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We develop a general microscopic theory describing the phonon-induced decoherence of photons
emitted by quantum dots placed in various photonic structures. The decoherence is found to depend
fundamentally on the dimensionality of the structure resulting in vastly different performance for
quantum dots embedded in a nano-cavity (0D), waveguide (1D), slab (2D), or bulk medium (3D). In
bulk, we find a striking temperature dependence of the dephasing rate scaling as T 11 implying that
phonons are effectively ’frozen out’ for T . 4 K. In photonic structures, the phonon density of states
is strongly modified, which has a detrimental impact on the coherence properties. In particular for
1D and 2D structures, a linear temperature dependence is predicted for the decoherence, which can
be important even at sub-Kelvin temperatures. Our findings provide a comprehensive understanding
of the fundamental limits to photon coherence from quantum dots in photonic structures.

Disentangling a quantum system from its fluctuating environment is pivotal to the realization of coherent quantum
bits. Controlling the sources of noise is particularly challenging in solid-state systems, which contain a myriad
of mutually interacting quasi-particles. An example is semiconductor quantum dots (QDs), which have proven to
be excellent solid-state quantum light sources that can be integrated into photonic devices [1]. Two important
decoherence mechanisms of QDs are the fluctuating electrostatic [2, 3] and spin [2, 4, 5] environments but these can
be neutralized under appropriate external control [6–9]. The decoherence is then dominated by the acoustic vibrations
of the crystal lattice (phonons), which leads to a pronounced temperature dependence [10–14]. However, a unifying
and comprehensive description of phonon decoherence in photonic structures is lacking despite its vital importance for
solid-state quantum optics [1]. Previous founding work has concentrated on QDs in bulk media [11, 12] or the special
case of linear phonon coupling in nano-wires [15] and carbon nanotubes [16]. Here we present a simple yet fully general
microscopic theory of phonon decoherence that is applicable to explore the coherence of QD single-photon emission in
any photonic (nano)structure, such as photonic-crystal cavities and waveguides, nano-beam waveguides, nano-wires,
nano-diamonds, core-shell geometries, etc. The model is applied to the four experimentally relevant systems of an
In(Ga)As QD in a cavity, waveguide, slab, or bulk medium corresponding to different geometric dimensionality from
0D to 3D, see Fig. 1(d).

The impact of phonons on the coherence of photon emission from QDs can be seen clearly in the emission spec-
trum [10–15, 17–27], which features broad spectral sidebands superimposed on a narrow emission line (known as the
zero-phonon line or ZPL), cf. Fig. 1(a). The sidebands originate from a rapid phonon emission or absorption on a
pico-second time scale, see Fig. 1(c), while the ZPL arises from the long-time decay of coherence over nano-second
time scales. Due to the large spectral mismatch between the two processes, the sidebands can readily be removed
by spectral filtering. The fundamental limit to photon coherence is therefore the interaction between the QD and
phonons over long time scales, which is the main focus of the present Letter. In a bulk medium, the broadening is
described by an exciton-phonon coupling that is quadratic in phonon displacement [11] corresponding to the scattering
of a phonon, cf. Fig. 1(b). Here we show that a simple expression for the dephasing rate, Γ3D, can be obtained by
assuming that each phonon scatters from the QD a single time

Γ3D = 3πC2
Q

∫ ∞
0

d(qL)(qL)10e−(qL)2Nq(Nq + 1), (1)

where CQ is a constant defined later, L the QD radius, and q and Nq the phonon wavenumber and occupation
number, respectively. Remarkably, when the thermal wavelength is larger than the QD size, λth > L, corresponding
to a temperature below a critical temperature Tc = ~vs/kBL (vs is the longitudinal speed of sound), the phonons
responsible for the dephasing freeze out leading to a rapid drop of the dephasing rate, cf. Fig. 1(d). This yields
Γ3D(T < Tc) ' 3π × 10!× C2

Q(T/Tc)11 leading to highly coherent processes at T . 4 K for realistic QD sizes. Nano-
structures on the other hand are finite and can thus expand freely resulting in long-wavelength vibrations that broaden
the ZPL already within the linear exciton-phonon coupling, see Fig. 1(c). The latter competes with the quadratic
coupling to yield a non-trivial temperature dependence of the dephasing, cf. Fig. 1(d). We find that these processes
severely limit the coherence in 1D and 2D photonic structures.
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FIG. 1: Phonon dephasing of spontaneous emission from QDs. (a) The emission spectrum consists of a ZPL and broad
sidebands. (b) The quadratic coupling represents scattering of phonons through virtual excitations to a higher lying state and
leads to broadening of the ZPL. (c) The linear coupling is associated with the emission or absorption of phonons by the QD. In
bulk this leads to phonon sidebands in the emission. In nano-structures (illustrated with a nano-wire), an additional mechanism
broadens the ZPL through long-wavelength deformations. (d) Error in two-photon interference (1-TPI) versus temperature for
QDs embedded in structures with different confining dimensionality. 0D corresponds to a QD in the center of a sphere with
radius R = 80 nm, 1D to a cylindrical waveguide with radius ρ = 80 nm and the QD placed in the cross-sectional center (1D)
or halfway offcenter (1D′), 2D to a QD in the center of a freestanding membrane with height 2h = 160 nm, and 3D to a bulk
medium. Each structure is represented by two curves that correspond to a large (L = 4.5 nm) and small (L = 1.5 nm) QD
denoted with large and small triangles, respectively. The dephasing stemming from the linear coupling does not depend on L.

To derive our results we generalize the formalism developed in Ref. [11] and consider arbitrary photonic nano-
structures with the following electron-phonon Hamiltonian

H = ~ω01 |1〉 〈1|+
∑
q

~ωqa
†
qaq + Vint |1〉 〈1| , (2)

where |1〉 is the QD excited state, a†q (aq) the creation (annihilation) operator for the phonon mode with momentum
q and energy ~ωq, and ~ω01 is the QD transition energy, cf. Fig. 1(b). This Hamiltonian is based on the assumption
that the thermal energy is small such that the QD excited states are not populated, which is a good assumption at
cryogenic temperatures. The interaction term, Vint = VL + VQ, comprises a linear and a quadratic term in phonon
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displacement

VL =
∑
q

LqAq, VQ =
∑
b,m

[∑
q

QmqbAq

]2

,

Lq = M11
qe −M11

qh, Qmqb =
M1m

qb√
∆m

,

(3)

where Aq = aq + a†q, b = {e,h} denotes electron or hole, Mmn
qb is the electron-phonon matrix element defined below,

and ∆m is the energy distance between the ground, |1〉, and m-th excited state of the QD with m ≥ 2. Time-reversal
symmetry is assumed such that all quantities can be chosen real. At low temperature, optical phonons do not play
a role and we thus focus on the interaction with acoustic phonons. Two mechanisms dominate the electron-acoustic-
phonon coupling: deformation-potential and piezo-electric coupling. The latter can be important for low-energy spin
transfer [14] but is negligible in our case [28, 29]. We therefore consider a deformation-potential coupling of the form

Mmn
qb = Db 〈ψmb |∇ · uq|ψnb 〉 , (4)

where Db is the deformation-potential constant, ψmb the wavefunction of the m-th excited state, and uq the phonon
displacement.

The coherence of the optical emission is described by the correlation function P (t) = i 〈σ−(t)σ+(0)〉 =

i
〈
T e−

i
~
∫ t
0

dτVint(τ)
〉

[11, 30], where T is the time-ordering operator. While it is possible to evaluate P (t) exactly

for a bulk medium [11], we follow a different path that simplifies the problem. We assume that each phonon only
scatters a single time such that the influence of the QD on the phonon bath can be ignored as justified in Ref. [28]. In

this case the phonon bath acts as an external Gaussian noise source. We define F (t) = (1/~)
∫ t

0
dτVint(τ) and thereby

P (t) ' iexp(−iµF ) exp
[
− 1

2

(〈
T F 2(t)

〉
− µ2

F

)]
, where µF = 〈F (t)〉. Inserting Eq. (S5) into the above expression yields

P (t) = i exp [−iµF +KL(t) +KQ(t)] ,

KL(t) = − i

2~
∑
q

|Lq|2
∫∫ t

0

dtdt′Dq(t− t′),

KQ(t) =
∑
bmn

∫∫ t

0

dtdt′

[∑
q

QmqbQ
n
qbDq(t− t′)

]2

,

(5)

where Dq(t) = (−i/~)
[
(Nq + 1) e−iωq|t| +Nqeiωq|t|

]
is the phonon Green function. The function KL(t) stems from

the linear electron-phonon interaction and its magnitude is determined by a matrix element of the form M11
qb ∝〈

ψ1
b |∇ · uq|ψ1

b

〉
, which shares the symmetry of the ground-state wave function, implying that KL(t) couples to

symmetric acoustic deformations, cf. Fig. 1(c). On the other hand, KQ(t) is mediated by acoustic deformations that
share the symmetry of the excited m,n states.

In a bulk medium, the linear interaction KL(t) gives a rapid decay of the coherence but does not contribute to
its long-time decay, see Fig. 2(a). The quadratic polarization |PQ(t)| = exp[KQ(t)] is evaluated for a spherical
QD with Gaussian envelopes of radius L. Since KQ(t) is proportional to ∆−2

m , the inclusion of the first triply
degenerate excited state, m = n = 2, gives the dominant contribution. The imaginary part, Im [KQ(t)], is linear
in time and only contributes to a spectral shift. Evaluating PQ(t) numerically yields a Markovian decay over long
time scales, cf. Fig. 2(a), with Re [KQ(t)] = −Γ3Dt, and can be calculated analytically by performing the time
integration in Eq. (5) and using the long-time limit ω−2

q sin2 ωqt ' πtδ(ωq). This leads to Eq. (1) with CQ =(
D2
e/∆e +D2

h/∆h

)
/3(2π)2ρmv

2
sL

3. This is plotted in Fig. 2(b) for GaAs parameters: vs = 4780 ms−1, mass density
ρm = 5.37 gcm−3, De = −14.6 eV and Dh = −4.8 eV [15]. The energy distance to the excited states is taken to be
∆e = 2∆h = 40 meV×L0/L with L0 = 3 nm, in agreement with theoretical estimates and experimental results [31–37].

Experimentally, the degree of coherence is measured in a Hong-Ou-Mandel setup [38], in which the two-photon
indistinguishability, TPI, quantifies the coherence between two photons and ranges from 0 (no coherence) to 1 (full
coherence). We calculate the TPI with the approach from Ref. [39] and obtain

TPI = Γrad

∫ ∞
0

dτe−Γradτ |P (τ)|2 . (6)

In bulk, |P (t� t0)| = exp(−Γ3Dt) leading to TPI = Γrad/(Γrad + 2Γ3D) after filtering out the broad sidebands,
where Γrad ' 1 ns−1 is the radiative decay rate of the QD [40], and t0 = L/vs ∼ 1 ps. The resulting temperature
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FIG. 2: Phonon dephasing in a bulk medium. (a) The linear exciton-phonon coupling causes a fast initial decay of the
polarization, while the quadratic coupling contributes to the long-time decay. Parameters: T = 10 K, L = 3 nm. (b) Phonon
dephasing rate versus temperature for L = 1.5 nm (dashed line), L = 3 nm (solid line) and L = 4.5 nm (dotted line). The
natural linewidth in a bulk medium, Γrad ' 2π × 160 MHz, is indicated by the dash-dotted line.

dependence of the TPI is plotted in Fig. 1(d). Near-unity indistinguishabilities, TPI > 99 %, can be achieved at
temperatures below a few Kelvin, where the dephasing rate freezes out as T 11. The highly nonlinear temperature
dependence leads to a significantly lower coherence at temperatures of 5–10 K. Analytic solutions can also be found at
high temperatures, Γ3D(T > Tc) ' 3× (105/32)× π3/2C2

Q(T/Tc)
2, with a quadratic dependence versus temperature

as seen in Fig. 2(b).
The possibility to shape the photonic environment around the QDs with nano-structures has resulted in significant

progress on controlling light-matter interactions [41–44]. Motivated by these achievements, we study phonon decoher-
ence in nano-structures, where an additional source of decoherence is mediated by the linear exciton-phonon coupling
owing to the modified density of states [15]. The long-time coherence dynamics can be split into two contributions
PZPL(t) = PQ(t)PL0(t), where PQ(t) stems from the quadratic coupling, and PL0(t) is the nano-structure-specific
low-frequency contribution to the linear coupling. We start with a simple example of a 0D system — a nano-sphere
cavity, which resembles the geometry of colloidal QDs embedded in spherical shells [45]. The long-time coherence
dynamics is plotted in Fig. 3(a) and stems solely from the quadratic coupling PQ(t). The coherence decay is strongly
non-Markovian because the phonons cannot escape and are reflected from the boundary of the sphere, thereby inter-
acting with the QD periodically, see the inset of Fig. 3(a). A simple expression for Re [KQ(t)] can be derived from
Eq. (5) by using the long-time form sin2[(ωj −ωj′)t]/(ωj −ωj′)2 ' t2δjj′ , where j is the index of the confined acoustic
mode. This results in PZPL(t) = exp(−S2t2) with

S2 =
3

2

(π
2
CQ

)2∑
j

I4
j q̃

12
j e−q̃

2
jNq̃j

(
Nq̃j + 1

)
, (7)

where q̃j ≡ qjL, and Ij is a dimensionless normalization factor of the (j,1,0) spheroidal mode [28, 46]. The resulting
emission spectrum without the radiative broadening, S(ω) = Im

∫∞
0

dtPZPL(t) exp(−iωt), is a Gaussian as depicted

in Fig. 3(b). The TPI is evaluated with the help of Eq. (6) as TPI0D =
√
πrs exp(r2

s )erfc(rs), where rs = Γrad/2
√

2S,
and is plotted in Fig. 1(d). In general, the decoherence is stronger than in bulk due to the enhanced correlation of
the noise. In the small temperature limit λth � R, the thermal energy becomes smaller than the lowest vibrational
state of the sphere leading to negligible decoherence, 1− TPI0D ∝ exp(−~ω/2kBT ), as depicted in Fig. 1(d).

In the following we discuss the dephasing of QDs embedded in 1D and 2D photonic structures, which are widely used
in experiments as suspended 1D nanobeam waveguides [47], 1D nanowires [48], and suspended 2D photonic-crystal
structures [41]. We find that the quadratic interaction does not deviate significantly from the case of a 3D medium
because KQ(t) is dominated by phonons with a wavelength comparable to the QD size. Realistic photonic structures
are much larger than the QDs and thereby do not change the relevant phonon modes significantly. We therefore
assume K1D

Q ' K2D
Q ' −Γ3Dt [28]. This is different for the linear interaction PL0 [15, 16]. For a freestanding 1D

waveguide two families of acoustic modes contribute to dephasing with a finite ∇ · u: longitudinal expansions of the
rod with a linear dispersion and thus a constant density of states at ω → 0, and flexural modes that bend the rod
with a quadratic dispersion corresponding to a diverging density of states [28]. The former are purely longitudinal
vibrations evenly distributed within the cross-sectional area [49], and yield a Markovian coherence decay that was
found in Ref. [15] for a cylinder but here is generalized to an arbitrary cross-sectional shape and QD position with
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FIG. 3: Phonon dephasing in photonic structures and the role of dimensionality. (a) Decay of coherence for bulk (3D), a
photonic membrane with 2h = 160 nm (2D), a photonic waveguide with ρ = 80 nm with the QD position in the center (1D) and
halfway offcenter (1D′), and a photonic sphere with R = 20 nm (0D). Inset: initial decay of coherence (0–20 ps) for bulk (dotted
line), sphere (solid line), and the t2-approximation for the sphere (see text for details). (b) Corresponding emission spectrum
for the cases of (a). (c) Two-photon indistinguishability versus size of the structure. All plots are for T = 5 K, L = 3 nm.

the rate

Γ1D
L0 =

(De −Dh)2(1− 2ν)2kBT

2Aρmv3
1D~2

, (8)

where A is the cross-sectional area of the waveguide, ν = 0.299 the GaAs Poisson ratio, and v1D =
vs
√

3 + 2ν + 2/(ν − 1) the phonon speed along the waveguide axis. The total decay of coherence with the rate
Γ1D = Γ1D

L0 + Γ3D is plotted in Fig. 3(a). The coupling to flexural modes, on the other hand, strongly depends on
the QD position, and ranges from no coupling at points of high symmetry (e.g., the center of a cylinder) to large
coupling away from such points. In Fig. 3(a) we plot the numerically evaluated coherence decay of a QD placed

halfway offcenter. The decay is non-Markovian scaling as P1D′ = e−Γ1Dt−βt3/2 [28]. In both cases, the decoherence
scales as ∝ T at low temperatures and leads to a TPI that is significantly below unity even for diameters of hundreds
of nanometers, see Fig. 1(d) and Fig. 3(c).

As an example of a 2D geometry we consider a QD embedded in a freestanding membrane with thickness 2h.
The fundamental vibrational mode associated with the expansion of the membrane [50] has a linear dispersion with
ω = v2Dq||, v2D = vs

√
1− 2ν/(1 − ν), where q|| is the in-plane wave number. The linear scaling of the density of

states with ω therefore leads to

Re [K2D] = −p

[
γE +

∫ ∞
v2Dt

h

dτ
cos τ

τ
+ ln

v2Dt

h

]
− Γ3Dt, (9)

which is independent of the QD position; here, p = (De − Dh)2(1 − 2ν)2kBT/4πρmhv
4
2D(1 − ν)2~2, and γE is the

Euler-Mascheroni constant. To obtain the above expression, we have approximated the dispersion of the funda-
mental mode as ω = v2Dq||θ(h

−1 − q||), which reproduces well the numerically exact solution [28], and θ is the
Heaviside function. The coherence decay is plotted in Fig. 3(a) and results in a TPI that is dominated by the linear
interaction at low temperatures as shown in Fig. 1(d). At long times (t � h/v2D), Eq. (9) can be simplified as
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P2D = (v2Dt/h)−p exp(−Γ3Dt). QDs positioned away from the membrane center would also couple to flexural modes
with quadratic dispersion resulting in a Markovian dephasing. Contrary to these examples, the 0D structure has a
vanishing density of states at low frequencies. As used above, the dephasing is therefore only due to the quadratic
coupling.

In conclusion, we have presented a simple framework for evaluating the phonon decoherence of photon emission from
QDs. We find that the degree of confinement of the nano-structure has a significant impact on the degree of coherence,
see Fig. 3(c). Bulk (3D) and maximally confined (0D) structures dephase the light-matter interaction solely due to
the quadratic exciton-phonon coupling, which becomes negligible for λth � L and λth � R, respectively. On the
other hand, the coherence in 1D and 2D structures is limited by long-wavelength vibrations mediated by the linear
exciton-phonon coupling. At low temperatures, the resulting degree of coherence scales linearly with temperature
and sub-Kelvin temperatures may be required to neutralize them. Our study provides a quantitative foundation for
calculating the impact of phonon dephasing in realistic photonic devices.
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THEORY OF LINEAR AND QUADRATIC COUPLING TO ACOUSTIC PHONONS IN
NANO-STRUCTURES

In this work we generalize the formalism presented in Ref. [11] to nano-structures and perform a key approximation,
the single-scattering approximation, which we show below to be well justified for QDs and results in simple results.
We also assume time-reversal symmetry, which implies that all the quantities (wave functions, phonon modes, etc.)
can be chosen to be real. This means that the theory can be employed for single-particle excitations like excitons,
trions, etc., as long as no fields or processes that destroy the time-reversal symmetry (e.g., magnetic fields) are present.
We consider phonon processes that happen within the same spin manifold. This means that we neglect weak spin-flip
processes between, e.g., bright-bright and bright-dark excitons.

We consider an exciton in a QD coupled to acoustic phonons with the following Hamiltonian [11]

H =
∑
n

En |ψn〉 〈ψn|+
∑
q

~ωqa
†
qaq +

∑
nm

V |ψn〉 〈ψm| ,

V =
∑
q

Lnmq (aq + a†q),
(S1)

where the first two terms correspond to the bare Hamiltonians of the QD and the phonons, respectively, and the
third term is the interaction Hamiltonian. Here, En is the energy of the n-th QD eigenstate ψn, a†q (aq) is the
creation (annihilation) operator of the phonon mode with wavevector q and energy ~ωq, and Lnmq is the effective
electron-phonon matrix element. In writing the above equation, we have chosen the phase convention such that Lnmq
is real.

Two mechanisms dominate the interaction between electrons and acoustic phonons: deformation-potential and
piezo-electric coupling [29]. The former describes the deformation of the lattice induced by the creation of an electron-
hole pair inside the QD and has a matrix element of the form [29]

Lmnq,DF = De 〈ψm |∇ · uq(re)|ψn〉 −Dh 〈ψm |∇ · uq(rh)|ψn〉 , (S2)

where uq is the phonon-displacement mode, and De (Dh) is the deformation-potential constant of electrons (holes).
Equation (S2) describes the mechanical deformation of the crystal lattice induced by the creation of an electron-hole
pair inside the QD. On the other hand, the piezo-electric coupling describes the interaction between the exciton and
the polarization of the crystal lattice [29]

Lmnq,PZ =
2ep

ε0ε
Ĝ · (〈ψm |uq(re)|ψn〉 − 〈ψm |uq(rh)|ψn〉) , (S3)

where ε0ε (p) is the dielectric (piezo-electric) constant and Ĝ is a geometric operator that is of the order of unity and
depends on the symmetry of the acoustic deformation.

In the following we argue that the piezo-electric interaction is negligible in our study. Two types of phonons
dephase the interaction between QDs and light in nano-structures: short-wavelength phonons of the order of the QD
size λph ∼ L, and long-wavelength phonons λ→∞ that arise in 1D and 2D structures. It is shown in Ref. [29] that
the former dephase the QD mainly through the deformation-potential coupling with a negligible contribution from
the piezo-electric coupling. To show that the latter is negligible also for long-wavelength deformations, we expand
the mode displacement, uq ∝ exp(iq · r), in a Taylor series with respect to the electron (hole) center of mass, re (rh).
Using Eqs. (S2) and (S3) this yields ∣∣∣∣∣L11

q,PZ

L11
q,DF

∣∣∣∣∣
2

'
∣∣∣∣2epε0ε 〈ψ1 |re − rh|ψ1〉

De −Dh

∣∣∣∣2 ≈ 10−2, (S4)

where typical GaAs values were used De = −14.6 eV, Dh = −4.8 eV, p = 0.16 Cm2, ε = 12.56 [29], and a typical
electron-hole separation of ∼ 0.4 nm in In(Ga)As QDs [52]. We have only considered the contribution to L11

q because
the other matrix elements are not relevant at small phonon energies as is shown later. We therefore neglect the
piezo-electric coupling and consider Lmnq ≡ Lmnq,DF in the following.

We assume that at t = 0 an exciton is created in the ground state |ψ1〉, and seek to calculate the evolution of the
coherence P (t) = i 〈σ−(t)σ+(0)〉 at t > 0. Solving for P (t) in the most general case with the Hamiltonian in Eq. (S1)
is highly challenging. The problem can be simplified by noting that, at low temperature, only the ground state |ψ1〉
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of the QD is populated. The excited states can then be eliminated as explained in Ref. [11], so that only virtual
transition to excited states are taken into account. The resulting simplified Hamiltonian reads

H = H0 + (VL + VQ) |ψ1〉 〈ψ1| ,

VL =
∑
q

LqAq, VQ =
∑
b,m

[∑
q

QmqbAq

]2

,

Lq ≡ L11
q = M11

qe −M11
qh, Qmbq =

M1m
qb√
∆m

,

(S5)

where Aq = aq + a†q, b = {e,h} denotes an electron or hole, Mmn
qb = Db 〈ψmb |∇ · uq|ψnb〉, and ∆m is the energy

distance between the ground, |ψ1b〉, and m-th excited state of the QD, |ψmb〉. The Hamiltonian is now diagonal in the
QD subspace but is quadratic in phonon displacement. Solving for P (t) can be done using the cumulant expansion
method presented in Refs. [11, 53] with the key difference that the phonon factorization used in those works does not
hold in the case of a nano-structure. In the following we explain how to deal with this complication.

We start by writing P (t) as [30]

P (t) = i
〈
T e−

i
~
∫ t
0

dτ(VL+VQ)
〉
, (S6)

where T denotes the time-ordering operator. Denoting F (t) = −(i/~)
∫ t

0
dτ (VL + VQ) and employing a well-known

theorem for the cumulant [54] leads to

P (t) = iexp

{ ∞∑
n=1

1

n!
〈T Fn(t)〉conn

}

= iexp

{ ∞∑
n=1

(
−i

~

)n
1

n!

∫ t

0

dt1

∫ t

0

dt2 . . .

∫ t

0

dtn 〈T V (t1)V (t2) . . . V (tn)〉conn

}
,

(S7)

where V = VL + VQ, and the average operation is now performed over connected diagrams only. The linear, VL,
and quadratic, VQ, terms contain matrix elements of different parity and thus do not mix allowing to express P (t) =
i exp [KL(t) +KQ(t)] with

KL(t) =

∞∑
n=1

(
−i

~

)n
1

n!

∫ t

0

dt1

∫ t

0

dt2 . . .

∫ t

0

dtn 〈T VL(t1)VL(t2) . . . VL(tn)〉conn , (S8)

KQ(t) =

∞∑
n=1

(
−i

~

)n
1

n!

∫ t

0

dt1

∫ t

0

dt2 . . .

∫ t

0

dtn 〈T VQ(t1)VQ(t2) . . . VQ(tn)〉conn . (S9)

It can be easily checked that the linear interaction contains only one connected diagram, n = 2, yielding

KL(t) = − i

2~
∑
q

|Lq|2
∫∫ t

0

dt1dt2Dq(t1 − t2), (S10)

Dq(t) = − i

~
〈T Aq(t1)Aq(t2)〉conn = − i

~

[
(Nq + 1)e−iωq|t| +Nqeiωq|t|

]
, (S11)

where Dq(t) is the phonon Green function [30]. Performing the time integration leads to

KL(t) = − 1

2~2

∑
q

|Lq|2 dq(t), (S12)

dq(t) = (2Nq + 1)

(
sin

ωqt
2

ωq

2

)2

+
2i

ω2
q

(sinωqt− 1) . (S13)

This is the main result of the independent boson model [30] and is well known in the context of a bulk medium, where
it leads to broad sidebands in the spectrum S(ω) = Im

∫∞
0

dtP (t) exp(−iωt). The linear cumulant contains a single
propagator corresponding to the emission or absorption of a phonon, see Fig. S1(a).
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The derivation of the quadratic cumulant, KQ(t), is more complicated and relies on a diagrammatic representation
of the cumulant [53], which is outlined in the following. We drop the electron/hole index, b, to simplify the notation.
We first note that the contribution from n = 1 to KQ(t) results in an irrelevant time-independent constant, −iµF .
Taking n = 2 gives two identical connected diagrams and yields

Kn=2
Q (t) =

∑
m1m2

∑
q1

Qm1
q1
Qm2

q1

∑
q2

Qm1
q2
Qm2

q2

∫∫
dt1dt2Dq1

(t1 − t2)Dq2
(t2 − t1)

=
∑
m1m2

∫∫
dt1dt2

[
Qm1

q Qm2
q Dq(t1 − t2)

]2
,

(S14)

which is equivalent to the third line of Eq. (5) in the main text. Generalizing this approach for n = N can be done
by identifying the number of equivalent connected diagrams [11, 53]. We thus obtain

KQ(t) =
1

2

∞∑
n=2

∑
m1...mn

1

n

∫∫∫
. . .

∫
dt1dt2 . . . dtnD

m1m2

Q (t1 − t2)Dm2m3

Q (t2 − t3) . . . Dmnm1

Q (tn − t1), (S15)

Dmn
Q (t) = 2

∑
q

Qmq Q
n
qDq(t). (S16)

Equation (S15) is a generalization of the result from Ref. [11] for the case when no factorization with respect to the
QD states can be performed. The quadratic cumulant contains an infinite sum of connected diagrams as illustrated in
Fig. S1(b), and can be evaluated numerically at each time t using the Fredholm eigenvalue problem that is presented
in Ref. [11]. However, we find that the interaction between QDs and phonons is sufficiently weak such that most of
the physics is contained in the term n = 2 from Eq. (S14) as shown in the following.

BULK MEDIA (3D) AND THE SINGLE-SCATTERING APPROXIMATION

In the following we evaluate P (t) = exp(KL(t) + KQ(t)) in a bulk medium. In this case the phonon modes are

propagating plane waves, ∇ · uq(r) =
√

~ωq/2ρmvsV exp(iq · r), where ρm is the mass density, vs the longitudinal
speed of sound, and V the quantization volume. We consider a spherical QD with parabolic confinement potential as
explained in the main text. Plugging ∇ · uq into Eq. (S12) yields

K3D
L (t) = − (Dc −Dv)

2

8π2~ρmv3
sL

2

{∫ ∞
0

2(1 + 2Nq) [1− cos(qLt/t0)] (qL)e−(qL)2/2d(qL)− i
√

2π
t

t0

(
1− e1−(t/t0)2/2

)}
,

(S17)
and the corresponding linear polarization is plotted in Fig. 2(a) in the main text.

To evaluate the quadratic interaction we consider the triply degenerate excited state only, l = 1 and m = {−1, 0, 1},
which is justified for thermal energies much smaller than the quantization energy. Then the quadratic cumulant,
KQ(t), becomes diagonal in m in a bulk medium due to the spherical symmetry of the system and leads to

KQ,sph(t) =
3

2

∞∑
n=2

1

n

∫∫∫
. . .

∫
dt1dt2 . . . dtnD

mama

Q (t1 − t2)Dmama

Q (t2 − t3) . . . Dmama

Q (tn − t1), (S18)

where Dmama

Q (t) denotes the quadratic propagator in which ma can refer to any of the excited states −1, 0, 1. Here
we are interested in the long-time decay of P (t � t0) with t0 = L/vs, i.e., the part responsible for the broadening
of the zero-phonon line. Evaluating an exact-to-all-order expression for the long-time limit of KQ(t) is possible [53].
Here we discuss the simpler case of the single-scattering approximation in which the QD is assumed to interact with
a phonon a single time during the scattering process, see Fig. S1(a). In other words, we only consider n = 2 and
neglect the higher order diagrams. This yields

K3D
Q (t) ' 3

∫∫
dt1dt2

[∑
q

Qma
q Qma

q Dq(t1 − t2)

]2

, (S19)
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FIG. S1: (a) The linear cumulant contains a single electron-phonon interaction in the form of an emission or absorption
process. (b) The quadratic cumulant contains an infinite series of scattering events. In the present paper we perform the single-
scattering approximation meaning that only the first term on the right-hand side is retained. (c) The relative error in the decay
rate, η, between the exact solution to the infinite series and the single-scattering approximation for L = {1.5 nm, 3 nm, 4.5 nm}.

which can be evaluated by performing the integration over time

∫∫
dt1dt2Dq1

(t)Dq2
(t) = − 1

~2

(2Nq1
Nq2

+Nq1
+Nq2

+ 1)

 sin
(
ωq1

+ωq2

2 t
)

ωq1+ωq2

2

2

+ (2Nq1
Nq2

+Nq1
+Nq2

)

 sin
(
ωq1−ωq2

2 t
)

ωq1
−ωq2

2

2
 .

(S20)

Using the long-time limit ω−2
q sin2 ωqt ' πtδ(ωq) results in a vanishing contribution from the first term on the

right-hand side of Eq. (S20). We thus obtain K3D
Q (t) = −Γ3Dt with

Γ3D = 3πC2
Q

∫ ∞
0

d(qL)(qL)10e−(qL)2Nq(Nq + 1), (S21)

where CQ =
(
D2
e/∆e +D2

h/∆h

)
/3(2π)2ρmv

2
sL

3. In bulk, the quadratic exciton-phonon interaction thus results
in a Markovian decay of the coherence. The integrand contains an expression proportional to the squared joint
phonon density of states, q10 exp(−q2L2), multiplied by the phonon number, Nq(Nq + 1), which is proportional to the
probability to scatter a phonon because it involves a product of the number of incident phonons, Nq, and the rate of
stimulated emission into a different mode of the same energy, Nq + 1.

The success of the single-scattering approximation is connected to the weak electron-phonon interaction in QDs,
which means that the probability to interact multiple times with a phonon during a scattering event is negligible. To
demonstrate this, we calculate the relative error

η =
|Γ∞3D − Γ3D|

Γ∞3D

, (S22)

where Γ∞3D is the dephasing rate that is exact to all orders, and is calculated with the help of Ref. [53]. Figure S1(c)
plots η as a function of temperature for different QD sizes from which it can be inferred that the single-scattering
approximation induces a relative error that is below 10 % for common QD sizes L ∼ 3 nm.

The single-scattering approximation is equivalent to the phonon bath acting as an external Gaussian noise source.
To demonstrate this, we follow the derivation from the main text for P (t), where we show that a classical noise source
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results in a coherence function of the form

P (t) ' iexp(−iµF ) exp

{
−1

2

(〈
T F 2(t)

〉
− µ2

F

)}
, (S23)

F (t) = (1/~)

∫ t

0

dτV (τ). (S24)

Inserting the interaction term, V = VL + VQ, into the above equation yields Eq. (S14). As opposed to the scattering
description above, the expression in Eq. (S14) can thus also be seen as the result of the fluctuation in the potential
induced by the thermal phonons. These fluctuations are proportional to the variance of the number of phonons in a
thermal state, Nq(Nq + 1).

MAXIMALLY CONFINED (0D) NANO-STRUCTURES

Here we derive the coherence function P (t) for a QD placed at the center of a nano-sphere. The use of open
boundary conditions at the surface of the nano-sphere (meaning that the force perpendicular to the surface must
vanish so that the sphere vibrates freely) yields two classes of vibrational modes [46, 55]: torsional and spheroidal.
The former are purely transversal and do not play a role for deformation-potential interactions. The spheroidal family
of modes, unlm, has three quantum numbers describing the vibrations along the radial direction, n, the total angular
momentum of the mode, l, and its projection along the z-axis, m. The divergence of the spheroidal mode at the
center of the sphere is

∇ · unlm(r) = −N Inlmq2
njl(qnr)Ylm(Ω), (S25)

where jl is the spherical Bessel function of first kind and l-th order, Ylm the spherical harmonic, Ω the solid angle, Inlm
the normalization constant of the mode, and N =

√
~/2ρmvs. The linear cumulant is only mediated by modes with

l = m = 0 because the linear exciton-phonon coupling is governed by a matrix element of the form 〈ψ1b |∇ · unlm|ψ1b〉
with ∇ · unlm given in Eq. (S25), and the ground-state exciton wavefunction, ψ1b, is spherically symmetric. On the
other hand, the quadratic cumulant is mediated by modes with l = 1, m = {−1, 0, 1} because the quadratic exciton-
phonon coupling is governed by a matrix element of the form 〈ψ1b |∇ · unlm|ψ2b〉, and the excited state, ψ2b, has the
symmetry of a p orbital. The corresponding families of acoustic modes take the form

un00(r) = − N
2
√
π
In00j1(qnr)r̂, (S26)

un1m(r) = N {In1m∇Ψ1m(qnr) + Jn1m∇×∇× [rΨ1m(knr)]} , (S27)

where Ψlm(qr) = jl(qr)Ylm(Ω), kn = σqn, σ = vs/vt with vt being the transverse speed of sound, and r̂ is the
radial unit vector. Inlm and Jnlm contain information about curl-free and divergence-free oscillations of the mode,
respectively. Due to the rotational symmetry of the problem, the matrix elements with different angular momenta do
not interfere in the quadratic cumulant, see Eq. (S14), resulting in a factorization similar to bulk. This means that it
is sufficient to consider a single mode only and just to multiply its contribution by a factor of three. In the following
we consider the state with l = 1 and m = 0. The normalization constants are found to be

I2
n00 =

4q̃n
2 (cos 2q̃n + q̃2

n − 1) + q̃n sin 2q̃n
, (S28)

I2
n10 =

1

L2 + r2
nN

2 + 2rnLN
, (S29)

L2 =
1

4q̃3
n

[
−4− 4q̃2

n + 2q̃4
n + 4(1− q̃2

n) cos 2q̃n + q̃n(q̃2
n − 8) sin 2q̃n

]
, (S30)

N2 =
1

σ3k̃3
n

[
−2− 2k̃2

n + 2k̃4
n + 2(1− k̃2

n) cos 2k̃n + k̃n(4− k̃2
n) sin 2k̃n

]
, (S31)

LN =
2

k̃3
n

(q̃n cos q̃n − sin q̃n)
(
k̃n cos k̃n − sin k̃n

)
, (S32)
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where q̃ = qR, and rn = Jn10/In10. The vibrational eigenfrequencies and rn are found from applying the open
boundary conditions, which yields [46]

−σ2q̃nj0(q̃j) + 4j1(q̃j) = 0 for l = 0, (S33)(
αnlm βnlm
γnlm δnlm

)(
Inlm
Jnlm

)
= 0 for l > 0, (S34)

αnlm = −σ2q̃n + 2(l + 2)jl+1(q̃n), (S35)

βnlm = lk̃njl(k̃n)− 2l(l + 2)jl+1(k̃n), (S36)

γnlm = −σ2q̃njl(q̃n) + 2(l − 1)jl−1(q̃n), (S37)

δnlm = (l + 1)
[
2(l − 1)jl−1(k̃n)− k̃njl(k̃n)

]
. (S38)

These equations are solved numerically for each radial mode n.
The relevant electron-phonon matrix elements, M11

qb and M12
qb , are evaluated for the vibrational mode (n, l, 0) as

(
M11

qb

)
n

= −Db
N

2
√
π
In00q

2
ne−q

2
nL

2/4, (S39)

(
M12

qb

)
n

= −Db
N

2
√
π
In10

qnL√
6
q2
ne−q

2
nL

2/4. (S40)

This allows the computation of the linear and quadratic cumulants. The linear cumulant is evaluated using Eq. (S12)
as

K0D
L (t) = − (Dc −Dv)

2

8π2~ρmv3
sL

2

π

2

∑
n

I2
00n(qnL)4e−(qnL)2/2

[
v2
sdqn(t)

]
(S41)

This expression has a cutoff at wave numbers qn � L−1. It is therefore sufficient to evaluate the mechanical frequencies
of the nano-sphere up to this cutoff only. We find numerically that the cumulant converges at qmax ' 5L−1. The
same holds for the quadratic cumulant, which is discussed in the following.

The quadratic propagator is evaluated with the help of Eq. (S15) for the wavefunction with l = 1,m = 0 as

DQ(t) =
π~
2
CQ

∑
n

I2
n10q

6
ne−(qnL)2/2Dqn(t). (S42)

As mentioned above, the factorization of the angular momenta and the spherical symmetry result in the same contri-
bution for the states with l = 1,m = ±1. The quadratic cumulant, KQ(t), is evaluated numerically in Fig. 3(a) in the
main text using the above expression and Eq. (S14), and compared to the t2-approximation. The latter is calculated
with the help of Eq. (S20) by employing the long-time limit sin2[(ωn − ωn′)t]/(ωn − ωn′)2 ' t2δnn′ yielding

K0D
Q (t) = −S2t2,

S2 =
3

2

(π
2
CQ

)2∑
n

I4
n10(qnL)12e−(qnL)2Nqn (Nqn + 1) .

(S43)

The linear and quadratic polarizations along with the emission spectrum are plotted in Fig. S2. The linear polar-
ization features an interference between the discrete modes of the sphere, which is reflected in the emission spectrum
as detuned satellite peaks of the ZPL. Each spectral line is broadened by the quadratic exciton-phonon interaction,
and is a Gaussian due to the t2 dependence of the quadratic cumulant, see also Fig. 3 in the main text.

ONE-DIMENSIONAL (1D) NANO-STRUCTURES

Here we consider the phonon decoherence in realistic 1D photonic waveguides with any cross-sectional shape, which
are relevant for various photonic platforms such as nano-wires and nano-beam waveguides.

The long-time decay of the polarization can be written as a product of a linear term, P 1D
L0 , with low-frequency

contributions from the linear exciton-phonon interaction, and a quadratic term, P 1D
Q , stemming from the quadratic

exciton-phonon interaction, see main text for details. As argued in the main text, the quadratic polarization is
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FIG. S2: (a) Coherence dynamics and (b) emission spectrum of a QD of L = 3 nm embedded in a sphere of R = 20 nm at
T = 5 K. The spectrum features a ZPL and phonon replicas stemming from the linear exciton-phonon coupling. The lines are
broadened by the quadratic electron-phonon coupling.

assumed to be the same as in bulk, K1D
Q = −Γ3Dt due to the large mismatch between the size of the waveguide and

of the QD. The evaluation of the linear polarization, P 1D
L0 is done as follows. Two families of acoustic modes are

relevant with a finite ∇ · u: longitudinal modes in which the oscillations happen solely along the length, z, of the
waveguide at low energies [56], and flexural modes that bend the waveguide [55]. The former are constant within
the cross-section of a 1D waveguide [49] implying that the resulting decoherence is independent of the QD position.
This results in a dephasing that depends solely on the cross-sectional area of the waveguide, and is independent of its
shape. We thus evaluate the decoherence due to longitudinal modes for a cylindrical waveguide following Ref. [15] but
note that the result is applicable to any cross-sectional shape with an equivalent area. The vibrational frequencies
for a given wave vector qz ≡ q can be found from applying the traction-free boundary conditions at the surface of
the cylinder and solving the corresponding characteristic equations [56]. The dispersion of the fundamental mode is
found by expanding the characteristic equations in a Taylor series of qz ≡ q and retaining the lowest orders, which
yields ωq = v1Dq with

v1D = vs

√
3 + 2ν +

2

ν − 1
, (S44)

where ν is the Poisson ratio. Expanding the displacement of the fundamental mode into a Taylor series and retaining
the lowest order of q results in

ur =
Ncylν√
πρ

r
√
qeiqz, (S45)

uφ = 0, (S46)

uz =
iNcyl√
πρ

1
√
q

eiqz, (S47)

where r denotes the radial coordinate, ρ is the nanowire radius, and Ncyl =
√
~/2ρmv1DA with A being the cross-

sectional area. The divergence of u is then to lowest order in q

∇ · u = −Ncyl(1− 2ν)√
πρ

√
q, (S48)

and is independent of position as expected. The phonon number is large, Nq � 1, at such small vibrational frequencies
compared to the thermal energy considered in this work. We can therefore expand Nq in a Taylor series and retain
the lowest order in q, which is equivalent to the classical equipartition theorem yielding Nq~ωq = kBT in this case.
It is worth noting that this expansion may not be valid at much smaller temperatures, a regime that is relevant for
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FIG. S3: Indistinguishability between two photons emitted by a QD embedded in a 1D waveguide versus the distance between
the QD and the cross-sectional center of the waveguide. The plot shows two waveguides with an equivalent cross-sectional area:
a nanowire with a radius of 80 nm (solid red line), and a nanobeam of length 200 nm and width 100 nm (blue dashed line). At
the center, only longitudinal modes contribute to the dephasing, and the TPI solely depends on the cross-sectional area and
is therefore the same for the two waveguides. Away from the center, the QD also couples to flexural modes leading to a lower
photon coherence. A temperature of T = 5 K was considered.

other systems such as carbon nano-tubes [16]. The real part of the linear cumulant can then be evaluated with the
help of Eq. (S12) to yield to the lowest order in q

ReK1D
L0 (t) = − (De −Dh)2(1− 2ν)2

4π~2ρmv2
1DA

kBT

∫ ∞
−∞

dq

[
sin
(
ω
2 t
)

ω
2

]2

' − (De −Dh)2(1− 2ν)2kBT

2~2ρmv3
1DA

t = −Γ1D
L0 t, (S49)

where we have again assumed the long-time limit sin2(ωt)/ω2 ' πtδ(ω). The coherence decay stemming from longi-
tudinal vibrations is therefore fully Markovian in a 1D structure with the rate Γ1D = Γ3D + Γ1D

L0 .
Away from the center of the nanowire, the QD is also dephased by flexural modes with a quadratic dispersion at

low energies [49] resulting in a non-Markovian decay of coherence, see the main text for details. Figure S3 plots the
numerically evaluated dephasing as a function of the QD position within the cross-section of a 1D waveguide. The
dephasing due to flexural modes increases significantly as the QD approaches the edge of the waveguide. We have
evaluated the decay of coherence due to flexural modes with a similar approach as for longitudinal modes from above,
and found that the linear cumulant scales as ReK1D

L0,flexural = −βt3/2 with β > 0. The total decay of coherence for a

QD positioned offcenter is thus P1D′ = exp(−Γ1D
L0 t− βt3/2), and is plotted in Fig. 3(a) in the main text.

TWO-DIMENSIONAL (2D) NANO-STRUCTURES

Here we evaluate the phonon decoherence of a QD placed in the center of a 2D photonic membrane of realistic
thickness. Analogously to the 1D case, the long-time decay of the coherence, PZPL, is given by a product of the
quadratic polarization, P 2D

Q , and the low-frequency contribution to the linear polarization, P 2D
L0 . The latter is calcu-

lated similarly to the case of the cylinder by expanding the fundamental branch of the symmetric Lamb waves (all
the other solutions are transverse at the QD position) into a Taylor series of the in-plane wave number q|| ≡ q. The
dispersion is linear, ω = v2Dq, which can be derived by solving the frequency equations [50] in the low-q and low-ω
limits. The speed of sound in the plane of the membrane, v2D, is found to be

v2D =

√
1− 2ν

1− ν
vs. (S50)
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The general analytic form of the displacement vector, u = u||q̂+uz ẑ [50] (z points along the height of the membrane),
is expanded in a Taylor series and normalized to one quantum of energy yielding to lowest order in q

u|| =
iNm√

2

1
√
q

eiq·r|| , (S51)

uz =
ν

1− ν
Nm√

2
z
√
qeiq·r|| , (S52)

where Nm =
√
~/2ρmv2D. The divergence is thus

∇ · u = −1− 2ν

1− ν
Nm√

2

√
q, (S53)

and is again independent of position. Summing over q yields for the linear cumulant

ReK2D
L0 (t) = − (De −Dh)2(1− 2ν)2kBT

8πρmhv4
2D(1− ν)2~2

∫ ∞
0

ω

[
sin
(
ωt
2

)
ω
2

]2

dω. (S54)

The integral on the right-hand side is diverging, which is caused by the artificial assumption that the dispersion is
linear in the entire integration range. In reality, the dispersion becomes sublinear [50] resulting in a rapidly converging
integral for q & h−1. To obtain an analytic expression, we make the following heuristic assumption for the dispersion,
see Fig. S4(a)

ω = v2Dq, q ≤ h−1,

ω = 0, q > h−1.
(S55)

A qualitative justification for this assumption is that the acoustic waves become confined to the surface for q larger
than h−1 [55] and do not interact with the QD. We thus obtain for the linear cumulant

ReK2D
L0 (t) = − (De −Dh)2(1− 2ν)2kBT

4πρmhv4
2D(1− ν)2~2

[
γE +

∫ ∞
v2Dt

h

dτ
cos τ

τ
+ ln

v2Dt

h

]
, (S56)

where γE is the Euler-Mascheroni constant. At times much larger than tm = h/v2D ∼ 20 ps for h = 80 nm, this
expression is dominated by the last term, ReK2D

L0 ∝ ln(v2Dt/h), which implies that the linear polarization decays
polynomially with time, P 2D

L0 (t � tm) = (vht/h)−p with p = 0.0085 × T/1 K being the coefficient in front of the
right-hand side of Eq. (S56). This analytic result is shown to reproduce qualitatively the numerically exact solution
in Fig. S4(b). The temporal oscillations occurring with a period of ∼ tm are artifacts of the truncation: a stepwise
truncation in the frequency domain results in a convolution with an oscillatory function in the time domain.

The quadratic polarization, P 2D
Q , is similar to the bulk value for realistic membrane thicknesses as argued in the

main text. To demonstrate this quantitatively, we evaluate the quadratic cumulant in Eq. (S14) for a QD placed in
the center of the membrane. All the modes up to q = 5/L and ω/vs = 5/L are evaluated numerically [50]. It is
found that the propagators with different orbital symmetry do not interfere, Dmn

Q = Dmn
Q δmn. This is due to the

rotational symmetry around the z-axis meaning that the phonon modes can still be characterized by the angular
momentum quantum number pointing along z. However, compared to bulk, the three terms are no longer equal:
Dm=−1,n=−1

Q = Dm=+1,n=+1
Q 6= Dm=0,n=0

Q , where in this case m and n denote the orbital angular momentum of the

QD state. The terms Dm=n=±1
Q are described by the interaction with symmetric (with respect to the center of the

membrane) Lamb waves, us, while Dm=n=0
Q is mediated by anti-symmetric vibrations, ua [50]. The divergence of the

modes is found to be

∇ · us = −NmNs(q
2 + α2)A cos(αz)eiq·r|| , (S57)

∇ · ua = NmNa(q2 + α2)B sin(αz)eiq·r|| , (S58)

where α and β are the transverse wavevectors subject to α2 =
√
ω2/v2

s − q2 and β2 =
√
ω2/v2

t − q2, respectively,
A = 2βq cosβ, B = −2βq sinβ, vt is the transverse speed of sound, and Ns and Na are normalization factors given in
Ref. [50]. The electron-phonon matrix elements are evaluated as

M
12m=±1

qb = −DbNm
i√
2
NsAL(±qx + iqy)(q2 + α2)e−(q2+α2)L2/4, (S59)

M12m=0

qb = DbNm
1√
2
NaBLα(q2 + α2)e−(q2+α2)L2/4. (S60)
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FIG. S4: Impact of the approximation performed in Eq. (S55). Parameters: L = 3 nm, T = 10 K. (a) Graphical illustration
of the approximation. The numerically exact dispersion is replaced by a linear function with a cutoff at qh = 1. (b) The
approximation allows to obtain an analytic expression for the coherence dynamics, which reproduces with reasonable accuracy
the numerically exact solution.
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FIG. S5: Dephasing due to the quadratic exciton-phonon interaction for a 2D membrane. The rate is found to rapidly converge
to the 3D value for realistic membrane thicknesses. Parameters: L = 3 nm, T = 10 K.

The propagators are therefore found to be

Dm=n=±1
Q =

3πh

L
CQ
∑
α

∫ ∞
0

q3(α2 + q2)3/2 |Ns|2 e−(q2+α2)/2~Dq(t)dq (S61)

Dm=n=0
Q =

6πh

L
CQ
∑
α

∫ ∞
0

qα2(α2 + q2)3/2 |Na|2 e−(q2+α2)/2~Dq(t)dq (S62)

The resulting decay rate is found to be Markovian with the rate ΓQ
2D, which is compared to the bulk value, Γ3D,

in Fig. S5 as a function of membrane thickness. The 2D rate is very close to the bulk limit for realistic membrane
thicknesses, which is why the quadratic interaction is assumed to be bulk-like throughout the main text.
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