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Spontaneous emission from large quantum dots in nanostructures: Exciton-photon interaction
beyond the dipole approximation
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We derive a rigorous theory of the interaction between photons and spatially extended excitons confined
in quantum dots in inhomogeneous photonic materials. We show that beyond the dipole approximation, the
radiative decay rate is proportional to a nonlocal interaction function, which describes the interaction between
light and spatially extended excitons. In this regime, light and matter degrees of freedom cannot be separated and
a complex interplay between the nanostructured optical environment and the exciton envelope function emerges.
We illustrate this by specific examples and derive a series of important analytical relations, which are useful for
applying the formalism to practical problems. In the dipole limit, the decay rate is proportional to the projected
local density of optical states, and we obtain the strong and weak confinement regimes as special cases.
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I. INTRODUCTION

The dipole approximation (DA) is one of the most central
and successful approximations in quantum optics and quantum
electrodynamics (QED). When describing the light-matter
interaction, the DA is valid if the variation of the electro-
magnetic field is negligible over the spatial extent of the
emitter. Since optical wavelengths exceed atomic dimensions
by orders of magnitude, this is an excellent approximation in
atomic physics. The advances in solid-state quantum optics
have enabled the realization of semiconductor nanostructures
with strongly modified optical properties and embedded self-
assembled quantum dots (QDs). Both atoms and QDs have
a discrete spectrum with optically active transitions but as
opposed to atoms, QDs are inherently mesoscopic solid-state
structures whose transition energy, position, and chemical
composition can be controlled by semiconductor nanotech-
nology, and in nanophotonic structures, the electromagnetic
environment can have pronounced spatial variations. For QDs,
the validity of the DA is not clear a priori, and here, we derive
the theory of spontaneous emission beyond the DA for excitons
confined in QDs embedded in nanostructures. Recently, a large
deviation from dipole theory was observed for small QDs in
close proximity to a metallic mirror.1

The tunability of QD sizes can lead to very interesting
exciton effects. For strongly confined states in small QDs,
the Coulomb interaction can be neglected and excitons can
thus be described as mutually independent electrons and
holes.2,3 For larger QDs, the Coulomb interaction plays an
increasingly important role and the electron and the hole form
a bound exciton state, which has an oscillator strength (OS)
proportional to the volume of the exciton. This is the so-called
giant-OS effect,4–6 which has received particular attention
in the field of solid state QED because of the theoretical
prediction7 that QDs must be in the giant-OS regime in
order to achieve strong coupling between a single QD and
a microcavity. Indeed, some of the first demonstrations of
strong coupling in microcavities were achieved with large
QDs.8,9 However, the rapid increase in the quality factors and
the reduction of mode volumes in photonic crystal membrane

nanocavities over the past years have enabled strong coupling
using small QDs.10–12

A key signature of the giant-OS effect is fast radiative
decay rates.13 Fast total decay rates have been observed14,15

but the nonradiative decay rate was not measured in any
studies of large QDs except for a recent work.13 There it was
shown that contrary to the common assumption, nonradiative
recombination can be the dominant decay process for large
QDs resulting in a small OS but a fast total decay rate.
Therefore measuring the nonradiative decay rate is essential to
drawing conclusions about the OS and this has so far hindered
a complete experimental demonstration of the giant-OS effect.

Increasing the size of QDs has other profound consequences
for light-matter interaction because for sufficiently large
QDs the DA may break down. This modifies spontaneous-
emission rates for excitons in QDs and has been discussed in
several theoretical works on semiclassical models, in particular
by Sugawara,16 Gil and Kavokin,17 Ahn and Knorr,18 and
Ishihara.19 The purpose of this article is to extend these works,
firstly, by establishing the rigorous quantum formalism of
spontaneous emission beyond the DA for QDs in arbitrary
nanostructures, secondly, by deriving analytical results rele-
vant for applying the formalism to practical problems, thirdly,
by clarifying and generalizing the definition of the DA, and
fourthly, by discussing in detail the conceptual consequences
of the nontrivial intertwining of light and matter degrees of
freedom arising beyond the DA.

The usual criterion for the validity of the DA is that the
product of the length of the optical wave vector k and the
spatial extent of the emitter L must be much smaller than
unity,20 i.e., |k|L � 1, but this criterion is insufficient to
ensure the validity of the DA for QDs in nanostructures. For
QDs, there are four reasons why the DA could break down.
Firstly, the QDs are embedded in semiconductors with a high
refractive index, e.g., n ≈ 3.4 for GaAs, which increases |k|.
Secondly, QDs can be as large as L = 100 nm in lateral size.8

As an example, for L = 45 nm and a free-space wavelength
of 970 nm, we obtain |k|L ≈ 1. Thirdly, the criterion stated
above is valid for homogeneous media. In nanostructures, the
optical field modes can have strong gradients rendering the DA
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FIG. 1. Comparison between the LDOS and the nonlocal in-
teraction function introduced in this work. An exciton emitter
with a given envelope function (dark gray) is embedded in an
inhomogeneous dielectric environment indicated schematically by
the different refractive indices n1 (white) and n2 (light gray). The
Green’s tensor G(r,r′,ω) is a propagator of the electric field between
two spatial points at a given frequency ω and it is depicted as the
arrows. (a) In the DA, the spontaneous emission rate is governed by
the LDOS, which is given by the imaginary part of the Green’s tensor
evaluated at (r0,r0), where r0 is the center of the emitter. (b) Beyond
the DA, the spontaneous emission rate is governed by a nonlocal
interaction function, which is given by an integral over the imaginary
part of the Green’s tensor connecting all possible combinations of r
and r′, weighted by the envelope function.

invalid even if |k|L � 1 is fulfilled in bulk for light at the same
frequency. Fourthly, the influence of the finite size of the QDs is
enhanced by the asymmetric nature of exciton wave functions
in QDs.1 Thus, a proper theory of spontaneous emission
beyond the DA must be valid for arbitrary electromagnetic
environments. Here, we derive such a theory from first
principles and show that the radiative decay rate depends on
a nonlocal interaction function, whose physical interpretation
is illustrated in Fig. 1. In the DA [see Fig. 1(a)], the radiative
decay rate is proportional to the projected local density of
optical states (LDOS), which describes the field amplitude
at the position of the emitter due to emission from a dipole
source at the same position. Beyond the DA [see Fig. 1(b)],
a double integral over all points in space must be performed,
where the integrand is weighted by the envelope function of the
exciton. The double integral describes the physics emerging
beyond the DA. These effects find a natural description
within the framework of the electromagnetic Green’s tensor.
Thus the self-interference giving rise to spontaneous emission
is described mathematically by the imaginary part of the
electromagnetic Green’s tensor.

The nonlocal aspect of light-matter interaction beyond the
DA implies that light and matter degrees of freedom cannot be
separated, i.e., the radiative decay rate is neither proportional
to the projected LDOS nor to the OS. This points to another
previously overlooked problem in the interpretation of the
experimental results on large QDs: even if the nonradiative
decay rate discussed above had been measured and found
negligible, the highly nontrivial influence of the ubiquitous
surrounding optical nanostructure cannot be approximated by
a homogeneous medium and the OS has no general physical
meaning. Here, we present the complete quantum theory of
spontaneous emission for two-level QDs in inhomogeneous
media, which provides the theoretical framework for more
quantitative future experiments and enables calculating non-
Markovian decay dynamics and radiative (Lamb) shifts. We
consider InGaAs QDs, but our formalism can be readily
modified to describe other materials. Finally, we note that
nonlocal interactions play an important role also for light

propagation due to spatial-dispersion effects.21,22 For example,
optical chirality of an optical medium or the presence of bulk
excitons leads to a wave-vector dependence of the dielectric
function, i.e., spatial dispersion. The focus of our work is,
however, very different because we consider single-photon
emission from QDs and we are not concerned with the
possible modification of the dielectric function governing light
scattering on ensembles of QDs. Furthermore, quadrupole
effects were observed in the early research on optical properties
of bulk semiconductors23 but the effects we study here are
fundamentally different due to the mesoscopic nature of the
quantum dots: as we will show, the breakdown of the DA
leads in fact to a strong modification of the dipole transition
as opposed to quadrupole transitions studied in bulk materials
or for atoms.

This paper is organized as follows: in Sec. I, we describe the
exciton state and in Sec. II, we calculate the spontaneous emis-
sion from excitons beyond the DA in the Wigner-Weisskopf
model. In Sec. III, we derive the connection to dyadic Green’s
tensors, introduce a nonlocal interaction function and discuss
the physical implications of the results. We consider the dipole
limit of our results in Sec. IV and we apply our formalism
to three special cases in Sec. V. Finally, we present the
conclusions in Sec. VI. In Appendix A, we solve the effective
mass equation for the geometries relevant for this work. In
Appendix B, we consider the classical analog of our results.
The derivation of the relation to Green’s tensors is included in
Appendix C. Finally, in Appendix D, we show the analytical
calculation of the decay rate of spherical excitons beyond the
DA.

II. EXCITONS IN QUANTUM DOTS

A bulk semiconductor consists of nuclei and electrons
and in the Born-Oppenheimer approximation the motion of
nuclei and electrons are decoupled. Thus we consider electron
states imposed on an equilibrium state of the nuclei. At low
temperatures, the valence bands are completely filled, while
the conduction bands are empty. Although the upper valence
bands in InAs and GaAs are degenerate in bulk materials,
this degeneracy is lifted in the presence of confinement and
strain in QDs and we consider the heavy-hole band only. This
is a good approximation for low excitation powers and low
temperatures.24

The description of the ground state of a bulk semiconductor
consisting of N electrons in the upper valence band must
be treated in a many-body formalism.6,25–27 In the simplest
possible case, i.e., when neglecting interactions, the ground-
state wave function is given by the Slater determinant.28

We neglect the spin degree of freedom, which amounts to
considering only bright excitons in which the electron and hole
spins are antiparallel.29,30 It is convenient to use the compact
occupation number formalism and we define the ground state
of the crystal as the Fermi sea |F〉 given by

|F〉 = |1v,k1 , . . . ,1v,ki
, . . . ,1v,kN

〉
=

∏
ki

c
†
v,ki

|0F 〉, (1)

where cv,ki
(c†v,ki

) is the annihilation (creation) operator of an
electron in the valence band with k = ki and |0F 〉 denotes
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the state void of any electrons. These second-quantization
operators create single-particle states with corresponding wave
functions ψv,ki

(ri), which may be written in Bloch-form as

ψv,ki
(ri) = 1√

V
eiki ·ri uv,ki

(ri). (2)

Here, the valence band Bloch function uv,ki
(ri) has the

periodicity of the crystal lattice and is normalized over a unit
cell and V denotes the crystal volume.

We can write an excited state of the bulk semiconductor as

|Xkckv〉 = c
†
c,kc

cv,kv |F〉, (3)

where cc,kc (c†c,kc
) is the annihilation (creation) operator of an

electron in the conduction band with k = kc. The operators
considered above are in the electron representation, but at
this point it is convenient to change to the electron-hole rep-
resentation by defining the following operators31 ake = cc,kc ,
a
†
ke

= c
†
c,kc

, bkh = c
†
v,kv

, and b
†
kh

= cv,kv , where the electron

operators have simply been renamed and bkh (b†kh
) denotes the

annihilation (creation) operator of a hole in the valence band.
With this convention, we write the excited state of the bulk
semiconductor as

|Xkekh〉 = a
†
ke

b
†
kh

|F〉. (4)

This definition of the electron-hole representation has a
number of consequences for the properties of holes. In
particular, the following transformations hold, where the
subscript h refers to holes in the electron-hole representation
and the subscript v refers to electrons in the valence band
in the electron representation:31,32 kh = −kv (wave vector),
Eh,v = −Ee,v (energy), mh = −mv (effective mass), qh = −q

(charge), and Vh(r) = −Vv(r) (confinement potential). Here,
Eh,v (Ee,v) denotes the energy of a hole (an electron) relative
to the valence band edge energy Ev and q is the negative of
the elementary charge, i.e., q = −|e|.

In the presence of Coulomb interaction and/or quantum
confinement potentials, the states |Xkekh〉 are no longer
eigenstates. Instead, the new exciton eigenstate |X〉 can be
expanded as

|X〉 =
∑
ke,kh

χ̃ke,kh |Xkekh〉, (5)

where χ̃ke,kh are expansion coefficients. The corresponding
wave function X(r0,re,rh) can be found by projection onto the
position eigenvectors, where we have explicitly included the
center position of the QD, r0,

X(r0,re,rh) =
∑
ke,kh

χ̃ke,kh〈rerh|Xkekh〉

= 1

V

∑
ke,kh

χ̃ke,khe
ike·reuc,ke (re)eikh·rhuv,kh (rh)

(6)

� χ (r0,re,rh)uc,0(re)uv,0(rh), (7)

where Bloch’s theorem, the transformation of a sum to an
integral,

∑
k → V

(2π)3

∫
dk, and the definition of an inverse

Fourier transform have been used. The last equality holds
when only excitations near the band edge are considered so

that the Bloch functions may be evaluated at k = 0, which is a
good approximation for low temperatures and low excitation
intensities. The function χ (r0,re,rh) is denoted the exciton
envelope function, which is given by the solution to the
effective mass equation25

HEM(r0,re,rh)χ (r0,re,rh) = (E − Eg)χ (r0,re,rh), (8)

where E is the exciton energy, Eg = Ec − Ev is the band gap
energy, and the effective-mass Hamiltonian is given by

HEM(r0,re,rh) = p2
e

2m0me
+ p2

h

2m0mh
+ Ve(r0,re)

+Vh(r0,rh) − q2

4πε0εr|re − rh| . (9)

Here, pe (ph) is the electron (hole) momentum operator, m0 is
the electron rest mass, ε0 is the vacuum permittivity, and εr is
the relative dielectric constant. In the strong-confinement limit
where the Coulomb interaction can be neglected, the solution
to Eq. (8) is χ (r0,re,rh) = Fe(r0,re)Fh(r0,rh), where Fe(r0,re)
and Fh(r0,rh) denote the electron and hole envelope functions,
respectively. In the weak-confinement limit, electrons and
holes are entangled and therefore their wave functions do not
separate. We consider solutions to the effective-mass equation
in specific geometries in Appendix A.

III. QUANTUM THEORY OF SPONTANEOUS EMISSION
BEYOND THE DIPOLE APPROXIMATION

We describe light-matter interaction by the minimal cou-
pling Hamiltonian in the generalized Coulomb gauge in which
we assume ∇ · [εr(r)A(r,t)] = 0, where A(r,t) is the vector
potential. The interaction Hamiltonian reads33,34

H ′(r,t) = ih̄q

m0
A(r,t) · ∇. (10)

The vector potential is given by35

A(r,t) =
∑

μ

εμ

ωμ

êμ[Aμ(r)aμe−iωμt + A∗
μ(r)a†

μeiωμt ], (11)

where μ = (k,s) is the combined wave vector k and polar-
ization index s ∈ {1,2}, ωμ is the optical angular frequency,

εμ =
√

h̄ωμ

2ε0
is a normalization constant, êμ is the polarization

unit vector, and Aμ(r) is the field distribution function that
solves the vector Helmholtz equation with fixed boundary
conditions. aμ and a†

μ are the field annihilation and creation
operators, respectively. In second quantization, the interaction
Hamiltonian can be written as

H ′ =
∑
ki ,kj

∑
α,β

H
′αβ

ki ,kj
c
†
αki

cβkj
, (12)

where α,β ∈ {c,v} and H
′αβ

ki ,kj
= 〈1α,ki

|H ′(r,t)|1β,kj
〉.

It is convenient to use the interaction picture where the time
evolution of the operators is governed by the noninteracting
Hamiltonian. When considering only excitations near the band
edge k = 0, the energies of the conduction and valence bands
and hence the transition energy of the QD, h̄ω0, do not
depend on i or j . The operators in the interaction picture
become c̃c,k = cc,ke

−iωct , c̃
†
c,k = c

†
c,ke

iωct , c̃v,k = cv,ke
−iωvt ,
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and c̃
†
v,k = c

†
v,ke

iωvt . When inserting these operators in Eq.
(12), we obtain terms proportional to e±i(ωμ+ω0)t and e±iωμt ,
which are rapidly oscillating as a function of time as well
as the slowly oscillating terms proportional to e±i	μt , where
	μ = ωμ − ω0. The rapidly oscillating terms average to zero
and are therefore neglected in the rotating wave approximation.

We consider transitions between the ground state, |gμ〉 =
|F〉 ⊗ |1μ〉, where |1μ〉 is a single-photon state, and the excited
state, |e〉 = |X〉 ⊗ |0〉, where |X〉 is given by Eq. (5) and |0〉
denotes the vacuum state. We must now solve the interac-
tion picture Schrödinger equation, d

dt
|
(t)〉 = − i

h̄
H ′|
(t)〉,

assuming that the system may be in a superposition of the
two eigenstates, i.e., |
(t)〉 = ce(t)|e〉 + ∑

μ cgμ
(t)|gμ〉 and

by projecting the result onto either 〈e| or 〈gμ|, we obtain the
set of equations

d

dt
ce(t) = iq

h̄m0

∑
μ

∑
kc,kv

εμ

ωμ

e−i	μt χ̃∗(kc,kv)cgμ
(t)

× êμ ·
∫

d3rψ∗
c,kc

(r)Aμ(r)pψv,kv (r), (13)

d

dt
cgμ

(t) = iq

h̄m0

∑
kc,kv

εμ

ωμ

ei	μt χ̃ (kc,kv)ce(t)

× êμ ·
∫

d3rψ∗
v,kv

(r)A∗
μ(r)pψc,kc (r). (14)

Let us first turn to the spatial integrals, which include the
momentum operator p = −ih̄∇. We assume that Aμ(r) and the
plane-wave part of ψk(r) are slowly varying on the length scale
of the lattice constant, so that these functions can be evaluated
at each lattice site rn and taken outside the integral:∫

d3rψ∗
c,kc

(r)Aμ(r)pψv,kv (r)

= VUC

∑
n

(e−ikc·rAμ(r)eikv·r)|r=rn

× 1

VUC

∫
UC

d3ru∗
c,kc

(r)puv,kv (r)

= êμ · pcv

∫
d3re−ikc·rAμ(r)eikv·r, (15)

where UC denotes integration over one unit cell with volume
VUC and we have used the orthogonality of the Bloch functions.
The last equation is obtained by noting that since the Bloch
functions are periodic, the integral over UC is the same for all
rn and may be evaluated separately. Also, we have assumed
that the Bloch functions depend only weakly on k, so that
they can be evaluated at k = 0. The sum can then be converted
back to an integral and finally we have defined the Bloch matrix
element as pcv = 1

VUC

∫
UC d3ru∗

c,0(r)puv,0(r) The Bloch matrix
element is a material parameter, whose magnitude evaluates
to36 |pcv|2 = m0Ep(x)

2 , where Ep is the Kane energy,37 which
depends on the indium mole fraction x in the InxGa1−xAs
alloy.

The summations over k vectors can now be carried out.
At this point, it is advantageous to change notation to the
electron-hole picture by substituting kc → ke and kv → −kh.
By insertion of Eq. (15) and interchanging the order of
integration and summation in Eqs. (13) and (14), the resulting
equations take the form of inverse Fourier transforms and we

have
d

dt
ce(t) = iq

h̄m0

∑
μ

εμ

ωμ

e−i	μtcgμ
(t)

× êμ · pcv

∫
d3rχ∗(r0,r,r)Aμ(r), (16)

d

dt
cgμ

(t) = iq

h̄m0

εμ

ωμ

ei	μtce(t)

× êμ · pvc

∫
d3rχ (r0,r,r)A∗

μ(r). (17)

By integrating Eq. (17) with respect to time, inserting
the result in Eq. (16), and finally rewriting the result by
multiplication with a Dirac δ function in frequency and
integrating over frequency, we obtain

d

dt
ce(t) = − πq2

2h̄m2
0ε0

∫ ∞

−∞
dω

ρNL(r0,ω)

ω

×
∫ t

0
dt ′e−i	μ(t−t ′)ce(t ′), (18)

where the projected nonlocal interaction function is defined as

ρNL(r0,ω) = |pcv|2
∑

μ

|êμ · êp|2
∫

d3rχ (r0,r,r)A∗
μ(r)

×
∫

d3r′χ∗(r0,r′,r′)Aμ(r′)δ(ω − ωμ), (19)

where êp is the unit vector parallel to pcv. Equation (18) is
a main result of this work. It is valid beyond the Markov
and DA approximations and in arbitrary optical environments,
it is therefore a generalization of existing theories of dipole
emitters in nanophotonic structures.

If the term ρNL(r0,ω)/ω in Eq. (18) is spectrally slowly
varying over the linewidth of the emitter, we may eval-
uate it at the emission frequency ω0 and take it outside
the integral. In this Wigner-Weisskopf approximation, we
obtain d

dt
ce(t) = − πq2

2h̄m2
0ε0

ρNL(r0,ω0)
ω0

ce(t), where
∫ ∞
−∞ dαe−iαβ =

2πδ(β) and
∫ ∞

0 dαδ(α) = 1
2 have been used. In the following,

we will write ω0 as ω for brevity. By assuming that the exciton
is initially excited [ce(0) = 1], we obtain the radiative decay
of the exciton state population |ce(t)|2 = e−(r0,ω)t , where the
radiative decay rate is defined as

(r0,ω) = πq2

h̄m2
0ε0

ρNL(r0,ω)

ω
. (20)

Since (r0,ω) depends on the exciton envelope function
through the projected nonlocal interaction function, it is not
possible to state, in general, whether the decay rate will
increase or decrease when calculated beyond the DA; the decay
rate must be calculated for a given exciton state in a given
dielectric environment. The physical significance of this result
is clearer when expressed in terms of dyadic Green’s tensors.
This relation is derived in Appendix C, and from Eqs. (19) and
(C9), we obtain the important result

ρNL(r0,ω) = 2ω

πc2
|pcv|2

∫
d3r

∫
d3r′χ (r0,r,r)χ∗(r0,r′,r′)

×{
êT

p · Im[G(r,r′,ω)] · êp
}
. (21)
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The Green’s tensor is a propagator of the electromagnetic
field. Thus G(r,r′,ω) may be interpreted as the field amplitude
evaluated at the position r due to a dipole at r′ with frequency ω.
This is illustrated in Fig. 1. To actually calculate ρNL(r0,ω), we
must obtain the Green’s tensor describing the electromagnetic
environment for the particular geometry.

It is important to stress that the formalism developed here
does not change the selection rules for optical transitions,
i.e., they are governed by the usual dipole selection rule
according to which the change in angular momentum in the
transition must be 	m = ±1. This is fundamentally different
from atomic quadrupole transitions, where 	m = ±2. The
reason is that the quantum states of excitons consist of both an
envelope and a Bloch part. Since the electromagnetic field
at optical frequencies is slowly varying over a unit cell,
the approximation in Eq. (15) is very good. This unit cell
DA could in principle break down for higher frequencies of
the electromagnetic field and thus lead to multipole effects
at the Bloch-function level but this is not relevant for the
systems studied here. We note that a classical calculation of
the dissipation rate of an extended dipole emitter leads to the
same form of the nonlocal response as considered above; this
is discussed in further detail in Appendix B.

IV. THE DIPOLE APPROXIMATION

Before exploring the effects beyond the DA it is instructive
to consider the DA limit of the expressions derived above.
In this case, we can evaluate the Green’s tensor at the center
coordinate of the exciton, r0. We obtain

ρNL(r0,ω) = 2ω

πc2
|pcv|2

{
êT

p · Im [G(r0,r0,ω)] · êp
}

×
∣∣∣∣
∫

d3rχ (r0,r,r)

∣∣∣∣
2

. (22)

Obviously, the integrals over the envelope functions depend
only on the excitonic degrees of freedom and it is therefore
natural to redefine Eq. (20) as

DA(r0,ω) = πq2

h̄m2
0ε0

|pcv|2
∣∣∣∣
∫

d3rχ (r0,r,r)

∣∣∣∣
2

ρ(r0,ω)

ω
,

(23)

where we have introduced the familiar notion of the projected
LDOS,38–40

ρ(r0,ω) = 2ω

πc2

{
êT

p · Im [G(r0,r0,ω)] · êp
}
. (24)

The LDOS is obtained by solving Maxwell’s equations and it
enters the quantum optical theory of light-matter interaction as
the local density of vacuum modes that spontaneous emission
can occur to.

The interaction strength between an emitter and light can
be characterized by the OS denoted f (ω). We define this
dimensionless quantity as the ratio of the radiative decay rate
in a homogeneous medium rad,hom(ω) to the radiative decay
rate cl(ω) of a classical harmonic oscillator of elementary
charge,41 i.e.,

f (ω) = rad,hom(ω)

cl(ω)
, (25)

where

cl(ω) = nq2ω2

6πm0ε0c3
. (26)

We can rewrite the decay rate Eq. (23) as

DA(r0,ω) = πq2

2m2
0ε0

f (ω)ρ(r0,ω), (27)

where we have used Eqs. (25) and (26) to obtain the OS

f (ω) = Ep

h̄ω

∣∣∣∣
∫

d3rχ (r0,r,r),

∣∣∣∣
2

, (28)

which is independent of r0. The usefulness of the notion of the
OS in the DA is apparent from Eq. (27), i.e., the decay rate is
given by the product of the OS and the LDOS and thus the OS
quantifies the strength with which the emitter interacts with
light.

The OS can be calculated readily for the exciton models
discussed in Appendix D. In the strong confinement regime,
the result is

f (ω) = Ep

h̄ω

∣∣∣∣
∫

d3rFe(r0,r)Fh(r0,r)

∣∣∣∣
2

, (29)

where Fe(r0,r) and Fh(r0,r) describe the independent electron
and hole envelope functions, respectively. Thus we obtain
the well-known strong-confinement result2,7,13 in which the
OS is proportional to the overlap of the electron and hole
wave functions. As opposed to the result obtained in the
single-particle picture,24,42 there is no complex conjugation of
either Fe(r0,r) or Fh(r0,r), which is a result of the two-particle
formalism used here.2,6,43 The wave function overlap integral
in Eq. (29) cannot exceed unity13,42 and hence the maximum
OS in the strong confinement regime is given by fmax = Ep

h̄ω
,

which shows that Ep

h̄ω
can be interpreted as the OS of the bulk

crystal without confinement and exciton effects.
For the spherical exciton in the weak-confinement regime,

f (ω) = √
π

Ep

h̄ω

(
L

a0

)3

, (30)

where L is the exciton radius and a0 is the exciton Bohr radius.
This is the giant-OS effect, i.e., the OS is proportional to the
volume of the exciton. It is also strongly dependent on the
exciton Bohr radius and therefore it shows a strong dependence
on the effective masses of the carriers. For the disk-shaped
exciton in the weak-confinement regime, we have

f (ω) = 8
Ep

h̄ω

(
L

a0

)2

. (31)

In this two-dimensional model, the OS is proportional to the
exciton area, which in the absence of inhomogeneities inside
the QD13 is given by the area of the QD.

Let us now return to Fig. 1 in which we compare the
calculated spontaneous emission rate within and beyond the
DA. Figure 1(a) shows the DA result in which the decay
rate is proportional to the LDOS, cf. Eq. (24). The classical
interpretation of the LDOS is that it describes self-interference,
i.e., it is the field strength at the center position of the emitter,
r0, due to the emitted light. This is given by the propagator
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of the field, i.e., the Green’s tensor G(r0,r0,ω), which is
indicated as an arrow in Fig. 1(a). In the QED interpretation of
spontaneous emission, it is stimulated by vacuum fluctuations
whose density is given by the LDOS. Spontaneous emission
beyond the DA is governed by the double integral appearing
in Eq. (21), i.e., it is given by the interference between all
points in space weighted by the exciton envelope function as
indicated in Fig. 1(b).

At this point it behooves us to clarify the criterion for
the validity of the DA. For a homogeneous medium, the
field distribution functions take the form of plane waves,
i.e., Aμ(r) = eik·r√

εrV
, where εr is the dielectric constant of the

material and V is the quantization volume. From Eq. (19), it
is clear that the DA holds when the field distribution functions
are slowly varying on the scale of the variations in the envelope
functions. This is equivalent to the criterion |k|L � 1, where
L is the characteristic length scale of the emitter. In an
inhomogeneous medium, the field can be expanded in terms
of plane waves, which means that there is not a unique k for
which we can evaluate this criterion. Thus, at a given frequency
for which |k|L � 1 holds in a homogeneous medium, it will
not hold, in general, for all k components of the plane-wave
expansion in an inhomogeneous medium and this may render
the DA invalid. This indicates that the use of the DA even
for small QDs embedded in photonic materials, such as
plasmonic nanostructures1 and photonic crystals, needs further
justification. The general criterion for the validity of the DA is
(r0,ω)/DA(r0,ω) ≈ 1, which must be valid for all r0.

V. SPONTANEOUS EMISSION DYNAMICS OF LARGE
QUANTUM DOTS IN SPECIFIC MEDIA

The nonlocal interaction function depends on a complex
interplay between the specific geometry of both the elec-
tromagnetic environment and the exciton wave function and
physical insight into spontaneous emission beyond the DA
can be gained by considering the special cases discussed
in this section. We calculate the radiative decay rate for
spherical and disk-shaped excitons in homogeneous media in
and beyond the DA as well as for disk-shaped excitons near a
semiconductor-air interface. Beyond the DA, the notion of the
OS is less useful because light and matter degrees of freedom
cannot be separated, i.e., Eq. (27) is not valid beyond the DA.
We could still use Eq. (25) to obtain a dimensionless quantity
characterizing the radiative decay rate in a homogeneous
medium but the radiative decay rate in inhomogeneous media
or even homogeneous media with a different refractive index
would neither be proportional to the OS nor to the LDOS so
we shall refrain from doing so.

In the strong confinement model, we obtain

ρNL(r0,ω) = |pcv|2 2ω

πc2

∫
d3rFe(r0,r)Fh(r0,r)

∫
d3r′

×F ∗
e (r0,r′)F ∗

h (r0,r′)
{
êT

p · Im
[
G(r,r′,ω)

] · êp
}
.

(32)

In systems with pronounced anisotropy between electron and
hole wave functions and large optical field gradients, this
can give rise to a significant orientational dependence of
the radiative decay rate even for small QDs, as was recently

(a)

(b)

(c)

FIG. 2. (Color online) Comparison between the radiative decay
rates for spherical InxGa1−xAs QDs in a homogeneous medium
calculated within (dashed red lines) and beyond (solid blue lines) the
DA for various emission wavelengths λ and indium mole fractions x

as indicated in the figure. For large radii, the decay rate is quenched.

observed experimentally.1 Here, however, we shall not explore
this further because our focus is on large QDs.

Let us now consider spherical QDs with parabolic con-
finement potentials in an optically homogeneous medium. As
shown in Appendix D, the nonlocal interaction function can
be evaluated analytically in this case and the resulting decay
rate is

 = √
πcl

Ep

h̄ω

(
L

a0

)3

e−( nωL
2c

)2
. (33)

Thus the decay rate is proportional to the bulk crystal OS, Ep

h̄ω
,

the giant-OS term, (L/a0)3, and finally e−( nωL
2c

)2 = e−(πnL/λ)2
,

where λ is the vacuum wavelength of the emitted light, which
is an additional term originating from the breakdown of the
DA. The competition between these terms leads to a maximum
in the radiative decay rate at

Lmax =
√

6λ

2πn
, (34)

where

max =
√

63πcl
Ep

h̄ω

(
c

na0ω

)3

. (35)

Equation (33), is plotted in Fig. 2 along with the DA result,
Eq. (30). In a microscopically realistic model the transition
energy would depend on the geometry, size, chemical com-
position, and strain of the QDs. Here, we are not concerned
with such microscopic details and we simply take the chemical
composition and transition energy as being mutually indepen-
dent and constant parameters. Thus, in Fig. 2, we vary both in
realistic combinations as indicated in the figure. We assume
that the refractive index of the QD can be approximated by
that of the surrounding medium. We describe the surrounding
medium as GaAs and include the frequency dependence of
the refractive index as described in Ref. 44. For simplicity,
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(a)

(b)

(c)

FIG. 3. (Color online) Comparison between the radiative decay
rates for disk-shaped InxGa1−xAs QDs in a homogeneous medium
calculated within (dashed red lines) and beyond (solid blue lines) the
DA for various emission wavelengths λ and indium mole fractions
x as indicated in the figure. In this case, the decay rate saturates for
large radii.

we consider only heavy-hole transitions and neglect the effect
of strain (the axial approximation) in which case the effective
mass is isotropic, see Ref. 24 for further details. Figure 2
illustrates the results expressed by Eqs. (34) and (35), i.e., the
radiative decay rate attains a maximum when L = Lmax that
depends strongly on a0 and thereby on the indium mole frac-
tion. This shows, firstly, that pure GaAs is a more promising
material for achieving a large light-matter coupling strength
as compared to indium-rich alloys, due to the smaller exciton
Bohr radius of GaAs excitons, and, secondly, that for given
material parameters, a fundamental limit to the light-matter
interaction strength is imposed by the breakdown of the DA.
A similar size-dependence has been predicted for ZnO QDs
using semiclassical approaches.17,45 Secondly, it shows that
even for small QD radii the DA leads to a small but systematic
overestimation of the light-matter interaction strength.

The fact that the radiative decay rate calculated beyond the
DA vanishes for a vanishing QD radius, cf. Fig. 2 is correct
but here it arises for the wrong reasons. It is an artefact of
the confinement-potential model used here because the weak
confinement approximation breaks down for small radii, i.e.,
L � a0 is not fulfilled. For the parameters in both Figs. 2 and
3, a0 attains a value of 12, 16, and 29 nm, respectively, in the
(a), (b), and (c) panels. In a more realistic confinement model,
but still within the DA, the giant-OS effect reemerges for
very small QD radii because the envelope wave functions are
strongly expelled from the QD, i.e., in this regime, the excitons
expand5,7 when the QD becomes smaller. From Fig. 2, we can
thus predict that the QD size dependence of the radiative decay
rate in a more realistic confinement potential would exhibit two
maxima: one due to the giant-OS effect and its quenching for
large QD radii as obtained in Fig. 2 and another giant-OS effect
and its quenching at very small radii. For either vanishing or
infinite QD radii, the decay rate vanishes due to the breakdown
of the DA.

FIG. 4. (Color online) Radiative decay rate of excitons confined
in 3-nm-thick disk-shaped QDs embedded in GaAs as a function of
distance to a GaAs-air interface for various QD radii L as indicated
in the plot. The remaining parameters are the same as in Fig. 3(a).
For radii up to L = 32 nm, the distance dependence resembles the
LDOS because the DA is approximately valid but for larger radii the
behavior changes completely. This is a striking effect of light-matter
interaction beyond the DA.

For the analysis in this paper, we have assumed that the
subband energy level spacing, 	E , largely exceeds the thermal
energy, kBT . For a relative effective heavy-hole mass of
mhh = 0.59 and L = 300 nm, the hole subband spacing is,
cf. Eq. (A6), 	Eh = 62 mK so for the range of radii in Figs. 2
and 3 the experimentally required temperatures are accessible
with standard dilution refrigerators. We have also assumed that
the level spacing exceeds the homogeneous linewidth of the
emitter, h̄rad. This criterion is not fulfilled for all values of
L in Figs. 2, 3, and 4 but could be valid in other materials
in which, e.g., the transition energy would be higher. Beyond
these approximations, several subbands would be populated46

and eventually the system would approach the bulk limit,
which is beyond the scope of the present work.

We have numerically calculated the radiative decay rate for
disk-shaped QDs and the result is shown in Fig. 3 along with
the DA result Eq. (31). Here, we consider a 3-nm-thick QD,
with varying lateral size. We use the same approximations as
for the sphere considered above, except that here we include the
anisotropy of the effective mass relevant for a strained InGaAs
layer embedded in GaAs as described in Ref. 24. These results
indicate a similar scaling of Lmax and fmax as predicted by
the analytical results obtained for spherical excitons. Since we
keep the thickness constant, the OS does not vanish for large
QD sizes as opposed to the sphere considered above. This is in
agreement with results considering a nonlocal susceptibility of
large quantum discs.18 Our calculation includes the numerical
integrations also along the axial direction of the QD but the
results are not changed significantly by assuming the DA in
the z direction. Also in this case, the maximally achievable
radiative decay rate for pure InAs QDs [see Fig. 3(c)] is much
inferior to that of GaAs QDs.

Let us now finally consider disk-shaped QDs near
semiconductor-air interfaces. The interface leads to reflections,
which alter the light-matter interaction. We use the same
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parameters as in Fig. 3(a) and use the Green’s tensor describing
the proximity of the interface24,38,47 and the result is shown
in Fig. 4. For radii up to 32 nm, the oscillations coincide
with the characteristic oscillation of the LDOS24 apart from a
small overall reduction in the decay rate, which is consistent
with Fig. 3(a), i.e., for small radii the DA overestimates the
actual light-matter interaction strength. For L = 64 nm, the
oscillation also appears similar to the LDOS, but the DA
result (not shown) is about 50% higher than the result of
the full theory carried out beyond the DA. For even larger
radii (L = 128 and 256 nm), the decay rate oscillations change
dramatically. In this regime, which is far beyond the validity
of the DA, the spatial dependence of the radiative decay rate
exhibits pronounced deviations from the LDOS and develops
into a standing wave pattern.

A comparison between Fig. 3 and the highly nontrivial
oscillations in Fig. 4 leads to interesting implications for
increasing the radiative decay rate. The giant-OS effect
provides an effective mechanism for increasing the radiative
decay rate but this effect is quenched by the breakdown of
the DA. By employing optical nanostructures, the radiative
decay rate can be enhanced beyond that limit. In fact, for the
parameters of Fig. 3(a) the saturation occurs for a radiative
decay rate slightly above 200 ns−1 but near a semiconductor-
air interface for the same parameters (see Fig. 4), the radiative
decay rate can exceed 700 ns−1, which is much larger than the
enhancement predicted within the DA where the maximum
LDOS enhancement due to the interface is 12%.24 This is a
direct example of the intertwining of light and matter degrees
of freedom that emerges beyond the DA. The semiconductor-
air interface considered here leads to an increase in the
radiative decay rate of more than a factor of three as compared
to a homogeneous medium and exploring these effects in other
nanophotonic structures such as photonic crystals or optical
microcavities, where the effects could be much larger, would
be a very interesting future direction of research.

VI. CONCLUSION

We have derived the fundamental equations governing
excitonic spontaneous emission beyond the DA. The DA
cannot be assumed valid a priori in nanophotonic structures
even for small QDs and thus we calculated the result for a
solid state emitter beyond the DA. We derived the relation to
the Green’s tensor description of the electromagnetic field. In
this theory, the radiative decay rate of excitons is described by
a nonlocal interaction function, which reduces to the LDOS
in the dipole limit. The theory contains also the giant-OS
effect in the weak confinement regime as well as the strong
confinement regime as limiting cases. We have investigated
and clarified the conditions under which the DA is valid. We
notice that these conditions depend on both the properties of
the QD, the emission wavelength, as well as the structuring
of the environment and the position of the QD. Thus the DA
is, in general, only valid in certain points of space for a given
emission energy of the QD.

Finally, we note that the two cases discussed here, namely,
QDs embedded in either a homogenous medium or near
a semiconductor-air interface, benefit from the availability
of exact Green’s tensors, simple experimental realization,

and therefore the possibility of direct comparison between
experiment and theory, but they are also the systems where the
expected magnitude of the effects arising from the breakdown
of the DA are smallest. A very interesting future direction
would be to calculate the radiative properties of spatially
extended excitons, e.g., in a photonic crystal cavity where very
large differences between the DA and the theory developed
here could arise.
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APPENDIX A: THE EXCITON CONFINEMENT REGIMES

In this Appendix, three confinement regimes of excitons in
nanostructures are discussed. The two-particle effective-mass
equation, Eq. (8), cannot, in general, be solved analytically
for realistic QD geometries and heterostructure confinement
potentials, but it can be solved within certain approximations
and more importantly in different limits of the ratio between
the Coulomb energy and the conduction (valence) band
subband spacing, 	Ee (	Eh), in the absence of the Coulomb
interaction. In the case where the Coulomb interaction is
negligible, the exciton is said to be in the strong confinement
regime and when it dominates over the confinement potentials,
the exciton is said to be in the weak confinement regime.2,6,7,48

1. The unconfined regime

In the absence of confinement, i.e., when Ve(re) and Vh(rh)
can be completely neglected, Eq. (8) reduces to the problem
of a hydrogen atom49 with effective masses. This describes a
free exciton in a bulk semiconductor and in this model, we
can calculate the characteristic energy and length scales for
an exciton. The characteristic length scale of the interparticle
distance is given by the exciton Bohr radius,

a0 = 4πε0εrh̄
2

q2m0m
, (A1)

where ε0 denotes the vacuum permittivity, εr is the relative
static permittivity of the material, and the reduced mass is
defined as

m = memhh

me + mhh
. (A2)

The Coulomb potential is given by

VCoul(re,rh) = − q2

4πε0εr|re − rh| , (A3)

so the energy scale, i.e., ionization energy associated with the
free exciton is the effective Rydberg energy

R = q2

4πε0εra0
= h̄2

m0ma2
0

. (A4)
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2. The strong confinement regime

In the opposite limit when Coulomb interaction may be
neglected (strong confinement), the electron and hole are
decoupled in Eq. (8), which reduces to two independent
particle-in-a-box problems. These are readily solved and the
solution is

χ (r0,re,rh) = Fe(r0,re)Fh(r0,rh), (A5)

where Fe(r0,re) and Fh(r0,rh) are the electron and the hole
envelope functions, respectively. Depending on the purpose of
the theoretical description, a simple model assuming infinite
barriers, isotropic masses, and a simple geometry such as a
cylinder or cube, may suffice. In such cases, an exact solution
is readily available in the literature. If we consider a cubic QD
with side length 2L, the subband spacings are28

	Ee/h = 3h̄2π2

8m0me/hhL2
. (A6)

In the strong confinement regime, R � 	Ee+	Eh
2 , which

implies that L �
√

3π2

16 a0 ≈ 1.4a0. This simple model with
infinite barriers overestimates the barrier heights and we will
in general use a heuristic definition of the criteria and assume
strong confinement for L � a0 and weak confinement for
L � a0, where 2L is the spatial extent of the QD.

3. The weak confinement regime: the spherical quantum dot

For a spherical QD with parabolic radial confinement, we
have

Ve/h(r0,re/h) = 1
2me/h�

2|re/h − r0|2, (A7)

where the confinement potential is given by � and we define

the radius of the QD as L = 2
√

h̄
M�

. We introduce the relative

and center-of-mass parameters48

R = mere + mhrh

me + mh
, (A8)

r = re − rh, (A9)

P = pe + ph, (A10)

p = mhpe − meph

me + mh
, (A11)

M = me + mh, (A12)

m = memh

me + mh
. (A13)

By this transformation, the effective-mass Hamiltonian Eq. (9)
separates into two decoupled Hamiltonians:

HEM(r0,r,R) = HR(r0,R) + Hr(r), (A14)

HR(r0,R) = P2

2m0M
+ 1

2
M�2|R − r0|2, (A15)

Hr(r) = p2

2m0m
− q2

4πε0εr|r| , (A16)

where we have neglected the term 1
2m�2|r|2 in Eq. (A16) since

we consider the weak confinement regime.48 Thus we have
reduced the problem to solving the effective-mass equation for
two well-known Hamiltonians, namely, the three-dimensional
isotropic harmonic oscillator, Eq. (A15), and the hydrogen
problem, Eq. (A16). We can then write the solution to the
effective-mass equation as

χ (r0,re,rh) = χ ′(r0,r,R) = χCM(r0,R)χrel(r), (A17)

where χCM(r0,R) is the center-of-mass wave function and
χrel(r) is the wave function describing the relative motion.
For the present purposes, we are only concerned with the
ground-state envelope wave functions, which are given by50

χCM(r0,R) =
(

2

π

)3/4 (
1

β

)3/2

e−|R−r0|2/β2
, (A18)

χrel(r) =
(

1

πa3
0

)1/2

e−|r|/a0 , (A19)

where β =
√

2h̄
M�

. With these definitions, we have L = √
2β

and by comparison to the definition of the normal distribution
function, we find that L equals two standard deviations, which
we define as the radius of the QD.

4. The weak confinement regime: the disk-shaped
quantum dot

For a disk-shaped QD with harmonic in-plane confinement
and infinite barriers in the z direction, we have in cylindrical
coordinates, (ρ,z,φ), that16

Ve/h(r0,re/h) = Vze/h (z0,ze/h) + 1
2me‖/h‖�2|ρe/h − ρ0|2,

(A20)

and

Vze (z0,z) = Vzh (z0,z) =
{

0 for |z − z0| � Lz

2 ,

∞ for |z − z0| >
Lz

2 ,
(A21)

where Lz is the height of the QD. We assume that Lz

2 � a0

so that the Coulomb interaction in the z direction may
be neglected. The infinite potential in the z direction is a
somewhat crude approximation and in a more realistic model
the wave functions would extend into the barriers. However,
if we model the system with Lz being slightly larger than
the physical height, it is a reasonable approximation although
it does neglect the different barrier penetration depths of
electrons and holes due to the difference in their effective
masses. This can be considered as a model of a quantum well
with thickness fluctuation potentials.9,14,51

For the in-plane coordinates, r = (ρ,φ) and p = (pρ,pφ),
respectively, we can make the same transformations as in
Eq. (A8) to Eq. (A13)48 with which the effective-mass
Hamiltonian (8) separates into four decoupled Hamiltonians:

HEM(r0,r,R,ze,zh)

= HR(r0,R) + Hr(r) + Hze (z0,ze) + Hzh (zo,zh), (A22)
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where

HR(r0,R) = P2

2m0M
+ 1

2
M�2|R − r0|2, (A23)

Hr(r) = p2

2m0m
− q2

4πε0εr|r| , (A24)

Hze (z0,ze) = p2
ez

2m0mez
+ Vze (z0,ze), (A25)

Hzh (z0,zh) = p2
hz

2m0mhz

+ Vzh (z0,zh), (A26)

where we have neglected the term 1
2m�2|r|2 in Eq. (A24)

since we are considering the weak confinement regime.48 Thus
we have reduced the problem to solving the effective-mass
equation for three well-known Hamiltonians, namely, those of
the two-dimensional isotropic harmonic oscillator, Eq. (A23),
the two-dimensional hydrogen atom, Eq. (A24), and the
particle in an infinite-potential box problem, Eqs. (A25) and
(A26). The solution is

χ (r0,r,R,ze,zh) = χCM(r0,R)χrel(r)χze (z0,ze)χzh (z0,zh),

(A27)

where χCM(r0,R) is the center-of-mass wave function, χrel(r) is
the wave function describing the relative motion, and χze (z0,ze)
and χzh (z0,zh) describe the electron and hole wave function in
the z direction, respectively. The ground-state envelope wave
functions are given by16,28,48

χCM(r0,R) =
√

2

π

1

β
e−|R−r0|2/β2

, (A28)

χrel(r) = 4√
2πa0

e−2|r|/a0 , (A29)

χze (z0,ze) =
√

2

Lz

cos

[
π (ze − z0)

Lz

]
, (A30)

χzh (z0,zh) =
√

2

Lz

cos

[
π (zh − z0)

Lz

]
. (A31)

APPENDIX B: INTERACTION BETWEEN SPATIALLY
EXTENDED CLASSICAL EMITTERS AND CLASSICAL

ELECTROMAGNETIC FIELDS

It is instructive to consider spontaneous emission beyond
the DA in a classical model; this leads to an expression, which
is very similar to the quantum result derived in Sec. III. A
classical emitter can be described by the current density

J(r0,r) = −iωμρ(r0,r), (B1)

where μ is the dipole moment and ρ(r0,r) is the density of the
emitter centered at r0. This definition implies that the emitter
is considered as a continuous distribution of infinitesimal
dipoles. The power dissipation rate dW

dt
is given by Poynting’s

theorem38

dW

dt
= −1

2

∫
V

d3rRe[J∗(r0,r) · E(r0,r)], (B2)

where V denotes the volume occupied by the emitter and E(r)
is the electric field, which is given in terms of the dyadic

Green’s tensor G(r,r′,ω) as

E(r0,r) = iωμμ0

∫
V

d3r′G(r,r′,ω) · J(r0,r′), (B3)

where μ0 is the vacuum permeability. By combining these
relations, we readily obtain the normalized decay rate in
an arbitrary dielectric environment as the ratio of power
dissipation in the arbitrary structure to that in a homogeneous
medium. The result is

(r0,ω)

0(ω)

=
∫
V

d3r
∫
V

d3r′ρ(r0,r)ρ(r0,r′)nT
μ · Im[G(r,r′,ω)] · nμ∫

V
d3r

∫
V

d3r′ρ(r0,r)ρ(r0,r′)nT
μ · Im [G0(r,r′,ω)] · nμ

,

(B4)

where nμ denotes a unit vector in the direction of the polariza-
tion of the emitter and G0(r,r′,ω) denotes the Green’s tensor
in a homogeneous medium. The homogeneous medium decay
rate, 0(ω) does not depend on r0 because of the translational
invariance of the Greens’s tensor in a homogeneous medium.
In the DA, we assume

ρ(r0,r) = δ(r − r0), (B5)

so Eq. (B4) reduces to the simpler and well-known result38

DA(r0,ω)

0DA (ω)
= nT

μ · Im [G(r0,r0,ω)] · nμ

nT
μ · Im [G0(r0,r0,ω)] · nμ

. (B6)

APPENDIX C: CALCULATION OF DECAY RATES USING
GREEN’S TENSORS

Here, we derive the relation between the Green’s tensor
and the vector potential. The Green’s tensor G(r,r′,ω) for the
electric field is defined as the solution to the equation38

∇ × ∇ × G(r,r′,ω) − ω2

c2
εr(r)G(r,r′,ω) = Iδ(r − r′),

(C1)

subject to the Sommerfeld radiation condition,52 where I is the
identity matrix. Since the field distribution functions describe
the spatial part of the solutions to Maxwell’s equations, they
satisfy the wave equation

∇ × ∇ × (êμAμ(r)) − ω2
μ

c2
εr(r)[êμAμ(r)] = 0 (C2)

and the orthogonality relation∫
d3rεr(r)[êμAμ(r)] · [êμ′A∗

μ′(r)] = δμ,μ′ . (C3)

Therefore we can expand the Green’s tensor in terms of these
functions:

G(r,r′,ω) =
∑

μ

χμ(r,ω)[êμAμ(r′)], (C4)

where χμ(r,ω) are expansion coefficients. By combination of
Eqs. (C1) to (C4), we obtain

G(r,r′,ω) =
∑

μ

c2
[êμA∗

μ(r)] ⊗ [êμAμ(r′)]
ω2

μ − ω2
, (C5)
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where ⊗ denotes the dyadic product. Using the identity

lim
η→0

Im

[
1

ω2
μ − (ω + iη)2

]

= π

2ωμ

[δ(ω − ωμ) − δ(ω + ωμ)], (C6)

multiplying with [êμA∗
μ(r)) ⊗ (êμAμ(r′)], and summing over

all μ, we obtain the useful relation

lim
η→0

Im

{∑
μ

[êμA∗
μ(r)] ⊗ [êμAμ(r′)]

ω2
μ − (ω + iη)2

}

= π

2ω

∑
μ

[êμA∗
μ(r)] ⊗ [êμAμ(r′)]δ(ω − ωμ). (C7)

Here, we have discarded the unphysical delta function δ(ω +
ωμ). Now, from Eqs. (C5) and (C7), we obtain

Im[G(r,r′,ω)]

= πc2

2ω

∑
μ

[êμA∗
μ(r)] ⊗ [êμAμ(r′)]δ(ω − ωμ). (C8)

From this result, the equivalence of Eqs. (19) and (21) can
be found directly by performing a series of operations on both
sides of the equation. By projecting onto êp from left and right,
multiplication with 2ω

πc2 |pcv|2χ (r0,r,r)χ∗(r0,r′,r′), and finally
integration over both r and r′, we obtain

2ω

πc2
|pcv|2

∫
d3r

∫
d3r′χ (r0,r,r)χ∗(r0,r′,r′)

× {
êT

p · Im[G(r,r′,ω)] · êp
}

= |pcv|2
∑

μ

|êμ · êp|2
∫

d3rχ (r0,r,r)A∗
μ(r)

×
∫

d3r′χ∗(r0,r′,r′)Aμ(r′)δ(ω − ωμ). (C9)

Thus the right-hand sides of Eqs. (19) and (21) are identical.

APPENDIX D: EXPLICIT EVALUATION OF MATRIX
ELEMENTS FOR GAUSSIAN WAVE FUNCTIONS

Here, we show the explicit analytical evaluation of the
nonlocal interaction function Eq. (21) for spherical excitons
in the weak confinement regime. By insertion of Eqs. (A17),
(A18), and (A19) in Eq. (21), we see that the integral to be
solved is of the form

Iαα =
∫

d3r
∫

d3r′f (r)f ∗(r′)Im
[
eT
α · G(r,r′) · eα

]
, (D1)

where f (r) = f0e
−|r|2/β2

and f 2
0 = √

8π−5/2a−3
0 β−3. For a

homogeneous medium, no generality is lost by choosing
r0 = 0, and we have therefore suppressed r0 in the follow-
ing. This allows for an explicit evaluation of the nonlocal
interaction function for homogeneous media. In the case of
nonhomogeneous media, we can always express the Green’s
tensor, and hence the integral in Eq. (D1), as the sum of a
homogeneous part and a scattering part so this calculation is
useful also for inhomogeneous media.

Using the expression for the Green’s tensor in homogeneous
media,53 we can rewrite Eq. (D1) as

Iαα = f 2
0

∫
d3r

∫
d3r′e−r2/β2

e−r ′2/β2

×Im

[(
I + 1

k2

∂2

∂α2

)
k

4π
h0(kξ )

]
(D2)

= f 2
0

∫
d3r

∫
d3r′e−r2/β2

e−r ′2/β2

×
(

δα,α + 1

k2

∂2

∂α2

)
k

4π
j0(kξ ) (D3)

in which ξ = |r − r′|, r = |r|, and k = |k| is the magnitude
of the wave vector in the background material, and j0 and
h0 denote the spherical Bessel and Hankel functions of the
first kind, respectively. The spherical Bessel function can be
rewritten in terms of other spherical Bessel functions and
spherical harmonics as52

j0(kξ ) = 4π

∞∑
n=0

n∑
m=−n

(−1)mjn(kr ′)Y−m
n

× (θ ′,φ′)jn(kr)Ym
n (θ,φ) (D4)

in which the spherical harmonics are defined as

Ym
n (θ,φ) = (−1)m

√
(2n + 1)(n − m)!

4π (n + m)!
P m

n (cos θ )eimϕ,

(D5)

where P m
n (cos θ ) is the associated Legendre function. We now

perform the angular integration over r′ to find m = 0 and n =
0. In addition, we note that ∂2

∂α2 acts only on j0(kr). Following
Ref. 52, we now write jn(kr)Ym

n (r) = �m
n , in which case, we

may express the derivative in terms of raising and lowering
operators D+ and D−, respectively, defined as

D± = −1

k

(
∂

∂x
± i

∂

∂y

)
, (D6)

and with the actions (for 0 � |m| � n):

D+�m
n = −

√
(n + m + 2)(n + m + 1)

(2n + 1)(2n + 3)
�m+1

n+1

−
√

(n − m)(n − m − 1)

4n2 − 1
�m+1

n−1 , (D7a)

D−�m
n =

√
(n − m + 2)(n − m + 1)

(2n + 1)(2n + 3)
�m−1

n+1

+
√

(n + m)(n + m − 1)

4n2 − 1
�m−1

n−1 . (D7b)

For the α = x term, we find

1

k2

∂2

∂x2
= 1

4
(D2

+ + D2
− + 2D+D−). (D8)
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Only the D+D− term results in nonvanishing terms after
angular integration and we have

D+�0
0 = −

√
2

3
�1

1, (D9)

−
√

2

3
D−�1

1 = −2

3
�0

0 − 2√
45

�0
2. (D10)

The angular integral over �0
2 vanishes, leaving only the

�0
0 term. In this way, we obtain the final expression

for I xx as

I xx = 1
6f 2

0 kπ2β6e−k2β2/2. (D11)
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J. Vučković, Nature (London) 450, 857 (2007).

12A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber,
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