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The Mesoscopic Nature of Quantum
Dots in Photon Emission

P. Tighineanu, A.S. Sørensen, S. Stobbe and P. Lodahl

Abstract Semiconductor quantum dots share many properties with atoms such as
discrete spectrum, which implies the ability to emit high purity single photons. How-
ever, they have unique features as well that are unknown to other emitters: they
embody tens of thousands of atoms attaining large mesoscopic sizes, and lack the
common atomic symmetries. Here we discuss two effects that are mediated by the
mesoscopic nature and render quantum dots fundamentally different than atoms. The
mesoscopic size and lack of parity symmetry causes the electric-dipole approxima-
tion to not be applicable to In(Ga)As quantum dots. As a consequence, the latter
do not fulfil the atomic selection rules and thus interact with the electric and mag-
netic components of light on the same electronic transition. The multi-atomic nature
also causes a collective mesoscopic effect in monolayer-fluctuation GaAs quantum
dots, namely single-photon superradiance, giving rise to a giant light-matter coupling
strength.

Semiconductor quantum dots (QDs) provide the essential link between light and
matter and can be integrated monolithically into photonic devices. These nanometer-
sized purposefully engineered impurities combine the atomic-like discrete spectra
and excellent single-photon purity with the large light-matter interaction strength
inherent to solid-state systems [1]. The ability to tailor the photonic environment
around QDs has resulted in tremendous progress in manipulating single QD excita-
tions. Strong coupling between a QD and a cavity [2–4] and near-unity coupling to
a photonic waveguide [5–10] are a few out of many exciting realizations [1].

The atomic-like properties of QDs are supplemented by a range of new effects
owing to their solid-state nature. For instance, vibrations of the underlying crystal lat-
tice, known as phonons, may decohere the light-matter interaction [11–13] or couple
non-resonant QD excitations to an optical cavity [14–18]. Similarly, the mesoscopic
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ensemble of the nuclei composing the QD can be used to tailor the hyperfine inter-
action with the electron in spin-based quantum-information science [19]. Recently
it was found [20] that QDs may break the dipole approximation, which is often
assumed to be valid also in solid-state quantum optics. These realizations unveil the
complex nature of QDs, which embody tens to hundred thousand atoms attaining
“mesoscopic” sizes that interact relentlessly with the surrounding solid-state envi-
ronment. In this chapter we present a unified description of the mesoscopic nature of
QDs [20–23]. In particular, we discuss twomesoscopic effects that exist solely due to
the large physical size of QDs: the breakdown of the dipole theory of In(Ga)As QDs
and collective enhancement of light-matter interaction with monolayer-fluctuation
GaAs QDs.

The small size L of most quantum emitters compared to the wavelength of light
λ has ensured the success of the dipole theory, which states that emitters interact with
light as dimensionless entities (point dipoles). Since QDs attain mesoscopic sizes of
10–30nm [24], the dipole approximation does not necessarily hold because the figure
of merit 2πnL/λ0 ≈ 0.5 is not negligible. Here, typical values for the wavelength
in vacuum λ0 = 900 nm, refractive index n = 3.42 and L = 20nm have been used.
This figure of merit may be further enhanced in the vicinity of metal nanostructures,
where additional propagating modes (surface plasmons) beyond the light cone arise.
It has been observed that the spontaneous-emission dynamics from QDs placed near
a metal interface show pronounced deviations from the dipole theory [20]. A theory
of light-matter interaction beyond the dipole theory can explain these experimental
findings by introducing a single mesoscopic moment to be considered along with the
dipole moment in light-matter interactions [21]. Notably, this theory is more general
than previously developed models [25–32] because it considers the symmetry of the
full quantum-mechanicalwavefunction and not only the slowly varying envelope.We
show that the discrete atomistic symmetry explains themicroscopic origin of the large
mesoscopic moment observed experimentally. In particular, the developed theory
pinpoints that large structural inhomogeneities at the crystal-lattice level lead to a
violation of parity symmetry in In(Ga)AsQDs [22].Quantumdots therefore break the
atomic selection rules and probe electric and magnetic fields on the same electronic
transition [21]. Moreover, the mesoscopic size of QDs may ease the observation
of dipole-forbidden transitions in photonic nanostructures [33]. It has been shown
that, in the opposite limit of highest possible (spherical) symmetry present in, e.g.,
colloidal QDs, a shell theorem is valid, which states that the Purcell enhancement in
an arbitrary photonic environment is protected by symmetry and does not depend on
the QD size [32].

The second part of this chapter is devoted to presenting another mesoscopic prop-
erty of QDs, namely collective enhancement of light-matter interaction leading to
single-photon superradiance. Quantum dots benefit from their multi-body nature
with an enhanced coupling to light compared to atoms, which renders them promis-
ing candidates for improving the efficiency of single-photons sources, solar cells and
nano-lasers, to name a few important practical applications. Commonly employed
QDs have, however, an upper limit for the interaction strength with light, regardless
of their size and shape. It has therefore been a long-sought goal in quantum photonics
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to develop solid-state emitters beyond this upper limit [34–37]. We demonstrate that
the fundamental excitation of a monolayer-fluctuation QD [38] is analogous to the
phenomenon of single-photon superradiance defined by Dicke for a non-interacting
ensemble [39]. This effect leads to an enhanced coupling to light far beyond that of
conventional QDs, which may be of interest for fundamental science and technology
alike. In particular, such rapid radiative decays will likely exceed relevant dephasing
mechanisms resulting in highly coherent flying quantum bits. Furthermore, new and
so far largely unexplored solid-state quantum-electrodynamics regimes involving
energy non-conserving virtual processes, such as the ultra-strong coupling between
light and matter, may become within reach at optical frequencies [23].

5.1 Fundamentals of Light-Matter Interaction
with Quantum Dots

In this section we lay the fundamental as well as the experimentally relevant aspects
describing the interaction between QDs and light.

5.1.1 Effective-Mass Theory

The commonly employed bandstructuremethod for QDs is the effective-mass theory.
It assumes that the bands, which are exact solutions in the bulk semiconductor, are
weakly perturbed by the nanostructure. Formally, a quantized eigenstate within an
electronic band can be written as a product of a periodic Bloch function, u(r), which
captures the properties on the length scale of the crystal unit cell, and a slowly varying
envelope, ψ(r), that inherits the size and symmetry of the mesoscopic QD potential

� j (r) = ψ j (r)u j (r), (5.1)

where j = {e, hh, lh} labels either of the three relevant bands in zincblende semi-
conductors: electron, heavy hole, and light hole, respectively. It can be shown [40]
that ψ j is subject to a Schrödinger-type equation

E jψ j (r) = − �
2

2meff, j
�ψ j (r) + Vj (r)ψ j (r), (5.2)

where we assume that the effective mass is isotropic. The complicated unit-cell
potential is merged into the effectivemass,meff , a parameter that can be inferred from
experiments. The potential energy Vj (r) contains the smoothmesoscopic potential of
the QD as illustrated in Fig. 5.1. This particle-in-a-box problem can be solved either
analytically or numerically using the standard techniques of quantum mechanics.
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Fig. 5.1 Physical interpretation of the effective-mass approximation. The complicated crystal
potential (left) is merged into an effective-mass parameter (right)

The effective-mass theory describes the properties of QDs remarkably well,
since the first valence-band eigenstate is usually heavy-hole-like with a negligi-
ble light-hole component. This is related to the presence of compressive strain in
In(Ga)As/GaAs QDs, which alters the symmetry of the unit cells and splits the
degeneracy of the bands [41]. In strain-free QDs, the ground state is still mostly
heavy-hole like due to the small aspect ratio of QDs [24, 36, 42–44].

5.1.2 Excitons

Electrons and holes possess charge and half-integer spin and therefore interact. The
electron-hole bound state constitutes a fundamental quasi-particle, the exciton,which
governs the optical properties of QDs. Being a two-body system, the exciton wave-
function �X can be expanded in the single-particle electron and hole wavefunc-
tions [45]

�X(re, rh) =
∑

n,m

Cn,m�e
n(re)�

h
m(rh) = ue(re)uh(rh)ψX(re, rh), (5.3)

where �n corresponds to the n-th eigenstate of the QD and ψX(re, rh) is the slowly
varying envelope of the exciton subject to the two-body effective-mass Schrödinger
equation

(
p2e
2me

+ p2h
2mh

+ Ve(re) + Vh(rh) − e2

4πε0ε
∣∣re − rh

∣∣

)
ψX = EψX. (5.4)

Here, p is the momentum operator, εr is the dielectric constant and E the energy of
the exciton. In bulk, the electron and hole orbit each other within a distance known as
the exciton Bohr radius a0. Since the Coulomb energy EC scales inversely with the
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QD size, EC ∝ L−1, the Coulomb and exchange interactions in a QD are enhanced
compared to bulk. On the other hand, the quantum-confinement energy scales as
L−2. As a consequence, the exciton motion can be found in two regimes:

(i) The strong-confinement regime, in which L � a0 [46] and quantum confine-
ment dominates Coulomb confinement. The latter can be neglected and the electron
and hole therefore move independently as non-interacting particles ψX(re, rh) =
ψe(re)ψh(rh). Most of the studied semiconductor QDs in the literature are in the
strong-confinement regime. The dipole moment of an x-polarized exciton is

µ = e

m0
〈�h

∣∣ p̂x
∣∣�e〉ex � e

m0
pcv〈ψh

∣∣ψe〉ex , (5.5)

where ex is the Cartesian unit vector, pcv = V−1
UC

∫
UC d

3ru∗
x p̂xue is the interband

Bloch matrix element with VUC being the unit-cell volume. In the above equation we
have exploited the slow variation of the envelopes ψ over one unit cell. The dipole
moment of small QDs has therefore an upper limit of μmax = (e/m0)pcv .

(ii) The weak-confinement regime, in which L � a0 and the electron-hole motion
is correlated. Here, (5.4) has to be solved as a two-body problem. Achieving this
regime has been a long-sought goal in quantum photonics because such QDs exhibit
a giant dipole moment beyond μmax, cf. Sect. 5.3.

Excitonic effects have a prominent role in determining the QD energy structure.
Combining the electron contribution with a spin of ±1/2 with the heavy-hole pro-
jected angular momentum of ±3/2 yields four possible excitonic configurations:
two optically bright with jz = ±1 and two optically dark with jz = ±2. Bright exci-
tons are higher in energy than dark excitons by several hundred µeV [47]. The
splitting between the two bright states is of the order of tens of µeV [47] and is
mostly determined by the QD asymmetry [48]. The resulting dipole moments of
the bright excitons jz = ±1 are orthogonally polarized along the x = [1, 1, 0] and
y = [1,−1, 0] crystallographic directions.

5.1.3 Spontaneous Emission

The light-matter interaction strength governs the temporal dynamics of the exciton-
to-photon conversion. In the Wigner–Weisskopf approximation, the QD exciton
decays exponentially with the rate �rad determined by Fermi’s Golden Rule

�rad = 2π

�2

∑

f

∣∣〈 f ∣∣Ĥint

∣∣i〉∣∣2δ(ω − ωi f ), (5.6)

where Ĥint is the light-matter interaction Hamiltonian triggering a transition from
the initial

∣∣i〉 to the final
∣∣ f 〉 state. In this work we consider the minimal-coupling

interaction Hamiltonian [49] between an electron with charge e and mass m0,
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and the field described by the vector potential Â

Ĥint = − e

2m0

(
p̂ · Â + Â · p̂ − eÂ · Â

)
. (5.7)

Another commonly used Hamiltonian is the multipolar Hamiltonian, which is
expressed in terms of electric and magnetic fields. It can be shown [49] that the
two Hamiltonians give the same result for energy conserving processes such as
spontaneous emission [50].

The nonlinear term Â · Â can be neglected for the weak fields studied here. We
employ the generalized Coulomb gauge, ∇ · [ε(r)Â(r)] = 0, yielding

Ĥint � − e

m0
Â(r) · p̂, (5.8)

where the dielectric constant ε(r) is assumed to vary over length scales larger than
the QD size [51]. The vector potential can be written in terms of the normal field
modes [52]

Â(r) =
∑

l

√
�

2ε0ωl

[
âl f l(r) + â†l f

∗
l (r)
]
, (5.9)

where âl (â
†
l ) is the annihilation (creation) operator for the l mode. The QD is

approximated as a two-level system with the initial state
∣∣i〉 = ∣∣e〉 ⊗ ∣∣0〉 with the

exciton in the excited state
∣∣e〉 and the field in the ground state

∣∣0〉, and ∣∣ f 〉 =∣∣g〉 ⊗ ∣∣1 f 〉 the final state with one excitation in the field mode f and the emitter in
the ground state

∣∣g〉. Plugging this into (5.6) yields

�rad = πe2

ε0�m2
0

∑

l

1

ωl

∣∣〈g∣∣f ∗
l (r) · p̂∣∣e〉∣∣2δ(ω − ωl), (5.10)

which is the starting point for the research presented here. The expression is beyond
the dipole approximation because the variation of the field over the emitter is taken
into account.

5.1.4 The Dipole Approximation: Oscillator Strength
and Density of Optical States

The standard-textbook approach to evaluating (5.10) is to assume that the field does
not vary over the QD, f l(r) ≈ f l(r0), where r0 is the QD center. The resulting dipole
approximation is excellent for quantum emitters that are much smaller than the
wavelength of light. We thus obtain
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�rad = π
∣∣μ
∣∣2

ε0�
ep ·
[
∑

l

1

ωl
f ∗
l (r0)f l(r0)δ(ω − ωl)

]
· e∗

p, (5.11)

where ep is the unit vector pointing along the direction of the dipole moment. The
term in square brackets is proportional to the imaginary part of the Green tensor [25,
52]

ImG(r, r′) = πc20
2

∑

l

1

ωl
f ∗
l (r)f l(r

′)δ(ω − ωl), (5.12)

In the dipole approximation, the light-matter interaction strength is thus governed by
two quantities: the dipole moment µ, which is an intrinsic property of the emitter,
and the imaginary part of the Green tensor, which is a property of the electromagnetic
environment.

It is often useful to recast the emitter and field properties in terms of the oscillator
strength f and the projected local density of optical states (LDOS) ρ(r0,ω, ep).
The oscillator strength is a dimensionless quantity defined as the ratio between the
radiative rate of the QD in a homogeneous environment and the emission rate of a
classical harmonic oscillator, and is related to the dipole moment via

f = m0

e2�ω

∣∣μ
∣∣2. (5.13)

The oscillator strength of atoms is of the order of 1 and about 10 for QDs [53]
because QDs are larger and interact stronger with light. Conventional QDs are in the
strong-confinement regime with a maximum oscillator strength of

fmax = Eg

�ω
, (5.14)

where Eg is the Kane energy, an experimentally accessible quantity. This upper limit
for f can be understood from (5.5), where the overlap between the envelopes cannot
exceed unity. The LDOS is defined as the number of electromagnetic modes per unit
energy and volume that the emitter can decay into

ρ(r0,ω, ep) = 2ω

πc20
Im
[
ep · G(r0, r0) · e∗

p

]
. (5.15)

Modern fabrication techniques enable accurate tailoring of the LDOS surrounding
the QDs in, e.g., photonic-crystal cavities [54] and waveguides [10], micropillar
cavities [55], nanowires [7] and plasmonic nano-antennas [56].

In a homogeneous medium, the Green tensor can be evaluated analytically [52]
yielding

�hom
rad = μ0ωn

3π�c0

∣∣μ
∣∣2. (5.16)
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Fig. 5.2 Level scheme describing the population transfer of the exciton in a QD. The bright exciton∣∣b〉 can decay either radiatively (�rad) or nonradiatively (�nrad) and can interact with its the dark
exciton

∣∣d〉 via the spin-flip rate (�sf ). Figure reproduced from [42]

Finally we note that only the imaginary part of the Green tensor contributes to
the decay rate because energy dissipation is described by the part of the response
function,which isπ/2 out of phasewith the drivingfield, as is known for the harmonic
oscillator. The real part is proportional to a self-energy term, the Lamb shift, which
shifts the frequency of the QD exciton [57].

5.1.5 Decay Dynamics of Quantum Dots

The internal structure ofQDs ismore complicated than a two-level system: there are 4
excited states comprising 2 bright and 2 dark excitons, which are coupled by spin-flip
processes. Furthermore, the omnipresent nonradiative processes, such as defect traps
in the vicinity of the QD [58], provide alternative pathways for the recombination
of the exciton. The experimentally measured decay rates of QDs therefore depend
on radiative, nonradiative, and spin-flip processes. Analyzing the dynamics provides
important information about the optical quality ofQDs, namely the oscillator strength
and the quantum efficiency η. The latter quantifies the probability that theQD exciton
recombines radiatively

η = �hom
rad

�hom
rad + �nrad

, (5.17)

where �nrad is the nonradiative rate. In the following we present a method that can
unambiguously extract these quantities from measurements [23, 42, 53].

Spin-flip processes are inhibited in QDs because it is difficult to simultaneously
flip spin and fulfil energy conservation due to the discrete spectrum. The coupling
between bright-bright and dark-dark excitons can generally be neglected because
it is a second-order process. Only bright-dark excitons are coupled by �sf and the
level scheme is reduced to the one depicted in Fig. 5.2. Bright-dark and dark-bright
spin-flip rates are assumed to be the same because the thermal energy at 4−10K is
larger than the bright-dark energy splitting. Also, the nonradiative rates of bright and
dark excitons are the same due to their small energy splitting [59].
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The decay dynamics of the bright exciton is governed by the rate equations of the
coupled three-level system

[
ρ̇B

ρ̇D

]
=
[−�rad − �nrad − �sf �sf

�sf −�nrad − �sf

] [
ρB

ρD

]
, (5.18)

where ρ denotes the occupation probability. Under the realistic assumption that spin
flip-processes are much slower than the radiative rate, i.e., �sf � �rad, (5.18) yields
for the decay of the bright state

ρB(t) = ρB(0)e−(�rad+�nrad)t + �sf

�rad
ρD(0)e−(�nrad+�sf )t . (5.19)

The bright exciton exhibits a biexponential decaywith the fast rate�F = �rad + �nrad

and the slow rate �S = �nrad + �sf . Consequently, by fitting the measured decay
curveswith f (τ ) = AFe−�F τ + ASe−�Sτ + C , where τ is the time delaywith respect
to the start of the excitation pulse andC is the background level, which is determined
by the measured dark-count rate and after-pulsing probability of the detector, the
radiative and nonradiative rates can be unambiguously extracted via

�rad = �F − �S, (5.20)

�nrad = �S − AS

AF

ρB(0)

ρD(0)
(�F − �S) , (5.21)

�sf = AS

AF

ρB(0)

ρD(0)
(�F − �S) . (5.22)

For non-resonant excitation, QDs trap carriers with random spin, i.e.,

ρB(0)

ρD(0)
� 1. (5.23)

Notably, the radiative rate �rad does not coincide with the homogeneous-medium
quantity�hom

rad becauseQDsare often located close to dielectric-dielectric or dielectric-
air interfaces, which may modify the LDOS.

5.2 Light-Matter Interaction Beyond the Dipole
Approximation with In(Ga)As Quantum Dots

The experimental observation of the dipole-theory breakdown was presented in [20],
whereQDsplacednear ametal interfacewere probedby time-resolvedphotolumines-
cence measurements, cf. Fig. 5.3. In the experiment, the QD spontaneous-emission
rate was found to be inhibited relative to the dipole theory for the geometry in
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(a)

(b)

Fig. 5.3 Observation of deviations from the dipole theory for QDs near a metal interface [20]. The
decay rate of QDs close to a metal interface was measured for a direct and b inverted QDs relative
to the interface. The black dashed line denotes the dipole theory, the triangles the data points and
the colored solid lines the fit. Figure reproduced from [20]
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Fig. 5.4 Observation of deviations from the dipole theory for QDs near a dielectric interface.
a Measured decay rates versus distance z0 to the GaAs-air interface (data points) at an energy of
1.27eV.The dipole (multipolar) theory is indicated by the black dashed (blue solid) line. A refractive
index n = 3.5 of GaAs was used. b Extracted mesoscopic strength�/μ over the emission spectrum
of QDs (red squares) along with the prediction of the theoretical model (blue dashed line). Figure
reproduced from [22] (color figure online)

Fig. 5.3a. In contrast, the inverted structure in Fig. 5.3b showed an increase in the
rate; the two structures would exhibit the same rates, if the QDs were dipoles. The
observed difference is thus a direct demonstration of the breakdown of the dipole
theory. The effects beyond the dipole approximation were merged into a phenom-
enological QD parameter, the mesoscopic moment � = (e/m0)〈0

∣∣x p̂z
∣∣�X〉.

Deviations from the dipole theory have also been observed in the vicinity of an
air interface [22, 53, 58], cf. Fig. 5.4, at distances below ∼75nm, which can again
be explained by the mesoscopic moment �. The extracted mesoscopic strength �/μ
increases with emission energy and varies from 10 to 23nm over the inhomoge-
neously broadened emission spectrum, cf. Fig. 5.4b, and is successfully explained
by our microscopic QD theory, which is presented later. The emission rate at the
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air interface is enhanced while at the metal interface it is suppressed (for the direct
structure) due to the phase shift gained upon reflection in the latter case, which flips
the sign of the field gradient.

TheQDwavefunctions obtained from the effective-mass theory cannot explain the
large mesoscopic moment � observed experimentally. Sections5.2.1–5.2.3 present
such a theory that is applied to describe the spontaneous-emission process from
QDs in Sect. 5.2.5. It is shown that the inhomogeneous quantum-current distribution
makes QDs a probe of electric and magnetic fields.

5.2.1 Theory of Light-Matter Interaction Beyond
the Dipole Approximation

The starting point for the theory is to account for the variation of the electromagnetic
field over the size of the exciton wavefunction in (5.12). The decay rate of the emitter
becomes

�(ω) = 2μ0

�

∫ ∫
d3rd3r′Im

[
j(r) · G(r, r′) · j∗(r′)

]
. (5.24)

Here, we define the quantum-mechanical current density j(r) of the QD

j(r) = e

m0
p̂�X(r, r). (5.25)

Unlike the dipole theory, where the effect of the environment on the emitter can be
thought of as a self-interaction term at a single point r0, here the self interaction occurs
between all possible pairwise points (r, r′) within �X. We perform an expansion in
the fieldmodes, f l(r), because the integral formulation offers limited physical insight
and is often computationally infeasible.

The transition moment from the ground to the excited state is defined as

T0X = e

m0
〈0∣∣f ∗

l (r) · p̂∣∣�X〉. (5.26)

Expanding the normal mode f l around the QD center r0 yields

T0X = T (0)
0X + T (1)

0X + T (2)
0X + · · · (5.27)

The electric-dipole term neglects the variation of the field over the emitter

T (0)
0X = T (μ)

0X = f ∗
i (r0)〈0

∣∣μ̂i

∣∣�X〉 = f ∗
i (r0)μi , (5.28)

where μi = 〈0∣∣μ̂i

∣∣�X〉, μ̂i = (e/mo) p̂i is the electric-dipole operator, and implicit
summation over indices is used. The first-order contribution reads
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T (1)
0X = ∂ j f

∗
i (r0)� j i , (5.29)

where �i j = (e/m0)〈0
∣∣xi p̂ j

∣∣�X〉 is the first-order mesoscopic moment. T (1)
0X can

be written as a sum of the electric-quadrupole, T (Q)
0X , and magnetic-dipole, T (m)

0X ,
contributions

T (1)
0X = T (Q)

0X + T (m)
0X = 1

2
∂ j f

∗
i (r0)〈0

∣∣Q̂i j

∣∣�X〉 + [∇ × f ∗(r0)
] · 〈0∣∣m̂∣∣�X〉, (5.30)

where Q̂i j = (e/m0)
(
xi p̂ j + p̂i x j

)
is the electric-quadrupole andm = e/(2m0)r ×

p̂ the magnetic-dipole operator.
The second order correction to the transition moment is

T (2)
0X = ∂ j∂k f

∗
i (r0)�k ji , (5.31)

where �i jk = (e/2m0)〈0
∣∣xi x j p̂k

∣∣�X〉 is the second-order mesoscopic moment. T (2)
0X

can be rewritten in terms of electric-octupole, T (O)
0X , and magnetic-quadrupole, T (M)

0X ,
contributions

T (2)
0X = T (O)

0X + T (M)
0X = 1

6
∂2
jk f

∗
i (r0)〈0

∣∣Ôi jk

∣∣�X〉 + 1

2
∂ j
[∇ × f ∗(r0)

]
i 〈0
∣∣M̂i j

∣∣�X〉,
(5.32)

where Ôi jk = (e/m0)(xkx j p̂i + xk p̂ j xi + p̂k x j xi ) is the electric-octupole and M̂i j =
(e/3m0)

[
x j
(
r × p̂

)
i + (r × p̂

)
i x j
]
the magnetic-quadrupole operator.

All in all, the multipole expansion to second order results in five contributions

T0X = T (0)
0X + T (1)

0X + T (2)
0X = T (μ)

0X + T (Q)
0X + T (m)

0X + T (O)
0X + T (M)

0X + · · · , (5.33)

which are summarized in Table5.1 and sketched in Fig. 5.5. The zeroth order has
only electric-dipole contributions, while higher orders include terms of both electric
and magnetic nature.

The multipolar expansion depends on the choice of the expansion point r0 [60,
61], which leads to an r0-dependent decay rate.Wefind that by consistently collecting
the expansion orders in the decay rate rather than in the multipolar moments, the rate

Table 5.1 Overview of the different contributions to the multipole expansion of T0X up to second
order

Order Overall Electric Magnetic

0 T (0)
0X = μi f ∗

i T (μ)
0X = 〈μ̂i 〉 f ∗

i —

1 T (1)
0X = � j i∂ j f ∗

i T (Q)
0X = 1

2 〈Q̂i j 〉∂ j f ∗
i T (m)

0X = 〈m〉 · [∇ × f ∗]

2 T (2)
0X = �k ji∂ j∂k f ∗

i T (O)
0X = 1

6 〈Ôi jk〉∂ j∂k f ∗
i T (M)

0X = 1
2 〈M̂i j 〉∂ j

[∇ × f ∗]
i
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Fig. 5.5 Interpretation of the multipole expansion. The interaction between the current j(r) and
field E(r) is decomposed into a linear superposition of multipoles

Fig. 5.6 Physical interpretation of the spontaneous-emission rate decomposed into the constituent
multipoles. The nonlocal interaction between the points r and r′ within the current density of the
emitter is converted into an interaction between the different multipoles of the emitter

is remarkably robust against changes in r0. For a detailed derivation the reader is
referred to [50]. This aspect is of important for the justification of the multipolar
expansion.

We expand � up to the second order because the first-order term vanishes in
parity-symmetric environments

� ≈ �(0) + �(1) + �(2). (5.34)

The zeroth-order term stems from the dipole nature of the emitter (Fig. 5.6),

�(0) = π

ε0�

∑

l

1

ωl

∣∣T (0)
0X

∣∣2
l δ(ω − ωl)

1.12= 2μ0

�
Im
[
μiGi j (r0, r0)μ∗

j

]
.

(5.35)

The first-order contribution reads

�(1) = π

ε0�

∑

l

1

ωl
2ReT (1)

0X T (0),∗
0X lδ(ω − ωl)

= 2μ0

�
2Re
[
�kiμ

∗
j

]
∂kIm

[
Gi j (r, r0)

]∣∣
r=r0

,

(5.36)
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and is proportional to the field gradient at the position of the emitter. �(1) can be
interpreted as an interference between the dipole and mesoscopic quantities. Impor-
tantly, �(1) = 0 if either the QD and or environment are parity symmetric [21]. The
dipole approximation is therefore protected by parity symmetry to first order.

The second-order contribution to the radiative rate is

�(2) = π

ε0�

∑

l

1

ωl

[
2ReT (2)

0X T (0),∗
0X + T (1)

0X T (1),∗
0X

]

l
δ(ω − ωl)

= 2μ0

�
Im
{[
2Re�lkiμ

∗
j∂k∂l + �ki�

∗
l j∂k∂

′
l

]
Gi j (r, r’)

∣∣
r=r’=r0

}
, (5.37)

and couples to the second-order derivative of the field. Here the first term stems from
the interference betweenµ and�, which share contributions with the same parity. In
contrast, the second term vanishes for parity-symmetric emitters on dipole-allowed
transitions because µ and � are orthogonal.

The first-order mesoscopic moment � contains 9 entries and the second-order
moment � 27 entries. However, many vanish for symmetry reasons, and only a few
capture the essential physics. Motivated by the shape of In(Ga)As QDs [24] we
assume the QDs to be lens shaped with in-plane cylindrical symmetry but with no
parity symmetry in the growth direction. Notably, this analysis is not bound to this
particular QD shape and is also valid for pyramidal or elliptical QDs. The exciton
state is in the strong-confinement regime [53] and, using the effective-mass theory,
the electron �e and hole �h wavefunctions are modeled as

�e(r) = ue(r)ψe(r),

�h(r) = uh(r)ψh(r),
(5.38)

where ue (uh) is the conduction- (valence-) band Bloch function, and ψ(r) is the
slowly varying envelope. For concreteness we consider the x-polarized exciton but
note that the properties of the y-polarized exciton are analogous.

In the following, we investigate the first-order mesoscopic moment

�ki = e

m0
〈0∣∣(xk − x0,k) p̂i

∣∣�X〉 = e

m0
〈uxψh

∣∣(xk − x0,k) p̂i
∣∣ueψe〉. (5.39)

The choice of x0 and y0 is provided naturally by the cylindrical symmetry of the
QD. We define z0 as the z-component of the exciton center-of-mass coordinate [50].
The valence-band Bloch function uh = ux inherits the odd symmetry (“−1”) of
the px orbital in the x-direction and even parity (“+1”) in y and z; ue inherits the
spherical symmetry of the s-orbital. The slowly varying envelopes ψ inherit the
symmetry of the QD, cf. Table5.2. Thus, only�xz and�zx contain non-zero entries.
�zx = (e/m0)〈ψh

∣∣z p̂x
∣∣ψe〉 can be neglected because it couples to the QD height,

which is much smaller than the in-plane size [24], yielding
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Table 5.2 Symmetries of the electron and hole wavefunctions for a lens-shaped QD. ‘1’ denotes
even parity, ‘−1’ odd parity and ‘0’ no parity

ux ψh �h ue ψe �e

x −1 1 −1 1 1 1

y 1 1 1 1 1 1

z 1 0 0 1 0 0

� �
⎡

⎣
0 0 �

0 0 0
0 0 0

⎤

⎦ , (5.40)

where � ≡ �xz . Large values of �/μ � 10−20nm were measured for In(Ga)As
QDs, cf. Fig. 5.4. With similar arguments it can be shown [50] that all the entries in
� have negligible contributions such that

� = 2μ0

�
Im

{
[
μ∗, �∗]

[
Gxx (r0, r0), ∂xGxz(r, r0)

∂′
xGzx (r0, r′), ∂x∂

′
xGzz(r, r′)

]∣∣∣∣
r=r′=r0

[
μ
�

]}
. (5.41)

In conclusion, QDs have an additional optical degree of freedom, the mesoscopic
moment�, which, combined with the dipole moment μ, describes light-matter inter-
action with QDs.

5.2.2 Microscopic Model for Mesoscopic Quantum Dots

The mesoscopic moment � has been used as a phenomenological quantity so far
with no clear relation to themicroscopic origin. The large� observed experimentally
cannot be reproduced by the effective-mass theory because the size of� is governed
by the gradient of theQDwavefunction,while, according to the effective-mass theory,
gradients can only originate from the envelope functions, and are negligibly small.
This can be shown by evaluating�with the rules employed for evaluatingμ, which is
to assume that ψ varies slowly over a unit cell so that μ = (e/m0)〈ψhux | p̂x |ueψe〉 ≈
(e/m0)pcv〈ψh |ψe〉, where pcv = V−1

UC

∫
UC d

3ru∗
x p̂xue is given by an integral over the

unit cell with VUC being the unit-cell volume. A similar calculation yields for �

� = e

m0

[〈ψh

∣∣x
∣∣ψe〉〈ux

∣∣ p̂z
∣∣ue〉UC + 〈ψh

∣∣ψe〉〈ux

∣∣x p̂z
∣∣ue〉UC

+ 〈ψh

∣∣x p̂z
∣∣ψe〉〈ux

∣∣ue〉UC + 〈ψh

∣∣ p̂z
∣∣ψe〉〈ux

∣∣x
∣∣ue〉UC

]
,

(5.42)

where 〈〉UC ≡ V−1
UC

∫
UC d

3r denotes integration over a unit cell. The first three con-
tributions vanish for symmetry reasons. The fourth contribution is vanishingly small
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(a) (b) (c)

Fig. 5.7 Microscopic model for QDs. a The atomic lattice inside the QD is assumed to change
periodicity at z = zT . b Sketch of the spatial dependence of u2x . c Illustration of the matrix elements
〈px 〉 ≡ 〈ux | p̂x |ue〉 and 〈pz〉 ≡ 〈ux | p̂z |ue〉 for the three colored unit cells in a. The symmetry of
the integrand is broken in the transition region around z = zT giving rise to mesoscopic effects.
Figure reproduced from [22]

and does not scale with the QD size: for Gaussian envelopes allowing for realistic
mutual displacements of 1–2nm between the electron and the hole in the growth
direction (note that the integral vanishes in the absence of such a displacement)
we estimate �/μ ∼ 10−4 nm. In the following we develop a generalization of the
effective-mass theory, and find that the mesoscopic moment originates from lattice
inhomogeneities at the crystal-lattice level.

Using bulk-material Bloch functions works excellently for quantum wells and
lattice-matched QDs, where the structures are strain free and structurally homoge-
neous. In(Ga)As QDs, on the other hand, are grown by strain relaxation, a violent
process that unavoidably leads to the generation of structural gradients. In particular,
large lattice-constant shifts are observed in the growth direction of QDs [24, 62].
Motivated by this we assume that the lattice periodicity changes at a certain posi-
tion z = zT along the QD height by an amount �al = 110 pm at a central value
al = 605 pm as measured in [62], see Fig. 5.7a. The Bloch functions change period-
icity as well, cf. Fig. 5.7b, and to describe this we expand them in a Fourier series
with a position-dependent lattice wavevector kl(z)

ux (r) =
∑

m

am(y, z) sin[mkl(z)x],

ue(r) =
∑

n

bn(y, z) cos[nkl(z)x].
(5.43)

This Ansatz ensures opposite parity of the conduction- and valence-band Bloch
functions along x . We assume the shape of the Bloch functions to be the same, and
only their periodicity to vary. This yields for the interband matrix element pcv =
〈ux

∣∣ p̂x
∣∣ue〉UC

pcv = i�

VUC

∑

n

∫

UC
d3ra∗

n(r)bn(r)nkl(z) sin
2[nkl(z)x]. (5.44)
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We now evaluate the mesoscopic moment by separating the slowly and rapidly
varying contributions

� = e

m0

N∑

q=1

ψ∗
g (Rq)Xqψe(Rq)

∫

UC
d3ru∗

x (r) p̂zue(r), (5.45)

where Rq denotes the position of the q-th unit cell and N is the number of unit
cells. In a homogeneous region of the QD (the blue unit cell in Fig. 5.7a) the unit-
cell integrand of (5.45) is odd in x- and z-directions, cf. Fig. 5.7c, which leads to a
vanishing integral. However, in the transition region around z = zT strong gradients
are present, which destroy the parity of the integrand (see the pink and green unit
cells in Fig. 5.7a, c) and generate a contribution to �. The z-polarized Bloch matrix
element 〈ux

∣∣ p̂z
∣∣ue〉 is evaluated as

〈ux

∣∣ p̂z
∣∣ue〉 � i�

∑

m,n

∫

UC
d3ra∗

m(r)bn(r)
∂kl(z)

∂z
sin[mkl(z)x]nx sin[nkl(z)x],

(5.46)

yielding

� =
N∑

q=1

ψ∗
h(Rq )Xqψe(Rq )

∑

m,n

∫

UC
d3ra∗

m(r)bn(r)
∂kl
∂z

sin[mkl x]n(x + Xq ) sin[nkl x].

We assume that ∂zkl is slowly varying over an unit cell and pull it in front of the
unit-cell integral. The term containing x vanishes because the integral is odd and we
are left with

�

μ
= 1

kl

〈ψh(r)
∣∣x2
[
∂zkl(z)

] ∣∣ψe(r)〉
〈ψh(r)

∣∣ψe(r)〉 . (5.47)

This expression shows that the mesoscopic strength scales quadratically with the in-
plane size of the QD,�/μ ∼ L2

r , because the term 〈ψg

∣∣x2
[
∂zkl(z)

] ∣∣ψe〉 contains the
variance of the exciton wavefunction in the x-direction. Moreover, it increases with
decreasing QD height, �/μ ∼ L−1

z , since in shallow QDs the relative importance of
the lattice-constant transition region is increased.

For in-plane rotationally symmetric Gaussian envelopes analytic expressions are
obtained [22]

�

μ
= −�al

al

√
1 + ξz

4π

σ2
r

σz
, (5.48)

where σz is the height (HWHM) of the electron envelope, σr the QD radius, �al/al
the relative lattice-constant shift and ξz ≈ 5 the ratio between the hole and electron
effective masses. The largest mesoscopic strengths are achieved in shallow and wide
(disk-shaped) QDs, cf. Fig. 5.8.
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Fig. 5.8 The mesoscopic
strength as a function of the
in-plane size of the QD for
three fixed QD heights.
Figure reproduced from [22]

5.2.3 The Quantum Current Density of Quantum Dots

To illustrate the physics responsible for the mesoscopic moment we now calculate
the quantum-mechanical current density resulting from the abovemodel. The current
density jQD(r) flowing through the QD is defined in (5.25) and leads to

jQD(r) = e

m0

[
�h(r) p̂x�e(r)ex + �h(r) p̂z�e(r)ez

]
. (5.49)

The current density jQD(r) = JQD(r)p(r) is modulated by the Bloch element p(r) =
ux (r) p̂xue(r). In the following we discuss the slowly varying component JQD(r),
which can be written as

JQD(r) = e

m0
ψh(r)ψe(r)

(
ex + x

1

kl

∂kl
∂z

ez

)
. (5.50)

We assume that most of the transition happens over two lattice constants as shown
in [24]. In QDs with a homogeneous crystal lattice ∂kl/∂z = 0 and thus � = 0, the
current density flows only along the direction of the dipole moment (see Fig. 5.9a).
The presence of lattice inhomogeneities changes the flow due to transverse gradients.
The current density flows along a curved path as illustrated in Fig. 5.9b–d. The wider
the QD is, the sharper the transverse oscillations of the current are, and the larger
�/μ is.

We now have the ingredients to provide an intuitive understanding of the exper-
imental data in Fig. 5.3. In the direct (inverted) structure, Fig. 5.3a (Fig. 5.3b), the
QD current and the plasmonic field flow along opposite (parallel) curvatures, which
leads to enhanced (suppressed) light-matter interaction.We exemplify this for a silver
nanowire with a radius of 20nm and refractive index nAg = 0.2 + 7i, see Fig. 5.10.
The coupling efficiency to plasmons, βpl, is defined as the coupling rate to plasmons
over the coupling rate to all excitations, which include photons, plasmons and ohmic
losses. The configuration in Fig. 5.10a exhibits a larger coupling to surface plasmons
relative to a dipole (from 75% to 90%), cf. Fig. 5.10c. In contrast, the interaction is
diminished if the QD orientation is flipped, cf. Fig. 5.10b, because the QD current
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(a) (b) (c)

(d)

Fig. 5.9 Spatial distribution of the current density JQD(r) in QDs. a Homogeneous crystal lattice
where the flow is uniform and points along the dipole moment. b Inhomogeneous lattice for a QD
radius of 5nm giving rise to a non-uniform flow along a curved path. The QD height is 2σz = 4nm.
c, d Same as b but for QD radii of 10 and 20nm, respectively. Both the length of the arrows and the
color scale indicate the magnitude of the flow and the direction of the arrows indicates the pointwise
direction of the flow. Figure reproduced from [22]
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Fig. 5.10 QDs coupled to surface plasmons of a silver nanowire. a The field matches the curvature
of the QD current and the coupling efficiency to surface plasmons, βpl, is enhanced, red curve in c,
relative to a dipole, dashed curve in c. b If the QD orientation is flipped, the interaction is diminished
as shown in c by the blue line

and of the field oscillate in opposite directions. In other words, μ and � interfere
constructively in (a) and destructively in (b).

5.2.4 Lattice-Distortion Effects Beyond the Multipolar
Theory

Knowing the full current distribution according to the microscopic model allows to
calculate the decay rate without relying on the multipolar expansion. Inserting (5.50)
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into (5.24) leads to

� = 2μ0

∣∣pcv
∣∣2

�
Im
∫∫

d3rd3r′
[
Jx (r) Jz(r)

] [Gxx (r, r′) Gxz(r, r′)
Gzx (r, r′) Gzz(r, r′)

] [
J ∗
x (r′)
J ∗
z (r′)

]
,

(5.51)
where Jx (r) = (e/m0)ψh(r)ψe(r) and Jz(r) = xk−1

l (∂kl/∂z)Jx . The zeroth order
expansion of Gxx contains the electric-dipole contribution �(0). The other terms are
generated by the transverse oscillations of the current density and contain the first
�(1) and second�(2) order contributions. Equation (5.51) should be preferred over the
multipolar theory when the figure of merit k × �/μ > 1, i.e., when the multipolar
expansion diverges.

5.2.5 Quantum Dots as Probes for the Magnetic
Field of Light

Electric and magnetic fields play an equally important role in the formation of the
light field but interact fundamentally different withmatter. Themagnetic force acting
on a charged particle with velocity v is v/c times smaller than the electric force.
Magnetic light-matter interaction is therefore weak. Nevertheless, magnetic-dipole
transitions are well known in atomic physics and can be accessed with light despite
being weak [63–65], since they have different selection rules than electric-dipole
transitions because atoms have parity symmetry [26, 27, 66]. The lack of parity
symmetry implies that QDs may be exploited as a probe of electric and magnetic
fields on a single electronic transition. We exemplify this by considering again the
spontaneous emission of a QD in front of a metal interface [21]. The QD decays
into propagating photons with the rate �RAD, propagating surface plasmons (�PL),
or ohmic-lossy modes in the metal (�LS) [67]. �RAD is negligibly affected by the
mesoscopic moment since the radiative modes oscillate weakly, i.e., �RAD ≈ �

(0)
RAD.

In contrast, the plasmon field varies strongly in space and � plays a major role in
the excitation rate of plasmons. The coupling to ohmic losses [68, 69] is normally
negligible at distances larger than ∼20nm from the metal and are not discussed
further. The three light-matter interaction channels are

�(0) = 2μ0

�
μ2ImGxx (0, 0) = �RAD + �

(0)
PL ,

�(1) = 2μ0

�
2�μ ∂x ImGzx (r, 0)|r=0 ≈ �

(1)
PL ,

�(2) = 2μ0

�
�2 ∂x∂

′
x ImGzz(r, r′)

∣∣
r=r′=0 ≈ �

(2)
PL ,

(5.52)

where we assume the QD wavefunctions to be real. Each order has a clear physical
meaning as explained in Sect. 5.2.1 and can be visualized in Fig. 5.11.
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Fig. 5.11 Decay dynamics of QDs near a silver interface. All the rates are normalized to the decay
rate in homogeneous GaAs. a Decay rate for the direct (inverted) QD orientation marked by blue
(orange) lines. The black dashed line denotes the dipole theory. bDecomposition of the decay rates
according to the expansion order. The ohmic losses are indicated by the dotted black line. c The
ED-MD and ED-EQ Green tensor probed by mesoscopic QDs and normalized to ImGxx (0, 0) in
homogeneous GaAs. Figure reproduced from [21]

In the following we show that �(1) probes the magnetic field of light. The meso-
scopic moment � can be decomposed into multipolar contributions

�xz∂xel,z(0) = iωmybl,y(0) + Qxz
[
∂xel,z(0) + ∂zel,x (0)

]
, (5.53)

wheremy = �/2 is themagnetic dipole, Qxz = � the electric quadrupole of theQD,
and e and b are the electric- and magnetic-field modes, respectively. Consequently,
�(1) intertwines the electric dipole, magnetic dipole and electric quadrupole of the
QD. The multipolar contribution to �(1) is

�(1) = 2�

μ0

[
ωmyμReByx (r0, r0) + AQxzμImQxz(r0, r0)

]
, (5.54)

whereByx (r0, r0) = −iω−1
[
∂xGzx (r, r0) − ∂zGxx (r, r0)

]
r=r0

is themagneto-electric

Green tensor, and Qxz(r0, r0) = [∂xGzx (r, r0) + ∂zGxx (r, r0)
]
r=r0

the electric
dipole-quadrupole Green tensor. The probed fields are plotted in Fig. 5.11c for an
emitter close to a silver interface, where the two components of the Green tensor
vary over length scales of tens of nanometers, which is comparable to the QD size.

The mesoscopic moment can also be used to probe the parity symmetry of
nanophotonic environments [21]. If placed in an unknown nanophotonic structure,
the spontaneous-emission rate of the QD is generally given by �� ≈ �

(0)
� + �

(1)
� . By

flipping the QD orientation, the dipole contribution is unchanged but the first-order
term has opposite symmetry and changes sign, i.e., �� ≈ �

(0)
� + �

(1)
� = �

(0)
� − �

(1)
� .

As a consequence, both the projected Green tensor Im{Gxx (0, 0)} and the spatial
gradient ∂x Im{Gzx (0, 0)} can be extracted using (5.52).
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5.3 Single-Photon Superradiance from a
Monolayer-Fluctuation Quantum Dot

We address another mesoscopic property of QDs, the collective coupling to light
in terms of superradiance. We show that the fundamental optical excitation of a
weakly confining QD is a generalization of single-photon superradiance (SPS) [23].
The superradiant state is prepared deterministically with a laser pulse and reaches a
five-fold collective light-matter enhancement.

5.3.1 Extending the Concept of Superradiance from Atomic
Physics to Solid-State Emitters

In the following wemake a formal connection between the proposal of Dicke regard-
ing SPS in an ensemble of atoms [39] and collective light-matter enhancement in a
semiconductor QD. We show that the giant oscillator strength of QDs and SPS are
two equivalent phenomena.

If N emitters are placed closer than one wavelength apart, the emission dynamics
of a shared electronic excitation is strongly enhanced in the symmetric SPS state [39]

∣∣�s〉 = 1√
N

∑

j

∣∣g〉1
∣∣g〉2 . . .

∣∣e〉 j . . .
∣∣g〉N , (5.55)

where the j-th emitter is in the excited state
∣∣e〉 and all others in the ground state∣∣g〉. Remarkably, the state

∣∣�s〉 decays N times faster to the ground state than a
single emitter. This state describes a non-interacting ensemble, where the excitation
is bound to either of the emitters, cf. Fig. 5.12a. Harvesting such effects in prac-
tice is challenging due to the large size and harmonic spectrum of many ensembles,
which decreases the collective enhancement and prohibits deterministic preparation,
respectively. These limitations do not apply toQDs, which are small and anharmonic.
However, another challenge emerges: in a system of interacting particles the wave-
functions of the underlying atoms overlap leading to delocalized excitations. This
causes conventional QDs to be in the strong-confinement regime and thus to have
relatively small oscillator strengths of about 10, despite that they consist of tens of
thousands of atoms, cf. Fig. 5.12b.

The size of delocalized excitations is a fundamental property of semiconductors
and is given by the size of an exciton. Enhancement of light-matter interaction can
therefore be achieved only in QDs that confine excitons weakly [70], i.e., that are
larger than the exciton radius. We study single GaAs monolayer-fluctuations QDs as
sketched in Fig. 5.12c. Bound excitonic states are created by intentionally engineered
monolayer fluctuations in a quantum well [38]. Exciton enhancement is achieved
only in the plane, where the QDwavefunction is extended beyond the exciton radius.
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(a)

(b) (c)

(d)

Fig. 5.12 Superradiance with single QDs. a SPS is defined in an ensemble of non-interacting
emitters as a symmetric superposition of different excitations. b In small QDs, such as In(Ga)As
QDs, the electrons and holes are strongly confined and uncorrelated, which destroys collective
effects. c A QD defined by intentional monolayer fluctuations weakly confine electrons (e) and
holes (h), which are mutually bound by electrostatic attraction. d The excitonic enhancement of
light-matter interaction may be regarded as a generalization of SPS: the exciton is in a symmetric
superposition of excitations. Figure reproduced from [23]

We assume the QD wavefunctions to be separable into in-plane ψX and out-of-
plane φ components. Due to strong confinement in the z-direction, φ is separable as
φ(z) = φe(z)φh(z). We therefore obtain the exciton wavefunction in the effective-
mass approximation

�X(R, r, re, rh) = ψX(R, r)φh(zh)φe(ze)ux (rh)ue(re), (5.56)

where R = (mere + mhrh)/(me + mh) and r = re − rh are the center-of-mass and
relative in-plane excitonic coordinates. The superradiant enhancement is therefore
governed by the in-plane envelope ψX(R, r). We consider a symmetric parabolic
in-plane confining potential, in which case the excitonic envelope separates into
center-of-mass and relative dynamics ψX(R, r) = χCM(R)χr (r) with [25]

χCM(R) =
√
2

π

1

β
e−
∣∣R
∣∣2/β2

, (5.57)

χr (r) =
√
2

π

1

aQW
e−
∣∣r
∣∣/aQW , (5.58)

where aQW is the quantum-well exciton radius with aQW � a0/
√
2 ≈ 8nm, and β

is the in-plane radius of the exciton wavefunction. The center-of-mass motion can
be written as a convolution between a function ca(R) capturing the dynamics on
the (uncorrelated) scale aQW and a function cs(R) responsible for the superradiant
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enhancement

χCM(R) = ca(R) ∗ cs(R) ≈
∑

n

c(Rn)ca(R − Rn). (5.59)

Consequently, the slowly varying envelope reads

ψX(R, r) =
∑

n

c(Rn)φX(R − Rn, r), (5.60)

where n runs over the unit cells of the QD. The internal exciton dynamics is governed
byφX,which has a spatial extent of the order of theBohr radius (∼8nm) and is smaller
than theQD. The exciton in (5.60) is therefore in a spatial superposition of excitations
corresponding to different positions of φX as illustrated in Fig. 5.12d.

The following expression for the oscillator strength is obtained (compare with
(5.14))

f = Eg

�ω
χr (0)

∣∣〈0∣∣χCM(R)〉∣∣2∣∣〈ψh(z)
∣∣ψe(z)〉

∣∣2, (5.61)

where the first (second) inner product on the right-hand side of the equation denotes
a two-dimensional (one-dimensional) integration over R (z). We define the radius of
the QD L = √

2β and, with the help of (5.57) and (5.58), arrive at the superradiant
enhancement of the oscillator strength

S = f

fmax
=
(√

2L

aQW

)2 ∣∣〈ψh

∣∣ψe〉
∣∣2. (5.62)

We calculate
∣∣〈ψh

∣∣ψe〉
∣∣2 ≈ 0.96 and plot the resulting superradiant enhancement

in Fig. 5.13. It scales with the QD area and is a dramatic effect; for realistic QD
diameters of 35nm, the light-matter interaction strength exceeds the upper limit of
strongly confined excitons by an order of magnitude.

Fig. 5.13 Superradiant
enhancement of the
oscillator strength, S, for a
monolayer-fluctuation QD
relative to the
strong-confinement limit
fmax = 17.4. Figure
reproduced from [23]

20 30 40
0

5

10

15

QD Diameter, 2L (nm)

S
up

er
ra

di
an

t e
nh

an
ce

m
en

t
of

 th
e 

os
ci

lla
to

r s
tre

ng
th



5 The Mesoscopic Nature of Quantum Dots in Photon Emission 189

5.3.2 Deterministic Preparation and Impact of Nonradiative
Processes

In the experimental demonstration of SPS, the energy-level structure of the QDs is
first probedbyphotoluminescence-excitation spectroscopy as displayed inFig. 5.14a,
which shows a quasi-continuum band of QD states hybridized with quantum-well
resonances followed by the exciton manifold. We identify the 1s, 2s and 3s excitonic
states that are denoted according to the two-dimensional hydrogen atom. Note, the
recombination of excitons with different symmetry is forbidden. Key features of
the spectrum are summarized in Fig. 5.14b. The measurement was carried out using
continuous-wave excitation below the saturation power of the 1s exciton.

Deterministic preparation is achieved by exciting the 2s state with a laser pulse
having sufficient optical power to saturate the 1s transition. The preparation is deter-
ministic because the decay cascade from 2s to 1s is spin-conserving [71] and spin-
dark states are therefore not populated. However, the latter prohibits measurements
of the oscillator strength due to the single-exponential character of the exciton decay.
We therefore use another excitation scheme (the wavelength labeled “C” in Fig. 5.14)
to prepare bright and dark states with equal probability and extract the impact of non-
radiative processes using the biexponential model presented in Sect. 5.1.5.

Significantly below the exciton saturation, P ≈ 0.1Psat, only the exciton is pre-
pared, cf. Fig. 5.15a. At saturation, the biexciton line becomes discernible. Above
saturation, both the exciton and the biexciton lines are saturated and the spectrum
features spectrally continuous multibody emissions. The nature of the exciton and
biexciton lines is confirmed by power series measurements as shown in Fig. 5.15c.

(a) (b)

Fig. 5.14 Deterministic preparation of superradiant excitons. a Photoluminescence-excitation
spectrum obtained by integrating the emission of the 1s transition while scanning the excitation
wavelength. It features a quasi-continuum band of states followed by a sequence of QD states. b
Two excitation schemes are employed. Pumping in the quasi-continuum band at the wavelength
“C” results in preparation of carriers with random spin, which is important for extracting the
nonradiative processes. For 2s-excitation, the spin is preserved and the bright exciton is prepared
deterministically. Figure reproduced from [23]
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Fig. 5.15 Spectral measurements for “C”-excitation. a Measured spectrum at 10% of the exciton
saturation power Psat = 20 nW. Only the exciton is observed. b At saturation of the exciton, the
biexciton is visible as a small peak. c Significantly above the exciton saturation (7.5Psat), the
spectrum acquires further narrow peaks on top of a continuous background. d The exciton is
distinguished from biexcitons by their power-law dependence on excitation power P: the fits yield
P0.86 and P2.01 for the exciton and biexciton, respectively

The spectral broadening of the biexciton line is related to multibody effects between
the exciton and the free carriers populating the quantum well [35, 42].

The decay dynamics is recorded by sending the exciton line from Fig. 5.15a to an
avalanche photo-diode. The acquired data are fitted by the biexponentialmodel yield-
ing the fast rate �C

F = �C
rad + �nrad + �sf and the extracted parameters are outlined

in Fig. 5.16. We obtain a nonradiative rate �nrad = 0.19 ns−1, and a spin-flip rate
�sf = 0.31 ns−1, which are used to extract the oscillator strength in the following.

5.3.3 Demonstration of Single-Photon Superradiance

The experimental signature of SPS is spontaneous emission of single photons with a
radiative rate beyond the upper limit for uncorrelated excitons. The 1s bright state is
excited deterministically through the 2s shell and a clean emission spectrum below
and at saturation is found. The time-resolved measurement is performed at P =
0.1Psat to ensure that no multi-exciton states are prepared, and the decay is found
to be close to single exponential. The radiative rate of the exciton is �rad = �F −
�nrad − �sf = 8.4 ns−1, where �F is the fast rate extracted from Fig. 5.17a. The QDs
are positioned near an air interface [23] and we calculate an LDOS contribution of
0.95, which is normalized to the LDOS in homogeneous Al0.8Ga0.2As, resulting in
an oscillator strength of f = 72.7 ± 0.8. The latter is enhanced far beyond the upper
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Fig. 5.16 Time-resolved decay of the exciton (black dots) under “C”-excitation. The fine-structure
model yields an excellent biexponential fit (yellow line) with the extracted parameters indicated
accordingly.The instrument response of the detector is indicatedby thegreen line. Figure reproduced
from [23] (color figure online)

limit of f = 17.4 for an uncorrelated exciton, cf. Fig. 5.17a. This is a direct signature
of exciton superradiance.

To confirm the single-photon nature of the emission, wemeasure the second-order
correlation function g(2)(τ ) ∝ 〈â†(t)â†(t + τ )â(t + τ )â(t)〉 [72], which determines
the probability of detecting a photon at time t = τ given that a photon was detected
at t = 0. An ideal single-photon source exhibits g(2)(0) = 0 but any value below
0.5 is direct evidence of single photons. Figure5.17b shows the correlation function
obtained in an HBT experiment. The data are fitted by a sum of exponentially decay-
ing functions, and g(2)(0) is defined by the ratio between the energy contained in the
central peak around τ = 0 and in the adjacent peaks. We find a zero-time correlation
of g(2)(0) = 0.13, demonstrating the single-photon nature of the emitted light. In
conjunction with the measured enhanced oscillator strength for a spatially confined
exciton, this is the unequivocal demonstration of SPS in a QD.

Solid-state quantum light sources often suffer from blinking of the emission,
in which the QD randomly switches to a dark state and does not emit light [73].
This may happen, if a charge defect in the vicinity of the QD traps the electron or
hole composing the exciton, thereby preventing the radiative recombination. This
decreases the radiative efficiency of the single-photon source. Blinking normally
occurs within nanosecond-to-microsecond time scales with a corresponding bunch-
ing in the QD second-order correlation function g(2)(τ ) over such time scales. By
numerically integrating each peak in the HBT correlation data we obtain the long-
time-scale plot shown in Fig. 5.17c. No bunching effects are observed, which shows
that this single-photon source is free from blinking on a time scale of at least 10µs.
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(a) (b)

(c)

Fig. 5.17 Experimental demonstration of single-photon superradiance from aQD. a Time-resolved
decay (black points) of the 1s exciton obtained under 2s-resonant excitation. The fit to the theoretical
model is indicated by the yellow line. We take into account the impact of nonradiative processes
presented in the previous section and extract a radiative decay rate of 8.4 ns−1 (red line), which is
deeply in the superradiant regime (green area). bHBTmeasurement of the emitted photons showing
g(2)(0) = 0.13, which demonstrates the single-photon character of the emission. c Long-time-scale
HBT measurement where each coincidence peak has been numerically integrated. No blinking of
the emission is observed. Figure reproduced from [23]

We have measured the oscillator strength of 9 different QDs and found them all to
be superradiantwith an average oscillator strength of f = 76 ± 11 [23]. Remarkably,
an oscillator strength up to f = 96 ± 2 is observed corresponding to an intrinsic
radiative rate beyond 10GHz. Such a highly superradiant QD can deliver a radiative
flux of single photons equivalent to more than five conventional QDs.

While the microscopic structure of the out-of-plane wavefunction can be accu-
rately computed because the quantum-well thickness is known with monolayer pre-
cision, the in-plane geometry is generally unknown. The information is then inferred
from the superradiant enhancement S via (cf. Sect. 5.3.1)

L = aQW√
2

√
S∣∣〈φh

∣∣φe〉
∣∣ . (5.63)

From the measured value S � 4.3 an in-plane diameter 2L � 24nm is obtained. The
exciton wavefunction is spread over 90 thousand atoms in a collective superradiant
quantum state sharing a single excitation.

5.3.4 Impact of Thermal Effects on Single-Photon
Superradiance

The quantization energy�EQD scales inversely proportional to the QD size squared,
�EQD ∝ L−2, and, thus, decreases dramatically for large QDs. If �EQD is
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(a) (b)

Fig. 5.18 Decomposition of the in-plane exciton dynamics into a a center-of-mass and b a relative
motion. a The former describes the motion of the exciton center of mass in a two-dimensional
harmonic potential, cf. (5.64). b The electron-hole electrostatic attraction is captured by the relative
motion. Figure reproduced from [23]

comparable to the thermal energy, kBT , excited states of the excitonmanifold become
populated and the large 1s oscillator strength is redistributed thus decreasing light-
matter interaction. In the followingwe show that the temperature limits themaximum
oscillator strength that can be harvested. In particular, the temperature of the current
experiment of 7K leads to a maximum oscillator strength of ∼100.

Since the exciton dynamics can be decomposed into a center-of-mass (CM) and a
relative (r) motion, cf. (5.57) and (5.58), the ground state is denoted as

∣∣1s〉CM
∣∣1s〉r.

The relative motion is equivalent to the two-dimensional Hydrogen problem [29, 74]
and is governed by themutual electron-hole attraction, see Fig. 5.18. In this subspace,
the relevant energy difference �Er between the ground

∣∣1s〉r and first excited
∣∣2s〉r

states equals roughly twice the excitonicRydberg energy and amounts to about 8meV.
At cryogenic temperatures, thermal energies are much smaller (below 1meV) and
thermal population of the relative-motion subspace can be neglected.

The center-of-mass motion is described by a particle in a two-dimensional har-
monic potential VCM(R) = (1/2)M�2R2, cf. Fig. 5.18a, whereM is the excitonmass
and the spring constant� is related to the quantum-dot size L via [25]� = 4�/ML2.
The resulting energy eigenstates are given by [29]

Enl = (2n − ∣∣l∣∣− 1)��, (5.64)

where n = 1, 2, 3, . . . and l = 0,±1, . . . ,±(n − 1). The dipole selection rules dic-
tate that states with l = 0 are bright (superradiant) and all others are dark (sub-
radiant). For thermal energies kBT comparable to �ECM = ��, the excited states
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Fig. 5.19 The normalized
transition strength N versus
normalized thermal energy
kBT/�� for different
numbers of bound states N in
a monolayer-fluctuation QD.
Figure reproduced from [23]
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become populated and the relevant figure of merit for light-matter interaction is the
transition strength F(T ) = N (T ) × f , which is related to the oscillator strength via
a temperature-dependent factor N (T ). The latter describes the distribution of the
population within the center-of-mass subspace. For a single excited state,

∣∣e〉, N is
given by

N (T ) = 1 + fe
f B(T )

1 + B(T )
, (5.65)

where B(T ) = exp (−�ECM/kBT ) is the Boltzmann factor and fe is the oscillator
strength of the excited state. If

∣∣e〉 is dark and the temperature is high, the transition
strength is half of f (N = 1/2). We generalize (5.65) with the help of (5.64) for an
arbitrarily large subspace

N (T ) = radiative contributions

all contributions
=

∑N
n=1 B2(n−1)

∑N
n=1

∑n−1
l=−(n−1) B2(n−1)−

∣∣l
∣∣ , (5.66)

where N denotes the number of center-of-mass states. This expression can be eval-
uated analytically giving

N (T ) = coth

(
��

2kBT
N

)
tanh

(
��

2kBT

)
, (5.67)

and is plotted in Fig. 5.19. At small temperatures 4kBT � ��, excited states play a
negligible role and F = f . This is the regime in which the oscillator strength can be
reliably measured. We employ this criterion �� = 4kBT to estimate the maximum
oscillator strength f symth,max that can be resolved at a temperature T and obtain (we

consider the out-of-plane overlap
∣∣〈ψh

∣∣ψe〉
∣∣2 ≈ 1 for simplicity)

f symmax,th = 4�EP

Mωa20

1

kBT
, (5.68)
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Fig. 5.20 The transition
strength F versus QD radius
L at different temperatures.
For small QDs, F increases
quadratically with L due to
superradiance but saturates
at larger values due to
thermally activated excited
states. Figure reproduced
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which leads to an oscillator strength of 170 at 7K. We generalize this expression
for a more realistic asymmetric QD with an aspect ratio of 1:ξ with ξ ≥ 1 and
find that the maximum oscillator strength is decreased by ξ. We therefore conclude
that oscillator strengths larger than about 100 are unlikely to be resolved at the
experimental conditions of the present work. Remarkably, oscillator strengths of
1500 are predicted in monolayer-fluctuation QDs with a radius of about 60nm.
Temperatures below 0.8K would, however, be required to resolve this effect.

The oscillator strength scales with the QD area S ∝ L2 but the normalized tran-
sition strength N scales as L−2, cf. (5.67). Thermal effects therefore saturate the
transition strength F , which can be expressed using (5.62)

F = fmax

(√
2L

aQW

)2
tanh

(
2�

2

MkBT L2

)
, (5.69)

which is plotted in Fig. 5.20. The transition strength saturates at

lim
L→∞ F = 8�EP

Mωa20

1

kBT
, (5.70)

which is independent of L and, interestingly, happens to equal 2 f symmax,th. Note that for
very large L � 100nm, deviations from the electric-dipole approximation, which
are not accounted for in this study, further reduce the transition strength [25].

5.4 Conclusion and Outlook

In this chapter we discussed two mesoscopic properties of QDs: the breakdown of
the dipole theory and single-photon superradiance. Aside from the dipole moment,
In(Ga)As QDs have a large mesoscopic moment that contains magnetic-dipole and
electric-quadrupole contributions. The impact of the mesoscopic moment is espe-
cially pronounced in electromagnetic environments that are not parity symmetric.
The developed microscopic theory shows that the mesoscopic moment originates
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from distortions of the underlying crystal lattice. The resulting current density is
curved leading to interaction of both electric and magnetic character. This opens
the prospect for designing photonic nanostructures that match the shape of the QD
current and thus enhance light-matter interaction efficiency. The simultaneous elec-
tric and magnetic nature of the QD current may lead to the vision of designing
optical quantum metamaterials made from QDs for tailoring the interaction at the
single-electron and single-photon level.

Single-photon superradiance was observed in monolayer-fluctuation QDs by
recording the temporal decay dynamics in conjunction with second-order corre-
lation measurements and a theoretical model. This enhanced light-matter coupling
is known as the giant oscillator strength and was shown to be equivalent to super-
radiance. We argued that there is ample room for improving the oscillator strength
at lower temperatures with prospects for generating highly coherent photons by out-
speeding the noise sources, and for approaching the ultra-strong-coupling regime of
cavity quantum electrodynamics with optical photons.
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