011), although the
single-emitter sensitivity generally required for full LDOS
mapping has not yet been achieved. In the context of quantum
plasmonics, nanocrystals containing a singleNV-defect center
were successfully manipulated with an atomic-force micro-
scope (Huck et al., 2011; Schell et al., 2011).

D. Non-Markovian spontaneous-emission dynamics

In many cases the Wigner-Weisskopf approximation suf-
fices for describing the spontaneous-emission dynamics and
predicts an exponential decay with time. However, if the
spectral variation of the LDOS is very pronounced over a
frequency interval comparable to the emitter linewidth, the
Wigner-Weisskopf approximation breaks down. This can
potentially occur near a photonic-crystal band edge or in a
high-Q cavity. In this case the memory kernel of Eq. (26) is
nonsingular implying that non-Markovian memory effects
change the dynamics. Accordingly, the signature of non-
Markovian dynamics is a nonexponential decay induced by
the nanophotonic environment, which corresponds to a non-
Lorentzian emission spectrum. Non-Markovian photon-emit-
ter interactions in photonic crystals have been investigated
extensively theoretically, predicting exotic quantum-optics
effects such as the fractional decay (John and Quang,
1994). Fractional decay may occur for emitters tuned to the
sharp edge of a band gap. The emitter decays by spontaneous
emission to a nonzero fractional population that under
idealized conditions would prevail even in the steady-state
limit of t → ∞, which represents an entangled photon-emitter
bound state. In any experimental implementations, however,
the unavoidable fabrication imperfections and the finite size of
the photonic crystal would imply that the emitter eventually
fully decays to the ground state. A detailed study of realistic
photonic-crystal structures containing quantum dots has
shown that significant non-Markovian dynamics may be
expected (Kristensen et al., 2008).
So far the observations of non-Markovian dynamics have

been sparse and limited only to the cases of micropillar
cavities (Madsen et al., 2011) and pulsed transmission experi-
ments in photonic-crystal cavities (Majumdar, Englund et al.,
2012) since the measurements are challenging due to the finite

FIG. 10 (color online). Experimental mapping of the frequency
variation of the LDOS of a photonic-crystal membrane. The
LDOS is measured for two different dipole projections X and Y
and for various scaled frequencies a=λ. The dashed curves are
calculated for two positions with relatively high and low LDOS
and the experimental points are therefore expected to fall within
the two dashed curves, which is consistent with observations. The
dash-dotted curve is the corresponding LDOS for a homogeneous
medium (GaAs). The inset shows the dipole orientations with
respect to the photonic-crystal lattice. From Wang, Stobbe, and
Lodahl, 2011.
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time resolution of available single-photon detectors.
Measurements in the spectral domain may overcome the
resolution limitation but any dephasing processes would also
modify the spectra and need to be clearly distinguished from
non-Markovian photon-emitter effects. The observations of
the vacuum Rabi splitting of a single quantum dot embedded
in a micropillar cavity (Reithmaier et al., 2004) or a photonic-
crystal cavity (Yoshie et al., 2004) constitute examples of non-
Markovian coupling to a radiation reservoir that includes the
cavity quasimode. At microwave frequencies, non-Markovian
coupling was observed in a 3D photonic crystal by using a
magnetic dipole source (Hoeppe et al., 2012).

E. Light-matter interaction beyond the dipole approximation

A crucial assumption underlying the LDOS formalism is
that the spatial extent of the exciton wave function in the
quantum dot L is much smaller than the optical wavelength,
which is the electric dipole approximation that is valid if
jkjL ≪ 1. The dipole approximation is very accurate in
atomic physics and leads to great simplifications but turns
out not to be generally valid for quantum dots. For a standard-
sized InGaAs quantum dot in GaAs, jkjL ≈ 0.5, which is
evaluated for a homogeneous dielectric medium. It turns out
that the symmetries of both the nanophotonic environment and
the quantum dot play a crucial role for the validity of the
dipole approximation and large deviations from dipole theory
may be found, in particular, in structures with large electro-
magnetic-field gradients since k is modified.
A quantum theory of light-matter interaction beyond the

dipole approximation may be derived using the p ·A
Hamiltonian discussed in Sec. II.C and the Markov approxi-
mation. This theory can be readily extended to include non-
Markovian effects because the description beyond the dipole
approximation modifies only the spatial parts of the electro-
magnetic field and wave functions while non-Markovian
effects concern only the time dependence. The generalized
spontaneous-emission rate for an exciton with envelope wave
function ϕðr0; re; rhÞ, which is centered at r0 and where re
(rh) is the electron (hole) coordinate, can be written in a
Green-tensor formalism as (Stobbe et al., 2012)

γradðr0;ω; êdÞ ¼
πq2

ℏm0ϵ0

ρNLðr0;ω; êdÞ
ω

; ð36Þ

where the nonlocal interaction function is defined as

ρNLðr0;ω; êdÞ ¼
ωEP

πc2

Z
d3r

Z
d3r0ϕðr0; r; rÞϕ�ðr0; r0; r0Þ

× Imfê�d · G
↔ðr; r0;ωÞ · êdg: ð37Þ

A similar result was derived in a semiclassical model (Ahn
and Knorr, 2003). It is clear from this expression that the
convenient separation between light-and-matter variables
found in dipole theory does not hold beyond the dipole
approximation, i.e., light and matter are intertwined. This
leads to counterintuitive effects. For example, for a spheri-
cally symmetric exciton in a homogeneous medium, the

spontaneous-emission rate diverges for large L due to the
giant-oscillator strength effect discussed in Sec. II.E.2, but in a
model beyond the dipole approximation it vanishes for large L
since the contributions to the total decay rate from various
spatial parts of the exciton wave function average to zero in
Eq. (37). Nonetheless, when computing the Purcell factor for
spherically symmetric excitons it turns out that the result
obtained in the dipole approximation is exact for any nano-
photonic structure and any L (Kristensen et al., 2013). The
intertwining of light and matter beyond the dipole approxi-
mation gives new opportunities for tailoring the light-matter
interaction strength in quantum-optics applications where the
quantum-dot wave function and the photonic nanostructure
are engineered in mutual accordance. The optimum design
strategies remain largely unexplored, but could be performed
with the above formalism.
Equation (36) is exact to any order in the light-matter

coupling, but generally it must be solved numerically and
therefore cannot be used to gain physical insight. To this end it
is instead useful to Taylor expand the vector potential, which
gives rise to additional coupling terms of which many are
vanishing due to symmetry arguments. However, due to the
shape of the confinement potential discussed in Sec. II.A,
Stranski-Krastanov quantum dots have no parity along the
growth direction and it turns out that a single parameter, the
mesoscopic moment, is responsible for all significant effects
beyond the dipole approximation. The mesoscopic moment is
an intrinsic property of the emitter and vanishes for atoms due
to parity. In a first-order Taylor expansion of the vector
potential, the correction to the total radiative rate of the dipole
transition due to the mesoscopic moment is given by
(Tighineanu, Andersen et al., 2014)

γrad;Λðr0;ωÞ ¼
4q2

ϵ0ℏm2
0c

2
0

Re½ΛP��

×
∂
∂x Im½ê�x ·G

↔

zxðr; r0;ωÞ · êx�jr¼r0 ; ð38Þ

where the mesoscopic moment is defined as

Λ ¼ q
m0

hΨvjx̂p̂zjΨci; ð39Þ

and the bright exciton with dipole moment along x is consid-
ered, i.e., Px ¼ Pêx; cf. the discussion in Sec. II.C. By
symmetry the other bright exciton is governed by the same
dipole and mesoscopic moments. The mesoscopic moment
depends sensitively on exciton symmetry and the in-plane
exciton size (Tighineanu, Sørensen et al., 2014).
Equation (38) reveals how the coupling to the electromagnetic
field enters through the gradient of certain Green’s tensor
components.
Mesoscopic effects beyond the dipole approximation can be

revealed in well-controlled experiments on decay dynamics in
simple nanostructures, where the spatial dependence of
Green’s tensor can be calculated exactly enabling a direct
comparison between experiment and theory. Figure 11 shows
the results of such an experiment, where the decay rate of an
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ensemble of quantum dots was recorded as a function of
distance to a silver-GaAs interface (Andersen et al., 2011).
Close to the interface the quantum dots excite surface-
plasmon polaritons and the strong field gradients governing
this interaction lead to the breakdown of the dipole approxi-
mation. The experimental data are well explained by the
theory and are tested for two different orientations of the
quantum dots relative to the mirror in order to validate
the predictions from theory. In this experiment, the meso-
scopic moment either adds to or subtracts from the rate of
plasmon excitation for a dipole meaning that plasmon exci-
tation can be either promoted or suppressed. Even larger
effects are expected in metallic nanowires, and the mesocopic
effects therefore provide a way of enhancing plasmon-emitter
interactions for applications in quantum plasmonics. In
photonic-crystal membranes, there may also be strong field
gradients but the TE-like symmetry of the electromagnetic
field implies that the in-plane derivatives of the electric-field
component perpendicular to the membrane vanishes in the
center of the photonic-crystal membrane, which implies that
the mesoscopic term vanishes according to Eq. (38). For this
reason the dipole approximation was found to be valid in the
experimental work on probing the LDOS with quantum dots
as discussed in Sec. IV.C.

V. RESONANCE FLUORESCENCE FROM A QUANTUM
DOT

Resonant excitation of a quantum dot leads to novel
opportunities compared to the traditional nonresonant exci-
tation schemes. It enables coherent manipulation of the
excitonic states in a quantum dot without creating additional
carriers or phonons that inevitably are generated with non-
resonant excitation and may cause undesirable dephasing
processes. The fluorescence from a resonantly driven quantum
emitter produces highly nonclassical light and depending on
the excitation condition, detuning, and spectral filtering, e.g.,
cascaded-photon emission can be generated. Recently, highly
coherent single-photon emission from quantum dots was also
experimentally demonstrated. In this section we briefly review
the basic theory of resonance fluorescence of quantum
emitters including the role of dephasing treated within the
Markov approximation. Resonant excitation of quantum dots
in photonic nanostructures (e.g., cavities or waveguides)
provides a promising pathway to highly coherent interaction
between photons and excitons, which is a key resource for
optical quantum-information processing. Resonant excitation
of quantum dots in photonic waveguides is considered
in Sec. VI.

A. Coherent and incoherent scattering

The basic setting of resonance fluorescence is a two-level
dipole emitter initially prepared in the ground state that is
driven by an electromagnetic field. Furthermore, the emitter is
coupled to a radiation reservoir into which single photons
from the driving field can be scattered, as illustrated in Fig. 12.

(a)

(b)

FIG. 11 (color online). Experimental demonstration of the
breakdown of the dipole approximation. The points show
measured decay rates from ensembles of quantum dots placed
near a semiconductor-silver interface for (a) the as-grown
structure and (b) with the quantum dots placed upside down.
The orientations of the quantum dots are indicated in the insets.
The prediction of dipole theory is shown as the dashed curve that
describes both data sets very well far from the interface. Close to
the interface the data deviate from dipole theory showing either
(a) suppression or (b) enhancement of the decay rate meaning that
surface plasmons are excited less or more efficiently than
expected for dipoles, respectively. These effects agree with
predictions of the theory beyond the dipole approximation
(solid curves) and allow extracting an experimental value of
the mesoscopic moment of the quantum dots. From Andersen
et al., 2011.

(a)

(b)

FIG. 12 (color online). (a) Resonance fluorescence of a quantum
dot in the weak-excitation limit showing the coherent scattering
of a single frequency ωp. The emitted pulse inherits the temporal
shape of the excitation field. The resulting energy levels are the
bare states that are doubly degenerate. (b) The Mollow regime
where a high-intensity driving field with frequency ωp is
scattered by a quantum dot. The fluorescence is emitted in
pulses that are determined by the lifetime of the excited state and
the amplitude of the driving field. The quantum-dot levels are
dressed by the driving field leading to a ladder of eigenstates of
the form j�; npi ¼ ðjg; npi � je; np − 1iÞ= ffiffiffi

2
p

. The dressed
states have transitions with three different energies ωp

and ωp � μ.
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A two-level emitter can scatter only a single photon at a time,
which is a consequence of the Pauli exclusion principle for
fermions. Consequently, resonant scattering can induce non-
classical states of light. In the following a continuous drive
term is considered but the results can readily be generalized to
the case of pulsed excitation. The coupling between a dipole
emitter and a radiation reservoir was discussed in Sec. IV and
the Hamiltonian for resonance fluorescence is given by
Eq. (14) with an additional driving term,

V̂ðtÞ ¼ ℏΩpσ̂þeiðω0−ωpÞt þ H:c: ð40Þ

In the following, dephasing is included by adding Markovian-
dephasing terms to the Hamiltonian as considered in detail in
Sec. VII.B. The excitation field at frequency ωp is assumed to
be in a coherent state, which implies that the annihilation
operator for this mode can be replaced by a complex number
(Mandel and Wolf, 1995). The amplitude of the driving term
Ωp ¼ ffiffiffiffiffinp

p d ·E�
p=ℏ contains the electric-field strength per

photon Ep, the transition dipole moment d, and the average
number of photons np. The radiation reservoir is treated
within Wigner-Weisskopf theory.
The general behavior of resonance fluorescence depends on

the amplitude of the driving term relative to the dissipation and
decoherence rates. For simplicity, nonradiative recombination
is neglected in the following and when this approximation is
used we replace γrad by γ. At a low excitation amplitude the
emitter will operate as a passive scatterer. By increasing the
excitation amplitude Ωp the population of the quantum dot
will Rabi oscillate between the ground and excited states,
which is an example of a nonlinear light-matter interaction
induced by the saturation of the emitter. The Rabi oscillations
are damped by dephasing and spontaneous emission. The
scattered intensity reaches a steady-state value that can be
expressed as the sum of two parts (Meystre and Sargent, 2007)

Icoh ¼ I0
4γ2jΩpj2

ðγ2 þ 2γγdp þ 8jΩpj2Þ2
; ð41Þ

Iinc ¼ I0
4jΩpj2ð2γγdp þ 8jΩpj2Þ
ðγ2 þ 2γγdp þ 8jΩpj2Þ2

; ð42Þ

where I0 is an overall scaling amplitude, γdp denotes the
dephasing rate, and it is assumed that the excitation field is
resonant with the quantum dot. Icoh dominates at weak
excitation and is referred to as the coherent part of the
intensity. It can be calculated in a semiclassical model where
the quantum fluctuations of the dipole emitter are neglected.
The incoherent part Iinc dominates at strong excitation and
originates from the quantum fluctuations of the driven dipole.
The prevalent terminology of referring to this as coherent and
incoherent intensity can be somewhat misleading since both
terms depend on both the coherent driving field Ωp and the
incoherent dephasing rate γdp. For a moderate amount of
dephasing (γdp ≲ γ) the coherent and incoherent intensities
dominate at low and high excitation intensities, respectively.
In the former case, the quantum dot remains weakly excited so
that the excited-state population is small while in the latter

case, an increasing excitation intensity eventually saturates the
emitter leading to a decrease of the coherent term.
At all excitation levels the emitter can scatter only a single

photon at a time meaning that gð2Þð0Þ ¼ 0 for the scattered
light. The full expression for the photon autocorrelation
function is obtained by extending the textbook calculation
of Scully and Zubairy (2001) to include dephasing (Flagg
et al., 2009),

gð2ÞðτÞ ¼ 1 − e−ð3γ=4þγdp=2Þτ
�
cosðμτÞ þ 3γ þ 2γdp

4μ
sinðμτÞ

�
;

ð43Þ

where μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jΩpj2 − ðγ=4 − γdp=2Þ2

q
is the effective Rabi

frequency. In the limit of weak excitation, i.e., jΩpj ≪ γ, γdp,
the autocorrelation function increases monotonously from
zero to unity with time delay τ, while for an excitation rate
exceeding the dissipation rates, coherent Rabi oscilla-
tions occur.
Further insight into resonance fluorescence is obtained

from the emission spectrum, which similarly can be divided
into a coherent and an incoherent part: SðωÞ ¼ ScohðωÞþ
SincðωÞ. In the resonant case ω0 ¼ ωp, we have

ScohðωÞ ¼
n2sγ2

4jΩpj2
δðΔpÞ; ð44aÞ

SincðωÞ¼
ns
2

γdpþγ=2

Δ2
pþðγdpþγ=2Þ2

þ n2s
4jΩpj2

Re

��
A
2
þ B
8iμ

�
1

iðΔp−μÞþðγdp=2þ3γ=4Þ
�

þ n2s
4jΩpj2

Re

��
A
2
−

B
8iμ

�
1

iðΔpþμÞþðγdp=2þ3γ=4Þ
�
;

ð44bÞ
where Δp ¼ ω − ωp, A ¼ 4jΩpj2 − γðγ=2 − γdpÞ, and B¼
−ð4jΩpj2½2γdp−5γ�þ2γγ2dp−2γ2γdpþγ3=2Þ, and the steady-
state population of the emitter is

ns ¼
4jΩpj2

γ2 þ 2γγdp þ 8jΩpj2
: ð45Þ

The coherent part of the spectrum dominates at low excitation
intensities and is proportional to a Dirac delta function in
frequency. In an experiment, the width of this coherent peak is
determined by the linewidth of the laser driving the emitter.
This process can therefore be exploited for generating highly
coherent single photons since they inherit the narrow line-
width of the excitation laser, as illustrated in Fig. 12(a). The
incoherent three-peak spectrum dominates at high excitation
power where the quantum emitter is saturated. The central
peak is resonant with the excitation field while the two
satellite peaks are positioned symmetrically around the central
peak at the frequencies ω ¼ ωp � μ ≈ ωp � 2jΩpj, where the
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approximation holds for a strong-excitation field. This struc-
ture of the saturated spectrum is referred to as the Mollow
triplet (Mollow, 1969) and is a result of the dressing of the
emitter by the driving field forming pairs of dressed states,
j�; npi ¼ ðjg; npi � je; np − 1iÞ= ffiffiffi

2
p

[cf. Fig. 12(b)] and
gives rise to three different transitions between manifolds
of states.
Resonant scattering of a coherent state on a quantum

emitter can be employed as an alternative to spontaneous
emission for generating single photons. The spatial mode
structure of the scattered photon is thus of importance in order
to enhance the single-photon efficiency. In the weak-
excitation regime where stimulated-emission processes are
negligible, the radiation pattern of the scattered photon is
identical to that of spontaneous emission since the emitter
couples to the same radiation reservoir in the two cases (Allen
and Eberly, 1974). Consequently, important concepts from the
theory of spontaneous emission, e.g., the LDOS introduced in
Sec. IV, may equally well be applied for describing weak
resonance fluorescence. In Sec. VI.D it is explained how
resonant scattering in a photonic waveguide can be used
to achieve a large nonlinearity capable of operating at the
single-photon level.

B. Coherent optical manipulation of a single quantum dot

Resonant excitation can be applied as a versatile way of
controlling the population of a quantum dot whereby super-
position states between the ground and excited states can be
encoded. Recently resonant excitation was employed for
mapping the polarization state of a light pulse onto the exciton
spin, followed by the subsequent readout of the spin state
through a biexciton transition (Benny et al., 2011). The
observation of resonance fluorescence has been challenging
since the weak optical signal appears at the same frequency as
the strong-excitation field, thus all-optical excitation and
readout pose strict demands on the ability to filter the
fluorescence from the residual excitation light. This can be
particularly challenging in photonic nanostructures since their
inhomogeneous structure implies that residual light scattering
can be difficult to suppress. Rabi oscillations have been
observed experimentally for a single quantum dot through
a number of different approaches. Early work applied time-
resolved pump-probe spectroscopy to record the dynamics of
the optically induced polarization of the two-level system, and
the first signatures of Rabi oscillations were reported by
Stievater et al. (2001). Subsequently, electrically gated
quantum dots were implemented in resonant-excitation
experiments where the population of the quantum dot
was read out from a photocurrent (Zrenner et al., 2002).
Figures 13(a)–13(c) illustrate the operating principle of such
an experiment: a picosecond optical pulse induces Rabi
oscillations in a quantum dot by an amount that is controlled
by the overall pulse area Θ that for a fixed pulse duration can
be varied by the pulse energy. The population of the quantum
dot was read out as a tunnel photocurrent from the quantum
dot by embedding it in a Schottky diode structure and
applying an electric field. Rabi oscillations of up to seven
full cycles have been observed in such an experiment; see

(a)

(b) (c)

(d)

FIG. 13 (color online). Experimental demonstration of Rabi
oscillations of a quantum dot. (a) Rabi oscillations between
an exciton jei ¼ jXi and no exciton jgi ¼ j0i in the quantum
dot when driven by a short optical pulse. (b) The quantum-
dot population can be read out as a photocurrent in the
Schottky diode by (c) applying an electrical bias across the
quantum dot. (d) Examples of Rabi oscillations recorded in
the photocurent for various excitation amplitudes as quantified
by the overall pulse area Θ. The excitation pulse duration
was kept constant at 4 ps and the pulse energy was varied.
An increased damping is observed with temperature in
accordance with the theory of LA-phonon dephasing (thin
curves). (a)–(c) From Zrenner et al., 2002. (d) From Ramsay
et al., 2010.
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Fig. 13(d) (Ramsay et al., 2010). The damping of the Rabi
oscillations was well explained by dephasing from LA
phonons, and a quantitative agreement between theory and
experiment for the temperature-dependent data was found.
Dephasing due to LA phonons is described in Sec. VII.B.2 in
the context of cavity QED. Rabi oscillations have also been
recorded directly in the fluorescence by applying picosecond-
pulsed excitation (Muller et al., 2007; Melet et al., 2008). In
these experiments, highly efficient spatial filtering could be
implemented since the excitation light was guided in a planar
waveguide structure and the fluorescence collected perpen-
dicularly to the excitation beam. Another successful filtering
approach has applied a cross-polarized excitation-detection
configuration for the case of quantum dots in photonic-crystal
cavities (Englund et al., 2007), where the residual excitation
light could be strongly suppressed by high-extinction polar-
izers enabling the observation of resonance fluorescence.

C. Generation of coherent single photons by resonant scattering
on a quantum dot

Coherent scattering in the weak-excitation regime has
recently been exploited as a promising way of generating
highly coherent single photons from quantum dots (Nguyen
et al., 2011; Matthiesen, Vamivakas, and Atatüre, 2012),
thereby overcoming most of the inherent dephasing encoun-
tered in solid-state systems when using different excitation
schemes. In the experiment of Matthiesen, Vamivakas, and
Atatüre (2012) a weak and narrow-linewidth laser was
resonantly driving a single quantum dot electrostatically tuned
to resonance with the laser. From the electric-field correlation
function, a coherence time as long as T2 ¼ 22 ns was
observed, which corresponds to a linewidth of Δω=2π ¼
7 MHz (equal to 0.03 μeV), which is 15 times narrower
than the natural linewidth of the transition set by spontaneous
emission. An almost ideal antibunching of gð2Þð0Þ ¼
ð1� 1Þ% showed that high-purity single-photon scattering
could be obtained. A limitation of this approach, however, is
that since the quantum dot is driven by a continuous-wave
laser, the photons are not emitted deterministically.
Weak coherent scattering can also be exploited in a pulsed

regime for generation of triggered single photons. The
synthesis of various shapes of single-photon wave packets
was recently demonstrated (Matthiesen et al., 2013). In these
experiments it was utilized that in the weak coherent-scatter-
ing regime the scattered single photon is phase locked to the
driving field and therefore inherits its coherence. The phase
locking was demonstrated by measuring the mutual coherence
between the scattered single photon and the drive field; see
Figs. 14(a) and 14(b). A beat-note frequency with a linewidth
of Δω=2π ¼ 299 mHz was observed, which proves that
dephasing of the quantum-dot spectrum can be overcome
using weak resonant excitation. This ability to generate single
photons at a frequency that is slaved to the excitation laser
may be applicable for interfering photons from different
quantum dots since they can be driven by the same laser
source. The physical origin of the long mutual-coherence time
stems from the fact that the quantum-dot population remains
on average small for weak excitation meaning that the
transition experiences little disturbance. In the experiment

the quantum dot was incorporated in a Schottky diode
enabling suppression of charge fluctuations in the environ-
ment. An example of the generation of a train of synthesized
single photons is reproduced in Fig. 14(c). A tailored train of
excitation pulses of 500 ps width and 300 MHz repetition rate
was generated by electro-optical modulation of a continuous-
wave laser. The temporal shape of the single photons was

FIG. 14 (color online). Mutual-coherence measurements be-
tween the driving field and a photon generated by weak coherent
scattering on a quantum dot. (a) The optical heterodyne setup
used for detection of a beat note at δν ¼ 210 kHz. (b) Observed
beat-note spectrum displaying a peak with a full width at half
maximum of 299 mHz. (c), (d) Synthesized train of single
photons. (c) The pulse train of the excitation laser (upper
plot) and of the generated single photons (lower plot). (d) Meas-
urement of the autocorrelation function for the scattered
photons. (e), (f) Hong-Ou-Mandel measurements of the degree
of indistinguishability (e) in the absence of two-photon inter-
ference (orthogonal polarization) and (f) with two-photon
interference. The upper plots show the raw data of the normal-
ized autocorrelation function measured with the Hong-
Ou-Mandel interferometer and the lower plots quantify the
degree of indistinguishability by analyzing the amount of
coincidence counts in the peak at zero time delay. Adapted
from Matthiesen et al., 2013.
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found to resemble that of the driving pulse with only a weak
exponential tail attributed to spontaneous emission.
The employed method would enable generating arbitrarily
shaped single-photon pulses with a bandwidth limited by the
spontaneous-emission decay time. The generated single pho-
tons were found to be of excellent quality with gð2Þð0Þ < 5%
[Fig. 14(d)], and photon indistinguishability of ð96� 4Þ%
[Figs. 14(e) and 14(f)], as obtained after spectrally filtering the
LA-phonon sidebands.
Single-photon generation by weak coherent scattering has

the drawback that the photons are generated with a relatively
modest efficiency since the quantum dot cannot be driven into
saturation where it emits a single photon every time it is
triggered. The generation efficiency is controlled by increas-
ing the excitation intensity, although this also increases the
amount of incoherent scattering and thus gradually destroys
the mutual coherence of the photon with the drive field.
Recently, highly coherent single photons have been observed
with pulsed resonant excitation in the strong-excitation regime
(He et al., 2013). By applying resonant π pulses, on-demand
single-photon generation with 99.7% purity and 97% indis-
tinguishability was obtained, which makes this source very
well suited for proof-of-concept linear-optics quantum-
computing applications (Kiraz, Atatüre, and Imamoğlu,
2004). These achievements demonstrate that resonant excita-
tion may be employed for eliminating the abundant dephasing
processes often encountered with nonresonant excitation
schemes. So far experiments have been performed mainly
in homogeneous dielectric media, but extending this work to
the realm of photonic nanostructures seems highly appealing
since much higher single-photon generation efficiencies could
be obtained. This would lead to new standards for highly
efficient and coherent interfacing of light and matter, as
discussed in further detail in Sec. VI.D.
Finally it should be mentioned that the above discussion

focused on the generation of coherent single photons for two-
level solid-state emitters. The availability of a three-level
Λ system with two stable ground states, which can be obtained
with trion states in quantum dots, opens new opportunities for
the deterministic generation of coherent single photons. In this
case, a cavity-enhanced Raman transition is employed to
stimulate the deterministic emission of a photon (Bergmann,
Theuer, and Shore, 1998; Imamoğlu et al., 1999).
Interestingly, the frequency of the emitted photon is tunable
over a range determined by the emitter-cavity coupling, which
could be employed as a way of overcoming effects of
inhomogeneous broadening that are unavoidable in solid-
state implementations. Single-photon cavity-stimulated
Raman emission has been reported with single atoms in a
cavity (Kuhn, Hennrich, and Rempe, 2002) and recently also
with single quantum dots (Sweeney et al., 2014).

D. Observation of the Mollow triplet with a quantum dot

In the regime of strong resonant coherent excitation, the
two-level emitter is dressed and saturated by the excitation
field leading to the Mollow-triplet emission spectrum;
cf. Fig. 12(b). The Mollow spectrum has been observed for
quantum dots in absorption measurements (Xu et al., 2007).
Here an Autler-Townes splitting was also found for a bright

exciton transition when simultaneously driving the orthogo-
nally polarized bright exciton state with a strong-excitation
field. The experimental observation of the Mollow-triplet
emission spectrum was reported in Flagg et al. (2009),
Vamivakas et al. (2009), and Ates, Ulrich, Reitzenstein et al.
(2009). Figure 15 shows an example of the Mollow spectrum
obtained by spectrally resolving the resonant fluorescence
with a Fabry-Pérot interferometer. The sidebands emerge
when the excitation power is increased and the Rabi splitting
between the peaks was found to increase proportionally to the
square root of the excitation power in accordance with
Eq. (44b). In addition, Rabi oscillations were observed in
the second-order correlation function, as also displayed in
Fig. 15. The Mollow sideband peaks are broadened by
phonons and a detailed analysis of the dependence on
excitation power has pinpointed the importance of excitation-
induced dephasing (Roy and Hughes, 2011; Ulrich et al.,

FIG. 15 (color online). Observation of the Mollow triplet for a
resonantly driven quantum dot for different excitation powers
where P0 ¼ 0.2 mW and Ω≡ 2jΩpj. The experimental data can
be modeled well with the theoretical expression for the incoherent
spectrum of Eq. (44b). The inset shows the recorded autocorre-
lation function that displays Rabi oscillations in accordance with
the prediction from Eq. (43). From Flagg et al., 2009.
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2011). Another recent prediction has been that a multitude of
Mollow-like peaks can appear in the regime where the
quantum dot is driven by relatively long and strong optical
pulses (Moelbjerg et al., 2012).
Interesting photon correlations are predicted in the Mollow

spectrum when the excitation field is detuned away from the
quantum-dot transition and certain parts of the spectrum are
spectrally selected. Under these conditions, cascaded-photon
emission can occur since two or more photons can be emitted
in succession from the relaxation of the coupled system
through the dressed-state ladder. The time delay between
the emitted photons is determined by the filter bandwidth and
the excitation power (Nienhuis, 1993). Such photon bunching
was observed experimentally by second-order correlation
measurements on the two Mollow sidebands or by cross-
correlation measurements between two different sidebands
(Ulhaq et al., 2012). Furthermore, antibunching signifying
single-photon emission was observed when just a single
sideband was probed. In addition, long-time-scale bunching
(longer than 10 ns) was observed and attributed to the effect of
quantum-dot blinking, as a consequence of slow charge-
tunneling processes in and out of the quantum dot. In contrast,
in the weak-excitation regime considered earlier, the influence
of blinking was eliminated as evident from the extremely
narrow bandwidth obtained from mutual-coherence
measurements.

VI. QUANTUMELECTRODYNAMICS IN NANOPHOTONIC
WAVEGUIDES

Quantum emitters in nanophotonic waveguides provide a
promising way of enhancing light-matter interaction at the
single-photon level as originally proposed by Kleppner
(1981). Since waveguides are open systems, a single photon
emitted by a quantum emitter in a waveguide can be channeled
directly into a propagating mode and employed as a flying
qubit in quantum-information processing. This contrasts
waveguides with cavities, which are discussed in Sec. VII,
where single photons are coupled to localized modes and
subsequently need to be coupled out of the resonator for
applications. In nanophotonic waveguides, the photon-matter
coupling can be enhanced if the waveguide mode is strongly
confined and has a low group velocity. Furthermore, in
photonic crystals the coupling to lossy nonguided modes
can be efficiently suppressed. This section reviews the under-
lying theory as well as experimental progress on QED with
single-photon emitters in photonic waveguides, including
plasmonic and dielectric nanowires and photonic-crystal
waveguides.

A. Purcell effect in a nanophotonic waveguide

In the following, the theory of spontaneous emission in a
photonic waveguide is presented. As a specific example, a
photonic-crystal waveguide is considered in detail (Hughes,
2004; Lecamp, Lalanne, and Hugonin, 2007; Rao and
Hughes, 2007b), but the theoretical framework is of general
validity and may be applied to, e.g., dielectric or metallic
nanowires as well. We consider a W1 waveguide, which is a
photonic-crystal membrane with one missing row of holes;

cf. Table II(a). The dispersion relation for the TE-polarized
modes of aW1waveguide is displayed in Fig. 16(a). The basis
functions for a single band of the photonic waveguide are
Bloch modes of the form (Yao, Manga Rao, and Hughes,
2010)

ukðrÞ ¼
ffiffiffiffi
a
L

r
bkðrÞeikx; ð46Þ

where k ¼ kêx is the Bloch wave vector, L is the length of the
waveguide, a is the lattice constant, and bkðrÞ is a function
that is 1D periodic along the axis of the waveguide. Here we
restrict the calculation of the LDOS to consider only the
contribution of a single transverse guided mode, which is a
good approximation since the three guided bands are sepa-
rated in frequency and the coupling rate to the guided modes

FIG. 16 (color online). Dispersion diagram and frequency
dependence of the LDOS in a photonic-crystal waveguide.
(a) Projected band diagram of the TE-like modes of a W1
photonic-crystal waveguide of GaAs (with refractive index
n ¼ 3.5, hole radius r ¼ a=3, and membrane thickness t ¼
2a=3 where a is the lattice period) displaying the scaled
frequency as a function of the Bloch wave vector. Three wave-
guide modes appear in the band gap and are labeled according to
the symmetry of Ey. The lowest-frequency mode is usually the
mode of interest. The shaded and triangular (ω > kc) areas
correspond to the regions outside the TE band gap where
extended Bloch modes and a continuum of leaky radiation modes
are found, respectively. The inset shows a schematic of the
modeled waveguide. (b) Frequency dependence of the LDOS
(normalized to a homogeneous medium with n ¼ 3.5) for an
x dipole and a y dipole positioned at the cross shown in the inset
of (a). The vertical dashed lines mark the frequency regions
corresponding to the extended Bloch modes in the photonic-
crystal band, the even mode, and the odd mode.
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largely dominates the rate of coupling to nonguided radiation
modes, which is quantified by the β factor discussed in
Sec. VI.B. The waveguide constitutes a truly one-dimensional
optical system in which light propagation is characterized by a
single Bloch wave vector k, and from Eq. (19), the waveguide
Green’s tensor can be expressed as

G
↔ðr; r0;ωÞ ≈ Lω

4π

Z
∞

−∞

dωk

vg

ukðrÞ ⊗ u�
kðr0Þ

ωk − ω − iδ
;

where a sum has been converted into integration according toP
k → ðL=2πÞ R dk, and δ is an infinitesimal number added to

the denominator allowing for the evaluation of the integral
giving

G
↔ðr; r0;ωÞ ¼ iaω

2vg
Θðx − x0ÞbkðrÞb�

kðr0Þeikðx−x
0Þ

þ iaω
2vg

Θðx0 − xÞb�
kðrÞbkðr0Þe−ikðx−x0Þ; ð47Þ

where the Heaviside function Θ determines the two branches
of forward- and backward-propagating modes. The associated
LDOS can be cast in the form

ρðr;ω; êdÞ ¼
a
πvg

fðrÞ
ϵðrÞVeff

jê�kðrÞ · êdj2; ð48Þ

where êkðrÞ is the unit vector of the electric field of the
waveguide mode, V−1

eff ¼ max ½ϵðrÞjbkðrÞj2� is the inverse of
the effective mode volume per unit cell, and max½� � ��
evaluates the maximum value within one unit cell of the
photonic crystal. The dimensionless function fðrÞ ¼
ϵðrÞjbkðrÞj2Veff varies between zero and unity and expresses
the spatial mismatch between the emitter and the waveguide-
mode field maximum. jê�kðrÞ · êdj2 quantifies the alignment of
the dipole with respect to the waveguide Bloch mode.
In a photonic-crystal waveguide the mode is confined to a

small spatial area implying that light propagation does not
satisfy the paraxial approximation. As a consequence the
guided mode generally has an electric-field component also
along the propagation direction. Figure 16(b) shows the
frequency-dependent LDOS for a W1 photonic-crystal wave-
guide for x and y dipoles, respectively, positioned at the cross
in the inset of Fig. 16(a). Since the dipole is placed at a high-
symmetry point, the x dipole couples only to the odd mode,
while the y dipole couples only to even modes. For the
y dipole a broad range of frequencies with an enhanced LDOS
is observed (for scaled frequencies above 0.26) as a result of
the coupling to the highly dispersive even mode. This mode
has been employed in experiments for the observation of
broadband Purcell enhancement, as discussed in Sec. VI.C.
Ideally the LDOS is predicted to diverge at the band edge of
the waveguide mode where the group velocity vanishes. This
divergence is unresolved in the numerical simulations pre-
sented in Fig. 16(b) due to the finite spectral resolution of the
calculations that focus on broadband features. In experiments
the predicted divergence is smoothed due to fabrication
imperfections; cf. Sec. III.D. A dipole oriented along the
x axis is predicted to experience several sharp peaks from the
LDOS, which are due to the group velocity of the odd mode

approaching zero at several frequencies. Finally, the frequency
interval ωa=2πc ¼ ð0.255; 0.26Þ in Fig. 16(b) is below the
onset of the waveguide modes and therefore in the band-gap
region. Here the LDOS for both dipoles is strongly sup-
pressed, which quantifies the suppression of radiation modes
that can be achieved in photonic-crystal waveguides.
A dipole optimally positioned at an antinode of the

photonic-crystal waveguide mode [fðrÞ ¼ 1] and oriented
along the electric field has a maximum Purcell factor of

Fmax
P ðωÞ ¼

�
3

4πn
λ2=n2

Veff=a

�
ngðωÞ; ð49Þ

where ngðωÞ ¼ c=vgðωÞ is the group index that specifies the
slow-down factor of the photonic-crystal waveguide. This
expression illustrates how the light-matter enhancement is
accommodated in a photonic waveguide by two effects: a slow
group velocity as can be obtained in dispersive waveguides
and a tight confinement of the mode as expressed by the
effective mode volume. In a photonic-crystal waveguide both
effects are employed, i.e., the structural dispersion of the
Bloch modes gives rise to slow light and the mode is tightly
confined to the diffraction-limited defect area. In plasmonic
nanowires, subwavelength confinement combined with the
slow propagation of the lowest-order guided mode leads to
potentially large Purcell factors (Chang, Sørensen, Hemmer,
and Lukin, 2007). In contrast, the confinement and slow down
is less pronounced in dielectric photonic nanowires than in
plasmonic structures and in the relevant regime of single-
mode operation, the spontaneous-emission rate is typically
suppressed relative to the value in a homogeneous medium
corresponding to a Purcell factor of less than unity (Bleuse
et al., 2011).
In a W1 photonic-crystal waveguide, the effective mode

volume is Veff ∼ aðλ=nÞ2=3 and is found to vary weakly over
the waveguide band. The maximum achievable Purcell factor
is thus determined by the group index ng. Experimentally,
ng ∼ 300 has been reported for W1 photonic-crystal wave-
guides in silicon (Vlasov, O’Boyle, and McNab, 2005), which
means that a Purcell factor approaching 60 should be
achievable. In active GaAs photonic-crystal membranes con-
taining quantum dots, typical slow-down factors of ng ∼ 50

were observed (Arcari et al., 2014). Even larger slow-down
factors can potentially be obtained by improving fabrication
quality or by designing photonic-crystal-waveguide bands that
are more robust to imperfections. Figure 17 illustrates the
spatial dependence of the Purcell factor in a photonic-crystal
waveguide for ng ¼ 5 and in the slow-light regime (ng ¼ 58)
corresponding to experimentally relevant parameters. For
ng ¼ 58 [cf. Figs. 17(c) and 17(d)], FWG

P ∼ 9 is expected
for both x- and y-dipole orientations. The spatial profile of the
Purcell factor is determined by the Bloch function of the
waveguide mode.
For large Purcell factors in the photonic-crystal waveguide

non-Markovian dynamics from the coupling to the radiation
reservoir could play a role. The theoretical framework for this
is presented in Sec. IV. For applications as a single-photon
source such quantum backaction may be a nuisance since it
effectively can extend the lifetime of the excited state of the
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emitter, and therefore reduce the achievable rate of the single-
photon generation. Figure 18 exploits the Lamb shift
and the corresponding emission spectra for photonic-crystal
waveguides with experimentally relevant values of the
Purcell factors of up to 60. The Lamb shift is found to be
strongly modified by the photonic-crystal waveguide, which
should be experimentally observable. Nonetheless the
emission spectra are well described by Wigner-Weisskopf
theory testifying that non-Markovian dynamical processes are
absent.

B. Efficiency of a single-photon source

While the Purcell factor quantifies the enhancement of the
single-photon emission rate, another important figure of merit
for a single-photon source is the overall efficiency, which
depends on generation, collection, and subsequent detection
efficiencies. It can be expressed as

ηtot ¼ ηdet βηgen; ð50Þ

where ηgen is the probability that the excitation of the quantum
dot leads to the preparation of a bright exciton state, β is the
probability that an exciton recombination leads to a photon in
the desired waveguide mode, and ηdet is the probability of
collecting and detecting the photon once it has been launched
in the waveguide. In the following these terms are discussed in
detail.
The generation efficiency ηgen depends on the way the

quantum dot is excited and is sensitive to charge fluctuations
in the nearby environment associated with defect sites. By

(a)

(b)

(c)

(d)

FIG. 17 (color online). Spatial dependence of the Purcell factor
and the β factor in a photonic-crystal waveguide. The photonic-
crystal waveguide is made in a membrane with refractive index
n ¼ 3.5, hole radius r ¼ a=3, where a is the period, and
membrane thickness t ¼ 2a=3. The left column shows the
overall Purcell factor, the middle column shows the Purcell
factor for emission into nonguided radiation modes, and the
right column shows the radiative β factor (γnrad ¼ 0) for
coupling into the waveguide mode. Note the nonlinear color
scale. (a) Spatial maps for a dipole oriented along the x direction
at a frequency where the even photonic waveguide has a group
index of ng ¼ 5. (b) Same as (a), but for a y dipole. (c) Spatial
maps for an x dipole with a frequency corresponding to the
waveguide mode having a group index of ng ¼ 58. (d) Same as
(c), but for a y dipole.

FIG. 18 (color online). Spectral properties of emission in a
photonic-crystal waveguide from a quantum dot with homo-
geneous decay rate γhom ¼ 1 ns−1 and wavelength λ ¼ 950 nm.
(a) A model Purcell factor for a photonic-crystal waveguide with
a peak value of FP ∼ 60 and assuming a Gaussian roll-off below
the peak in order to resemble broadening of the band edge due to
fabrication imperfections. (b) The frequency dependence of the
Lamb shift for the parameters used in (a). (c) The emission
spectrum of an emitter centered at the frequency where FP ∼ 5
[indicated by the dashed vertical lines in (a) and (b)]. (d) Same as
(c) but for FP ∼ 60. In (c) and (d) the curves are computed by
applying (not applying) the Wigner-Weisskopf approximation
and the two curves are found to be identical on the plotted scale.
Note the different scales on the abscissae in (c) and (d).
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pumping the ground-state transition into saturation in a
nonresonant excitation scheme, a single exciton can be
prepared. Depending on the pumping conditions, however,
quantum dots may suffer from blinking processes, e.g., by
spin flips that turn bright excitons into dark excitons
(Johansen et al., 2010) or by tunneling of carriers in or out
of the quantum dot. As a consequence the emission will turn
on and off, which can occur at various time scales of, e.g.,
100 ns or longer (Santori et al., 2004). The spin-flip processes
as well as the coupling to other charged exciton complexes can
be modified by applying a dc electric field across the quantum
dot (Smith et al., 2005), which may be employed for
optimizing ηgen.
Nanophotonic waveguides are well suited for obtaining a

large β factor. The β factor is defined as the rate of
spontaneous-photon emission into the waveguide mode γwg
relative to the total recombination rate of the emitter by all
possible decay processes, i.e.,

βðωÞ ¼ γwg
γwg þ γng þ γnrad

; ð51Þ

where γng is the loss rate of coupling to all nonguided modes
and γnrad is the rate of intrinsic nonradiative recombination in
the quantum dot as discussed in Sec. II.E. The radiative rates
in the β factor can be computed from the LDOS associated
with the guided and nonguided modes by applying Eq. (28). In
dielectric nanostructures (photonic-crystal waveguides and
nanowires) the nonguided modes are extended radiation
modes. For plasmonic nanowires, however, the imaginary
part of the dielectric permittivity is non-negligible, which
leads to an additional nonradiative decay channel due to
resistive heating in the nanowire. Although the resistive
heating is fully described by the projected LDOS and as
such is an effect of the photonic environment, it does not lead
to emission of photons. The calculated spatial dependence of
the β factor for aW1 photonic-crystal waveguide including the
fraction of the emission that couples to the guided mode and
the nonguided modes is shown in Fig. 17 for the case of
γnrad ¼ 0. The β factor is predicted to be remarkably close to
unity even for a low group index where the coupling to the
waveguide is not Purcell enhanced. This robustness stems
from the fact that the 2D photonic band gap suppresses γng,
i.e., the leakage to unwanted modes is strongly inhibited.
Importantly, near-unity β factors are expected in essentially
any spatial position within the photonic-crystal waveguide
since either an x-oriented dipole or a y-oriented dipole couples
well to the waveguide mode. These characteristics make
photonic-crystal waveguides appealing for realizing efficient
single-photon sources and large photon nonlinearities. It is an
interesting observation that β in practice will likely be limited
by intrinsic nonradiative processes (γnrad) in the quantum dot
rather than the actual waveguide. The large bandwidth of a
photonic-crystal waveguide could in certain situations be a
drawback since it could imply that phonon sidebands are not
suppressed, which would be the case in a narrow-bandwidth
cavity. However, the ability to tailor the dispersion may enable
engineering photonic-crystal waveguides with optimized
bandwidths.

Finally, the detection efficiency ηdet depends on both the
collection of photons from the waveguide and the subsequent
propagation loss and detector efficiency. This requires shaping
the optical mode from the waveguide such that it can be
efficiently collected by a microscope objective with a given
numerical aperture. Quantitative measurements of the collec-
tion efficiency are challenging since the outcoupling from a
photonic nanostructure is generally sensitive to fabrication
imperfections and precise alignment of the optical setup. One
approach has been to infer the collection efficiency by
comparing the target quantum dot to another quantum dot
that is positioned in a nonstructured medium and where the
collection efficiency is readily calculated, although such an
approach does not include the potential influence of blinking
effects. In many present experiments the detection efficiency
is rather low (typically about a few percent) but can potentially
be significantly optimized by elaborate outcoupling designs
from the nanostructure.
So far the highest reported rate of detecting single photons

was 4 MHz for a quantum dot embedded in a microcavity and
driven by a pulsed laser at the repetition rate of 82 MHz
(Strauf et al., 2007), i.e., an overall efficiency of ηtot ∼ 5%. We
anticipate that the simultaneous optimization of all efficiencies
in Eq. (50) in one optical device will enable observing higher
efficiencies in the near future. The following section addresses
the experimental progress on nanophotonic waveguides for
increasing the efficiency of quantum-dot single-photon
sources.

C. Experimental progress on waveguide single-photon sources

Considerable efforts have been devoted to the development
of single-photon sources based on nanophotonic waveguides.
In this section the experimental progress on photonic-crystal
waveguides as well as dielectric and metallic nanowires is
reviewed.

1. Photonic-crystal waveguides

Photonic-crystal waveguides fabricated in GaAs and con-
taining InGaAs quantum dots have proven to be well suited for
Purcell enhancement and record-high β factors. The first
experimental demonstration of Purcell enhancement in a
photonic-crystal waveguide used quantum dots embedded
in a W3 (three rows of missing holes) photonic-crystal
waveguide (Viasnoff-Schwoob et al., 2005) where a 16%
Purcell enhancement was found. Better enhancement and
suppression of leaky radiation modes can be obtained in
membrane structures and by using the more confined mode of
a W1 waveguide; cf. the electron micrograph displayed in
Table II(a). The first experiments on single quantum dots in
such samples showed that the β factor could approach 90%
and reach above 50% in a wide bandwidth of 20 nm (Lund-
Hansen et al., 2008). Subsequent experiments used temper-
ature tuning of a single quantum dot relative to the cutoff
frequency of the waveguide mode. Figure 19 shows an
example of such measurements, where a quantum dot was
tuned into resonance with the slow-light region of the wave-
guide mode from which a Purcell factor of FP ¼ 5.2 was
observed (Thyrrestrup, Sapienza, and Lodahl, 2010). This
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corresponds to a decay time of 175 ps, which is sufficiently
fast to aid in overcoming dephasing processes, as is required
for the generation of indistinguishable photons. With increas-
ing temperature the quantum dot redshifted into the band-gap
region of the photonic crystal giving rise to a gradual decrease
of the decay rate reflecting the frequency tail of the waveguide
LDOS that is broadened by fabrication imperfections. The
β factor could be estimated from β ¼ ðγres − γnonresÞ=γres,
where γres and γnonres are the respective resonant and non-
resonant decay rates; cf. Fig. 19. From these measurements,
β ¼ 85% was extracted, which importantly constitutes a very
conservative estimate since the nonresonant rate was obtained
at an elevated temperature of 60 K where the population of
excited states, increased nonradiative recombination
(Tighineanu et al., 2013), and phonon-assisted coupling to
the waveguide (Madsen et al., 2013) can increase the rate
significantly.
The full potential of photonic-crystal waveguides can be

realized by noting that the coupling to nonguided radiation
modes is typically less than 10% of the decay rate in a
homogeneous medium (Lecamp, Lalanne, and Hugonin,
2007); cf. Fig. 17. Therefore a quantum dot with a Purcell
factor of FP ¼ 5.2 is expected to have a β factor very close to
unity, which is also evident from the calculations shown in
Fig. 17. Indeed, in a recent experiment β ¼ 98.4% has been
reported (Arcari et al., 2014), which demonstrates that this
promising potential of photonic-crystal waveguides can be
realized experimentally.
The near-unity β factors make photonic-crystal waveguides

promising for highly efficient single-photon sources or single-
photon nonlinearities (see Sec. VI.D). With β ¼ 98.4% a
device would emit a deterministic train of single photons with
a failure probability of only 1.6% that an excited bright
exciton in the quantum dot does not lead to a photon in the
waveguide. Such a device is illustrated in Fig. 20. In this case
it is essential to implement short waveguides so that multiple
scattering due to fabrication imperfections (discussed in

Sec. III.D) does not hinder light propagation. This turns
out to be feasible since a length of only 10–20 unit cells
(approximately 5 μm) is enough to achieve very large Purcell
effects in a photonic-crystal waveguide (Rao and Hughes,
2007a). Experimental progress on short photonic-crystal
waveguides was reported by Dewhurst et al. (2010) and
Hoang et al. (2012). The single-photon purity of a quantum-
dot photonic-crystal waveguide source was studied by
Schwagmann et al. (2011), Laucht et al. (2012), and Arcari
et al. (2014), where the best reported value so far of ∼5% is
expected to be further improved by implementing quasireso-
nant or resonant-excitation schemes. Another important issue
for immediate applications is to efficiently couple the single
photons generated in the waveguide off the chip for detection.
To this end, experimental efforts on implementing an adiabatic
taper tip on the waveguide have been reported demonstrating
∼80% outcoupling from a photonic-crystal waveguide to free
space (Tran et al., 2009). Gratings that couple photonic-
crystal-waveguide modes vertically out of the structure with
high efficiency have also been demonstrated (Faraon et al.,
2008b; Wasley et al., 2012), although due to the symmetry of
the structures half of the light is emitted downward and not
directly collected. This could potentially be improved by
incorporating a distributed Bragg reflector below the air gap
under the photonic-crystal membrane. Another possibility is
to couple the photons in the photonic-crystal waveguides to
ridge waveguides. This is efficient only for low-group-index
photonic-crystal waveguide modes, meaning that a high-ng
mode must be converted to a low-ng mode, which can be done
efficiently by using a photonic-crystal waveguide-transition
region (Hugonin et al., 2007) or by directly coupling different
photonic waveguides due to the existence of strong evanescent
modes (de Sterke et al., 2009). Once light is coupled from a
photonic-crystal waveguide to a ridge waveguide it can
propagate longer distances with minimal scattering losses.
Joining multiple photonic-crystal waveguides via ridge wave-
guides could enable the construction of planar photonic
circuits directly suitable for quantum-information processing.

FIG. 20 (color online). Illustration of a highly efficient single-
photon source, where photon wave packets are emitted from a
quantum dot in a photonic-crystal waveguide. The high-β factor
means that almost all photons couple to the waveguide mode and
may subsequently be coupled efficiently off chip via a tapered tip
protruding from the waveguide. From Arcari et al., 2014.

FIG. 19 (color online). Examples of measurements of the
spontaneous-emission rate of a quantum dot while temperature
tuning it into resonance with a photonic-crystal waveguide. The
temperature was varied between 10 and 60 K in steps of 5 K
whereby the quantum-dot transition redshifted. The curve traces
the frequency variation of the LDOS for an ideal photonic-crystal
waveguide without fabrication imperfections. From Thyrrestrup,
Sapienza, and Lodahl, 2010.
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2. Dielectric and plasmonic nanowires

Dielectric nanowires are promising alternatives for achiev-
ing large β factors over a wide bandwidth. In a nanowire with a
diameter at the scale of the wavelength [see Table II(b)], the
spontaneous emission to radiation modes can be strongly
suppressed while the coupling to a single guided mode in the
nanowire can be sizable. For instance, β factors approaching
95% were predicted for a GaAs nanowire with a diameter of
about a quarter of the vacuum wavelength ∼λ=4 with an
operation bandwidth as large as 70 nm since the guided mode
is only weakly dispersive. The experimental demonstration of
spontaneous-emission inhibition in GaAs nanowires was
reported by Bleuse et al., 2011, where an inhibition factor
of 16 was measured on narrow nanowires with a diameter of
0.13λ. For the wider nanowires (diameter ∼λ=4) where large
β factors are predicted, a Purcell factor of 1.5 was observed. A
potential asset of dielectric nanowires compared to photonic-
crystal waveguides is that their structural simplicity may make
them robust toward fabrication imperfections. Important
progress has been made on outcoupling single photons from
a dielectric nanowire with very high efficiency. This can be
achieved by fabricating a tapering of the nanowire tip and
integrating a gold mirror beneath the quantum dot (Claudon

et al., 2010). For a lens with NA ¼ 0.75, an overall single-

photon collection efficiency of up to 72% was inferred; see
Fig. 21(b). In this work the β factor was not recorded
explicitly, but the inferred efficiency constitutes a conservative
lower bound. The excellent purity of the single-photon
generation was demonstrated by pulsed autocorrelation mea-
surements even when driving the quantum dot into saturation;
cf. Fig. 21(a). These experiments illustrate the very promising
potential of dielectric nanowires for highly efficient single-
photon generation. One potential limitation of this method is
that only modest Purcell enhancement can be achieved, which
limits the rate at which single photons are generated and
potentially also the indistinguishability of the photons.
Metallic nanowires offer an interesting alternative to

dielectric nanowires since the spontaneous-emission rate
can potentially be strongly Purcell enhanced. A quantum
emitter placed in the vicinity of a metallic nanowire can decay
by exciting surface-plasmon polaritons that propagate along
the metal wire. One challenge for plasmonic photonic circuits
is that they suffer from inherent absorptive losses and an
enhanced sensitivity to fabrication imperfections due to the
very strong confinement of the optical modes. The exper-
imental progress on coupling quantum dots to plasmonic
nanowires has so far been limited; a detailed theoretical
investigation of experimentally realistic structures is presented
by Chen et al. (2010). Here it was found that since self-
assembled quantum dots must be overgrown with a semi-
conductor capping layer of typically 20–30 nm in order to be
optically active, design strategies are constrained to rather
leaky structures. As a consequence, the achievable β factor for
dipole transitions is typically below 50% even without
accounting for effects due to fabrication imperfections.
Indeed the experimental demonstration of efficient coupling
of self-assembled quantum dots to plasmon nanowires has
been lacking so far. Important progress has been obtained with
other types of solid-state emitters in room-temperature experi-
ments: the first experimental demonstration of emitter-
plasmon coupling in a metallic nanowire was performed with
a colloidal CdSe quantum dot coupled to a chemically grown
crystalline silver nanowire, where Purcell enhancement of 2.5
was observed (Akimov et al., 2007). These results were later
improved by coupling a single nitrogen vacancy center to a
plasmonic nanowire (Schietinger et al., 2009), and a Purcell
factor of up to 8.3 was obtained with a propagating plasmonic
gap mode residing in between two parallel silver nanowires
(Kumar, Huck, and Andersen, 2013). Furthermore, the wave-
particle duality of a single surface-plasmon-polariton excita-
tion was experimentally demonstrated (Kolesov et al., 2009).
Recently, plasmonic nanocavities have been constructed
(Russell et al., 2012; de Leon et al., 2012) in an attempt to
enhance light-matter interaction beyond the level possible in
nanowire geometries. Recent interest has also focused on
antenna structures where resonant plasmonic nanostructures
can help to direct photons with high efficiency (Curto et al.,
2010). Also alternatives based on planar dielectric layers have
been considered where an impressive single-photon collection
efficiency of 96% was reported (Lee et al., 2011).

FIG. 21 (color online). Optical characterization of a quantum dot
in a dielectric photonic nanowire for the structure shown in
Table II(b). (a) Measured second-order correlation function
demonstrating excellent single-photon purity when driving the
quantum dot with a pulsed laser. From the data, gð2Þð0Þ < 0.8%
was extracted. (b) Estimated collection efficiency from the source
by the first lens as a function of the numerical aperture (NA) of
the collection lens and for different values of the tapering angle α
of the nanowire. From Claudon et al., 2010.
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D. Single-photon nonlinearity

A single quantum emitter efficiently coupled to a propa-
gating mode in a nanophotonic waveguide can operate as a
giant photon nonlinearity that for β → 1 is sensitive at the
single-photon level. Figure 22 illustrates the basics of a
photonic-crystal-waveguide single-photon nonlinearity. As
discussed previously, a unity β factor implies that an excited
quantum dot channels every single photon into the waveguide.
Conversely, a narrow-bandwidth photon pulse (relative to the
linewidth of the emitter) that is launched into the waveguide
will scatter on the emitter with unity probability. Since the
emitter can scatter only a single photon at a time, a single
photon suffices in saturating the emitter, which provides a
nonlinear response where the single-photon component of a
pulse is fully reflected while higher-order photon components
have increased probability of being transmitted. The theory of
resonance fluorescence (cf. Sec. V) restricted to a 1D
geometry describes this situation, where the photons can
scatter only back or forth or leak out of the waveguide at a
suppressed rate that is related to 1 − β. Such a setting can be
referred to as the “one-dimensional artificial atom” by para-
phrasing the terminology introduced by Kimble and co-
workers in the context of atomic quantum optics (Kimble,
1998). The transmission and reflection properties of an emitter

in a 1D waveguide have been considered by Rice and
Carmichael (1988), Chang, Sørensen, Demler, and Lukin
(2007), and Shen and Fan (2005, 2007). For a narrow-
bandwidth single-photon pulse on resonance with the emitter,
the transmission and reflection coefficients are given by

T ¼ 1

1þ γ=2γdp
þ 1

1þ 2γdp=γ
ð1 − βÞ2; ð52Þ

R ¼ 1

1þ 2γdp=γ
β2; ð53Þ

where Markovian dephasing with a rate γdp has been included.
Figure 22(b) shows the frequency dependence of the reflection
and transmission coefficients. In the case of highly efficient
coupling β → 1 and a coherent emitter γdp=γ → 0, a single
photon is perfectly reflected by the emitter on resonance.
In the case of launching low-power pulses (Ωp ≪ γ) in a

coherent state, Eqs. (52) and (53) are approximately valid. In
this case a quantum emitter can be employed for reflecting the
single-photon component of the coherent state while higher-
order components have increased probability to be trans-
mitted. This constitutes the basis for a nonlinear switch: for
weak excitation the emitter in the waveguide reflects the
coherent state with large probability, while for strong exci-
tation it is saturated and the light is transmitted. The quantum
character of this nonlinear response is revealed from the
photon statistics of the transmitted and reflected light. The
reflected field is described by the theory of resonance
fluorescence, reviewed in Sec. V, where antibunching is
predicted; cf. Eq. (43). The transmission in the waveguide
contains unique quantum correlations that arise from the
quantum interference between the scattered and incident
fields. In the weak-excitation limit and for vanishing dephas-
ing (γdp ¼ 0), the second-order correlation function is given
by (Chang, Sørensen, Demler, and Lukin, 2007)

gð2ÞT ðτÞ ¼ e−γτ
�

β2

ð1 − βÞ2 − eγτ=2
�

2

: ð54Þ

Pronounced modifications of the photon statistics are pre-
dicted and Figs. 22(c) and 22(d) plot the correlation function
for various realistic values of β and γdp. For β approaching

unity, pronounced bunching (gð2ÞT > 1) is predicted at τ ¼ 0

expressing that two- and higher-order photon components of
the coherent state are transmitted with increased probability
while the single-photon component is reflected. The pro-
nounced bunching is followed by antibunching at subsequent
times, which is a quantum interference phenomenon that is
very sensitive to dephasing. Using the experimental value of
β ¼ 98% reported for photonic-crystal waveguides (Arcari
et al., 2014) together with a realistic dephasing rate of γdp ¼
0.1γ (Matthiesen, Vamivakas, and Atatüre, 2012) leads to
gð2Þð0Þ ¼ 33 for the transmission. This illustrates the dramatic
potential of quantum dots in nanophotonic waveguides for the
generation of nonclassical photonic quantum states.
The giant photon nonlinearity may find a number of

important applications in quantum-information processing,
some of which are discussed in further detail in Sec. VIII.

FIG. 22 (color online). Single-photon nonlinearity with a single
quantum dot in a photonic-crystal waveguide by scattering weak
coherent pulses. (a) A single quantum dot (circle) in a photonic-
crystal waveguide may reflect a single-photon wave packet with
near-unity probability. (b) The reflection and transmission prob-
abilities as a function of detuning for β ¼ 98%, which is the value
obtained experimentally in a photonic-crystal waveguide (Arcari
et al., 2014). In this calculation dephasing was neglected, i.e.,

γdp ¼ 0. (c), (d) Second-order correlation function gð2ÞT ðτÞ for the
transmitted field scattered from a single quantum emitter in a
nanophotonic waveguide with (c) γdp ¼ 0 and different values of
β and for (d) β ¼ 98% and different values for the pure-dephasing
rate γdp.
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Interestingly, a more elaborate dynamical theory than the one
discussed predicts that by scattering short few-photon pulses
on an emitter with a high-β factor in a waveguide, polaritonic
photon-emitter bound states may be excited whereby the
photons become trapped in entangled light-matter states
(Longo, Schmitteckert, and Busch, 2010). So far experimental
realizations of photon nonlinearities in a waveguide have been
reported in the microwave regime where superconducting
transmon qubits in a waveguide were used for generating
nonclassical photon states (Hoi et al., 2012). Finally, it should
be noted that a cavity operating in the weak-coupling regime
with a high-β factor could also be used to implement the type
of single-emitter nonlinearity considered here (Rice and
Carmichael, 1988), although the operation bandwidth would
be limited by the narrow cavity linewidth. Another and more
widely explored option for cavities is to generate a photon
nonlinearity by scattering photons from strongly coupled
quantum-dot-cavity system. Cavity nonlinearities are dis-
cussed in Sec. VII.E.

E. Dipole-dipole interaction in a photonic waveguide

Another application of nanophotonic waveguides is to
mediate the interaction between separate quantum emitters
over extended distances. Such a waveguide-mediated dipole-
dipole interaction may allow constructing deterministic
two-emitter quantum-phase gates (Dzsotjan, Sørensen, and
Fleischhauer, 2010) or entanglement between distant emitters
(Gonzalez-Tudela et al., 2011) with the performance ulti-
mately determined by the potentially very large emitter-
waveguide coupling efficiency.
The theory of the dispersive dipole-dipole interaction

between two quantum emitters in a photonic waveguide
provides an extension of the one-emitter case considered in
Sec. VI.A. Consider the two dipole emitters A and B
positioned at rA and rB and decaying with rates γA and γB
that are assumed to be dominated by the coupling to the
waveguide, i.e., the β factors are close to unity. The dipole-
dipole interaction mediated by the waveguide field gives rise
to an additional decay rate due to the presence of the other
emitter that by the use of Eq. (47) can be expressed as
(Dzsotjan, Sørensen, and Fleischhauer, 2010)

γAB ¼ 2d2

ℏϵ0
Im½ê�A ·G

↔ðrA; rB;ω0Þ · êB�

¼ ad2ω0

ℏϵ0vg
jê�A · bkðrAÞjjêB · b�

kðrBÞj cos ½krAB þ ϕ�; ð55Þ

where rAB ¼ jrA − rBj and ϕ is a phase depending on the
projections of the two dipoles on the local electric fields. Here
the two emitters are assumed to have the same resonance
frequency ω0 and transition dipole moment d, while their
polarizations are denoted êA and êB, respectively. It is
observed that the dipole-dipole interaction rate between two
emitters can be considered a natural extension of the sponta-
neous-emission rate of a single emitter; cf. Eqs. (21) and (28),
where the latter can be interpreted as the self-interaction of the
radiated field on the emitter. The second equation of (55)

holds for the specific example of a photonic-crystal wave-
guide. It follows from symmetry that γBA ¼ γAB.
The benefit of high-β-factor nanophotonic waveguides for

mediating the dipole-dipole interaction is immediately clear
from Eq. (55). Thus, the dipole-dipole interaction in an ideal
lossless photonic-crystal waveguide is of infinite range since it
varies sinusoidally with the distance between the emitters,
which is a consequence of the one-dimensional nature of the
interaction. For comparison, the dipole-dipole interaction
between two emitters in a homogeneous medium decays
rapidly with a scaling of 1=jr1 − r2j3 (Novotny and Hecht,
2012). In reality any loss in the waveguide due to fabrication
imperfections will result in residual light leakage and the
exponential damping of the range of the dipole-dipole
coupling strength (Minkov and Savona, 2013). In photonic-
crystal waveguides the extinction length is found to be in the
range of 20 − 200 μm (Garcia et al., 2010) depending on
whether the waveguide is operated in the low or high ng
regime meaning that the dipole-dipole interaction can extend
as far as several hundreds of optical wavelengths.
The dipole-dipole interaction can be used to entangle

two quantum emitters. The three eigenstates for the two
coupled emitters in the absence of dissipation are jeA; eBi,
j�i ¼ ðjgA; eBi � jeA; gBiÞ=

ffiffiffi
2

p
, and jgA; gBi. The states j�i

are Bell states with maximal entanglement between the two
spatially separated emitters that share an excitation located on
either emitter A or B. The two entangled states decay with
rates γ� ¼ γ � γAB (γA ¼ γB ¼ γ) and depending on the
mutual distance between the emitters, γAB alternates between
−γ and þγ. Consequently, the two entangled states are either
subradiant or superradiant depending on whether their decay
is slower or faster than the spontaneous-emission rate of a
single emitter γ. A detailed account of the amount of emitter-
emitter entanglement predicted in the case of a plasmon
nanowire can be found in Gonzalez-Tudela et al. (2011). So
far experimental demonstrations have been lacking. In pho-
tonic cavities, however, two quantum dots have been coupled
through their interaction with the same cavity mode
(Reitzenstein et al., 2006; Laucht et al., 2010).

VII. CAVITY QUANTUM ELECTRODYNAMICS WITH
SINGLE QUANTUM DOTS

Cavities have traditionally been widely used in quantum
optics as a means to enhance the interaction between light and
matter by resonating the electromagnetic field. In solid-state
systems this approach has also been successful and in this
section we review the progress on cavity QED with quantum
emitters in photonic nanocavities.

A. Local-density-of-states theory

We first review the theory of cavity QED using the LDOS
formalism presented in Sec. IV. This approach is unconven-
tional in the context of cavity QED, where the Jaynes-
Cummings model discussed in Sec. VII.B is more commonly
used. In the LDOS description, the field of cavity QED is
found to merge naturally with the broader class of QED
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systems studied in quantum nanophotonics such as photonic
crystals and photonic waveguides.
Nanophotonic cavities enable the pronounced enhancement

of a single optical mode due to a strong spatial and spectral
confinement of light so that the radiative decay rate into the
cavity mode γcav is much faster than the decay rate into all
other (nonguided) modes γng. It is convenient to express the
Purcell factor introduced in Eq. (35) as FP ¼ Fcav

P þ Fng
P ,

where Fcav
P ¼ γcav=γhom and Fng

P ¼ γng=γhom are the Purcell
factors for the cavity and for all other modes, respectively. The
emission efficiency into the cavity mode follows from the
β factor of Eq. (51). In a typical nanocavity QED experiment
γcav ≫ γng, and in the following only Fcav

P is considered.
In the case of a cavity with a single transverse non-

degenerate mode, it follows from Eq. (19) that Green’s tensor
for a cavity can be written in the form (Yao, Manga Rao, and
Hughes, 2010)

G
↔ðr; r0;ωÞ ¼ ω2

ucðr0Þ ⊗ u�
cðrÞ

ω2
c − ω2 − iωΓ0

; ð56Þ

where ωc is the cavity resonance frequency, Γ0 ¼ ωc=Q, and
Q is the cavity quality factor. The LDOS follows from
Eq. (21):

ρðr;ω; êdÞ ¼
2

π

ω2Γ0

ðω2
c − ω2Þ2 þ ω2Γ2

0

fðrÞ
ϵðrÞVeff

jêd · ê�cj2; ð57Þ

where êc is the unit polarization vector of the cavity mode,
Veff ¼ 1=max ½ϵðrÞjucðrÞj2� is the effective mode volume,
and fðrÞ ¼ ϵðrÞjucðrÞj2=max ½ϵðrÞjucðrÞj2� defines the spa-
tial mismatch between the emitter and the cavity field. This
expression for the effective mode volume is not strictly valid
for the case of open leaky cavities supporting quasimodes
(Kristensen, Vlack, and Hughes, 2012) but is approximately
valid if spatial cutoffs are applied.
The calculated spatial and spectral dependence of the

LDOS for a photonic-crystal nanocavity is plotted in
Fig. 23. Figures 23(a) and 23(b) show the Ex and Ey
electric-field components of the fundamental mode of an
L3 cavity. The components Ex and Ey determine the

cavity polarization vector êc on which the LDOS depends.
Figure 23(c) illustrates the spatial dependence of the LDOS
for an emitter aligned with the field of the cavity and on
resonance, i.e., jêd · ê�cj2 ¼ 1 and ω ¼ ωc. This plot therefore
shows the role of the function fðrÞ in determining the LDOS.
Finally, Fig. 23(d) shows the variation of the LDOS with
detuning for an optimally placed and oriented emitter. The
width of this curve is determined by the Q factor of the cavity.
The Q factor and the mode volume are two figures of merit

for the cavity. However, since the mode volume is not a readily
measurable quantity for nanophotonic cavities, we choose
instead to specify the maximum achievable Purcell factor that
a quantum emitter in the cavity experiences when being
resonant with the cavity Fres

P . Note that while Q and Fres
P are

not independent parameters they are readily recorded exper-
imentally, where the latter can be probed directly from the
exponential emission rate in time-resolved emission measure-
ments in the weak-coupling regime. The maximum Purcell
factor loses its direct physical meaning in the strong-coupling
regime, but it can still be used as the governing parameter and
since most experiments so far are either in the weak-coupling
regime or slightly into the strong-coupling regime this is a
viable choice. From Eqs. (34) and (57) it follows that

Fcav
P ðr;Δ; êdÞ ¼ Fmax

P fðrÞjêd · ê�cj2
ω2
c=4Q2

Δ2 þ ω2
c=4Q2

; ð58Þ

where Δ ¼ ωc − ω,

Fmax
P ¼ 3ðλ=nÞ3

4π2
Q
Veff

is the optimum Purcell factor for an ideally positioned emitter
(Purcell, 1946), and Fres

P ¼ Fmax
P fðrÞjêd · ê�cj2.

In the photonic-crystal cavity of Fig. 23, the mode volume
is Veff ¼ 0.75ðλ=nÞ3 implying that Fmax

P ∼ 0.1Q. Quality
factors of Q ∼ 104 can be routinely observed experimentally
in such cavities, which corresponds to an optimum Purcell
factor of Fmax

P ∼ 1000 that would typically be deep in the
strong-coupling regime. Curiously, this expected Purcell
factor is much larger than the values typically observed in

(a) (b) (d)(c)

FIG. 23 (color online). Simulations of the LDOS of a photonic-crystal L3 cavity (n ¼ 3.46, a ¼ 240 nm, r ¼ 0.3a, slab
thickness t ¼ 0.6a, and with holes adjacent to the cavity shifted by Δx ¼ 0.16a and their radius changed to r1 ¼ 0.24a) following
the design in Hennessy et al. (2007). The cavity mode has a quality factor of Q ¼ 9.6 × 104 with an effective mode volume of
Veff ¼ 0.75ðλ=nÞ3. (a) Ex and (b) Ey field components of the fundamental cavity mode. The white circles indicate the positions of the air
holes making up the photonic crystal. (c) The projected LDOS at a frequency resonant with the cavity mode for a dipole at each position
oriented along the local electric field of the cavity mode. The LDOS is scaled to the value in a homogeneous medium, i.e.,
ρhom ¼ nω2=3π2c3. (d) The detuning-dependent projected LDOS for a dipole positioned at the field maximum and aligned with the
field, i.e., fðrÞ ¼ 1 and jêd · ê�cj2 ¼ 1.
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experiments, which is mainly attributed to spatial mismatch of
the emitter relative to the cavity mode, but could also be partly
related to other effects such as fabrication imperfections.
Consequently, unlike the spontaneous-emission inhibition in
the photonic band gap discussed in Sec. IV.C, the full potential
of photonic nanocavities has not yet been obtained exper-
imentally. A detailed account of the experimental status of
cavity QED in photonic-crystal nanocavities is given in
Secs. VII.C and VII.D.
The expressions for the emission spectrum and Lamb shift

follow from Eqs. (31) and (32):

SðΩ;Δ0;ΔcÞ ∝
1

½Δ0 þ Δcav
L ð ~ΩÞ�2 þ ðγhomFres

P Þ2=4
½1þ4Q2Δ2

c=ω2
c �2
; ð59Þ

Δcav
L ð ~ΩÞ
γhom

¼ Fres
P

2π
Ið ~ΩÞ; ð60Þ

where Δ0 ¼ ω0 − Ω, Δc ¼ ωc − Ω, and γhom is the radiative
decay rate of the emitter in the homogeneous medium.
Furthermore, we have defined the integral

Ið ~ΩÞ ¼ P
Z

∞

0

d ~ω
~ω

ð ~Ω − ~ωÞ½1þ 4Q2ð1 − ~ωÞ2�

with ~Ω ¼ Ω=ωc that can be evaluated numerically and is
convergent. These expressions hold for any light-matter
interaction strength and can thus be used to describe both
the weak- and strong-coupling regimes of cavity QED.
Figure 24(b) plots the emission spectra in the case of

realistic experimental parameters. As the Q factor and Purcell
factor are increased, the transition from weak to strong
coupling is observed through the spectrum changing from a
single- to a double-peaked spectrum (vacuum Rabi splitting).
Strong coupling is experimentally reachable for instance in
photonic-crystal cavities, as discussed in Sec. VII.D.
Figure 24(a) shows the Lamb shift versus observation fre-
quency. We note that the Lamb shift has a broad spectral
response relative to the quantum-dot linewidth and can attain a
size that is an order of magnitude larger than γhom. The
modified Lamb shift could be extracted in experimental
measurements of the emission spectra by applying
Eq. (59), and the Lamb shift is partly responsible for the
vacuum Rabi splitting displayed in Fig. 24(b).

B. The dissipative Jaynes-Cummings model

The preceding section concerned cavity QED in the LDOS
description, which is an adequate description for spontaneous-
emission dynamics. In extending the description to account
for dephasing mechanisms, a density-operator formalism is
useful. Figure 25 sketches the basic physical processes under
consideration: a single quantum emitter is positioned in a
leaky cavity and coupled to a reservoir of radiation modes.
Furthermore, the emitter may dephase. The Jaynes-Cummings
model describes the system in the Markov approximation
where the two reservoirs are spectrally broad, which is the
equivalent of assuming that they have “no memory,” i.e., the
temporal correlation function between two different times
vanishes (Meystre and Sargent, 2007). In contrast the full
dynamics of the single cavity mode is accounted for. The
master equation for the reduced density operator is of the
Lindblad form (Carmichael et al., 1989; Carmichael, 1993),

dρ̂
dt

¼ −
i
ℏ
½ĤJC; ρ̂� þ

γng
2

ð2σ̂−ρ̂σ̂þ − fσ̂þσ̂−; ρ̂gÞ

þ κ

2
ð2â ρ̂ â† − fâ†â; ρ̂gÞ þ γdp

2
ðσ̂zρ̂σ̂z − ρ̂Þ; ð61Þ

FIG. 24 (color online). Emission spectra for an emitter in a cavity
for parameters that are realistic with quantum dots. (a) Lamb shift
and (b) emission spectrum vs frequency detuning from the bare
emitter frequency ω0 ¼ ωc and scaled to the decay rate of the
emitter in a homogeneous medium γhom and for fQ;Fres

P g¼
f104;20g, fQ;Fres

P g¼f5×104;50g, and fQ;Fres
P g¼f105;100g. It

is assumed that γhom ¼ 1 ns−1 at the wavelength λ ¼ 950 nm,
which are typical parameters for a quantum dot.

FIG. 25 (color online). Illustration of the various rates in the
Jaynes-Cummings model. The quantum dot couples to the cavity
mode with a rate g, while it emits photons into other nonguided
modes at a rate γng. The cavity loss rate is κ and the pure-
dephasing rate of the quantum dot is γdp.
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where ĤJC ¼ ℏ½gσ̂þâeiΔt þ H:c:� is the Jaynes-Cummings
Hamiltonian, â is the annihilation operator for the mode in
the cavity that is fed by the emitter with a rate g, Δ ¼ ω0 − ω
is the detuning, and γng, κ, and γdp are the rates for
spontaneous emission out of the cavity, decay of the cavity,
and dephasing, respectively, as illustrated in Fig. 25. The
Jaynes-Cummings Hamiltonian is written in the rotating-wave
approximation, i.e., only energy-conserving processes are
included, which is often a good approximation. It breaks
down in the ultrastrong-coupling regime (Ciuti and Carusotto,
2006) but this is usually beyond reach for single emitters at
optical frequencies. For reference, the relation to the quantities
introduced in the LDOS formalism is

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fcav
P γhomω

4Q

s
; ð62Þ

κ ¼ ω

Q
; ð63Þ

γng ¼ γhomFcav
P

�
1

β
− 1

�
; ð64Þ

where Fcav
P of Eq. (58) has been evaluated at Δ ¼ 0 and

nonradiative processes have been neglected. The dephasing
term in Eq. (61) accounts for fast elastic scattering processes
and could describe the broadening of the zero-phonon line of
the quantum dot. The formation of LA-phonon sidebands is
not captured by such elastic Markovian scattering processes,
and a more elaborate (non-Markovian) model is discussed in
Sec. VII.B.2. It should also be noted that a Lamb shift of the
quantum-dot transition is induced by both phonon and photon
reservoirs and is assumed to be implicitly incorporated in the
emitter frequency.
Equation (61) can be solved by restricting to the case of one

excitation in the system, which suffices for describing
spontaneous emission and vacuum Rabi oscillations. The
emitter can be in either the ground state jgi or the excited
state jei and the cavity in the vacuum state j0i or a single-
photon state j1ci, i.e., j1i ¼ je; 0i, j2i ¼ jg; 1ci, and
j3i ¼ jg; 0i. The equations of motion for the decisive entries
of the density matrix are

dρ11
dt

¼ ig�ρ12 − igρ�12 − γngρ11;

dρ22
dt

¼ igρ�12 − ig�ρ12 − κρ22;

dρ12
dt

¼ igðρ11 − ρ22Þ −
1

2
ð2iΔþ γng þ κ þ 2γdpÞρ12;

dρ13
dt

¼ −igρ23 −
�
iΔþ γng þ 2γdp

2

�
ρ13;

dρ23
dt

¼ −ig�ρ13 −
κ − iΔ

2
ρ23; ð65Þ

where the cross terms have been transformed according to
ρ12 → ρ12eiΔt, ρ23 → ρ23e−iΔt=2, and ρ13 → ρ13e−iΔt=2. The
additional terms in the matrix are obtained from ρji ¼ ρ�ij. The
physical significance of the various elements is as follows:

ρ11 ¼ hσ̂þσ̂−i is the population of the emitter, ρ22 ¼ hâ†âi is
the number of photons in the cavity, ρ12 ¼ hâ†σ̂−i is the
cavity-assisted polarization, while ρ13 ¼ hσ̂−i and ρ23 ¼ hâi.
From this set of equations the dynamics and emission spectra
of the Jaynes-Cummings system are readily obtained.

1. Dynamics and emission spectra

In this section we present expressions for the dynamics and
the spectra of the dissipative Jaynes-Cummings model. In the
most general cases the equations of motion are solved
numerically but in special cases simple analytical expressions
are obtained. In the absence of dephasing (γdp ¼ 0), on
resonance (Δ ¼ 0), and for a real coupling rate (g ¼ g�,
which is valid by fixing the absolute phase of the local
electric field), the first three equations in (65) admit analytic
solutions of the form

ρðtÞ ¼ c1eλ1tu1 þ cþeλþtuþ þ c−eλ−tu−; ð66Þ

where ρðtÞ ¼ ½ρ11 ρ12 ρ22�T , ci are constants, and λ1¼
ð−γng−κÞ=2 and λ� ¼ ð−γng− κÞ=2�ΩR with ΩR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγng− κÞ2=4−4g2

q
are the eigenvalues for the three coupled

equations with corresponding eigenvectors ui. By assuming the
emitter to be initially in the excited state, the time evolution of the
emitter population follows

ρ11ðtÞ ¼
e−ðγngþκÞt=2

4Ω2
R

fcoshðΩRtÞ½8g2 − ðγng − κÞ2�

þ 2ΩRðγng − κÞ sinhðΩRtÞ þ 8g2g: ð67Þ
Thenatureof the solutionsdependson the relativevalues of κ, γng,
and g. For g ≪ jγng − κj=4, ΩR is real and the emitter decays
exponentially, which is the weak-coupling regime. For quantum
dots in photonic cavities the cavity decay rate is oftendominating,
i.e.,κ ≫ γng inwhichcase thedecayfollowsthesimpleexpression

ρ11ðtÞ ∼ e−ðγngþ4g2=κÞt: ð68Þ
This leads to the expression for the Purcell factor in Eq. (58)
and is valid in the Wigner-Weisskopf approximation. For
g > jγng − κj=4,ΩR is purely imaginary and all eigenvalues have
the same real part. Consequently, the excitation oscillates in time
corresponding to Rabi oscillations with a frequency of jΩRj
between the emitter and the cavity that are eventually damped at a
rate ðγng þ κÞ=2. This is the strong-coupling regime that occurs
when the emitter-cavity excitation oscillates at a rate that exceeds
the dissipative rates. Interestingly, an intermediate-coupling
regime can also be defined before the onset of strong coupling
(g≲ jγng − κj=4) where a nonexponential decay of spontaneous
emission is found, which can also be expected from the general
multiexponential form of the solution; cf. Eq. (66).
The emission spectra are given by (Meystre and Sargent,

2007)

SðωÞ ∝
Z

∞

−∞
dτeiωτ

Z
∞

0

dthx̂†ðtÞx̂ðtþ τÞi
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and by applying the quantum-regression theorem
(Carmichael, 1993). Using the last two equations of
Eqs. (65), the following closed expressions for the spectra
of the emitter Sem (x̂ ¼ σ̂−) and cavity Scav (x̂ ¼ â) are derived

SemðωÞ ∝ Re

�
−2igρ11 þ ½γng þ 2γdp þ iΔ−�ρ21

4g2 − iðγng þ 2γdp þ iΔ−ÞðΔþ þ iκÞ
�
;

ScavðωÞ ∝ Re

�
i½2gρ22 þ ðΔþ þ iκÞρ12�

4g2 − iðγng þ 2γdp þ iΔ−ÞðΔþ þ iκÞ
�
; ð69Þ

where Δ� ¼ Δ� 2ω and ρ̄ij ¼
R
∞
0 dtρijðtÞ. In an experiment,

the emitter and cavity spectra are measured by recording the
light leaking from the cavity mode and from the emitter,
respectively. Notably, in the strong-coupling regime the
emitter and cavity are entangled and both quantities therefore
have light and matter character. These spectra provide a
generalization of the LDOS theory of the emitter spectrum
and dynamics, presented in Sec. VII.A, to include also
dephasing. The two methods are found to agree in the limit
of vanishing dephasing despite the fact that the radiation
reservoir is treated rather differently in the dissipative Jaynes-
Cummings model compared to the LDOS theory. The vacuum
Rabi splitting [cf. Fig. 24(b)] constitutes an important figure of
merit for a strongly coupled cavity-emitter system that is often
extracted in experiments. Deep in the strong-coupling regime
(g ≫ jγng − κj=4) and on resonance, the Rabi splitting is

approximately given by jΩRj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2 − ðγng − κÞ2=4

q
while

the full width of each spectral peak is ðγng þ γdp þ κÞ=2. Note
that the assumption of being deep into the strong-coupling
regime is usually not met in experiments on photonic
nanocavities.

2. Influence of LA phonon dephasing

Dephasing from LA phonons is an important source of
decoherence for quantum dots that is not well described by a
Markovian pure-dephasing rate. As discussed in Sec. II.F, LA
phonons give rise to broad sidebands that in the context of
cavity QED may be enhanced or filtered by the cavity. LA
phonons can readily be modeled microscopically with the
dissipative Jaynes-Cummings model by incorporating the
interaction Hamiltonian in Eq. (10) (Wilson-Rae and
Imamoglu, 2002; Hohenester, 2010; Kaer et al., 2010).
This leads to a modification of Eqs. (65) such that the
equation of motion for the photon-assisted polarization term
generalizes to (Kaer et al., 2012)

dρ12
dt

¼ −
�
iΔþ γng þ κ

2
þ γ12ðtÞ

�
ρ12

− i½gþ G<ðtÞ�ρ22 þ i½gþ G>ðtÞ�ρ11; ð70Þ

which contains three new effects: a time-dependent dephasing
rate γ12ðtÞ emerges, the coupling strength g is renormalized by
the real part of the phonon-reservoir memory Kernel functions
G<ðtÞ and G>ðtÞ [see Kaer et al. (2010) for their explicit
definitions], and an additional decay rate is introduced by the
imaginary part of the same functions. Furthermore, an overall
polaron frequency shift has been absorbed into the detuning.

The magnitude and thus importance of the phonon-dephasing
terms are fully characterized by the temperature T and the
quantum-dot-phonon interaction strength of Eq. (11). The
typical memory depth of LA phonons is about 5 ps and when
describing dynamics it is usually an excellent approximation
to take the long-time limit t → ∞ for the time-dependent
terms, while in contrast the full time dependence is generally
required when describing coherent properties such as the
degree of indistinguishability of single photons (Kaer et al.,
2013). We emphasize that, even when the long-time limit is
valid, the interaction with the phonon reservoir is memory
dependent since G<ðtÞ, G>ðtÞ, and γ12ðtÞ are obtained as
integrations over all previous times (Kaer et al., 2012). This
constitutes the phononic analog of the photonic non-
Markovian effects considered in Sec. IV. Interestingly this
non-Markovian phonon reservoir was predicted to be able to
stabilize coherent quantum dynamics in a cavity-QED setup
(Carmele, Knorr, and Milde, 2013). This is in opposition to
the common perception that dephasing tends to suppresses
quantum behavior, which only is generally valid for a
Markovian reservoir.
While the effective photon-emitter coupling strength is

reduced by the presence of phonons, a salient feature is that
the bandwidth of the coupling can be significantly increased
beyond the linewidth of the cavity. This can be understood as
being due to a phonon-assisted Purcell effect: a blue- (red-)
detuned quantum dot can emit a photon to the cavity after a
single LA phonon is emitted (absorbed). The broadband
nature of LA phonons (meV range) implies that this effect
can very significantly increase the coupling range of the
cavity. Figure 26 plots the decay rate of a quantum dot in the
weak-coupling regime when varying the detuning relative to

FIG. 26 (color online). Calculated decay rate of a quantum dot
weakly coupled to a photonic-crystal nanocavity. The phonon
sidebands due to LA phonons greatly enhance the coupling to the
cavity for large detunings as compared to the prediction from the
conventional Jaynes-Cummings model (JC). At zero temperature
the decay rate is highly asymmetric since the phonon population
vanishes and only spontaneous phonon emission is possible. At
finite temperatures (indicated in the plot) the phonon population
plays an increasingly dominant role and partly washes out the
asymmetry of the broadband phonon-assisted Purcell effect. The
parameters used in this plot correspond to the experimental values
of Madsen et al. (2013).
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the cavity and for different temperatures. The broadband
phonon-assisted Purcell effect is found to display an asym-
metry with detuning reflecting the imbalance between phonon
emission and absorption due to the existence of spontaneous
phonon emission. By increasing the temperature this asym-
metry is gradually leveled out.
Approximate analytical results can be derived in the limit of

Δ ≫ g, i.e., the large-detuning tails of the Purcell-enhanced
coupling range. The detuning-dependent decay rate of a
quantum dot in the cavity can be expressed as

γðΔÞ ¼ γng þ 2g2
γdis

γ2dis þ Δ2

�
1þ ΦðΔÞ

ℏ2γdis

�
; ð71Þ

where γdis ¼ ðγng þ κÞ=2 is the total dissipation rate, and

ΦðΩÞ ¼ π
X
k

jMkj2fnkδðΩþ ΩkÞ þ ½nk þ 1�δðΩ − ΩkÞg;

ð72Þ

with Mk ¼ Mk
e −Mk

g and nk is the phonon occupation as
introduced in Sec. II.F. This constitutes a generalization of the
Purcell-enhanced decay rate of Eq. (68) to include the

phonon-assisted coupling to the cavity mode. The phonon
interaction is described by ΦðΩÞ, which is the effective
phonon density that couples to the quantum dot; it is displayed
in the inset of Fig. 27. An effective phonon density of states
may be defined from Eq. (72) by dividing out the phonon
occupation factors giving

ρphðΩÞ ¼ π
X
k

jMkj2½δðΩþ ΩkÞ þ δðΩ − ΩkÞ�; ð73Þ

which can be considered the phonon analog to the photonic
LDOS defined in Eq. (13), since the sum counts the density of
phonon modes weighted by the phonon-emitter coupling
strength. Since the coupling strength depends on the exciton
wave function, an effective DOS will exist for each individual
quantum dot. The applied formalism holds in the case of bulk
phonon modes, which turns out to be a good approximation
for most of the energies relevant for quantum-dot dephasing
by phonons, as considered next in further detail.

C. The Purcell effect in photonic cavities

Photonic nanocavities are well suited for large Purcell
factors since they confine light in a small mode volume while
achieving high-Q factors that approximately match the inter-
nal linewidth of quantum dots. The first experimental dem-
onstration of the Purcell effect for quantum dots was presented
by Gérard et al. (1998), where a Purcell factor of 5 was
observed for an ensemble of emitters in a micropillar cavity.
The beneficial role of the Purcell effect for overcoming
dephasing was explicitly demonstrated by Santori et al.
(2002) by recording the degree of indistinguishability of
the emitted single photons in two-photon interference mea-
surements; cf. the experimental data in Fig. 6. Subsequently,
photonic-crystal cavities have been investigated intensely due
to the small mode volumes that can be obtained and typical
Purcell factors of about 10 (Englund et al., 2005; Kress et al.,
2005) have been reported in addition to the generation of
indistinguishable photons (Laurent et al., 2005). We note that
a claim of significantly larger Purcell factors can be found in
the literature, but those are often based on spectral measure-
ments that do not directly probe the dynamics and therefore
may be influenced by, e.g., multiexciton effects.
The experimental observation that a single quantum dot can

be coupled to a photonic-crystal cavity even when detuned
many linewidths away from resonance was reported by
Hennessy et al. (2007), and Hohenester et al. (2009) consid-
ered the specific example of phonon-assisted Purcell
enhancement as discussed in Sec. VII.B.2. Purcell-enhanced
phonon-assisted processes have also been studied by applying
resonant excitation (Ates, Ulrich, Ulhaq et al., 2009), which
has enabled the demonstration of phonon-mediated coupling
between two different quantum dots that were radiatively
coupled to the same cavity mode (Majumdar, Bajcsy et al.,
2012). Madsen et al. (2013) found quantitative agreement in a
detailed comparison between experiment and the theory of
phonon-assisted Purcell enhancement as expressed by
Eq. (71). In this experiment, the effective phonon DOS as
experienced by the quantum dot could be recorded over a
broad energy range, which was controlled experimentally by

FIG. 27 (color online). Measured effective phonon DOS for a
quantum dot vs phonon energy obtained by embedding the
quantum dot in a photonic-crystal cavity and measuring the
detuning-dependent dynamics (data not shown). The curve shows
the theoretical effective phonon DOS when assuming LA
phonons in bulk GaAs. The inset shows the phonon density
for different temperatures. From Madsen et al., 2013.
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varying the quantum-dot detuning relative to the cavity. The
data are reproduced in Fig. 27. A maximum in the effective
phonon DOS is observed for a phonon wavelength of around
7 nm followed by a roll-off at shorter wavelengths reflecting
that the wavelength becomes comparable to the size of the
exciton wave function. Interestingly, the experimental data are
well explained by the theory of bulk phonons since at most
energies the phonon wavelength is significantly smaller than
the lattice period of the photonic crystal (a ¼ 240 nm) apart
from at very small energies where the method is not
conclusive since the single exciton line could not be distin-
guished from other emitters that may feed the cavity. This
experiment constitutes an example of the powerful potential of
cavity QED to enhance light-matter interaction to such an
extent that weak phonon processes can be studied in detail. In
a broader context these studies connect to the research field of
quantum optomechanics where the quantum properties of
phononic degrees of freedom are exploited (Kippenberg and
Vahala, 2008) and where the ability to combine phononic and
photonic band-gap structures has been demonstrated
(Eichenfield et al., 2009). An interesting proposal is to use
the stress induced by the excitation of an exciton in a single
quantum dot as a mechanism for cooling the mechanical
motion of a nanomembrane (Wilson-Rae, Zoller, and
Imamoglu, 2004).

D. Observation of strong coupling

By increasing the coherent light-matter interaction strength
between a single quantum emitter and a photon in a cavity, the
transition to the strong-coupling regime eventually occurs.
Here the light-and-matter degrees of freedom become quan-
tum entangled leading to the formation of a cavity polariton.
The new dressed eigenstates and eigenenergies of the coupled
emitter-cavity system in the absence of any dissipation and on
resonance with the cavity are

j�; ni ¼ 1ffiffiffi
2

p je; n − 1i � 1ffiffiffi
2

p jg; ni; ð74aÞ

E�;n ¼ ðnþ 1=2Þℏω� ℏΩn=2; ð74bÞ

where the Rabi frequency is Ωn ¼ 2g
ffiffiffi
n

p
. The experimental

signature of strong coupling is the observation of an anti-
crossing when detuning a single quantum emitter through
resonance of a cavity mode. This phenomenon was first
observed experimentally with quantum dots in 2004 in both a
micropillar cavity (Reithmaier et al., 2004) and a photonic-
crystal cavity (Yoshie et al., 2004), and subsequently also in a
microdisk cavity (Peter et al., 2005). Figure 28 shows an
example of the observed anticrossing in a photonic-crystal
cavity that was deterministically aligned to a single quantum
dot. The quantum-dot tuning relative to the cavity was
controlled by gas deposition, which adsorbs on the
photonic-crystal surfaces and thus changes the resonance
frequency. An avoided crossing was observed on resonance
where the two peaks had approximately the same width. This
is a consequence of the fact that the quantum dot and cavity

modes become inseparable, i.e., the light-and-matter degrees
of freedom entangled.
Since the first observations of strong coupling with quan-

tum dots it has been realized that solid-state systems contain
distinct properties that differ from their atomic counterparts.
For instance, it was observed that even when a single quantum
dot is detuned 4 nm away from the cavity resonance,
corresponding to more than 50 cavity linewidths, it can feed
the cavity mode, which was proven by a pronounced anti-
correlation between the quantum-dot peak and the cavity peak
(Hennessy et al., 2007). While the phonon-assisted processes
discussed in the previous section can be responsible for
coupling ranging up to approximately 4 nm, the coupling
at even larger detunings has been attributed to the formation of
a continuum of exciton states induced by the hybridization of
the quantum-dot and wetting-layer states (Winger et al.,
2009). These states are populated in nonresonant-excitation
experiments, in particular, at strong continuous-wave excita-
tion conditions where more carriers are populating the
quantum dot and its surroundings. Such states were also
found to be important in photonic-crystal lasers with quantum-
dot gain media [see Strauf and Jahnke (2011) for a detailed
review]. Furthermore, it was found that an anticrossing could
be observed in spectral measurements for a photonic-crystal
cavity even though it was proven from the time-resolved
measurements that the most efficiently coupled quantum dot
was not strongly coupled to the cavity (Madsen and Lodahl,
2013). This observation was attributed to collective effects due

FIG. 28 (color online). Experiments on strong coupling between
an exciton in a quantum dot and a photonic-crystal cavity.
(a) Density plot of spontaneous-emission spectra measured when
tuning the cavity by gas deposition across a quantum-dot line.
(b) Selected spectra with detunings indicated in the plot. A clear
anticrossing is observed and on resonance the area and linewidth
of the two peaks are very similar as expected from theory. λc0 is
the wavelength of the cavity for the case of no coupling, λ is the
observation wavelength, and Δc0 ¼ λ − λc0 in nanometer. From
Thon et al., 2009.
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to the presence of other quantum dots or exciton transitions
feeding the cavity, which effectively can increase the coop-
erativity and therefore the Rabi splitting (Diniz et al., 2011).

E. Photon nonlinearities in cavity QED

A quantum emitter strongly coupled to a cavity can be
exploited as a highly nonlinear medium potentially operating
down to the single-photon level. A nonlinearity can be
induced by the anharmonicity of the Jaynes-Cummings
energy levels, enabling the generation of light with either
sub-Poissonian or super-Poissonian photon statistics when
varying the detuning of a weak probe coherent state relative to
the coupled emitter-cavity system. Figure 29 shows the
Jaynes-Cummings energy ladder and illustrates the nonlinear-
ity. Photon blockade occurs when the probe beam is tuned to
resonance with one of the two dressed polariton states. If the
emitter-cavity system is initially not excited, the anharmo-
nicity of the Jaynes-Cummings ladder implies that only a
single photon can be stored since transitions from the first to
the second manifold will be off resonant and therefore
blocked. As a consequence, the field transmitted through
the cavity will be antibunched. This effect can be considered
the photonic analog of the Coulomb blockade of electron
transport where the photon-photon repulsion is mediated by
the strongly coupled cavity.

Photon blockade with a single quantum dot in a photonic-
crystal nanocavity was first observed by Faraon et al. (2008a).
A detailed experimental study of the detuning-dependent
photon statistics for a strongly coupled quantum-dot-cavity
system is presented in Fig. 30 (Reinhard et al., 2012). A clear
photon-blockade effect was observed when tuning a probe
laser to the dressed state of the first Jaynes-Cummings
manifold [outer shaded areas in Fig. 30(a)] while two-photon
processes to the second Jaynes-Cummings manifold [inner
shaded areas in Fig. 30(a)] are found to lead to photon
bunching, which is the photon tunneling effect illustrated in
Fig. 29(b). This nonlinear response can be ultrafast, and in a
two- color experiment a signal field could be switched on and
off on a time scale of ∼50 ps (Volz et al., 2012), which is
ultimately determined by the anharmonicity of the Jaynes-
Cummings ladder. So far, rather modest photon-blockade
effects have been observed with a reduction of the second-
order correlation function of approximately 25%, which could
potentially be improved by increasing the cooperativity

FIG. 30 (color online). Experimental observation of a photon
blockade for a quantum dot in a photonic-crystal nanocavity.
(a) Calculated second-order correlation function ½gð2Þð0Þ� vs
cavity and laser detuning from the quantum dot in units of the
coupling strength g. Photon bunching (antibunching) is predicted
in the colored areas corresponding to the processes sketched in
the inset and in Fig. 29. (b)–(d) Detailed comparison between the
measured and predicted values. From Reinhard et al., 2012.

FIG. 29 (color online). Illustration of the mechanisms behind
(a) photon blockade and (b) photon tunneling in a strongly
coupled emitter-cavity system. The bare energy of the transition
is ω0 and when the cavity and emitter are strongly coupled, the
energy levels are split forming the dressed eigenstates of
Eqs. (74). (a) When the excitation laser is tuned to the energy
of the jþ; 1i state, the emission from the cavity is antibunched
since only n ¼ 1 photon Fock states are populated as higher-
order states are not allowed in the cavity and therefore reflected.
(b) When the laser is tuned to half the energy of jþ; 2i, strongly
bunched emission is observed as only n ¼ 2 Fock states are
populated.
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ðg2=κγngÞ further to take the cavity deeper into the strong-
coupling regime. The photon bunching was also found to be
sensitive to blinking of the quantum-dot emission line, which
to a large extent could be counteracted by applying an
above-band repumping laser. The experimental data were
found to be well explained by Monte Carlo wave-function
simulations that include the effects of quantum-dot blinking;
cf. Figs. 30(b)–30(d).
The above-mentioned progress on photon nonlinearities in

photonic cavities concerned the situation where few photons
inside the cavity were sufficient to induce strong nonlinear-
ities, while the actual driving fields outside the cavity
contained many photons due to a low in-coupling efficiency
into the cavity mode. For many applications of photon
nonlinearities, however, such a loss will limit the performance.
To this end, a nonlinearity threshold of only eight incident
photons was demonstrated in a micropillar cavity by con-
structing a cavity with large input-coupling efficiency (Loo
et al., 2012), which is an important step toward a true single-
photon nonlinearity. The considerable experimental progress
on few-photon nonlinearities in solid-state cavity-QED sys-
tems may lead to applications within quantum-information
processing, e.g., for controlled-phase gates or single-photon
transistors. These applications are considered in further detail
in Sec. VIII.

VIII. PHOTONIC QUANTUM-INFORMATION
PROCESSING

In this article we reviewed the physics of light-matter
interaction with single quantum dots in photonic nano-
structures with special emphasis on photonic crystals.
These systems have matured significantly over the last
decade and they now constitute a toolbox of promising
components for all-solid-state quantum-information process-
ing. Consequently, researchers worldwide are gradually
starting to apply nanophotonic systems for proof-of-concept
quantum-information processing and are considering how to
construct more advanced photonic quantum architectures.
Various protocols have been put forward for using the spin
of single electrons in quantum dots for quantum-information
processing, where the coupling is mediated either by
electron exchange interaction (Loss and DiVincenzo,
1998) or by two spins common interaction with a high-Q
cavity (Imamoğlu et al., 1999). Another approach utilizes
the large light-matter interaction strength achievable in
photonic nanostructures to generate efficient single photons
on demand and photon nonlinearities for photonic quantum-
information processing protocols. Hybrid systems that inter-
face the spin of single electrons or holes in quantum dots
with photons seem particularly promising since a single
electron or hole spin can have coherence times much longer
(i.e., microseconds) (Brunner et al., 2009) than excitons,
while the photons can carry quantum information with
low loss over long distances. In this section we focus
primarily on the current experimental status and progress
on photonic quantum-information processing with quantum
dots in photonic nanostructures and address the future
potential of scaling these systems to larger photonic quan-
tum networks.

A. Photonic quantum-information processing with quantum-dot
sources

The essential prerequisite for many photonic quantum-
information protocols is the ability to generate highly efficient
and coherent single photons. In the following a brief summary
of the various quantum-dot sources reported in the literature is
given. The current state-of-the-art single-photon source is a
micropillar cavity where the deterministic coupling of a single
quantum dot to an optimized cavity (Dousse et al., 2008) has
led to 82% indistinguishable photons collected with an
efficiency of 65% (Gazzano, de Vasconcellos et al., 2013).
Pulsed resonant excitation has been found to enable even
larger degrees of indistinguishability and nearly perfectly pure
single photons with multiphoton probability of only 1.2% and
indistinguishability of 97% was reported by He et al. (2013),
but this source presented a collection efficiency limited to
1.3%. Such a high degree of indistinguishability corresponds
to a pure-dephasing time of T�

2 ¼ 5.7 ns that was extracted
from resonance-fluorescence measurements. Implementing
these methods on a photonic-crystal platform appears appeal-
ing; T�

2 ¼ 0.6 ns was so far observed in Hong-Ou-Mandel
interferometry in a photonic-crystal cavity. This was obtained
by exciting the quantum dot via an LA-phonon sideband and
an outcoupling collection efficiency of 44% was demonstrated
(Madsen et al., 2014). With such a long coherence time,
indistinguishability exceeding 75% is readily anticipated in
photonic crystals for a moderate and experimentally achiev-
able Purcell factor of 10, and this coherence is expected to
increase even further with resonant excitation. In combination
with the near-unity β factor observed in the photonic-crystal
waveguide (Arcari et al., 2014) and the ability to couple
photons efficiently off chip (Tran et al., 2009) such a source
could be an almost ideal source of on-demand and coherent
single photons with immediate applications in quantum-
information processing.
An efficient source of entangled photons is another essen-

tial quantum resource required for photonic quantum-
information processing. One approach uses a single quantum
dot consecutively triggered to emit two photons. Both photons
are sent to a Mach-Zehnder interferometer with unequal path
lengths for compensation of the time delay, and half-wave
plates and nonpolarizing beam splitters for polarization
entangling of the two photons. Such a source was reported
by Fattal, Inoue et al. (2004), where the violation of Bell’s
inequality was demonstrated. Another approach uses the
cascaded recombination process of biexcitons that occurs
through the two bright exciton states by emitting either two
horizontally or two vertically polarized photons in succession
(Benson et al., 2000); cf. Fig. 4(c). Entanglement can be
obtained in this way if the two different decay paths of the
biexciton are made indistinguishable, which has been
obtained by spectral filtering (Akopian et al., 2006) or by
growing quantum dots with small fine-structure splitting and
applying a small in-plane magnetic field for tuning (Young
et al., 2006). Such a source can even be driven electrically
enabling a light-emitting diode of entangled photons (Salter
et al., 2010). The brightness of the biexciton entanglement
source was increased to 12% collected photons per excitation
pulse by incorporating the quantum dot in a micropillar cavity
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(Dousse et al., 2010). To achieve this result, a specially
designed coupled cavity was constructed that consisted of two
optically coupled micropillar cavities in order to remove any
which-path information for the two emitted photons. The
entanglement sources based on biexcitons are maturing as an
exciting alternative to heralded entanglement sources based on
spontaneous parametric downconversion that suffer inherently
from multiphoton processes (Lounis and Orrit, 2005),
although no obvious way of scaling this approach to a larger
number of photons exists. For that purpose, a single quantum
dot that emits a train of single-photon pulses into a single
optical mode, which can be achieved in nanophotonic wave-
guides, seems attractive. By implementing electro-optical
pulse picking and compensation of the fixed delay between
the pulses, a large number of single photons could potentially
be obtained, which would constitute an interesting quantum
resource for photonics quantum-information processing.
A number of proof-of-concept quantum-information pro-

tocols have already been implemented with quantum-dot
single-photon sources. Early work has demonstrated quantum
cryptography by encoding quantum information in the polari-
zation of single photons (Waks et al., 2002). An alternative
approach has been to implement two-qubit gates in exciton
and biexciton states in the quantum dot (Li et al., 2003) but
this method is not scalable to more qubits. Quantum infor-
mation can also be encoded in the propagation path of a single
photon, and single photons from quantum dots were used to
implement a Deutsch-Jozsa two-qubit algorithm (Scholz et al.,
2006) and a probabilistic linear-optics CNOT gate (Pooley
et al., 2012; He et al., 2013) while the entangling capability
was fully realized in Gazzano, Almeida et al. (2013). Recently
also a CNOT gate operation between a single-photon qubit and
a qubit consisting of a quantum dot strongly coupled to a
photonic-crystal cavity was demonstrated (Kim et al., 2013).
Quantum teleportation of a single-photon qubit was reported
in Fattal, Diamanti et al. (2004) and Nilsson et al. (2013).
The effective detection of photonic quantum states is another

essential requirement for optical quantum-information process-
ing. A detailed account is outside the scope of the present
account; for a recent review, see Hadfield (2009). Essential
features of a good photon detector include high speed, near-
unity quantumefficiency, lowdark-count rates and after-pulsing
probabilities, broadband operation, and ideally the ability to
resolve the number of photons in a pulse. Significant progress
on all these directions has been reported. The most common
detector applied is the single-photon-counting avalanche photo-
diode that is simple and robust and even can be applied for
resolving the photon number (Kardynał, Yuan, and Shields,
2008). Superconducting nanowire single-photon detectors have
recently been developed and they are potentially fast and
broadband and can be integrated on chip (Reithmaier et al.,
2013). Another useful functionality is the frequency trans-
duction of a single photon from one wavelength to another,
whichwould allow transducing a single-photon source between
the visible part of the spectrum and the telecommunication
band, since present detectors have the highest efficiency in the
visible range while superior low-loss optical circuits have been
developed for telecom applications. Efficient transduction of
single photons fromaquantumdotwas reported byRakher et al.
(2010) by nonlinear wavelength conversion.

An alternative approach to quantum-information processing
applies a spin-photon interface by connecting the spin of an
electron or hole confined in a quantum dot to photons emitted
by spontaneous emission. This topic was recently reviewed
(De Greve et al., 2013; Urbaszek et al., 2013) and here we just
highlight a few recent breakthroughs in the context of
quantum-information processing. An essential resource is
the deterministic preparation of trion states by adding a single
electron or a hole by controlling the gate voltage across the
quantum dot. Spontaneous emission from the trion state
prepares a single electron spin in the quantum dot that is
directed either up or down, and spin-photon entanglement has
recently been reported from such a decay (De Greve et al.,
2012; Gao et al., 2012). This spin-photon interface was
subsequently exploited for quantum teleportation of a qubit
encoded in a photon onto the spin of the electron in the
quantum dot (Gao et al., 2013). Furthermore, the possibility of
using connected photonic waveguides for coupling a quan-
tum-dot spin to a path-encoded photon was demonstrated
(Luxmoore et al., 2013). In photonic-crystal waveguides the
spin-photon interface can be made deterministic, and a
deterministic and scalable on-chip CNOT gate with an oper-
ation fidelity exceeding 90% was recently proposed (Söllner
et al., 2014). This could form the basis for advanced quantum
architectures that interface quantum-dot spins with photonic
quantum circuits.

B. Toward scalable photonic quantum networks

Most of the examples discussed so far consider just a single
photon at a time emitted from or interacting with a single
quantum dot. Obviously, in order to implement advanced
quantum-information processing and computing these simple
systems need to be scaled to larger quantum architectures. In
this context, a single quantum dot can be considered a
stationary node in a quantum network that may be connected
to other quantum dots by photons representing flying qubits.
So far, experimental progress using single photons to connect
separate emitters has been reported with single molecules
(Rezus et al., 2012), quantum dots (Gao et al., 2013), and
atoms in separate cavities (Ritter et al., 2012). An interesting
alternative to scaling up the number of quantum dots is to
exploit the near-unity on-demand single-photon generation
efficiency of quantum dots in nanophotonic structures to
generate a deterministic train of coherent single photons. In
reality, the combination of these two methods is likely to be
most promising, i.e., the quantum network would contain
several spatially distinct quantum-dot nodes that can be
individually addressed and coherently connected by trains
of single photons. Figure 31 illustrates the basics of this vision
and displays the various building blocks and functionalities
that a photonic quantum network could consist of. As
thoroughly discussed in this review, photonic-crystal wave-
guides are very well suited for generating single photons on
chip and large photon nonlinearities. These quantum-optics
resources may form the backbone of the photonic quantum
network, where individual (e.g., electrical) tuning and deter-
ministic positioning of each quantum dot relative to the
photonic-crystal waveguide would be essential requirements.
The generated photons may subsequently be transferred to
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dielectric waveguides by engineered outcouplers since dielec-
tric waveguides can be fabricated with very low propagation
loss due to tolerance to fabrication imperfections, and there-
fore photonic circuitry is preferably implemented in these

rather than in photonic-crystal waveguides. Finally, detection
could be performed on chip using nanowire superconducting
detectors. The benefit of the nanophotonics approach is that all
functionalities could be highly integrated on a photonic chip.
The number of obtainable nodes in the quantum network and
the fidelity of photonic gates depends sensitively on the ability
to engineer and subsequently control the local coupling of
quantum dots to the photonic crystals. This article has
reviewed the recent significant progress and current status
on these issues; continuous progress is expected as the
research field develops even further. It remains an exciting
research topic to exploit how large and complex quantum
networks can be achieved experimentally, including the
dependence on qubit control, fabrication imperfections, and
decoherence processes.
Important experimental progress has already been made

toward scaling quantum-dot systems. The quantum interfer-
ence of single photons emitted from two separate quantum
dots has been reported in both pulsed (Flagg et al., 2010) and
continuous-wave (Patel et al., 2010) operation. In these
experiments the ability to identify two different quantum dots
with similar decay and dephasing rates and subsequently to
locally tune them into mutual resonance is essential in order to
remove any which-path information of the photons. In Flagg
et al. (2010) the two quantum dots were located in two
different samples and one of the quantum dots was tuned by
applying strain. In Patel et al. (2010) electrical tuning was
applied to a quantum dot that was tuned into resonance with
an electrically driven target quantum dot mounted in another
cryostat 1.1 m away, whereby postselected two-photon
interference was observed. The method of electrical tuning
is scalable to connecting more quantum dots on the same
sample, where local gates could be defined on the optical chip,
e.g., by etching trenches for in-plane electrical isolation or by
local implantation of dopant ions (Ellis et al., 2011), while the
quantum dots could be optically connected by waveguides.
Another important point to consider is the level scheme of

the emitter. A quantum dot populated by a single neutral
exciton forms a three-level V scheme consisting of the two
optically active bright states and the stable ground state;
cf. Fig. 4(b). For many applications it is favorable to have one
of these states efficiently coupled, e.g., to a waveguide mode,
while the other transition should be metastable. This can be
realized in photonic crystals that typically act as a “highly
anisotropic vacuum,” i.e., if one dipole orientation is effi-
ciently coupled, the perpendicularly oriented dipole would be
weakly coupled, as can be seen from the calculations
presented in Fig. 17 and this was experimentally demonstrated
byWang et al. (2010). Further flexibility is offered by forming
quantum-dot molecules consisting of two or more coupled
quantum dots that, e.g., can be stacked vertically. In this way,
very long-lived indirect exciton states can be formed by an
electron residing in one quantum dot and the hole in the other,
and the lifetime can be tuned by an applied electric field.
Controlled coupling of two stacked quantum dots has been
reported by Krenner et al. (2005).
A variety of different quantum-information protocols may

be considered with quantum dots in photonic nanostructures.
The following gives a brief outline of some of the exciting

FIG. 31 (color online). Basic building blocks of an integrated
quantum network based on quantum dots and photonic crystals.
From the bottom up: A single quantum dot in a photonic-crystal
waveguide is used as the quantum resource for a highly efficient
single-photon source (left image) or a nonlinear single-photon
switch (right image). The generated quantum light can be coupled
in and out of the photonic-crystal waveguide sections with high
efficiency by engineering the interface to dielectric waveguides
(left and right images). The routing and processing of photons can
be carried out with low-loss photonic circuits constructed from
dielectric waveguides. As an example a beam splitter is illustrated
where the interfering of two single photons creates path-
entangled photons. The efficient detection can be done on chip
by integrating superconducting single-photon detectors (left
upper image). Multiple quantum dots can be controllably coupled
by the extended dipole-dipole interaction present in photonic-
crystal waveguides (right upper image). Potentially many of these
building blocks could be merged together into a complex
quantum network.
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directions that appear to be best suited given the current
experimental progress on quantum-dot photon sources.
In the context of linear-optics quantum-information

processing (Kok et al., 2007), highly efficient quantum-dot
single-photon sources are most appealing. Such a source
would constitute an important alternative to heralded sponta-
neous-parametric-downconversion sources that despite
impressive recent advancements (Brida et al., 2012) remain
probabilistic in nature. Linear-optics protocols are interesting
for quantum simulators that harness quantum parallelism to
efficiently compute properties of complex quantum systems,
which were originally envisioned by Feynman (1982).
Photonic quantum simulators hold exciting promises for
tackling problems in, e.g., quantum chemistry and would
strongly benefit from deterministic photon sources (Aspuru-
Guzik and Walther, 2012). Another example is the so-called
“boson-sampling problem” (Broome et al., 2013) that poten-
tially could demonstrate quantum-enhanced speed-up in the
foreseeable future if the system can be scaled to more photons.
A scheme for universal linear optical quantum computing
based on time-bin encoded qubits propagating in a single
spatial mode was recently put forward (Humphreys et al.,
2013) and this way of encoding quantum information seems
well suited for quantum-dot light sources since they can emit a
train of photons. Another promising proposal for quantum
dots is to apply a deterministic single-photon source for
preparing a string of entangled photons (a cluster state)
(Lindner and Rudolph, 2009) that is a resource for one-
way quantum computing (Raussendorf and Brigel, 2001;
Walther et al., 2005). This protocol requires near-unity
coupling of single photons to a single propagating mode
and the ability to manipulate the electron spin after photon
emission, which would be feasible by addressing a trion state
in a quantum dot embedded in a waveguide.
Adding efficient photon nonlinearities to the toolbox leads

to a number of additional opportunities. For instance, a single-
photon transistor has been proposed where an emitter with a
near-unity β factor in a photonic waveguide can either reflect
or transmit a control pulse with the operation gated by the
presence or absence of a single photon (Chang, Sørensen,
Demler, and Lukin, 2007). A similar scheme was sub-
sequently proposed as a photon sorter capable of distinguish-
ing one- and two-photon pulses enabling efficient Bell-state
detection (Witthaut, Lukin, and Sørensen, 2012).
Furthermore, scalable quantum-computing architectures have
been put forward based on controlled-phase shifts induced by
a single emitter in a cavity (Duan and Kimble, 2004) or
photon-photon interactions mediated by a four-level emitter in
a photonic waveguide (Zheng, Gauthier, and Baranger, 2013).
Embedding many identical quantum emitters in a photonic
waveguide each subject to a nonlinear response on the
propagating photons with single-photon sensitivity could
potentially induce a strongly correlated “crystal of photons”
that would constitute a new quantum state for photons (Chang
et al., 2008). Related ideas of quantum-phase transitions of
light have been explored for the case of arrays of strongly
coupled cavities (Greentree et al., 2006; Hartmann, ao, and
Plenio, 2006).
This article has reviewed the progress of all-solid-state

photonic approaches toward quantum-information processing

at optical frequencies with the main emphasis on self-
assembled quantum dots. Significant experimental progress
has also been obtained in other solid-state quantum systems,
notably using defect vacancy centers (Aharonovich,
Greentree, and Prawer, 2011). Recently hybrid approaches
have also started to emerge. One important frontier aims at
coupling a single trapped atom to a photonic-crystal cavity or
waveguide. A recent experimental breakthrough has been the
trapping of an atom by an optical tweezer in the evanescent tail
of a photonic-crystal waveguide mode (Thompson et al.,
2013), and waveguides have been engineered for the purpose
of trapping atoms inside the waveguide to achieve larger
coupling efficiencies (Hung et al., 2013).

IX. CONCLUDING REMARKS AND OUTLOOK

In the last decade, remarkable progress has been achieved in
the use of single quantum dots in photonic nanostructures for
quantum-optics experiments. The general approach has been
to confine and engineer light at the nanoscale, whereby the
photon-emitter interaction strength can be tremendously
enhanced and well controlled. This has led to highly efficient
and deterministic single-photon sources and large photon
nonlinearities. Interestingly, the achievable photon-emitter
coupling efficiencies in nanophotonic systems now start to
approach the impressive level that can be achieved in super-
conducting microwave circuits2 with the additional benefit
that optical circuits can be scaled to very small sizes.
Furthermore, highly efficient single-photon detectors are
rapidly being developed. It thus seems timely and promising
to start the quest of merging the simple quantum building
blocks into larger and more complex quantum architectures. It
is an important research challenge for the future to identify
how large quantum systems can be assembled and controlled
given the level of imperfections present. To this end, the
photonic nanostructures have now matured to a level that
quantum functionalities are limited by the emitter
(decoherence, nonradiative processes) rather than the nano-
structure. The overall vision of solid-state quantum photonics
is to have all functionalities integrated on a single photonic
chip, i.e., single-photon source, quantum circuit, and photon
detection. Importantly, even small-scale integration leads to a
number of exciting new opportunities and applications on the
road toward full integration. The basis for solid-state quan-
tum-information processing with quantum dots in photonic
nanostructures is established and the potential is very prom-
ising; we look forward to witnessing the exciting progress in
the research field in the years to come.
In this article, we reviewed the research field of quantum

nanophotonics and, in particular, focused on the prospects for
applications in quantum-information processing. It is important
to emphasize, however, that thedescribed concepts andmethods
are rather general and ofmuchwider applicability. The ability to
engineer the light-matter interfacewith nanophotonics has been
proposed for improving photovoltaic devices (Atwater and

2For a quantitative comparison of coupling coefficients in pho-
tonic nanostructures and superconducting circuits, compare the
β factors in Arcari et al. (2014) and Hoi et al. (2012).
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Polman, 2010). Furthermore, access to ultimate photon non-
linearities may lead to novel opportunities for optical logic
circuits that encode and process classical information (Miller,
2010). The emerging research disciplines of cavity optome-
chanics (Aspelmeyer, Kippenberg, and Marquardt, 2014) and
metamaterials (Soukoulis andWegener, 2011) also heavily rely
on the fabrication of novel nanostructures. From the prospect of
fundamental physics, the control over photon emission and
propagation will open new possibilities of studying photonic
realizations of exotic phenomena originally developed in
condensed-matter physics, such as photonic topological insula-
tors (Lu, Joannopoulos, and Soljačić, 2014). Photons are often
considered elusive since they interact weakly and are conse-
quently difficult to generate, trap, and route. The progress on
photonic nanostructures can potentially change this conception
leading to whole new avenues for fundamental research and
applied photonics.
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List of Symbols and Abbreviations

A Vector potential in the generalized Coulomb
gauge

E Electric field
Ec=v Conduction-band-edge and valence-band-edge

energies
EP Kane energy
FP Total Purcell factor
FWG
P Waveguide-mode Purcell factor

Fmax
P Maximum Purcell factor

Fres
P Purcell factor on resonance

Fng
P Purcell factor of nonguided modes

Fc=v Envelope function for the conduction and
valence bands

G
↔

Green’s tensor
I Indistinguishability
K Memory kernel
Q Quality factor
Scav Cavity emission spectrum

S Emission spectrum
Sem Emitter emission spectrum
T1 Total lifetime
T2 Total coherence time
T�
2 Pure-dephasing time

V Confinement potential
Veff Effective mode volume
P Momentum matrix element
X− Negatively charged trion
Xþ Positively charged trion
Xb x-polarized bright exciton
Xd Dark exciton
XX Biexciton
Yb y-polarized bright exciton
Yd Dark exciton
a Lattice period
ce Excited-state amplitude
cg;k Amplitude of ground state with photon in mode

with wave vector k
d Dipole moment
êc Cavity-mode polarization unit vector
êd Dipole-moment unit vector
êk Waveguide-mode polarization unit vector
f Oscillator strength
g Coupling rate
gð2Þ Second-order correlation function
gþ=− Hole in valence band or electron in conduction

band
k Bloch wave vector or plane-wave vector

depending on context
ng Group index
m� Effective mass of electron
m0 Rest mass of electron
uc=v Electronic Bloch function at the Γ point for the

conduction or valence band
uk Normalized electromagnetic Bloch function at

Bloch wave vector k
t Membrane thickness or time, depending on

context
ΔL Lamb shift
Ψc=v Electron or hole wave function
Ωp Driving field rate
αc=v Spin of conduction or valence band
β β factor
γ Total decay rate under the approximation

γtot ∼ γrad
γdb=bd Dark-to-bright or bright-to-dark spin-flip rate
γdp Dephasing rate
γf=s Fast or slow decay rates
γng Rate of coupling to nonguided modes
γnrad;b=d Nonradiative decay rate of bright or dark

excitons
γrad Total radiative decay rate
γhomrad Radiative decay rate in homogeneous medium
γrad;b Radiative decay rate of bright exciton
γtot Total decay rate
η Quantum efficiency
κ Cavity loss rate
λ Electromagnetic wavelength in vacuum
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μ Effective Rabi frequency
ρ Projected local density of optical states
ρNL Nonlocal interaction function
ρhom Projected local density of optical states of a

homogeneous medium
ρb=d Bright or dark exciton population
ω0 Exciton recombination frequency
j↑i or j↓i Electron pseudospin state in z basis
j⇑i or j⇓i Hole pseudospin state in z basis
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