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Theory and experiments of disorder-induced resonance shifts and mode-edge broadening
in deliberately disordered photonic crystal waveguides
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We study both theoretically and experimentally the effects of introducing deliberate disorder in a slow-light
photonic crystal waveguide on the photon density of states. We introduce a theoretical model that includes
both deliberate disorder through statistically moving the hole centers in the photonic crystal lattice and intrinsic
disorder caused by fabrication imperfections. We demonstrate a disorder-induced mean blueshift and an overall
broadening of the photonic density of states for deliberate disorder values ranging 0–12 nm. By comparing
with measurements obtained from a GaAs photonic crystal waveguide, we find very good agreement between
theory and experiment. These results highlight the importance of carefully including local field effects for
modeling high-index contrast perturbations and demonstrate the efficiency of our perturbative approach for
modeling disorder-induced changes in the density of states. Our work also demonstrates the importance of
using asymmetric dielectric polarizabilities for positive and negative dielectric perturbations when modeling a
perturbed dielectric interface in photonic crystal platforms. Finally, we also show examples of disorder-induced
resonances that can appear for various instances of disorder.
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I. INTRODUCTION

Photonic crystal (PC) cavities and waveguides are at-
tractive nanophotonic platforms for controlling and studying
fundamental light-matter interactions. Aided by the presence
of a photonic band gap (PBG), which arises from the
underlying periodic dielectric structure, light within a PC
cavity or PC waveguide can be strongly confined within
a small volume or area. In the case of a PC waveguide
(PCW), light can be slowed down by orders of magnitude
compared to a typical slab or ridge waveguide, which acts
to increase the local density of photonic states (LDOS). The
ability to control light-matter interactions in PC platforms
leads to a host of photonic applications and rich optical
interactions [1,2]. For example, PC cavities have been used
for exploring cavity quantum electrodynamics (cavity-QED)
in both the weak- and strong-coupling regimes [3,4], while
PCWs have been exploited to realize on-chip single-photon
sources [5–7]. Slow light in PCWs also enhances nonlinear
processes including pulse compression and soliton prop-
agation [8], third-harmonic generation [9], and four-wave
mixing [10]. In addition, PCWs have been integrated in various
photonic circuits, as optical sensor elements for refractive
index measurements in biosensing [11], and chemical fluid
detection [12].

In practice, PCWs are highly sensitive to fabrication imper-
fections (intrinsic disorder) which is inevitably introduced at
the fabrication stage. Disorder-induced losses are particularly
detrimental in the slow-light regime [13], which was predicted
theoretically by Hughes et al. [14] using a photonic Green
function approach and is now a common finding amongst
various similar theoretical works in the literature [15–18].
With continued improvements in semiconductor fabrication
techniques, and improved theoretical understanding about how
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to mitigate disorder-induced losses [19,20], various groups
have experimentally demonstrated PCW designs that have
reduced disorder-induced losses [21,22].

However, disorder in PCs is not necessarily a hindrance as
was noticed by John in 1987 [23], who proposed disordered
PCs for experimentally observing the well-known phenomena
of Anderson localization. Topolancik et al. [24] experimentally
demonstrated spectral peaks bearing signatures of Anderson
localization arising from localized modes in a deliberately
disordered PCW. Patterson et al. [25] utilized coupled mode
theory to highlight the effect of light localization via multiple
scattering by examining the transmission through a PCW
in the slow-light regime. The strong localized resonances
in disordered PCWs have also been used to enhance the
spontaneous emission factor of embedded quantum dots [26],
and recently Thyrrestrup et al. [27] have proposed coupling
quantum dot emitters to a disordered PCW as a promising
platform for conducting QED experiments. Other applications
of disordered PCWs include enhanced light harvesting and
random lasing [28].

Apart from causing propagation losses and disorder-
induced localized resonances, disorder also induces changes
in the eigenfrequencies and eigenmodes of the underlying
PC. Ramunno and Hughes [29] modeled disorder-induced
resonance shifts in PC nanocavities and predicted a nontrivial
disorder-induced mean blueshift in the cavity resonance.
Patterson and Hughes [30] extended this formalism to PCWs,
and predicted both a mean blueshift of resonances and a
disorder-induced mode-edge broadening. To the best of our
knowledge, this mean blueshift has not been experimentally
measured; this is likely because no one has realized a simple
experimental procedure for proving that a mean blueshift
occurs, especially for an intrinsically disordered PCW. Both
of the theoretical works mentioned above dealt with intrinsic
disorder only, which occurs via rapid fluctuations of the
air-dielectric interface and highlighted the importance of
carefully taking into account local fields at the interface.
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Recently, Savona has exploited a guided mode expansion
technique to compute disorder-induced localized modes and
the corresponding spectral density, which, as expected, yields
sharp spectral signatures near the mode edge, indicative of
spatially localized modes [31].

In this paper, we introduce an intuitive model to describe
disorder-induced resonance shifts and broadening of the fun-
damental mode below the light line which takes into account
a systematic increase of the disorder parameters (i.e., it allows
one to model deliberate disorder which can be controlled and
changed in a systematic way). We show how one can extend
the theoretical models introduced in Refs. [29,30] to account
for both intrinsic and deliberate or extrinsic disorder where
extrinsic disorder is characterized by a deliberate shift of the
hole centers. Denoting the first-order perturbative correction
to the eigenfrequencies of the fundamental waveguide mode
as �ω, we carefully include local field effects [32] in our
model to compute the mean (E[�ω]) and the quadratic mean
(rms) (

√
E[�ω2]) of the first-order correction term, where E[]

denotes the expectation. As a result, we find that on average,
the band structure including the mode edge is broadened and
blueshifted, causing the DOS to shift above the nominal mode
edge. For disordered PCWs with varying extrinsic disorder
(see Ref. [33] for details), we then compute the ensemble
averaged DOS via a Monte Carlo approach. Experimentally,
measurements of vertically emitted intensity are taken for
GaAs PCW membranes with varying amounts of extrinsic
disorder. Since the intensity measurements are a direct mea-
sure of disordered-induced broadening and frequency shift
(blueshift) of the DOS, we compare our computed DOS with
the intensity measurements and the two are found to be in
very good qualitative agreement. The comparison between our
theory and experimental data demonstrates the importance of
including local-field effects when computing disorder-induced
changes to the eigenfrequencies and eigenmodes of PCWs.
While our theory is perturbative, the semianalytical approach
is computationally efficient and accurate even for reasonably
high amounts of extrinsic disorder and the results offer useful
insights in designing disordered PCWs, e.g., for spontaneous
emission enhancements of embedded quantum dots. Finally,
we also show an example of the underlying disorder-induced
quasimodes that can be obtained on a finite-size PC lattice by
computing the numerically exact Green function using a full
three-dimensional (3D) finite-difference time domain (FDTD)
approach [6].

Our paper is organized as follows. In Sec. II we review our
formalism for modeling disorder-induced resonance shifts and
point out the limitations of some of the polarization models
commonly used in the literature for modeling disorder in
PCWs. We then introduce our extended polarization model for
modeling both intrinsic and extrinsic disorder and show how it
results in a nonvanishing first-order frequency shift. In Sec. III,
we highlight our approach for computing the disordered DOS
given the mean and standard deviation of disorder-induced
resonance shifts. We also present a mathematical argument
based on photonic Green functions that link the disordered
DOS to vertically emitted intensity measurements. In Sec. IV,
we numerically compute disorder-induced resonance shifts
and the disordered DOS which we compare with experimental

measurements performed on GaAs PCW membranes. While
we find qualitatively good agreement with the measurements,
in Sec. V we discuss some limitations of the perturbative
model and we also show some numerically exact simulations
of finite-size PCWs, which are limited in spatial size because
of the numerical complexities. In Sec. VI, we summarize the
strengths and weaknesses of our perturbative semianalytic
approach and discuss our results in the context of previous
reports in the literature. We conclude in Sec. VII.

II. DISORDER-INDUCED RESONANCE SHIFTS AND
DISORDER POLARIZATION MODELS

For modeling the effects of disorder on light scattering
in PCWs, we focus our attention on deriving the first-order
perturbative change to the eigenfrequencies of a dielectric
structure. We treat disorder as a perturbation and employ
perturbation theory techniques adapted to dielectric structures
with high index contrasts [32,34]. We denote the perturbed
eigenfrequencies as ω(k) = ω0(k) + �ω(k), where ω0 is the
unperturbed eigenfrequency, k represents the wave vector, and
�ω represents the first-order perturbation. Since disorder in
PCWs is statistical in nature, we compute the ensemble average
over nominally identical disordered PCWs. Thus the first-order
ensemble averaged correction (frequency shift) is given by [29]
(ω dependence is implicit assuming ω(k) is invertible)

E[�ω] = −ω0

2

∫
cell

E[E∗(r) · P(r)]dr, (1)

where E(r) is the unperturbed eigenmode, P(r) is the polar-
ization function to characterize the dielectric disorder, and the
integration is carried out over the primitive unit cell of the PC
lattice. The fields are normalized according to

∫
cell ε(r)E∗(r) ·

E(r)dr = 1, where ε(r) is the unperturbed dielectric constant.
The rms frequency shift defined by

√
E[�ω2], is computed

similarly as [30]

E[�ω2] = ω2
0

4

∫∫
E[E∗(r) · P(r)E∗(r′) · P(r′)]drdr′. (2)

Statistically, �ω is a random variable with E[�ω] as its
mean while the variance denoted by σ 2 is given as σ 2 =
E[�ω2] − (E[�ω])2. Note that Eq. (2) denotes the variance if
and only if the mean frequency shift is zero. Hence, given
the unperturbed eigenmodes, one is left with choosing a
suitable polarization model to describe the perturbation of
the PC lattice. Structural disorder in PCWs can be viewed
as introducing additional scattering sites in an otherwise
perfect PCW lattice. The scattering sites induce extrinsic
dipole moments resulting in a disorder-induced polarization
which acts as a source term in the homogeneous Maxwell
equations, thus contributing to scattering of a propagating
Bloch mode. An alternative picture is that the perturbations
will disorder the PC band structure and thus the DOS, which
will cause disorder-induced localization modes and scattering
in directions that might otherwise be forbidden (e.g., a lossless
propagating mode will couple to radiation modes above the
light line in the case of a PCW slab).

There are typically two models that have been widely
used in the photonics community for modeling dielectric
perturbations, which we denote as weak-index contrast Pw(r)
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and smooth-perturbation Ps(r). The former model neglects
the problem of field discontinuities at high-index-contrast
surfaces, and is well defined for field components that are
parallel to the interface; in contrast, the latter model addresses
this field-discontinuity problem, though it is appropriate for
perturbing a surface uniformly in a perpendicular direction,
e.g., displacing a long sidewall in a direction that is perpendic-
ular to the wall interface. By way of a simple example, consider
a simple planar interface between two dielectrics (e.g., air
and semiconductor slab) εa, εs where εa < εs , located at r′.
When perturbed by a small amplitude �h, the two polarization
models are given as

Pw(r) = �ε�h(r)E(r)δ(r − r′), (3)

Ps(r) = �ε�h(r)

(
E‖(r) + ε(r)

εaεs

D⊥(r)

)
δ(r − r′), (4)

where �ε = εa − εs and �h changes sign depending on
the direction of the perturbation, i.e., from εa to εs or vice
versa, and E‖(r), D⊥(r) denote the parallel and perpendicular
components of the electromagnetic fields relative to the
boundary interface. The weak-index contrast model is accurate
in systems exhibiting weak-index contrast (i.e., |�ε| � 1)
and is the most popular choice for modeling imperfections
in dielectric structures such as optical waveguides [35]. In
high-index contrast systems such as PCWs, the quantity
�ε|E|2 is, however, generally ill-defined at the interface
due to a large step discontinuity in E⊥ [34], hence the
smooth-perturbation model is likely more appropriate at the
interface due to the use of continuous field components. The
smooth-perturbation model is expected to be valid as long as
the perturbation is smooth. Both models have been used to
compute disorder-induced losses in PCWs [14,16,30,36] and
have yielded a good qualitative understanding of the observed
disorder-induced loss phenomena.

If one views the perturbation (smooth or piecewise smooth)
as introducing scatterers into the system, one must take into ac-
count their respective polarizabilities which in general depend
on the direction of the perturbation. The weak-index contrast
and smooth-perturbation models assign polarizabilities that
differ only in sign when the direction of perturbation is reversed
but remain unchanged in magnitude. Moreover, the magnitude
of the polarizability of a scatterer can be drastically different in
the weak-index approximation as demonstrated by the example
of a small dielectric sphere in a homogeneous background
(see Ref. [37]). Therefore, in general for piecewise smooth
perturbations such as bumps on an interface, it is important
to compute polarizabilities that correctly take into account the
direction of perturbation. To address this concern, Johnson
et al. [32] introduced the bump-perturbation polarization
model, denoted by Pb(r) to model surface roughness in PCWs
as piecewise smooth bumps on the interface, where

Pb(r) = [εavgα‖E‖(r) + ε(r)γ⊥D⊥(r)]�V δ(r − r′), (5)

where εavg = ( εa+εs

2 ), and α‖, γ⊥ denote the polarizabilities
(polarizability tensors per unit volume) of the bump pertur-
bation and �V is the volume of the disorder bump element.
This model is valid for arbitrary dielectric contrasts and bump
shapes, and useful formulas have been obtained for rectangular

and cylindrical shaped bumps [32]. Using the polarizabilities
for a cylindrical bump shape, this polarization model has been
used to model resonance shifts caused by intrinsic disorder in
PCWs [30] where a mean blueshift and broadening of the ideal
band structure was found. As was noted in Ref. [30], resonance
shifts in the band structure are not predicted by either the
weak-index contrast or the smooth-perturbation models.

In this work, we apply the bump-perturbation model
with cylindrical bump shape polarizabilities, to compute
disorder-induced resonance shifts in PCWs, and systematically
investigate what happens with an increase in the disorder
parameters for shifted holes. We use this model to connect
to related experiments on deliberately disordered GaAs mem-
branes where embedded quantum dots couple to disorder-
induced localized modes resulting in enhanced spontaneous
emission [26,33]. The PCW we consider is a standard W1
formed by introducing a line defect in a triangular lattice of air
holes etched in a semiconductor slab, Fig. 1(a). The air holes
are cylinders so we employ cylindrical coordinates (r,θ,z)
henceforth. Furthermore, the disordered air hole is assumed
to have a constant cross section throughout the slab thickness.
This allows us to replace the disorder volume element in Eq. (5)
by its cross-sectional area �A and the polarizabilities are now
2 × 2 tensors representing polarizability per unit area [32] and
approximating to first order, the perturbed area �A of the
disorder element is proportional to |�h|.

In light of current experiments studying localization modes
and resonance shifts as a function of deliberate disorder,
we extend the disorder model of Ref. [30] to deal with
both intrinsic and varying extrinsic disorder (e.g., through
a systematic increase of the external disorder parameters).
While the previous model considered rapid radial fluctuations
of the air-slab interface as the source of intrinsic disorder,
here we model both intrinsic and extrinsic disorder as a net
center shift of the air hole as shown schematically in Fig. 1(b).
Although intrinsic disorder is likely best described by rapid
radial fluctuations, the choice to model intrinsic disorder as

(a)

Δr

(b)

φ

FIG. 1. (Color online) (a) Schematic of a disordered W1 with
ideal air holes solid dark (black) circles], disordered holes [light (red)
circles], and the background slab (gray). (b) Schematic of a hole
center shift with the centers marked by solid light (orange) circles
and the direction of perturbation given by the solid-black arrow. The
magnitude of the perturbation is denoted by �r and the azimuthal
direction or angle of the perturbation is given by φ. Dashed arrows
indicate the shifts of the air-slab interface with dashed-light (red) and
dashed-dark (black) arrows representing positive and negative shifts,
respectively.
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a hole center shift is driven by simplicity as one can map
rapid radial fluctuations to an effective hole center shift by
comparing experimental loss data with numerical simulations
as demonstrated by Garcia et al. [38]; also, the main effect of
the disorder below is certainly through deliberate disorder.

Since disorder is stochastic in nature, we denote (�h, φ) as
the random variables quantifying the total disorder (extrinsic
and intrinsic) in PCWs. The net magnitude of the shift |�h| is
constant around the circumference while the sign is determined
by the net azimuthal direction of the shift, denoted by φ [see
Fig. 1(b)]. The shift of an infinitesimally small arc lying on
the circular air-slab interface is then given by

�h(�r,φ; θ ) =
{+�r, φ ∈ �,

−�r, φ /∈ �,
(6)

where � = [θ − π
2 ,θ + π

2 ], θ denotes the polar coordinate and
�r quantifies the magnitude of the net radial perturbation.
A positive bump or shift (+�r) is defined as the air-slab
boundary shifting into the slab and vice versa for negative
bumps or shifts as illustrated in Fig. 1(b). We denote �ri/e ∼
|N (0,σi/e)|, φi/e ∼ U[−π,π ] as the random variables for the
radial magnitudes and azimuthal directions of the intrinsic and
extrinsic disorder perturbations, respectively;N (μ,σ ) denotes
a normal distribution with mean μ and standard deviation σ

while U[a,b] denotes a uniform distribution over the interval
[a,b]. The net radial fluctuation can be broken down into its
Cartesian components �x,�y, which are given below:

�x = �ri cos(φi) + �re cos(φe), (7)

�y = �ri sin(φi) + �re sin(φe). (8)

The net radial fluctuation is then given as �r =
√

�x2 + �y2

while the net azimuthal direction is simply φ = tan−1 ( �y

�x
).

Comparing to our previous model of rapid radial fluctu-
ations [30], this model lacks the concept of an intrahole
correlation length as all points on the hole shift by the same
magnitude but in different directions depending on the angular
hole coordinate θ . However this model is more appropriate for
modeling the deliberate displacement of the disordered holes
performed in the experiment.

To highlight the main difference between the three polariza-
tion models discussed earlier, lets compute the ensemble aver-
aged first-order frequency shift E[�ω] by using Eqs. (3), (4),
or (5) in Eq. (1). For weak-index contrast and smooth-
perturbation models, one must compute the expectation of
the total disorder E[�h]. If the extrinsic disorder is zero
(σe = 0), it is trivial to show that E[�h] = 0 → E[�ω] = 0.
In the case where both intrinsic and extrinsic disorder are
present, one can still show E[�h] = 0 as can be verified via
a Monte Carlo simulation. This result is expected because
given any random value for the net radial displacement �r ,
all possible azimuthal directions are equally likely; and since
we are assigning symmetric weights (differing only is sign)
to positive and negative shifts in these two models, the
first-order correction vanishes. This is in line with previous
findings where intrinsic disorder was modeled as rapid
radial fluctuations [30]. However, a nonzero first-order mean
frequency shift is expected to occur for the bump-perturbation
model since E[α‖|�h|] 
= 0,E[γ⊥|�h|] 
= 0. This is because
the polarizabilities for the shifts that we use in Eq. (5)

are asymmetric, i.e., α+
‖ 
= α−

‖ , γ +
⊥ 
= γ −

⊥ where +/− denote
positive and negative shifts respectively.

For E[�ω2], none of the expectation terms vanish and
therefore the variance σ 2 of the first-order frequency shift
is positive definite for all three polarizability models as long
as E[�ω2] � E[�ω]2. One way to test which model is more
appropriate is to compare with experiments where the amount
of disorder can be controlled, and that is precisely what we do
in Sec. IV.

III. DISORDERED DENSITY OF STATES
AND CONNECTION TO EXPERIMENTS OF

VERTICAL LIGHT EMISSION

Since disorder acts to shift and broaden the mode edge,
a useful quantity for experimental comparison is the DOS
ρ(ω(k)), defined as the number of frequency levels per unit
volume of k space. Unlike the concept of band structure, which
is only well-defined in perfectly periodic systems, the DOS is
valid for all structures. It is well known that the DOS of an
ideal PCW diverges at the mode edge since the group velocity
vanishes, while for a disordered PC structure, the ensemble
averaged DOS exhibits a broadened peak around the ideal
mode edge where the width of the peak is proportional to the
amount of disorder present in the PC structure [39].

To compute the DOS, we first remark that the definition of
DOS bears close resemblance to the mathematical definition
of a probability density function (PDF). Hence, just like a
histogram generated from a large sample dataset represents the
underlying PDF, the histogram generated from a band structure
represents the DOS. To compute a disordered DOS instance,
we generate a histogram denoted by ρi(ω) from the disordered
band structure given by ωi(k) = ω0(k) + �ωi(k) where �ωi is
sampled from an underlying probability distribution. One then
computes the ensemble averaged disordered DOS by averaging
over N disordered DOS instances ρ̄(ω) = ∑

i ρi(ω)/N .
The key quantity here is the underlying probability distribu-

tion of the random variable �ω. If one discretizes the integral
in Eq. (1), one sees that �ω is a sum over a large number
of random variables that are neither identically distributed
or independent in general. But since the underlying random
variables (�ri/e,φi/e) characterizing the disorder in our PCW
samples have well defined bounded moments of all order, we
can invoke the central limit theorem from probability theory
(especially its extension to dependent stochastic processes)
and assume that �ω is normally distributed, i.e., �ω ∼
N (E[�ω],σ ).

Experimentally, the DOS can be obtained by spatially
averaging the vertically emitted light intensity measurements
in PCWs. To appreciate how the waveguide DOS can be
measured through vertical emission, consider the waveguide
mode Green function without any disorder [40]:

Gwg(r,r′; ω) = iaω

2vg

[�(x − x ′)fk(r)f∗
k (r′)eik(x−x ′)

+ �(x − x ′)f∗
k (r′)fk(r)e−ik(x−x ′)], (9)

where a is the pitch, vg is the group velocity, �(x − x ′) is
the Heaviside function, and fk is the ideal Bloch mode for
modes below the light line. Now consider adding a point
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disorder model, where the disorder causes a polarizability with
a Lorentzian line shape (e.g., typical of a disorder-induced
resonance or an embedded light source such as a quantum
dot), αd = A/(ω0 − ω − iγ ), where ω0 is the disorder induced
resonance frequency, γ is the broadening of the resonance,
and A is the coupling strength. Using a Dyson equation,
G̃ = G + GαdG̃, the Green function in the presence of the
perturbation can be exactly obtained through G̃, where αd has
units of volume (polarizability volume) and the Green function
has units of inverse volume. Defining ρi(rd) ≡ Im[Gii(rd,rd)]
where Im[] denotes the imaginary component as a measure of
the (projected) LDOS, we obtain

ρ̃i(rd,ω) = ρi(rd,ω)
(ω − ω0)2 + γ [γ + Aρi(rd,ω)]

(ω − ω0)2 + [γ + Aρi(rd,ω)]2
, (10)

and thus the disordered LDOS now contains signatures of the
original waveguide LDOS and the underlying resonance of the
disorder site. Looking at the limit ω → ω0,

ρ̃i(rd,ω0) = ρi(rd,ω0)
γ

γ + Aρi(rd,ω0)
, (11)

where we note that the LDOS at the mode edge is no longer
divergent, and instead ρ̃i(rd,ωe) = γ /A (assuming ω0 = ωe),
which is simply the LDOS from the disordered polarizability
model. Since this disordered LDOS is now connected to light
propagation away from the waveguide through γ , vertically
emitted light will clearly contain signatures of the disordered
LDOS for the waveguide modes, and thus the disordered DOS
when spatially integrated.

An alternative picture of the disordered DOS can be
obtained by connecting directly to a sum over the disordered-
induced modes. In PCWs, due to disorder, propagating and
localized modes couple with radiation modes above the light
line resulting in vertically emitted intensity. Near the mode
edge, the DOS increases due to vanishing group velocity
leading to an increase in the radiation loss rate and a broadened
peak in the vertically emitted intensity spectrum. Other peaks
in the spectrum near the mode edge indicate the presence of
disorder-induced localized modes. Given that the vertically
emitted intensity is proportional to the radiation loss rate,
denoted by γ , one can show that the radiation loss rate
is proportional to the DOS. Let us assume the disordered
quasimodes (or “quasinormal modes”) [41] are known or can
be computed, denoted by f̃j (r) where j indexes the quasimodes
which have complex eigenfrequencies ω̃j = ωj + iγj , where
the quality factor of each resonance is Qj = ωj/2γj . Then
using mode expansion, one obtains the Green function of
the disordered PCW by an expansion over the quasinormal
modes [42,43],

Gdis(r,r′; ω) =
∑

j

ω2

2ω̃j (ω̃j − ω)
f̃j (r)f̃j (r′), (12)

and the LDOS of the disordered PCW is

ρ(r,ω) = 2

πω
Im[Tr{Gdis(r,r; ω)}], (13)

where Tr[] denotes the trace. From the total LDOS one can
compute the DOS by integrating over all space. Therefore
one sees that the radiation loss rate and the vertically emitted
intensity are inherently linked to the disordered DOS. Indeed,

each one of the underlying quasimodes (and every disordered
element) has a vertical decay channel associated with vertical
decay above the light line.

IV. CALCULATIONS AND MEASUREMENTS OF THE
DISORDERED-INDUCED RESONANCE SHIFTS AND

DENSITY OF STATES

The experimental samples are W1 GaAs membranes with a
pitch of a = 240 nm and thickness 150 nm with an embedded
layer of InAs self-assembled quantum dots at the center of
the membrane having uniform density of 80 μm−2. Quantum
dots present a very similar refractive index to that of the
surrounding membrane material (GaAs) and are included in
the sample to facilitate easier excitation of a broad range
of photonic modes of the disordered system, which has
been used elsewhere to study the modified emission of
quantum dots coupled to disorder-induced resonances [26].
However, the experiments presented in this paper are carried
out under high excitation power (57 μW/m2) [33], which
drives the quantum dots beyond saturation, and they become
transparent. Consequently, we consider negligible quantum dot
contribution to both inelastic and elastic scattering and, thus,
we can rule out any quantum dot contribution to our model.

Various samples each measuring 100 μm long are manu-
factured with varying degrees of extrinsic disorder. Extrinsic
disorder is introduced via an additional hole center displace-
ment characterized by σe and is varied from 0.01a = 2.4 nm
to 0.05a = 12 nm in 0.01a = 2.4 nm steps. The samples are
excited and vertically emitted intensity is collected as function
of wavelength and position along the waveguide direction
I (λ,x) as shown in Figs. 3(a) and 3(b). The intensity is
then spatially integrated along the waveguide I (λ) = ∫

Idx

as shown in Fig. 3(c).
To connect to these experiments, we model a corresponding

W1 PCW [see Fig. 1(a)] with a slab dielectric constant suitable
for GaAs (ε = 12.11), with the following parameters: r =
0.295a (hole radius), h = 0.625a (slab height). The ideal band
structure (i.e., with no disorder) is plotted in Fig. 2(a), depicting
the fundamental lossless guided mode that spans from 876 nm
(thereafter going above the light line) to 930 nm (mode edge).
The intrinsic disorder, kept fixed at σi = 0.005a = 1.2 nm is
characterized by an effective hole-center shift and determined
from comparing the experimental far-field intensity spectra of
PCWs with varying amounts of extrinsic disorder to numerical
FDTD simulations of the spectra. More specifically, one
compares the width of the Lifshitz tail present in both spectra
which depends on the amount of disorder in the structure (see
Ref. [38] for details).

The mean and standard deviation of �ω in units of free-
space wavelength, assuming the bump-perturbation model
for all samples, are plotted in Figs. 2(b) and 2(d). For
the conversion of units, since ω � �ω we use the formu-
las E[�λ] = −2πcE[�ω]/ω2,E[�λ2] = 4π2c2E[�ω2]/ω4

where c is the speed of light in vacuum. The expectations
in Eqs. (1) and (2) were computed numerically, that is given
the statistical parameters for disorder, 104 samples of the set
(�ri,�re, φi, φe) are drawn from the underlying probability
distributions which yields 104 samples of �h. The integration
is carried out via Riemann sums where the step size is chosen
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FIG. 2. (Color online) (a) Photonic band structure (in units of
wave vector vs vacuum wavelength) of the ideal W1 showing the
fundamental (solid) and higher order (dashed) guided modes. The
light line is shown in black. (b) Mean frequency shift E[�ω] for
six disordered samples for the fundamental guided mode. (c) RMS
frequency shift

√
E[�ω2] representing the standard deviation if and

only if the mean frequency shift is zero. (d) Standard deviation
of �ω given a nonzero mean frequency shift (b). In all three
graphs, the intrinsic disorder is kept fixed at 0.005a (1.2 nm) while
the external disorder is varied as follows: 0a [solid light gray
(cyan)], 0.01a (2.4 nm) [dashed light gray (green)], 0.02a (4.8 nm)
[solid medium gray (red)], 0.03a (7.2 nm) [dashed medium gray
(magenta)], 0.04a (9.6 nm) [solid dark gray (blue)], 0.05a (12 nm)
(dashed black).

to be small enough (3 nm in our case) to ensure numerical
convergence.

From Fig. 2(b), we see that for all cases of disorder, the mean
frequency shift is a blueshift that increases as one approaches
the mode edge and as the total amount of disorder increases.
We note that the prediction of a mean blueshift is nontrivial
and is solely due to the asymmetric polarizabilities present
in the bump-perturbation polarization model. Regardless of
the polarization model employed, the rms frequency shift is
nonzero as shown in Fig. 2(c) which is equivalent to the
standard deviation if and only if the weak-index contrast or
smooth-perturbation polarization models are employed [39].
Figure 2(c) implies that in the absence of a mean shift,
the band structure or DOS broadens monotonically as one
approaches the mode edge for any given amount of extrinsic
disorder. In the presence of a nonzero mean shift (blueshift),
the standard deviation is modified as shown in Fig. 2(d)
which shows that broadening is nonmonotonic. In fact, for
any given amount of extrinsic disorder, as one approaches the
waveguide mode edge, the magnitude of the blueshift increases
but the broadening actually decreases. Since one is most often
concerned with the mode edge or cutoff of the fundamental
guided mode in PCWs, we find that the mode-edge mean
blueshift is roughly of the same order as the amount of total
disorder (i.e., extrinsic + intrinsic) in the system, while the
standard deviation of the blueshift is roughly half the amount
of total disorder. For example, for extrinsic disorder σe of

FIG. 3. (Color online) (a) and (b) Experimental normalized in-
tensity spectra obtained by scanning along the waveguide position for
two different amounts of extrinsic disorder as indicated in the figure.
(c) Experimental spatially integrated intensity for varying degrees of
extrinsic disorder as labeled in the figure. (d) Calculated ensemble
averaged DOS (normalized) for the fundamental waveguide mode for
the six disordered samples in (c). The red-dashed line in the lowest

disorder case is given by A
λ2

min
λ2 with A = 0.2 and represents the

qualitative contribution of radiation modes to the DOS. The amount
of intrinsic disorder in all samples is σi = 0.005a (1.2 nm).

0.02a (4.8 nm), then the mode edge is blueshifted roughly by
4.8 nm with a standard deviation of approximately 2.5 nm.

The normalized experimental intensity spectra for two
different amounts of extrinsic disorder along the waveguide is
shown in Figs. 3(a) and 3(b). Integrating along the waveguide
direction, the corresponding intensity spectra is compared to
the ensemble averaged disordered DOS for the six samples
(considered previously in Fig. 2) in Figs. 3(c) and 3(d). For
now we neglect the contribution of radiation modes to the DOS
which scales roughly as 1/λ2 [please see Fig. 3(d) for what this
might look like]. Treating the DOS as a probability distribution
as mentioned in Sec. III, each DOS instance histogram has a
sample size of 1000 (number of k points) and bin resolution
of 0.27 nm (200 bins). The ensemble-averaged disordered
DOS was calculated from 500 disordered DOS instances.
Note that, as discussed earlier, the DOS at the mode edge
formally diverges (as the group velocity approaches zero) in
the absence of disorder but our computed disordered DOS is
nondivergent and shows a pronounced mean blueshift as well
as broadening caused by the variance of the frequency shift.
This agrees qualitatively well with the experimental intensity
spectra except for the case of σe = 0.02a (4.8 nm); where
the theory predicts a blueshift, but the experimental intensity
spectrum is redshifted. The observed redshift of the mode-edge
is within the computed standard deviation so it is either that this
discrepancy arises due to the experimental sample representing
only one disorder instance or the fabrication method of these
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particular waveguides where, e.g., a proximity effect could
introduce an additional unknown degree of disorder different
from the designed one.

Strictly speaking, our perturbation theory computes mode-
edge resonance shifts and broadening for periodically disor-
dered PCWs; that is the primitive unit cell is disordered and
then repeated indefinitely. This is an approximation as in reality
the disordered PCW is a concatenation of disordered unit cell
instances sampled from an underlying probability distribution.
Moreover in the experimental intensity spectra [Fig. 3(c)],
we can see the signature of localized modes forming around
the mode edge for all cases of disorder which our computed
DOS cannot reproduce since localized modes that form due
to cavity-like defects are naturally not present in a waveguide
exhibiting periodic disorder. Hence the shift and broadening
of the DOS caused by localized modes particularly above the
mode edge is absent from our calculation.

To assess the role of multiple scattering qualitatively, we
considered incoherent disorder-induced losses in our samples,
with and without multiple scattering. With the mode edge
roughly corresponding to a group index of ng ≈ 50, our
computations indicate that for ng > 20, we are already in
the regime of multiple scattering for all amounts of disorder.
Therefore, akin to the absence of sharp features in the trans-
mission spectrum without multiple scattering [44], the periodic
disorder perturbative approach lacks the sharp features shown
in the experimental intensity spectra especially above the
mode edge so for more realistic predictions, a nonperturbative
approach would be needed that takes into account multiple-
scattering effects. Such an approach is numerically very
demanding and is beyond the scope of this first paper on
the topic. However, below we show some numerically exact
solutions of disorder-induced resonances and LDOS for short
length PCWs.

V. NUMERICALLY COMPUTED DISORDERED LDOS
INSTANCES FROM A FINITE-SIZE PCW

Having identified the possible limits of perturbation theory
above, we now present some brute force calculations of the
LDOS using full 3D FDTD computations in a disordered PCW
lattice. The numerical complexity is very demanding so we
are restricted to much smaller waveguide lengths than used in
the experiment; also, we can only compute a small number
of instances which are not enough to compute the ensemble
average trend shown in Fig. 3. This is mainly due to the large
memory requirements of the simulation volume since it cannot
be reduced by using symmetric boundary conditions due to
symmetry breaking caused by disorder. Nevertheless, such
calculations are useful for getting a physical picture of what is
happening for a particular instance and section of a disordered
PCW.

To show that the DOS varies from instance to instance given
the disorder is kept fixed, we calculate the projected LDOS
ρμ(r,ω) for ten statistically disordered finite-length PCWs,
as shown in Fig. 4, by directly computing the numerically
exact photonic Green function of the PCW (see Ref. [6]
for numerical implementation details) using the 3D FDTD
method [45]. The samples we simulate are 7.2 μm long (30
unit cells). With the waveguide cross section in the xy plane,

FIG. 4. (Color online) Top: Projected LDOS values of a y-
oriented dipole centered at the antinode of Ey , computed for ten
instances of disorder [dark solid (blue)] with internal and external
disorder values of σi = 0.005a (1.2 nm), σe = 0.02a (4.8 nm) re-
spectively. For reference, the LDOS with no extrinsic disorder [light
solid (red)] and ideal mode-edge [dashed light (red) vertical line]
are also shown. All LDOS instances are normalized to their own
LDOS peak. The length of the waveguides was kept fixed at 7.2 μm
(30 unit cells). Bottom: As highlighted by the black markers (+) on
the Projected LDOS instance, starting from above (right) and going
below (left) the ideal mode edge, disorder-induced localized mode
intensity |Ey |2 is shown.

denoting the waveguide direction as x and the origin at the
center of the waveguide, we compute the LDOS of a y-oriented
dipole ρy(0,ω) placed at the antinode of the disorder-induced
mode component Ey , which occurs at the origin. The intrinsic
and extrinsic disorder values are 0.005a(1.2 nm), 0.02a(4.8
nm), respectively. While ten instances which are only 30
unit cells long are not enough to conclude the existence of
a mean blueshift of the mode edge, the deviations of the mode
edge in the LDOS profiles are within the calculated standard
deviation shown in Fig. 2(d). This may partially explain the
discrepancy observed in Fig. 3(c) for σe = 0.02a(4.8 nm) as
the experimental sample represents one disordered instance.
For completeness, Fig. 4 also shows examples of disorder-
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induced localized modes that appear both above and below the
mode edge. These modes are formed via multiple scattering in
cavity-like defects introduced via disorder.

We highlight that we have found that a 2D FDTD method,
despite being at least one order of magnitude quicker and
allowing us to simulate very long sample lengths, to be
inadequate for computing a realistic Green function and LDOS
for the 3D PCW slab. First, the mode edge for a 2D PCW with
the same structural parameters (apart from the slab height) is
different (1.2 μm) and second, a 2D PCW does not possess
radiation or leaky modes and out-of-plane decay cannot be
computed. Hence the computed 2D Green functions and LDOS
are different from its 3D counterparts and do not accurately
capture the realistic 3D resonance shifts. Although a 2D
calculation can capture the qualitative modal profile of the
localized modes, their sensitivity to disorder is quite different
to 3D quasimodes. Thus in general one requires a 3D FDTD
model to compute the LDOS for a PCW slab.

VI. DISCUSSION AND CONNECTIONS
TO PREVIOUS WORKS

Our theory, though perturbative, provides an intuitive
and computationally efficient semianalytical approach to
producing experimentally relevant results for high amounts
of extrinsic disorder. One ensemble average DOS computation
which includes computing the ideal Bloch modes, Monte Carlo
runs for the expectations, and Riemann integrals for a given
amount of disorder takes roughly 3 h on a single-core CPU
whereas computing the LDOS of a 7.2 μm long disordered
PCW using 3D FDTD takes approximately 10 CPU h for each
disorder instance on a cluster using 20 multicore CPU nodes.

As we have stated before, the bump-perturbation polar-
ization model is crucial to our findings. It is not the exact
shape of the bump that is important (see Refs. [29,32]) but
the use of asymmetric polarizabilities that yields a nonzero
mean frequency shift. In the context of disorder-induced losses
where all three polarization models produce similar results,
previously we have argued that the bump polarization model
should be best suited for modeling disorder characterized via
rapid radial fluctuations and the smooth-perturbation model
should be valid as long as the air-slab interface remains nearly
circular [30] which is indeed the case considered in this work.
To resolve this ambiguity, we rely on the comparison with
experimental findings (see Sec. IV) which indicates that the
bump-polarization model (in the absence of any other models
proposed in the literature) is likely best suited for all types of
disorder and various disorder-induced phenomena in PCWs.

Reference [30] highlighted the importance of accounting
for local-field effects in PCWs by computing disorder-induced
resonance shifts for the three polarization models mentioned
in Sec. II. While the impact of disorder on the DOS is

qualitatively well known, to our knowledge, no one has
quantified the expected resonance shifts or spectral broadening
as a function of disorder and computed the disordered DOS
which is found to be in good qualitative agreement with
experiments. Previously, spectral broadening of the band struc-
ture was observed experimentally by Le Thomas et al. [46]
and predicted theoretically by Savona [31] whose findings
showed increased spectral broadening of the band structure
as the disorder increases, but did not predict a blueshift or
quantify the expected shift or broadening as a function of
disorder. In the absence of a blueshift, Fussell et al. also
showed theoretical broadening of the DOS in coupled-PC-
cavity waveguides [39]. While it is generally accepted in
the community that broadening increases monotonically as
one approaches the mode edge, our findings show that in
the presence of a mean blueshift, the broadening actually
decreases as one approaches the mode-edge. This implies that
the blueshift effect is more dominant than broadening at the
mode edge and should be taken into account.

VII. CONCLUSIONS

Through theory and experiment, we have shown that ac-
curate modeling of local-field effects is critical for computing
experimentally relevant mean frequency shifts and realistic
DOS profiles in PCWs. These findings also point out the
possible limitations of disorder polarization models that do not
include local-field effects or include local-field effects through
the use of symmetric polarizabilities. For extrinsic disorder
values up to 12 nm, our computationally efficient perturbative
approach yields results that are in very good qualitative agree-
ment with experiments and can be used to compute realistic
quantities such as Purcell factor enhancements in PCWs with
embedded quantum dots. We have also shown examples of
the numerically exact LDOS for various disordered instances
and the underlying disordered-induced resonance modes on
a small PCW using a rigorous 3D FDTD approach. Future
work could focus on developing a nonperturbative approach
that takes into account multiple scattering to better model the
localized modes that appear above the mode edge.
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