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A statistical theory of the coupling between a quantum emitter and Anderson-localized cavity modes is

presented based on a dyadic Green’s function formalism. The probability of achieving the strong light-

matter coupling regime is extracted for an experimentally realistic system composed of InAs quantum

dots embedded in a disordered photonic crystal waveguide. We demonstrate that by engineering the

relevant parameters that define the quality of light confinement, i.e., the light localization length and the

loss length, strong coupling between a single quantum dot and an Anderson-localized cavity is within

experimental reach. As a consequence, confining light by disorder provides a novel platform for quantum

electrodynamics experiments.
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The ability to control the coupling between a single
emitter and a photon grants access to a rich set of quantum
optical phenomena [1] and provides a route towards quan-
tum networks for quantum information technology [2]. The
coupling strength can be enhanced by placing the emitter
in a small optical cavity that traps the emitted photon [3].
As a result, the spontaneous emission rate is enhanced
through the Purcell effect and if the coupling strength
exceeds the cavity loss rate, the strong-coupling regime
is reached where coherent oscillations between photon and
emitter induce quantum entanglement [4]. In solid state
systems, strong coupling has been achieved, e.g., by em-
bedding semiconductor quantum dots in highly engineered
photonic crystal cavities with small mode volumes and
high Q factors [5]. However, the fabrication of such cav-
ities requires nanoscale accuracy and is therefore inher-
ently sensitive to unavoidable disorder introduced in the
fabrication process.

An alternative route to efficient light confinement based
on disordered photonic nanostructures has recently proven
to be very promising. In such systems the light propagation
is strongly modified by multiple scattering, which can lead
to the spontaneous formation of Anderson-localized
modes. These modes are robust against fabrication imper-
fections and prevail even after averaging over all configu-
rations of disorder [6]. Disordered photonic crystal
waveguides are well suited for investigating Anderson
localization since the light propagation is primarily one
dimensional (1D) and localized modes are formed when
the sample length is sufficiently long. ImpressiveQ factors
as high as 600 000 have been reported in such disorder-
induced modes [7,8] that subsequently were proven to be
due to Anderson localization by carrying out the proper
configuration average [9,10].

Recently, Anderson-localized modes were shown to en-
able very pronounced cavity quantum electrodynamics
effects by probing the dynamics of single quantum dots
embedded in disordered photonic crystal waveguides [10].

Here we present a theoretical model for photon-matter
interaction of a single quantum emitter in a 1D disordered
medium in the Anderson-localized regime. In a multiple
scattering medium, light propagation and emission is de-
termined by a statistical process giving rise to a distribution
of photon-matter coupling rates. Two universal parameters
fully characterize the propagation of light in a 1D random
medium: the localization length scaled to the sample length
�=L and the loss length scaled to localization length l=�
[6,11], while the emission is nonuniversal in the sense that
it also depends on the local correlation length of the
medium in the presence of the emitter [12,13]. We derive
a distribution of optical modes in the Anderson-localized
regime of a 1D disordered medium and based on a dyadic
Green’s function formalism extract the associated distribu-
tion of photon-matter coupling coefficients. From this
model we calculate the probability of strong coupling of
a single quantum dot to an Anderson-localized cavity
mode and the dependence on localization length and loss
length. Considering realistic parameters obtained in disor-
dered photonic crystal waveguides [14] we conclude that
the experimental observation of strong coupling of a quan-
tum dot to an Anderson-localized mode is within experi-
mental reach.
In a disordered W1 photonic crystal (PhC) waveguide

membrane light propagation is effectively 1D since it is
confined to the membrane by total internal reflection and to
the waveguide by the 2D PhC band gap. Disorder introdu-
ces multiple random scattering of the Bloch waves and the
localization length, �, denotes the average distance be-
tween scattering events. The criterion for Anderson local-
ization is � < L leading to an exponential decay of the
light intensity emitted by a source after ensemble averag-
ing over all realizations of disorder [15]. Examples of
calculated electric field profiles of Anderson-localized
modes in a PhC waveguide are shown in Fig. 1(a) where
disorder is introduced in the waveguide by random dis-
placements of the hole positions in the three rows on each
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side of the waveguide. Anderson-localized modes are
found to appear only in a narrow frequency interval near
the cutoff of the waveguide mode where the density of
states is high [9,16,17]. The localization length, loss
length, and sample length are three essential parameters
of a 1D multiple scattering system that enter into the model
for light-matter coupling. In the following we will use
physically realistic parameters and estimate the coupling
of single quantum dot emitters to disordered PhC
waveguides.

The local light-matter coupling strength is determined
by the local density of optical states (LDOS) that is calcu-
lated from the imaginary part of the frequency dependent
dyadic Green’s function [18]. The disordered waveguide
consists of an L ¼ 100 �m long stack of layers with
randomly varying refractive indices along the z direction
with an average refractive index of �n ¼ 3:45 and a layer
thickness of 10 nm. We consider the situation relevant for
cavity QED experiments where the LDOS is dominated by
localized quasimodes and therefore can be expressed as

�ðr; !Þ ¼ j ~fðx; y;!Þj2 ~�ðz; !Þ=Aeffð!Þ, where ~�ðz;!Þ
accounts for the spatial variation of the LDOS along
the z direction that is obtained from a self-consistent
transfer-matrix method [19], and ! is the optical

frequency. The transverse effective area Aeffð!Þ ¼R
dxdy~n2ðx; yÞj ~fðx; y;!Þj2 is calculated from an ordered

photonic crystal waveguide, where ~nðx; yÞ is the refractive
index and ~fðx; y; !Þ is the simulated transverse electric
field profile [20], and both have been scaled to unity. The
electric field profile is obtained from 3D band structure
calculations and the weak dependence on z is eliminated by
averaging over one unit cell. All parameters used in the
calculation of the PhC are listed in Fig. 1, and only the size
of the refractive index fluctuations in the 1D multiple
scattering model is varied giving rise to different localiza-
tion lengths � ¼ 7:40=ð�nÞ2 �m for the L ¼ 100 �m
sample length and the particular form of disorder intro-
duced in the present analysis.
An example of the spatial and spectral variations of the

LDOS for a single configuration of disorder is displayed in
Fig. 1(b), showing well-separated quasimodes with large
fluctuations in �ðrÞ along the mode. The LDOS is sufficient
to calculate the light-matter coupling, but a quasimode
description is instructive for physical insight. It is obtained
by fitting the LDOS by a sum of Lorentzians:

�ðr; !Þ ¼ X

i

�0;iðrÞ 1�
�i=2

ð!�!iÞ2 þ ð�i=2Þ2
; (1)

where each term of the sum describes a single quasimode
with resonance frequency !i, photon decay rate �i ¼
!i=Qi, quality factor Qi, and amplitude �0;iðrÞ. It is in-

structive to express the coupling strength in terms of the
mode volume Vi that enters in the Jaynes–Cummings
model [4]. For an emitter on resonance with an
Anderson-localized mode (! ¼ !i) and with a transition
dipole moment oriented along the local electric field, the
Purcell factor is FiðrÞ ¼ 6�c3Q�0;iðrÞ=!3

cnðrÞ, and from

that the effective mode volume Vi ¼ 1=maxrfn2ðrÞ�0;iðrÞg
is defined. The distribution of mode volumes is subse-
quently calculated from an ensemble of 500 different dis-
order configurations for each value of the localization
length and plotted in Fig. 2. The distribution is found to
shift to smaller mode volumes with decreasing localization
length in agreement with the intuitive expectation that a
short localization length leads to small mode volume and
hence efficient cavity QED. For a localization length of
� ¼ 10 �m we extract mode volumes as small as Vi ’
2:5ð�= �nÞ3, which is competitive with engineered PhC
nanocavities [21]. In recent experiments using quantum
dots to probe Anderson-localized modes, a localization
length below � ¼ 10 �m has been extracted [14] and the
ultimate lower bound on the localization length has not yet
been established [22]. This illustrates the very promising
potential of efficient confinement of light with Anderson-
localized modes.
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FIG. 1 (color online). (a) 2D finite-difference time-domain
calculations of the y component of the electromagnetic field
(color scale) in a disordered photonic crystal waveguide. We
have used realistic parameters for a GaAs photonic crystal
waveguide with lattice parameter a ¼ 260 nm, air-hole radius
r ¼ 0:29a, and a refractive index of n ¼ 2:76, the latter being
the effective refractive index of a 150 nm thick GaAs membrane.
Disorder is introduced by displacing the position of the holes in
the three rows on each side of the waveguide with a Gaussian
random distribution with a standard deviation of � ¼ 0:03a.
Inset: Close-up view of the geometry of the disordered wave-
guide. (b) Local density of states (LDOS) for a single realization
of disorder using a stack of layers with refractive indices
homogenously distributed in the interval 3:45� 0:70 leading
to � ¼ 15 �m for L ¼ 100 �m, corresponding to realistic
values from experiments on PhC waveguides [14].
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The Q factor is the additional figure of merit determin-
ing the light-matter coupling strength. The statistics of the
Q factors is obtained from an ensemble of 8,000 disorder
configurations for each localization length leading to the
identification of approximately 60 000 Anderson-localized
modes near the center of the waveguide and within the
spectral range of � ¼ 970–980 nm. Fig. 3 plots the ex-
tracted Q-factor distributions for different localization
lengths verifying that the Q factors of Anderson-localized

modes in 1D are described by log-normal distributions
[23,24] (solid lines in Fig. 3). Because of the long tails of
the log-normal distributions, a finite probability exists of
having very large Q factors that are much larger than the
most probable value. The inset of Fig. 3 shows that the
average Q factor increases superexponentially with an
increasing localization length, which illustrates the very
sensitive dependence of the light-matter interaction on the
localization length that is responsible for the pronounced
cavity QED effects observed in experiments [10].
In real PhC waveguides, loss primarily due to scattering

of light out of the membrane structure limits the quality of
the light confinement. Such a loss is included as a finite
value of the imaginary part n00 of the refractive index
n0 þ in00 leading to the loss length l ¼ �=2�n00 and an
associated loss Q factor Q0

loss�=�l, which is valid in the

limit where loss can be treated perturbatively. This results
in an effective Q factor Q�1

eff ¼ Q�1 þQ�1
loss, where Qloss

sets the limit of the highest Q factor that can be reached.
An example is shown for � ¼ 10 �m in Fig. 3 (open
circles) leading to a cutoff at Qloss ¼ 28 000 for the loss
length of l ¼ 2:5 mm. The cutoff results in an interesting
reshaping of the Q-factor distribution since the highest Q
factors from the lossless case all accumulate in the part of
the distribution with highestQ. The overall reduction in the
Q factors in the presence of loss is reflected in the average
Q factor that is displayed in the inset of Fig. 3.
We now turn to the statistic of the light-matter coupling

strength and derive the probability of obtaining strong
coupling in disordered waveguides. By applying the de-
composition into quasimodes of Eq. (1), the threshold for
reaching strong coupling for a single emitter that is reso-
nant with a single Anderson-localized mode i, is given as

Q2
i �0;iðrÞ
!c

>
"0@

8d2
: (2)

The right-hand side of Eq. (2) only contains physical
constants and the dipole moment d of the emitter while
the left-hand side contains all the optical properties of the
localized modes. For identical emitters the probability for
reaching the strong-coupling regime is therefore solely
determined by the distributions of Qi and �0;i that are

both linked to the localization length, as explored in the
data of Figs. 2 and 3. We stress that a shortening of the
localization length is beneficial in two ways since it simul-
taneously increases the Q factor and decreases the mode
volume, which is the underlying reason for the success of
Anderson-localized cavities in cavity QED experiments.
Based on the above criterion and the calculated distri-

butions we can estimate the probability that a quantum dot
within a disordered PhC waveguide will be strongly
coupled to an Anderson-localized mode. This finite
‘‘yield’’ of cavities in the strong-coupling regime origi-
nates from the statistical nature of multiple scattering, but
the outcome is in fact not different from the case of
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FIG. 2 (color online). Histograms of the mode volume proba-
bility distribution calculated for 500 realizations of disorder and
for two values of the localization length �. The transverse
extension of the modes is obtained from the simulation of the
PhC waveguide shown in Fig. 1(a). The solid and dashed lines
are guides to the eye. Inset: Mean values and 1 and 2 standard
deviations of the calculated mode volume distributions plotted as
a function of localization length.
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FIG. 3 (color online). Normalized Q-factor probability distri-
butions for different localization lengths between � ¼
10–45 �m and without loss (filled symbols) with fits to log-
normal distributions (solid lines), and for a loss length l ¼
2:5 mm and � ¼ 10 �m (open circles) with a fit to a log-normal
distribution modified to include loss [14] (dashed line).
The sample length is L ¼ 100 �m. Inset: Mean value of the
Q-factor distributions (symbols) and the central 68% of the
Q-factor distribution (bars), with and without loss (blue dots
and green squares, respectively).
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engineered cavities where fabrication imperfections need
to be eliminated. The resulting strong-coupling yield in
engineered cavities has to our knowledge not been studied
systematically in the literature, but it is not unlikely that the
performance of Anderson-localized cavities is superior to
standard cavities. We emphasize that in the estimates
below it is not assumed that the emitter is optimally
positioned at an antinode of an Anderson-localized modes,
which corresponds to the realistic experimental situation
where no spatial control of quantum dot position is imple-
mented. We assume a transition dipole moment of d ¼
0:64e nm, which was recently measured for InAs quantum
dots [25]. The results are summarized in Fig. 4 displaying
the strong-coupling probability as a function of localiza-
tion length and different loss lengths for a quantum dot
located in the center of a sample and tuned into resonance
with the nearest Anderson-localized mode present. For a
localization length of � > 30 �m and negligible loss, the
fraction of strongly coupled systems is below 1%. This
probability dramatically increases with decreasing local-
ization length leading to 55% for � ¼ 7 �m. The rapid
increase is mainly due to the drastic increase in the Q
factors while the mode volume variations are relatively
modest. The presence of loss results in modifications of
the Q-factor distributions (see Fig. 3), and thereby a re-
duction of the strong-coupling probability, which is inves-
tigated systematically in Fig. 4. For � ¼ 7 �m and
l ¼ 0:7 mm corresponding to the values observed experi-
mentally in the very first experiments on disordered
photonic crystal waveguides with embedded emitters
[14], a strong-coupling probability of 1% is predicted.
Consequently the observation of strong coupling of a
single quantum dot to an Anderson-localized modes ap-
pears within experimental reach with disordered PhC
waveguides presently available, and finding methods to
reduce the localization length and increase the loss length

even further, e.g., by inducing correlated disorder, will
further increase this probability. In order to estimate the
fundamental boundaries set by out-of-plane scattering in a
PhC waveguide we consider the simulations of Ref. [26]
for a fixed localization length of � ¼ 7 �m ¼ 27a and
realistic random perturbations in the hole diameter of
� ¼ 0:005a. In this case the loss length can be longer
than l� 2:5 mm leading to a predicted strong-coupling
probability above 20% [Fig. 4]. We note that in a more
complete model, a distribution of out-of-plane light leak-
age scattering rates is included [14,27] as opposed to the
single-parameter model employed here, but our conclu-
sions are expected to be robust to such extensions [15]. We
conclude that apart from providing a new route to cavity
QED, Anderson localization may be competitive with en-
gineered nanocavities that inherently suffer from the dete-
riorating role that disorder plays in this case.
In summary, we have developed a theoretical model for

a quantum dot coupled to an Anderson-localized mode.
The probability of achieving strong coupling between a
single photon and a quantum dot is evaluated and the
dependence on the localization length and loss length is
studied. Our results show that light-matter entanglement is
within experimental reach in a disordered photonic me-
dium, and that Anderson-localized random cavities may be
competitive with engineered nanocavities for cavity QED
experiments.
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