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Continuous-wave spatial quantum correlations of light induced by multiple scattering
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We present theoretical and experimental results on spatial quantum correlations induced by multiple scattering
of nonclassical light. A continuous-mode quantum theory is derived that enables determining the spatial quantum
correlation function from the fluctuations of the total transmittance and reflectance. Utilizing frequency-resolved
quantum noise measurements, we observe that the strength of the spatial quantum correlation function can be
controlled by changing the quantum state of an incident bright squeezed-light source. Our results are found
to be in excellent agreement with the developed theory and form a basis for future research on, e.g., quantum
interference of multiple quantum states in a multiple scattering medium.
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I. INTRODUCTION

Light transport through an inhomogeneous random medium
is determined by a multiple scattering process whereby
interference between different light paths induces a complex
intensity speckle pattern. Mesoscopic intensity fluctuations
that survive averaging over all configurations of disorder
give rise to phenomena such as enhanced backscattering
and Anderson localization of light [1]. To characterize such
a disordered medium, it is essential to investigate spectral
or temporal intensity correlations in the multiply scattered
light [2–4]. In the diffusive regime, the light intensities of
different spatial directions (i.e., independent speckles) are
uncorrelated. In this case, interference effects disappear after
ensemble averaging and the transport is well described by
diffusion theory.

While the classical aspects of multiple scattering have
been studied extensively, the quantum nature of light in a
multiple scattering setting has been addressed only recently.
Triggered by theoretical studies on quantum fluctuations of
light in absorbing and amplifying multiple scattering media
[5,6], recent experiments have addressed the quantum noise of
multiple scattered light [7–9] and spatial photon correlations
[10–13]. Furthermore, the first studies of photon emission
and cavity quantum electrodynamics in disordered media
have been carried out [14–17]. It was recently predicted
that quantum interference and entanglement can be induced
by combining two or more quantum states in a multiple
scattering medium [18,19], which could be of potential interest
for applications in quantum information processing. In the
diffusive regime of multiple scattering, classical intensity
correlations vanish and many quantum optical phenomena
do not survive ensemble averaging, including polarization
entanglement [20] and quadrature squeezing [21]. In contrast,
it has been proposed that nonclassical photon fluctuations can
be detected in the multiple scattered light even after ensemble
averaging, which results in a new type of correlations that are
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of a quantum origin [10]. These spatial quantum correlations
have been reported recently based on total transmission
quantum noise measurements, thereby entering experimentally
the genuine quantum optical regime of multiple scattering [11].

In this paper, we present a detailed theoretical and exper-
imental analysis of spatial quantum correlations in transmis-
sion and reflection measurements. We develop in Sec. II a
continuous-mode quantum theory in order to relate the spatial
quantum correlation function to the photon fluctuations of the
light source. By exploiting quantum noise measurements, the
variance of the photon fluctuations of the multiple scattered
light is studied in Sec. III from which the strength of the
spatial quantum correlation function is determined. Finally, it
is experimentally shown how the spatial quantum correlation
is tuned by controlling the quantum state of the light source.

II. THEORY

The quantum nature of light is revealed, e.g., by investi-
gating photon fluctuations and spatial, temporal, or spectral
quantum correlations among photons. In the experiment of
concern here, the quantum properties are identified through
the photon fluctuations for which sub-Poissonian fluctuations
are a sign of nonclassicality [22]. A schematic illustration
of the experimental setup is displayed in Fig. 1: a bright
squeezed state of light is sent through a multiple scattering
medium, the total transmitted or reflected light is collected,
and the associated photon fluctuations are recorded. In the
following, we introduce a continuous-mode quantum theory
that is directly applicable to the quantum noise measurements
discussed in the present work.

We define the spectral density function at frequency ω as
the Fourier transformation of the autocorrelation function [23],

S(ω) = 1

2π

∫ ∞

−∞
dτ �(τ )eiωτ , (1)

where

�(τ ) = 〈n̂(t)n̂(t + τ )〉 − 〈n̂(t)〉〈n̂(t + τ )〉, (2)

with n̂(t) being the operator describing the photon flux.
The variance of the photon fluctuations is related to
the noise spectrum through the inverse of Eq. (1), i.e.,
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FIG. 1. Illustration of multiple scattering leading to spatial
quantum correlations. The nonclassical light source that is used in the
experiment is created by overlapping a squeezed vacuum light beam
(SQZ) and a coherent light beam (C) on a beam splitter with two input
ports, 1 and 2, respectively. The relative phase, �φ, between C and
SQZ can be tuned continuously. The resultant light beam in direction a

is incident onto a medium with randomly distributed scatterers. Light
is split into a multitude of different trajectories, and the number of
photons exiting the medium in a specific direction, b, can be correlated
with the number of photons in another direction, b′, to a degree
dependent on the quantum state of the illuminating light source. In
the diffusive regime, the spatial quantum correlation function can be
determined from total transmission quantum noise measurements. A
similar experimental scheme is applied for reflection measurements.

�n̂2(t) = ∫ ∞
−∞ dω S(ω). The spectral density is studied within

a frequency region ω± = ωs ± δω/2,

〈�n2(ωs,δω)〉 =
∫ ω+

ω−
dω S(ω), (3)

that is proportional to the experimentally measured noise
power.

The randomly disordered medium is treated as N spatially
distinct optical input modes that are intrinsically connected
to N output modes via multiple scattering of light. To relate
the quantum properties of the multiple scattered light to the
quantum state of the incident light source, the spatial output
mode b is related to all input modes a′ through

âb(t) =
∑
a′

sa′bâa′ (t), (4)

where âb(t) denotes the time-dependent annihilation operator
and sa′b is the complex electric field amplitude scattering
coefficient corresponding to either a reflection (rab) or trans-
mission (tab) channel. The corresponding intensity transmis-
sion (reflection) coefficient is Tab ≡ |tab|2 (Rab = |rab|2). The
annihilation and creation operators obey the commutation
relation [âb(t),â†

b′ (t ′)] = δb,b′ δ(t − t ′), with δ(t − t ′) and δb,b′

being the Dirac and Kronecker delta functions, respectively.
The average photon flux is defined as 〈n̂b(t)〉 = 〈â†

b(t)âb(t)〉
while the variance in the photon fluctuations is �n2

b(t) =
〈n̂2

b(t)〉 − 〈n̂b(t)〉2, where 〈· · ·〉 describes the quantum me-
chanical expectation value. In the following, we focus on the
setting in which the light beam is incident onto the medium
through a single direction, a, thus the average photon flux for
all other input modes is equal to zero. The mean photon flux
of the total transmission can be obtained by summing over all
transmitted output modes, i.e., 〈n̂T (t)〉 = ∑

b Tab〈â†
a(t)âa(t)〉,

where the intensity transmission coefficients are random
variables determined by the individual realization of disorder.
Predictable physical variables are obtained after ensemble-
averaging over all configurations of disorder, e.g., the total

transmitted photon flux is given by

〈n̂T (t)〉 = T 〈n̂(t)〉, (5)

where T = ∑
b Tab is the total intensity transmission for the

flux of photons 〈n̂(t)〉 incident in mode a, and the bar denotes
the ensemble average over all configurations of disorder [4].
A similar result can be found for the total reflection, i.e.,
〈n̂R(t)〉 = R〈n̂(t)〉, where R = ∑

b Rab. To determine the
fluctuations of the total transmission, we need to evaluate the
second moment of the photon number operator,

〈n̂T (t)n̂T (t + τ )〉 =
∑
b,b′

〈n̂b(t)n̂b′(t + τ )〉

= T 2〈n̂(t)n̂(t + τ )〉 + (T − T 2)〈n̂(t)〉δ(τ ).

(6)

The nonvanishing contributions to the sum in Eq. (6) for
different output modes b and b′ stem from the fact that different
spatial parts of the volume speckle patterns are quantum
correlated. In an experiment, the total collection and detection
efficiency is nonunity, which is accounted for by substituting
T → ηT T . The photon fluctuations of the total transmission,
〈�n2

T (ωs,δω)〉, can be related to the spectral density function
of the incident light source integrated over the measured
frequency range from Eqs. (1) to (3),
〈
�n2

T (ωs,δω)
〉

=
∫ ω+

ω−
dω

[
η2T

2
(

S(ω) − 〈n̂(t)〉
2π

)
+ ηT

〈n̂(t)〉
2π

]
,

= η2T
2
(
〈�n2(ωs,δω)〉 − 〈n̂(t)〉 δω

2π

)
+ ηT 〈n̂(t)〉 δω

2π
, (7)

where we have used T 2 = T
2
, which holds in the diffusive

regime [4]. Evaluating the last expression for a coherent state
yields 〈�n2

C,T (ωs,δω)〉 = ηT 〈n̂C(t)〉 δω/2π .
We introduce the Fano factor

F (ω,δω) ≡ 〈�n2(ω,δω)〉
〈�n2

C(ω,δω)〉 , (8)

that gauges the ratio between the variance in the photon
fluctuations of an unknown quantum state, 〈�n2(ωs,δω)〉, and
of a coherent state, 〈�n2

C(ωs,δω)〉, having the same mean
photon flux. Importantly, the Fano factor can be directly
measured without determining the proportionality factor be-
tween the noise power recorded with the electrical spectrum
analyzer and the photon number variance. In the experiment,
the optical state is created by overlapping a squeezed-vacuum
state with a bright-coherent state, cf. Fig. 1. Since the resultant
bright-squeezed state has a large coherent amplitude, the
average photon flux is to a very good approximation equal
to the average photon flux of the coherent state, and Eq. (7)
can be rewritten as

FT (ωs,δω)

= η2
T T

2
[〈�n2(ωs,δω)〉−〈n̂(t)〉δω/2π ]+ηT T 〈n̂(t)〉δω/2π

ηT T 〈n̂(t)〉δω/2π

= 1 − ηT T [1 − F (ωs,δω)]. (9)
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A similar expression holds for the total reflection, i.e.,
FR(ωs,δω) = 1 − ηRR[1 − F (ωs,δω)], with ηR being the cor-
responding detection efficiency. We emphasize the importance
of the last expressions. In Ref. [21] it was predicted that any
nonclassical features in the electric field quadrature amplitudes
vanish in the multiple scattering process after ensemble
averaging. In contrast, Eq. (9) shows that for a quantum
state with nonclassical photon fluctuations, also the ensemble-
averaged transmitted and reflected photon fluctuations exhibit
nonclassical photon fluctuations after multiple scattering.

We now introduce the spatial quantum correlation function,
which is the quantity extracted in the experiment. It is defined
as

C
Q
bb′ (ωs,δω) = 1

2π

∫ ∞

−∞
dτ

∫ ω+

ω−
dω Cbb′ (τ ) eiωτ (10)

for b �= b′, where

Cbb′ (τ ) = 〈n̂b(t)n̂b′(t + τ )〉
〈n̂b(t)〉 〈n̂b′ (t + τ )〉 . (11)

The correlation function gauges the photon correlations
between two different output modes b and b′. Starting from
Eq. (4), we derive

C
Q
bb′ (ωs,δω)

= 1

2π

∫ ∞

−∞
dτ

∫ ω+

ω−
dω

�(τ ) −〈n̂(t)〉δ(τ ) + 〈n̂(t)〉2

〈n̂(t)〉2 CC
bb′ e

iωτ

= [F (ωs,δω) − 1]

〈n̂(t)〉
δω

2π
CC

bb′ , (12)

by using that 〈n̂(t)〉 ≈ 〈n̂(t)〉C = 2π/δω 〈�n̂2
C(ωs,δω)〉. Here

CC
bb′ = TabTab′/(Tab × Tab′ ) is the classical speckle correlation

function that is induced by multiple scattering [2–4].
From Eq. (12) it can be seen that different optical modes b

and b′ are positively correlated, i.e., the photons show spatial

bunching [CQ
bb′ (ωs,δω) � 0] when the light source exhibits

classical photon fluctuations. For a light source that exhibits
nonclassical photon fluctuations [F (ωs,δω) < 1], we enter the
purely quantum optical regime where photons propagating
in two different directions have negative spatial correlations

[CQ
bb′ (ωs,δω) < 0]. The spatial quantum correlation function

can be expressed in terms of the ensemble-averaged total
transmitted (reflected) Fano factor that is directly measured
in the experiment. This is seen by substituting Eq. (9), which

holds in the diffusive regime (CC
bb′ = 1) into Eq. (12), leading

to the expression

C
Q
bb′ (ωs,δω) = [FT |R(ωs,δω) − 1]

〈n̂T |R(t)〉
δω

2π
. (13)

Thus, the spatial quantum correlation function can be extracted
by recording in addition to the Fano factor also the photon
flux and the detection efficiency for the total transmission or
reflection from the multiple scattering medium, as schemati-
cally shown in Fig. 1. The mean photon flux can be measured
by recording the light power of the light source, P , divided
by the energy of a photon at the optical frequency, ω0, such
that 〈n̂(t)〉 = P/h̄ω0, where h̄ is the Planck constant divided
by 2π . Our method provides an experimentally simple way

of extracting two-channel speckle correlations in comparison
with a direct measurement based on correlation measurements
with two single photon counting detectors [13].

III. EXPERIMENT

In the following, the performed experiment is discussed.
First, the experimental setup and the characteristics of the
used light source are described in Sec. III A. A detailed
characterization of the multiple scattering sample is carried out
in Sec. III B. In Sec. III C, we present the experimental results
on the measured multiple scattered photon fluctuations and
show how the magnitude of the spatial quantum correlations
can be modified.

A. The squeezed light source

The experimental setup to study the photon fluctuations of
multiply scattered light is schematically shown in Fig. 2(a).
The squeezed vacuum state is generated with a bow-tie
shaped optical parametric oscillator operating below threshold
[24,25]. As a nonlinear medium, a type III periodically poled
nonlinear crystal was placed inside the optical parametric
oscillator and pumped with a continuous-wave laser (Diabolo,
Innolight) at a wavelength of λp = 532 nm. A second-order
nonlinear process generates photon pairs that are in resonance
with the cavity and are centered around λ0 = 1064 nm.
A fraction of the cavity mode is coupled out by a partly
transmitting cavity mirror with a power transmission of 10%.
By operating the optical parametric oscillator below threshold,
a squeezed vacuum state is generated [26]. One of the cavity
mirrors is mounted on a piezoelectric element in order to adjust
the optical path length of the cavity. The optical parametric
amplifier is stabilized by recording the transmittance through
the cavity of a counterpropagating light beam on detector
D1 (red dashed line) using the Pound-Drever-Hall technique
that stabilizes the cavity over several hours [27]. A bright
amplitude-squeezed state is generated by overlapping the
squeezed vacuum state with a coherent state on a nonpolarizing
beam splitter that transmits 99% of the squeezed vacuum state
and mixes in 1% of the strong coherent state; cf. Fig. 2(a). Note
that the relative phase �φ between the coherent state and the
vacuum squeezed state must be chosen properly in order to
generate a bright amplitude-squeezed state. By continuously
tuning the relative phase, �φ, a light source with excess or
reduced photon fluctuations relative to the classical limit is
obtained. Both the pump beam and the coherent displacement
beam are shaped in high finesse mode-cleaning cavities (MC)
in order to ensure a good spatial mode matching of the vacuum
squeezed state and the coherent state on the beam splitter.

To characterize the bright squeezed light source, we use
a highly sensitive InGaAs-resonance detector that converts
the photocurrent of the photodiode (ETX 500T, Epitaxx)
with a transimpedance amplifier into a voltage. An electrical
spectrum analyzer computes the Fourier spectrum of the
autocorrelation function, �(τ ) [cf. Eq. (1)], from the ac voltage
of the photodetector at an electrical sideband frequency ωs with
a resolution bandwidth of δω/2π = 300 kHz. The resonance
frequency of our photodetector is 3.93 MHz, which is,
therefore, the chosen sideband frequency ωs/2π = 3.93 MHz
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FIG. 2. (Color online) (a) Sketch of the experimental setup. MC:
mode cleaner, PPKTP: periodically poled potassium titanyl phosphate
nonlinear crystal as part of an optical parametric oscillator (gray
shaded box), SQZ: vacuum squeezed light beam, C: coherent light
beam with a variable optical phase, �φ, relative to the squeezed
vacuum, BS: beam splitter, FM: flip mirror, S: multiple scattering
sample, SA: spectrum analyzer, D: detector. The detection detector,
D2, has a bandwidth of 315 kHz. The multiple scattered light is
collected with a microscope objective featuring a numerical aperture
of NA = 0.63. In reflection geometry, the incident light illuminates
the sample under an angle α = 69◦. A detailed explanation of the
setup can be found in the main text. (b) Measured Fano factor,
F (ωs,δω), at an electrical sideband frequency of ωs = 3.93 MHz
of the bright squeezed light source without insertion of the multiple
scattering sample (black circles) depending on the phase �φ of the
coherent beam, as schematically shown in the inset. The measured
classical limit is plotted with gray triangles and is obtained by
blocking the squeezed beam. As the resolution bandwidth, we used
δω/2π = 300 kHz. The uncertainty in the Fano factor is estimated
over 18 full periods of �φ = 0, . . . ,36π . (c) Reconstructed Wigner
function of the squeezed vacuum state (SQZ) produced by the
optical parametric oscillator. The Wigner function is obtained from
time-resolved measurements using a homodyne setup with a 50:50
beam splitter (see inset) and quantum state reconstruction.

in our experiment. Next, we relate the dc voltage of the
photodetector to the mean photon flux by calibrating it with a
power meter. To this end, we measure the light power, P , that is
proportional to the mean photon flux and divide it by the energy
of a single photon, i.e., 〈n̂(t)〉 = P/h̄ ω0. The linearity of the
photodetector is ensured by measuring the dc and ac voltage
of the photodiode versus the power of the coherent laser beam.
The experiments are performed with optical powers of the
light source larger than P = 5 μW, where the signal is 6.5 dB
larger than the dark noise level of the detector.

Figure 2(b) shows the measured Fano factor, F (ωs,δω), of
the light source as a function of the relative phase between

the coherent beam and the squeezed vacuum beam, �φ, as
obtained by removing the multiple scattering sample. The
classical limit (gray triangles) is recorded by blocking the
squeezed vacuum beam, thereby probing the bright coherent
beam. The relative phase, �φ, is scanned with a mirror
mounted on a piezoelectric element. We find that the photon
statistics of the nonclassical light source can be continuously
tuned below the classical limit [F (ωs,δω) = 1] to a minimum
of F (ωs,δω) = 0.52 ± 0.02 and above the classical limit to a
maximum Fano factor of F (ωs,δω) = 4.6 ± 0.2.

We furthermore characterize the vacuum squeezed state
by the technique of quantum tomography where the Wigner
function is reconstructed based on phase-sensitive measure-
ments of the quantum fluctuations; see the inset in Fig. 2(c).
Two photodetectors mounted at the output ports of a 50:50
beam splitter record the photocurrent as a function of the time.
Both time-resolved signals are subtracted from each other,
mixed with an electronic local oscillator at a frequency of
3.93 MHz, and low-pass filtered with a bandwidth of 150 kHz.
The relative phase, �φ, of the coherent light beam is slowly
varied so that the Wigner function is reconstructed from the
recorded data for different values of the phase, using an
iterative maximum-likelihood reconstruction algorithm [28].
The Wigner function is a quasiprobability distribution that
contains the complete information about the quantum state.
It is expressed in terms of the real and imaginary part of the
quantized electric field, the so-called x and p quadratures.
From Fig. 2(c), we observe that the vacuum squeezed state
has strongly reduced fluctuations in the x quadrature at the
expense of enhanced fluctuations in the p quadrature fulfilling
the Heisenberg uncertainty relation [29].

The multiple scattering experiment is conducted by focus-
ing the nonclassical light onto either the front surface or the
back surface of the sample, cf. Fig. 2(a), to perform total
transmission and total reflection measurements, respectively.
The multiply scattered light is collected with a microscope
objective (NA = 0.63) and recorded with the photodetector
D2. In the reflection geometry, it is desirable to remove direct
reflections due to single-scattering events from the multiply
scattered distribution of light. To achieve this, the multiple
scattering surface of the sample is illuminated under a steep
angle of 69◦, whereby the direct reflection does not pass
through the collection microscope objective.

B. Sample characterization

The multiple scattering samples are prepared by spreading
suspensions of titanium dioxide particles on microscope cover
glasses resulting in a typical sample size of 45 mm × 25 mm.
A scanning electron microscope image of a sample is shown
in Fig. 3(a). After evaporation of the liquid, the thicknesses
of the samples are measured by scanning each sample using
the tip of a micrometer screw. The statistics in the thickness
determination is obtained by probing 20 different positions on
the samples [Fig. 3(b)]. The central area of each sample is left
untouched to avoid damage using this contact technique. Note
that all thickness measurements are carried out far from the
sample border, where surface tension of the suspension will
lead to large variations in the sample thickness. The average
thicknesses of the samples can be seen in Fig. 3(c), where

033814-4



CONTINUOUS-WAVE SPATIAL QUANTUM CORRELATIONS . . . PHYSICAL REVIEW A 86, 033814 (2012)

(c)(c)

(b)

0 5 1 0 1 5 2 0 2 5

2

4

6

8

T
-1

Sample thickness m)

0 10 20

10

20

30

40

2

4

6

Sample width (mm)

)
m

m( thgie h elp
ma

S

)
m

(
L

m

(a)

FIG. 3. (a) Scanning electron microscope image of the multiple
scattering medium consisting of TiO2 that has been grinded into
strongly scattering particles with a typical size of 200 nm and
deposited on a glass substrate. (b) Scanning of a sample at different
positions with the tip of a micrometer screw to obtain the average
sample thickness. The scanned positions are shown as squares and
their color represents the measured thickness. The average thickness
for this sample is determined to be L = (6 ± 2) μm. (c) Measured
inverse total transmission through the multiple scattering samples
vs sample thickness obtained using an integrating sphere. The line
represents a linear fit to the data whereby the transport mean free path
and the effective refractive index are obtained.

the error bars display the measured variance in the thickness.
In the optical experiments discussed in the next section, only
a small region in the center of the sample is investigated,
and we therefore expect that the recorded size fluctuations
provide an upper bound for the uncertainty relevant in the
optical experiment.

The ensemble-averaged total intensity transmission and
reflection coefficients T , R are the characteristic parameters
of the multiple scattering medium in the experiments carried
out here. Independent measurements of T are carried out by
using an integrating sphere with two entrance ports with a
detector mounted on one port and the samples on the second
port. We record the total transmitted power, P , through a
sample and the light power, P0, without the sample to extract
the total sample transmission, T , and ensemble average by
measuring at six different positions on the sample. Variations
in the transmission coefficients were observed depending on
which of the two sample surfaces was illuminated, since they
are surrounded by different dielectric media (glass and air,
respectively). The inverse of the total transmission in the thin
sample approximation is given by Ref. [30]

T
−1 = L + ze1 + ze2

� + ze1

1

Tsurf
. (14)

Here ze1 and ze2 are the extrapolation lengths of the medium
that are related to the effective refractive index [31], and Tsurf

accounts for the reflections at the two sample boundaries that
depend on the refractive indices of the surrounding materials
(either nglass = 1.45 or nair = 1.0). Fitting the experimental
data of Fig. 3(c) with this theory, we estimate a transport mean
free path of � = 0.9 ± 0.3 μm and an effective refractive index
of neff = 2.0 ± 0.4 corresponding to extrapolation lengths
of ze1 = 4.3 ± 0.3 μm and ze2 = 4.6 ± 0.3 μm, respectively.
From that, the average number of scattering events, N =
(Leff/�)2, taking place in the multiple scattering media can be
estimated, where Leff = L + ze1 + ze2 is the effective sample
thickness including interface effects [32]. For our samples,
we estimate N ≈ 300–1000 scattering events for sample
thicknesses varying between L = 6 and 20 μm, demonstrating
that we are deep in the multiple scattering regime.

A crucial issue for any quantum optics experiments in
multiple scattering media is to collect a sufficient amount of
photons in order to see nonclassical features. Consequently,
the total collection efficiencies in both transmission and
reflection (ηT,R) are essential parameters that can be measured
independently from the quantum noise measurements by
recording the ratio of the total transmitted (reflected) power
collected with the squeezing detector relative to the total
power transmitted through (reflected from) the sample. In the
reflection setup, the multiple scattering medium is illuminated
under a steep angle of 69◦. The fraction of the incident
light that is multiply scattered is R = Tsurf(α)Rs . The light
that enters the sample, Tsurf(69◦) ≈ 72%, is calculated from
Fresnel relations at the sample surface. The amount that is
reflected inside the sample, Rs = 1 − Ts , is obtained from
sample transmission measurements with an integrating sphere
using T = Ts Tsurf(0◦) and incorporating the surface reflection
for light under normal incidence to the multiple scattering
medium, see Eq. (14). The detection efficiency for reflection
measurements is then given by ηR = (Pdet/P0)/R, where P0

is the power of the light source and Pdet denotes the ensemble-
averaged power of the reflected multiply scattered light
detected by the squeezing detector. The measured detection
efficiencies for the transmission and reflection experiments are
presented in Fig. 4. They are found to vary with the thickness of

5 10 15 20 25
0.2

0.3

0.4

T
,R

Sample thickness ( m)

FIG. 4. Overall collection efficiency for each sample thickness
as measured in transmission (ηT , gray triangles) and reflection (ηR ,
black circles). The error bars on the sample thickness are included
only on the reflection data.

033814-5



SMOLKA, OTT, HUCK, ANDERSEN, AND LODAHL PHYSICAL REVIEW A 86, 033814 (2012)

the sample since the diffuse light exiting the random medium
is collected with different efficiencies depending on the extent
of the diffusion process. We note that the collection efficiency
obtained with the microscope objective is much higher than
that of an integrating sphere (η ≈ 1–10%), although the
numerical aperture (NA) of the objective limits the obtainable
collection efficiency.

C. Experimental results

The Fano factor of multiply scattered light, measured in
reflection geometry and depending on the relative phase �φ,

is displayed in Fig. 5(a) for a sample of L = 16 μm. Using the
bright squeezed light source, we observe photon fluctuations
of the multiply scattered photons that clearly differ from
the classical limit. Either classical or nonclassical photon
fluctuations are recorded, depending on �φ. For comparison,
Fig. 5(b) shows the Fano factor of the total transmission. In
both cases, the measurement is performed at a single sample
position, representing a single realization of disorder. The
observed variation in the Fano factor of the transmitted light
is smaller than that in the reflection. This can be explained
by a higher reflection than transmission of our sample since
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FIG. 5. Measured Fano factor FT,R(ωs,δω) after multiple scat-
tering of a squeezed state, as recorded in (a) reflection geometry
and (b) transmission geometry for L = 16 μm (black circles). The
classical limit is depicted with gray triangles. (c) Ensemble-averaged
transmitted (filled gray symbols) and reflected (empty black symbols)
Fano factor depending on the incident Fano factor, F . The inset
shows a zoom in of the data that have been taken for Fano factors
smaller than F < 1, highlighting the quantum regime of multiple
scattering. The sample thicknesses are 6 μm (triangles) and 20 μm
(circles), respectively. The theory expressed by Eq. (9) is shown by
the straight lines, and the classical limited is given by the dashed
line. The ensemble average has been performed for six different
sample positions, and the result has been verified 18 times per sample
position.

the Fano factor is proportional to the sample transmission and
reflection, respectively [cf. Eq. (9)].

Multiple scattering is a random process, and Figs. 5(a) and
5(b) are examples of data recovered for a single realization of
disorder that consequently are unpredictable since all physical
observables in multiple scattering are statistical quantities. To
compare the experiment with theory, we perform an ensemble
average over different realizations of disorder. First, we tune
the relative angle �φ over 18 full periods (0,36π ) at a single
sample position. Data taken at �φ + 2πN for different N

correspond to the same incident quantum state of light and
can be used to average in order to account for fluctuations in
the light source. The statistical ensemble average is obtained
by repeating the procedure for six different sample positions.
Figure 5(c) shows the transmitted and reflected ensemble-
averaged Fano factor depending on the incident quantum state
of light for two different samples thicknesses. The output
Fano factors are found to depend linearly on the Fano factor
of the light source, F (ωs,δω), in very good agreement with
the quantum theory of multiple scattering, cf. Eq. (9), after
including the independently measured collection efficiency
(Fig. 4). For a nonclassical light source [F (ωs,δω) < 1], the
multiply scattered photons have reduced photon fluctuations
below the classical limit even after performing the ensemble
average, demonstrating that nonclassical properties of light can
be detected after the random process of multiple scattering
[inset in Fig. 5(c)]. This phenomenon that is of a purely
quantum origin could open new possibilities to increase the
information capacity in communication applications since the
amount of transmitted information can be increased in a
strongly scattering environment [33]. The classical limit of
the information capacity is given by the signal-to-noise ratio
of the detected light utilizing a light source with Poissonian
photon statistics. Using nonclassical light as in the present
work breaks this classical limit and therefore further increases
the information capacity [34].

Finally, we study the spatial correlations induced by

multiple scattering of squeezed light. C
Q
bb′ (ωs,δω) does not

depend on the spatial separation of the modes b and b′ in
the diffusive regime, i.e., the spatial quantum correlation
is of infinite range. Therefore, the correlation function can
be determined from the photon fluctuations of the total
transmittance or reflectance, as predicted in Eq. (13). Thus,
we record the ensemble-averaged Fano factor FT,R(ωs,δω) and
the ensemble-averaged light power of the multiple scattered
light. Using the calibrated photodetector and an incident light
power of P = 120 μW and h̄ ω0 = 1.17 eV (λ0 = 1064 nm),
we determine the incident mean photon flux to obtain 〈n̂(t)〉 =
P/h̄ ω0 = 6.46 × 1014 s−1.

Figure 6 shows that the spatial quantum correlation function
in a multiple scattering medium can be controlled by the
quantum state of the incident light source. The correlation
function is obtained from quantum noise measurements of
the transmitted and reflected light, as outlined in Sec. II B.
The data are shown for two different samples (L = 6 and
20 μm) as a function of the incident Fano factor, F (ωs,δω).

We clearly observe a linear dependence of C
Q
bb′ (ωs,δω) on the

Fano factor of the light entering the medium. The incident
Fano factor and photon flux were measured by removing
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FIG. 6. (Color online) Measured spatial quantum correlation
function depending on the incident Fano factor for different sample
thicknesses (blue triangles, 6 μm; black circles, 20 μm). The spatial
quantum correlation function has been measured in transmission
(filled symbols) and reflection (empty symbols), respectively. The
solid gray line displays the theoretical prediction while the dashed

gray line represents the quantum limit of C
Q

bb′ (ωs,δω) = 0. For
visibility, we only show selected data points for each measurement.

the sample. In excellent agreement with theory [Eq. (12)],
we find in transmission and reflection measurements that
C

Q
bb′ (ωs,δω) is independent of the sample thickness. The

strength of the spatial quantum correlation varies over a
broad range between −2 × 10−10 and 1.8 × 10−9. Note that
in Ref. [11], the bandwidth of the measurement was not
accounted for properly, which underestimated the magnitude
of the spatial correlation function [35]. We highlight that our
observation of nonvanishing spatial quantum correlations that
are tunable above and below the classical limit is in stark
contrast to the classical intensity correlation function that is

always unity in the diffusive regime [36]. The experiment
demonstrates that the nonclassical photon statistics can survive
multiple scattering and persists even after ensemble averaging.
An interesting next step will be to study experimentally the
quantum interference of two or more independent quantum
states in a multiple scattering medium [19].

IV. CONCLUSION

In conclusion, we have presented a continuous-mode quan-
tum theory of multiple scattering in order to properly describe
spatial quantum correlations that are induced by multiple
scattering. Depending on the quantum state of the incident light
source, we predict and observe that the multiple scattered light
can exhibit either classical or nonclassical photon fluctuations.
From total transmission and total reflection measurements, we
observed either classical or nonclassical spatial correlations
when varying the quantum state of the squeezed light source.
Controlling the quantum state of the incident light source
provides an efficient way of tuning continuously the multiple
scattering spatial quantum correlations. The experimental re-
sults were in excellent agreement with the theoretical analysis.
We expect that our results might inspire new experiments
on, e.g., multiple scattering of entangled photons or quantum
interference [12,18,19,37].

ACKNOWLEDGMENTS

We thank Jirı́ Janousek for help with the nonclassical
light source, Elbert G. van Putten, Ivo M. Vellekoop, and
Allard P. Mosk for providing the samples, and Ad Lagendijk
for stimulating discussions. We gratefully acknowledge the
Danish Council for Independent Research [Technology and
Production Sciences (FTP) and Natural Sciences (FNU)] and
the European Research Council (ERC Consolidator Grant
“ALLQUANTUM” for P.L.) for financial support.

[1] P. Sheng, Introduction to Wave Scattering, Localization, and
Mesoscopic Phenomena (Academic, San Diego, 1995).

[2] P. A. Mello, E. Akkermans, and B. Shapiro, Phys. Rev. Lett. 61,
459 (1988).

[3] S. Feng, C. Kane, P. A. Lee, and A. D. Stone, Phys. Rev. Lett.
61, 834 (1988).

[4] M. C. W. van Rossum and T. M. Nieuwenhuizen, Rev. Mod.
Phys. 71, 313 (1999).

[5] C. W. J. Beenakker, Phys. Rev. Lett. 81, 1829 (1998).
[6] M. Patra and C. W. J. Beenakker, Phys. Rev. A 61, 063805

(2000).
[7] P. Lodahl and A. Lagendijk, Phys. Rev. Lett. 94, 153905 (2005).
[8] S. Balog, P. Zakharov, F. Scheffold, and S. E. Skipetrov, Phys.

Rev. Lett. 97, 103901 (2006).
[9] P. Lodahl, Opt. Lett. 31, 110 (2006).

[10] P. Lodahl, A. P. Mosk, and A. Lagendijk, Phys. Rev. Lett. 95,
173901 (2005).

[11] S. Smolka, A. Huck, U. L. Andersen, A. Lagendijk, and
P. Lodahl, Phys. Rev. Lett. 102, 193901 (2009).

[12] W. H. Peeters, J. J. D. Moerman, and M. P. van Exter, Phys. Rev.
Lett. 104, 173601 (2010).

[13] S. Smolka, O. L. Muskens, A. Lagendijk, and P. Lodahl, Phys.
Rev. A 83, 043819 (2011).

[14] L. Sapienza et al., Science 327, 1352 (2010).
[15] M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk,

Phys. Rev. Lett. 105, 013904 (2010).
[16] S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R.

Rix, L. S. Froufe-Perez, P. D. Garcia, and P. Lodahl, New J.
Phys. 13, 063044 (2011).

[17] H. Thyrrestrup, S. Smolka, L. Sapienza, and P. Lodahl, Phys.
Rev. Lett. 108, 113901 (2012).

[18] C. W. J. Beenakker, J. W. F. Venderbos, and M. P. van Exter,
Phys. Rev. Lett. 102, 193601 (2009).

[19] J. R. Ott, N. A. Mortensen, and P. Lodahl, Phys. Rev. Lett. 105,
090501 (2010).

[20] A. Aiello and J. P. Woerdman, Phys. Rev. A 70, 023808
(2004).

[21] P. Lodahl, Opt. Express 14, 6919 (2006).

033814-7

http://dx.doi.org/10.1103/PhysRevLett.61.459
http://dx.doi.org/10.1103/PhysRevLett.61.459
http://dx.doi.org/10.1103/PhysRevLett.61.834
http://dx.doi.org/10.1103/PhysRevLett.61.834
http://dx.doi.org/10.1103/RevModPhys.71.313
http://dx.doi.org/10.1103/RevModPhys.71.313
http://dx.doi.org/10.1103/PhysRevLett.81.1829
http://dx.doi.org/10.1103/PhysRevA.61.063805
http://dx.doi.org/10.1103/PhysRevA.61.063805
http://dx.doi.org/10.1103/PhysRevLett.94.153905
http://dx.doi.org/10.1103/PhysRevLett.97.103901
http://dx.doi.org/10.1103/PhysRevLett.97.103901
http://dx.doi.org/10.1364/OL.31.000110
http://dx.doi.org/10.1103/PhysRevLett.95.173901
http://dx.doi.org/10.1103/PhysRevLett.95.173901
http://dx.doi.org/10.1103/PhysRevLett.102.193901
http://dx.doi.org/10.1103/PhysRevLett.104.173601
http://dx.doi.org/10.1103/PhysRevLett.104.173601
http://dx.doi.org/10.1103/PhysRevA.83.043819
http://dx.doi.org/10.1103/PhysRevA.83.043819
http://dx.doi.org/10.1126/science.1185080
http://dx.doi.org/10.1103/PhysRevLett.105.013904
http://dx.doi.org/10.1088/1367-2630/13/6/063044
http://dx.doi.org/10.1088/1367-2630/13/6/063044
http://dx.doi.org/10.1103/PhysRevLett.108.113901
http://dx.doi.org/10.1103/PhysRevLett.108.113901
http://dx.doi.org/10.1103/PhysRevLett.102.193601
http://dx.doi.org/10.1103/PhysRevLett.105.090501
http://dx.doi.org/10.1103/PhysRevLett.105.090501
http://dx.doi.org/10.1103/PhysRevA.70.023808
http://dx.doi.org/10.1103/PhysRevA.70.023808
http://dx.doi.org/10.1364/OE.14.006919


SMOLKA, OTT, HUCK, ANDERSEN, AND LODAHL PHYSICAL REVIEW A 86, 033814 (2012)

[22] R. Loudon, The Quantum Theory of Light (Oxford University
Press, New York, 2007).

[23] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics
(Cambridge University Press, Cambridge, 1995).

[24] S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and
A. Furusawa, Appl. Phys. Lett. 89, 061116 (2006).

[25] Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, Opt.
Express 15, 4321 (2007).

[26] L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, Phys. Rev. Lett.
57, 2520 (1986).

[27] R. W. P. Drever et al., Appl. Phys. B 31, 97 (1983).
[28] A. I. Lvovsky, J. Opt. B 6, S556 (2004).
[29] C. M. Caves, Phys. Rev. D 23, 1693 (1981).
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