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The electromagnetic-vacuum-field fluctuations are intimately linked to the process of spontaneous
emission of light. Atomic emitters cannot probe electric- and magnetic-field fluctuations simultaneously
because electric and magnetic transitions correspond to different selection rules. In this Letter we show that
semiconductor quantum dots are fundamentally different and are capable of mediating electric-dipole,
magnetic-dipole, and electric-quadrupole transitions on a single electronic resonance. As a consequence,
quantum dots can probe electric and magnetic fields simultaneously and can thus be applied for sensing the
electromagnetic environment of complex photonic nanostructures. Our study opens the prospect of
interfacing quantum dots with optical metamaterials for tailoring the electric and magnetic light-matter
interaction at the single-emitter level.
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Spontaneous emission is a fundamental physical process,
which plays an essential role in nature as the main source of
optical radiation, and in applications as the principal source
of artificial illumination. Quantum mechanically, sponta-
neous emission is an effect of the fluctuating electromag-
netic vacuum field perturbing the emitter. At optical
frequencies, emitters sense mainly the electric field while
higher-order multipole field components can be neglected.
This is because the variation of the electromagnetic field is
negligible over the spatial extent of most quantum
emitters, which has rendered the dipole approximation a
highly successful approximation in quantum electro-
dynamics. Nevertheless, magnetic-dipole (MD) and
electric-quadrupole (EQ) transitions are well known in
atomic physics and can be accessed with light despite
beingmuchweaker [1–3], since they have different selection
rules than electric-dipole (ED) transitions [4–6]. Self-
assembled quantum dots (QDs) are fundamentally different
and the dipole approximationmay not apply to QDs even on
dipole-allowed transitions, as was recently found experi-
mentally [7]. The asymmetry of the QD wave functions
originating from a lack of mirror-reflection symmetry
(parity symmetry) of the QD confinement potential breaks
the usual selection rules applicable in atomic physics leading
to both ED and multipolar contributions on the same
transition. For atoms, a related but very weak asymmetry
is induced by the electroweak interaction and has been used
to probe the standard model of particle physics [8]. In
contrast, the parity violation is very strong for QDs due to
their asymmetric structure and, therefore, they may be
exploited as a probe of the parity of the photonic nano-
structure or the nature of the multipolar quantum-vacuum
fluctuations.
In the present work, we show that the commonly used

self-assembled In(Ga)As QDs are sensitive to both
electric and magnetic fields. The multipolar effects
explained by our theory are relevant and important in

many nanophotonic configurations. A current hot topic in
nanophotonics exploits the role of nonlocality of the
dielectric response in plasmonics [9,10]. Here we study
a different nonlocal phenomenon by accounting for the
spatial extent and symmetry of QDs and their interaction
with the complex field profiles found in nanostructures of
importance for photon emission. The effect is particularly
pronounced if both the QD and the nanophotonic environ-
ment violate parity symmetry. The developed formalism is
remarkably simple, as we obtain a single light-matter
interaction channel for the multipolar part, which, com-
bined with the usual ED contribution, describes completely
the QD-field interaction. For concreteness we consider the
QD spontaneous emission for two experimentally realistic
nanophotonic structures: a semiconductor-metal plane
interface and a plasmonic nanowire [see Fig. 1(a)]. We
note that our results apply to self-assembled QDs while,
e.g., spherical nanocrystals would not possess the required
symmetry. Our study demonstrates that single QDs can be
employed for locally probing complex photonic nano-
structures that tailor both the electric and magnetic field
[11,12]. Sensitivity to the magnetic field has been a long-
sought goal in nanophotonics, and has been achieved so far
only by scanning near-field spectroscopy [13], where the
disturbance of the electromagnetic field profile by the
applied near-field probe can be an issue. The nanometer
size of single QDs enables noninvasive probing that
operates at the single-electron single-photon level.
The present analysis concentrates on the rate of sponta-

neous emission Γ of the QD because it is a direct and
experimentally relevant measure of the light-matter cou-
pling strength [14,15]. Another interesting property would
be the emission pattern of the QD that can be modified
and tailored by the interference of dipolar and multipolar
contributions [3]. In contrast, the multipolar effects
discussed here do not affect the QD interaction with
phonons, an essential dephasing mechanism, since the
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interaction depends mainly on the QD volume rather than
symmetry. We emphasize that the developed theory can
readily be extended to cover the strong-coupling regime
because the multipolar terms enter as a renormalization of
the light-matter coupling strength. Since the coupling
strength depends on the interference of multipolar terms
as determined by the nanostructure, one may envision
designing special nanocavities in order to enhance the
light-matter interaction beyond that of a point dipole with
immediate applications to quantum light sources for quan-
tum-information processing [16]. It should be mentioned
that the mesoscopic terms do not influence the photon
statistics of the source, i.e., the excellent single-photon
purity observed for QD sources prevails also under con-
ditions where mesoscopic contributions are significant.
According to Fermi’s golden rule [17], Γ ¼ ðπ=ϵ0ℏωÞ×P
ljTlj2δðω − ωlÞ, where the generalized Coulomb gauge

[18] is applied, Tl ¼ ðe=m0ÞhΨgjf�l ðrÞ · p̂jΨei is the tran-
sition moment between the ground jΨgi and excited jΨei
electronic states of the QD, p̂ ¼ −iℏ∇ the momentum
operator, fl the normal vector-potential mode [19], and c
andm0 theelementarychargeandelectronmass.Atthispoint,
the standard textbook approach is to invoke the dipole
approximation flðrÞ ≈ flðr0Þ by assuming that the field
varies slowly over the QD ðLQDÞ, i.e., kLQD ≪ 1, where k
is the photonwave number and r0 the position of theQD.We
accountfor thefieldvaryingover theQDandperformaTaylor
expansion in the field modes flðrÞ. The expansion can be

performed as long as kLQD < 1, otherwise, the integration in
Γ must be evaluated directly [20], thereby complicating the
analysis and offering limited physical insight [21,22]. The

expansion is inserted into the transitionmoment Tl ¼ Tð0Þ
l þ

Tð1Þ
l þ Tð2Þ

l þ � � �, which yields
Tl ¼ μif�l;ið0Þ þ Λji∂jf�l;ið0Þ þΩkji∂j∂kf�l;ið0Þ þ � � � ;

ð1Þ
where the summation convention over repeated indices
and r0 ¼ 0 are used. Here, μi ¼ ðe=m0ÞhΨgjp̂ijΨei, Λij ¼
ðe=m0ÞhΨgjxip̂jjΨei, and Ωijk ¼ ðe=2m0ÞhΨgjxixjp̂kjΨei
are the dipole moment, first-order, and second-order meso-
scopicmomentsof theQD, respectively. In theSupplemental
Material [23] we show that the contribution from Ω is
negligible, and μ and Λ have the form

μ ¼ μx̂; Λ ¼ Λx̂ ẑ; ð2Þ
where μ≡ μx and Λ≡ Λxz. Remarkably, one single param-
eterΛdescribes the light-matter interactionbeyondthedipole
approximation. The ratio jΛ=μj quantifies the mesoscopic
strength of the QD and was measured to be about 10 nm for
standardself-assembledIn(Ga)AsQDs[7].Thisvaluewillbe
used throughout the Letter. The interaction with light can be
either suppressed or enhanced by themesoscopic momentΛ
depending on the properties of the environment of the QD.
Thiseffect is illustrated inFig.2(a),where theemissionrateof
a QD in the proximity of a silver interface is shown (at an
emission wavelength of 1000 nm and with the refractive
indices of GaAs nGaAs ¼ 3.42 and of silver nAg ¼ 0.2þ 7i).
AQD and a point dipole exhibit different functional depend-
encies to the metal interface because the former couples also
to field gradients while the latter does not, as is shown in the
following. Note that, unlike QDs, atomic wave functions
possess parity symmetry so that μ and Λ never contribute
simultaneously.
We similarly collect the orders in the decay rate as

Γ ≈ Γð0Þ þ Γð1Þ þ Γð2Þ. In the proximity of metals, the QD
can decay into propagating photons with the rate ΓRAD,
propagating surface plasmons ðΓPLÞ, or Ohmic-lossy
modes (LS) in the metal ðΓLSÞ [24]; see Fig. 1(a). The
former coupling to radiative modes is essentially not
affected by multipolar effects since the responsible electro-
magnetic field varies weakly in space, i.e., ΓRAD ≈ Γð0Þ

RAD. In
contrast, the plasmon field varies strongly and therefore
multipolar effects influence the excitation rate of plasmons.
The coupling to lossy modes is normally negligible for
distances larger than ∼20 nm from the metal and we do not
discuss them further. We thus obtain the three light-matter
interaction channels for mesoscopic QDs,

Γð0Þ ¼ Ajμj2ImfGxxð0; 0Þg ¼ ΓRAD þ Γð0Þ
PL ;

Γð1Þ ¼ 2AReðΛμ�Þ∂xImfGzxðr; 0Þgjr¼0 ≈ Γð1Þ
PL ;

Γð2Þ ¼ AjΛj2∂x∂x
0ImfGzzðr; r0Þgjr¼r0¼0 ≈ Γð2Þ

PL ; ð3Þ

FIG. 1 (color online). Decay dynamics of mesoscopic QDs
beyond the dipole approximation. (a) Schematic of the QD decay
channels in the proximity of a metal interface. The electron (blue)
and hole (red) wave functions illustrate the built-in asymmetry.
(b) Light-matter interaction processes governing Γð0Þ, where the
ED interacts with the radiation modes (RAD) of the electric
vacuum ERAD

x and the guided surface plasmon (PL) modes Ex.
(c) Processes governing the ED-MD interference. The light emitted
by the ED μx interacts with the MD my and creates a magnetic
field. The physical picture of Γð1QÞ is conceptually analogous.
(d) Processes governing Γð2Þ with pure MD and EQ contributions.
The EQ Qxz couples to the gradient of the electric vacuum.
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where A ¼ 2e2=ϵ0ℏm2
0c

2
0, c0 is the vacuum speed of light,

Gðr; r0Þ the electromagnetic Green’s tensor [25], and Re
and Im denote the real- and imaginary-part operators,
respectively. Each order has a clear physical meaning as
explained below, where we exemplify a semiconductor-
silver interface as sketched in the inset of Fig. 2(a).
The zeroth-order rate Γð0Þ is the well-known ED con-

tribution, and is given as a product of a field term, ImfGxxg,
which is proportional to the (electric) local density of
optical states, and a QD term jμj2, which is proportional to
the (electric) oscillator strength [19]. Here, a microscopic
polarization in the x direction couples to the x-polarized
electric field, which probes the environment and interferes
back with itself. The resulting field excitation propagates
away from the QD in the form of free photons or surface
plasmons; see Fig. 1(b). In the proximity of an interface,
Γð0Þ has the well-known Drexhage dependence [26]; see
Figs. 2(a) and 2(b), where the red-violet color gradient
indicates that the coupling to the plasmonic field becomes
dominant at distances smaller than ∼50 nm.
The higher-order corrections to Γ depend on the meso-

scopic moment Λ, which is responsible for the nonlocal
interaction with light. Γð1Þ is a first-order process and is
negligible if the figure of merit Gð1Þ ≡ jΓð1Þj=Γð0Þ ≈ k ×
2jΛ=μj is much smaller than unity. For In(Ga)As QDs,
Gð1Þ ≃ 0.44 shows that the light-matter interaction beyond
the dipole approximation can be strong. The magnitude of
such effects is determined by the field gradients of the
particular photonic nanostructure and we compute them in
the next paragraph. Γð2Þ is a second-order process and
contains pure MD and EQ contributions as sketched in
Fig. 1(d). For QDs, the important quantity is Gð2Þ≡
jΓð2Þj=Γð0Þ ≈ k2jΛ=μj2 ≃ 0.05, which is negligible. Note
that the dipole approximation is more robust for atoms and
other high-symmetry emitters, since the first nonvanishing
contribution is Γð2Þ, which has a weight of ðkLQDÞ2 with
respect to Γð0Þ.
In the following, we discuss the first-order contribution

Γð1Þ in quantitative terms. The mesoscopic moment Λ
contains MD and EQ contributions, as can be seen
from

Λxz∂xel;zð0Þ ¼ iωmybl;yð0Þ þQxz½∂xel;zð0Þ þ ∂zel;xð0Þ�;
ð4Þ

where e and b are the electric- and magnetic-field modes,
respectively, my ≡m the MD and Qxz ≡Q the EQ of the
QD [27]. The two moments are equal, i.e., m ¼ Q ¼ Λ=2,
but they couple to different field components and thus their
contribution can be tailored independently. As a conse-
quence, Γð1Þ intertwines the ED, MD, and EQ characters of
the QD with the following physical interpretation. The ED
couples to the x-polarized electric field, which probes the
environment and interferes back with the MD and EQ
components; see Fig. 1(c). The resulting field excitation
propagates away in the form of surface plasmons. Note that
Γð1Þ ≠ 0 only if both the QD wave functions and the
electromagnetic environment violate parity symmetry. This
is because a parity-symmetric electronic potential cannot be
both μ and Λ allowed, and a parity-symmetric environment
contains either even or odd electromagnetic modes. The ED
is an even operator and would couple only to the even
modes, while Λ corresponds to an odd operator and would
couple to the odd modes inducing no mutual interference
between μ and Λ and a vanishing Γð1Þ. The first-order
contribution can both enhance and suppress the light-matter
interaction depending on whether the light emitted by the
ED μ interferes constructively or destructively with the
mesoscopic momentΛ. This can be seen in Fig. 2(a), where
by flipping the QD orientation Λ changes sign and, hence,
Γð1Þ changes from suppressing to enhancing the decay rate.
The multipolar contribution to Γð1Þ is

Γð1Þ ¼ Γð1mÞ þ Γð1QÞ

¼ Aωmyμ
�RefByxð0; 0Þg þ AQxzμ

�ImfQxzð0; 0Þg;
ð5Þ

where we define the ED-MD Green’s tensor Byxð0; 0Þ ¼
−iω−1½∂xGzxðr; 0Þ − ∂zGxxðr; 0Þ�r¼0, the ED-EQ Green’s
tensor Qxzð0; 0Þ ¼ ½∂xGzxðr; 0Þ þ ∂zGxxðr; 0Þ�r¼0, and
assume Λμ� to be real [28]. Equation (5) shows that
QDs access the magnetic and electric-quadrupole vacuum

(a) (c)

FIG. 2 (color online). Decay dynamics of QDs near a silver interface. All the rates are normalized to the decay rate in homogeneous
GaAs. (a) Decay rate for the direct (inverted) QD orientation marked by blue (orange) lines. The black dashed line denotes the dipole
theory. (b) Decomposition of the decay rates according to the expansion order. The Ohmic losses are indicated by the dotted black line.
(c) The ED-MD and ED-EQ Green’s tensor probed by mesoscopic QDs and normalized to ImfGxxð0; 0Þg in homogeneous GaAs.
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fields and is demonstrated in Fig. 2(c), where the con-
tribution of RefByxð0; 0Þg and ImfQxzð0; 0Þg is shown.
The two components of the Green’s tensor vary over length
scales of tens of nanometers, which is comparable to the
QD size [29] and explains the breakdown of the dipole
approximation observed in experiment [7].
QDs interact with light as spatially extended objects and

are, therefore, capable of probing not only the electric-field
magnitudeat theirpositionbutalsofieldvariations.This is the
basic property allowing us to use QDs for probing the
electromagnetic vacuum fluctuations. If placed in an
unknownnanophotonic structure, the spontaneous-emission
rate of the QD is generally given by Γ

▴
≈ Γð0Þ

▴
þ Γð1Þ

▴
. By

flipping theQDorientation, which is a feasible experimental
procedure that can be done by etching away the substrate [7],
the ED contribution is the same but the first-order term
changes sign, i.e., Γ

▾
≈ Γð0Þ

▾ þ Γð1Þ
▾ ¼ Γð0Þ

▴
− Γð1Þ

▴
. As a

consequence, both the projected Green’s tensor
ImfGxxð0; 0Þg and the spatial gradient ∂xImfGzxð0; 0Þg
can be unambiguously extracted; cf. Eq. (3). While the
former corresponds to the electric-field strength generated
by anEDat the position of the emitter, the latter describes the
electric-field gradient generated by the same ED. We exem-
plify this aspectby investigating the interactionbetweenQDs
and surface plasmons in the proximity of a silver nanowire
(radius ρ ¼ 30 nm), which is capable of collecting most of
the QD emission into a single propagating field mode, an
important goal in the field of quantumphotonics [16,30].We
find the nanowire to support a single strongly confined
plasmon mode with Gð1Þ ¼ kPL × 2jΛ=μj ¼ 0.76 [19,30]
leading to stronger field gradients than for the plane silver
interface. The contribution of Γð2Þ is again negligible since
Gð2Þ ¼ 0.14. The coupling to radiation and lossy modes is
modeled as a point dipole in the simple quasistatic approxi-
mation [30,31], which gives excellent agreement with the
electrodynamic computation [32]. The Green’s tensor of the
plasmonfield acquires aparticularly simple form[32] and for
the geometry presented in Fig. 3(a) the relevant rates read

Γð0Þ
PL

Γð0Þ
GaAs

¼ Cjezð0Þj2; ð6Þ

Γð1Þ
PL

Γð0Þ
GaAs

¼ 2C
Λ
μ
Ref½∂ze�rð0Þ�ezð0Þg; ð7Þ

where C ¼ 3πc0ϵ0=nk20vg, vg is the group velocity of the
guidedmode, and thedecayrateshavebeennormalized to the
decay rate in homogeneousGaAs. Equations (6)–(7) contain
the two field components, which can be probed by QDs in
spontaneous-emission experiments, as shown in the
following.
There are two configurations in which the plasmon

density of optical states is nonzero, namely, for an axially
and radially oriented dipole [30]; see the inset of Figs. 3(a),
3(d). If the dipole moment is oriented axially, cf. Fig. 3(a),

we find the coupling to surface plasmons to be suppressed
completely when Λ and μ are in phase [Λ=μ > 0, depicted
with blue in Fig. 3(a)] and enhanced by a factor of 2 when
they are π out of phase (Λ=μ < 0, depicted with orange).
Using the aforementioned procedure of recording Γ

▴
and

Γ
▾
from Fig. 3(a), QDs can be used to probe the magnitude

and curvature of the complex plasmonic field plotted in
Fig. 3(b). At the center of the QD, the field is completely
polarized along the z direction and the point-dipole
character of the QD therefore probes the local density of
states via ImfGzzð0; 0Þg. Additionally, the field exhibits a
curvature meaning that the radially polarized field varies
over the QD despite the fact that its mean value is zero. This
radially polarized axial gradient, ∂zImfGrzðr; 0Þg, is
probed by the extended mesoscopic character of the QD.
Both fields exhibit a monotonic increase as the QD
approaches the nanowire and are plotted in Fig. 3(c).
The axial gradient is multiplied by the in-plane QD size
ðLQD ¼ 20 nmÞ [29] to show the field variation over the
QD spatial extent. It is interesting to note that the field
ImfGrzg exhibits a large variation over the QD that is
comparable to the probed field itself ImfGzzg. This
example shows the “ease” of breaking the dipole approxi-
mation with QDs in nanophotonic structures. We find that
most of the contribution to Γð1Þ

PL stems from the EQ nature of
the QD, in contrast to the silver interface, where the MD
and EQ contributions are of comparable magnitude. These
examples show that even though the MD and EQ moments
are equal in magnitude, their individual contribution to the

FIG. 3 (color online). Probing field gradients with mesoscopic
QDs. (a) For an axially oriented dipole, Γð1Þ enhances (sup-
presses) the light-matter interaction for the configuration marked
by orange (blue). The dashed line is the prediction of the dipole
theory. (b) Vector plot of the plasmonic field generated by the ED
of the QD situated 20 nm away from the nanowire. Both the
length of the arrows and the color scale denote the field
magnitude. (c) The field projections probed by the QD can be
extracted by subtracting the decay curves in (a). The gray-shaded
area is the region where nonradiative losses are dominant. (d) For
a radially oriented dipole, Γð1Þ ¼ 0 and the QD behaves as an
electric dipole.
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light-matter interaction can be tailored by correspondingly
engineering the nanophotonic environment. In this sense,
QDs are promising light emitters for embedment in optical
metamaterials, whose practical realization has become
technologically feasible over the past years. In the second
configuration, the dipole moment is oriented radially and
the first-order contribution Γð1Þ vanishes because the
environment is parity symmetric along the QD height;
see the inset of Fig. 3(d). Consequently, the QD probes only
the local density of optical states and the dipole approxi-
mation is a very good assumption. As seen in Fig. 3(d), the
prediction of the two theories are very close.
In conclusion, we have shown that the commonly

employed In(Ga)As QDs are capable of strongly interacting
with the multipolar quantum vacuum on dipole-allowed
transitions. This striking behavior is triggered by the lack of
parity symmetry of the electronic wave functions and of the
electromagnetic environment. The effect can be exploited
to use QDs as a probe of the local field environment
revealing not only information about the field itself but also
about its gradients. Furthermore, by engineering the nano-
photonic environment it is possible to selectively access
the MD or EQ nature of the QD and, thereby, to tailor the
multipolar radiation of semiconductor QDs. We have
exemplified this for metal nanostructures but any strongly
or rapidly varying optical modes would produce deviations
from the dipole approximation, and we therefore expect
this work to be of significance not only for plasmon-based
devices [33] and photovoltaics [34], but also for the active
field of photonic-crystal cavities and waveguides, where
QDs have been described as dipole emitters so far.
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