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We provide a microscopic theory for semiconductor quantum dots that explains the pronounced
deviations from the prevalent point-dipole description that were recently observed in spectroscopic
experiments on quantum dots in photonic nanostructures. The deviations originate from structural
inhomogeneities generating a large circular quantum current density that flows inside the quantum dot
over mesoscopic length scales. The model is supported by the experimental data, where a strong variation
of the multipolar moments across the emission spectrum of quantum dots is observed. Our work enriches
the physical understanding of quantum dots and is of significance for the fields of nanophotonics, quantum
photonics, and quantum-information science, where quantum dots are actively employed.
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Semiconductor quantum dots (QDs) are compatible
with semiconductor technology and exhibit bright optical
transitions, which renders them promising single-photon
sources for a range of solid-state quantum-optical devices
[1]. For instance, strong coupling between a QD and
a cavity photon [2] or near-unity coupling to a photonic-
crystal waveguide have been demonstrated [3].
Furthermore, QDs have been proposed as the enabling
part of highly efficient solar cells [4] and as central nodes in
future quantum-information systems with entangled sta-
tionary and flying quantum bits [5]. It was observed
recently that, surprisingly, QDs can break the widely used
dipole approximation and the deviations were explained by
a phenomenologically defined mesoscopic moment [6].
Current band-structure models of QDs cannot explain these
mesoscopic quantum effects, whose physical origin has
been unclear so far. Here we develop an extension to the
effective-mass theory for nanostructures. We find that QDs
possess large strain-induced structural inhomogeneities at
the crystal-lattice level, which generate a quantum current
density flowing along a curved path inside the QD,
cf. Fig. 1(b). This results in large electric and magnetic
moments leading to light-matter interaction of both electric
and magnetic character [7,8]. The mesoscopic moment can
be tuned over orders of magnitude by controlling the size
and shape of QDs. The developed theory is used to describe
and explain the experimental data on time-resolved spec-
troscopy of QDs positioned near a dielectric interface in a
Drexhage geometry [9] (cf. Fig. 1), where a strong variation
of the mesoscopic moment with emission energy is found
for the case of In(Ga)As self-assembled QDs. Our findings
can be immediately used for engineering nanophotonic
environments that maximize the coupling to the current-
density pattern of the QD.
A central quantity describing the optical transition from

the excited state Ψe to the ground state Ψg of a QD is the
dipole moment μ ¼ ðe=m0ÞhΨgjp̂jΨei, where e and m0 are

the elementary charge and electron mass, respectively. We
consider the x-polarized dipole moment of the exciton
μ ¼ μx̂, as sketched in Fig. 1, where x̂ is the Cartesian unit
vector. Until recently, μ was the only QD property used to
describe the interaction with light. Recent experimental
studies of spontaneous emission of QDs at nanoscale
proximity to a mirror [6] revealed surprisingly strong
deviations from the dipole theory, which were explained
by a large multipolar moment Λ ¼ ðe=m0ÞhΨgjxp̂zjΨei.
It was subsequently found that μ and Λ enable probing
electric and magnetic vacuum fluctuations simultaneously
[7]. While the microscopic origin of μ is well known to be

FIG. 1 (color online). Unraveling the mesoscopic character of
QDs in the vicinity of a GaAs-air interface. The presence of the
interface breaks the parity symmetry of the environment in the
z direction. Since reflections occur at the interface (the circular
white arrow), the imaginary part of the electric field EðrÞ
generated by the electric-dipole component, which triggers
spontaneous emission, inherits this lack of symmetry and is
curved (indicated by the green arrow). (a) In the dipole approxi-
mation, the QD current jðrÞ (brown arrow) perceives only the
parallel component but not the out-of-plane component (the
“curvature”) of the electromagnetic field at its position. (b) In
In(Ga)As self-assembled QDs, the current density flows along a
curved path that resembles the shape of the field environment,
thereby exchanging energy more efficiently with it. As a
consequence, the spontaneous-emission decay rate is enhanced
and the photons (red arrows) are emitted at a faster rate compared
to the case in (a).
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related to Ψg and Ψe having opposite parity symmetry, the
mesoscopic moment Λ has so far been employed as a
phenomenological parameter with an unclear microscopic
description. In the present work we develop a theory
explaining that Λ primarily originates from structural
inhomogeneities occurring in the nanoscopic crystal lattice
of the QD. This is markedly different from existing theories
[10–17], which fail to reproduce the large values of Λ
observed experimentally because they neglect the atomistic
nature of QDs. The structural inhomogeneities are related
to a change in the periodicity of the underlying crystal
lattice in the QD. Since Bloch functions with different
periodicities cannot remain in phase throughout the QD,
this necessarily leads to a phase gradient and a resulting
current in the growth direction of the QD, which gives
rise to the mesoscopic moment, cf. Fig. 1(b). To obtain
an optimized light-matter coupling, the electromagnetic
environment must be shaped similarly to the flow of the QD
current, as sketched in Fig. 1(b), where we exemplify the
case of a GaAs-air interface.
Previous experiments reported the measurements of

spontaneous-emission decay rates for ensembles of QDs
that are placed at different distances to a GaAs-air interface
[18,19]. Figure 2(a) displays the data that were used to
reliably extract the dipole moment by exploiting the data
points recorded at distances above 75 nm [18]. A system-
atic deviation from the dipole theory was found at distances
below ∼75 nm, which was speculated to be a result of
enhanced loss processes at the etched interfaces. The
deviations can be explained by the contributions from
the mesoscopic moment Λ to the light-matter interaction
strength. The theory of Ref. [7] quantitatively reproduces
the functional dependence observed in the experiment for
all emission energies, as exemplified in Fig. 2(a), see the
Supplemental Material [20] for details. The extracted

mesoscopic strength Λ=μ increases with emission energy
and varies from 10 to 23 nm over the inhomogeneously
broadened emission spectrum, cf. Fig. 2(b), and is success-
fully explained by our microscopic QD theory, which is
presented in the following.
Numerous band structure models have been proposed

for QDs ranging from continuum approaches [21], which
discard the QD atomistic nature and consider only the
macroscopic potential, to atomistic models [22], which
simulate the contribution of every single atom comprising
the QD. In the present work, it suffices to consider the
simplest band structure model, i.e., the two-band effective-
mass theory. The QD single-particle wave function can be
written as a product of a periodic Bloch function uðrÞ,
which captures the properties on the length scale of
the crystal unit cell, and a slowly varying envelope ψðrÞ
that inherits the size and symmetry of the QD potential,
i.e., ΨiðrÞ ¼ uiðrÞψ iðrÞ with i ¼ fg; eg corresponding to
the ground or excited state, respectively. The standard
textbook approach for evaluating the transition dipole
moment μ is to assume that the envelope function varies
slowly over a unit cell so that μ can be written as a product
of the Bloch matrix element pcv and a three-dimensional
overlap integral between the envelope functions, i.e.,
μ ¼ ðe=m0Þhugψgjp̂xjueψei ≈ ðe=m0Þpcvhψgjψei, where
pcv ¼ V−1

UC

R
UC d

3ru�gp̂xue is given by an integral over
the unit cell with VUC being the unit-cell volume.
Importantly, the large mesoscopic strength Λ=μ observed
experimentally [see Fig. 2(b)] cannot be reproduced by a
similar calculation, which leads to

Λ ¼ e
m0

½hψgjxjψeihugjp̂zjueiUC þ hψgjψeihugjxp̂zjueiUC
þhψgjxp̂zjψeihugjueiUC þ hψgjp̂zjψeihugjxjueiUC�;

ð1Þ

where hiUC ≡ V−1
UC

R
UC d

3r denotes integration over a unit
cell. The first three contributions vanish for symmetry
reasons. The fourth contribution is vanishingly small and
does not scale with the QD size: for Gaussian envelopes
allowing for realistic mutual displacements of 1–2 nm
between the electron and the hole in the growth direction
(note that the integral vanishes in the absence of such a
displacement) we estimate Λ=μ ∼ 10−4 nm. This suggests
that the large mesoscopic strength Λ=μ ∼ 10–20 nm
observed experimentally cannot be explained solely by
the envelope wave functions. In the following, we show that
structural gradients at the nanoscopic crystal-lattice length
scale can explain the effect.
It is often assumed that solid-state emitters have a

homogeneous chemical composition, which justifies the
use of bulk-material Bloch functions, while only the slowly
varying envelopes describe the properties of the nano-
structure. This assumption works excellently for quantum

FIG. 2 (color online). Observation of deviations from dipole
theory for QDs near an interface. (a) Measured decay rates versus
distance z0 to the GaAs-air interface (data points) at an energy
of 1.27 eV (wavelength λ0 ∼ 975 nm). The dipole (multipolar)
theory is indicated by the black dashed (blue solid) line.
A refractive index n ¼ 3.5 of GaAs was used. The inset is a
schematic illustrating the sample geometry. (b) Extracted meso-
scopic strength Λ=μ over the emission spectrum of QDs (red
squares) along with the prediction of the theoretical model (blue
dashed line) assuming that the QDs have a fixed in-plane size and
only the height varies, cf. the Supplemental Material [20].
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wells and lattice-matched QDs, where the wave functions
are confined to a chemically homogeneous region of space.
InAs QDs are grown by self-assembly induced by strain
relaxation, which unavoidably leads to the generation of
structural gradients at the crystal-lattice level. In particular,
large lattice-constant shifts were observed in the growth
direction of QDs [23,24], which limits the applicability of
the standard effective-mass formalism. An atomistic theory
would generally be required to describe the mesoscopic
light-matter interaction. Remarkably, the essential physics
can be captured by only a minor extension of the effective-
mass theory. We assume that the lattice periodicity changes
at a certain position z ¼ zT along the QD height by an
amount Δal ¼ 110 pm at a central value al ¼ 605 pm as
found experimentally in Ref. [23], see Fig. 3(a). This
corresponds to a relative lattice-constant shift of 18%,
which is strain induced and substantially larger than the
lattice-constant mismatch between InAs and GaAs of 7%.
We note that, in general, the lattice periodicity changes
twice: first it is expanded at the QD base [GaAs-In(Ga)As
transition] before being shrunk back at the QD tip [In(Ga)
As-GaAs transition]. Since the exciton is spatially confined
near the tip where the indium concentration is highest [24],
we only consider the second transition region. The Bloch
functions change periodicity as well, cf. Fig. 3(b), and we
model this by expanding them in a Fourier series with a
position-dependent lattice wave vector klðzÞ:

ugðrÞ ¼
X
m

amðy; zÞ sin½mklðzÞx�;

ueðrÞ ¼
X
n

bnðy; zÞ cos½nklðzÞx�: ð2Þ

This ansatz ensures opposite parity of the conduction- and
valence-band Bloch functions along x. Furthermore, we
implicitly assume the shape of the Bloch functions to remain
the same, and only their periodicity to vary spatially. Now
we return to the evaluation of the mesoscopic moment and
separate the slowly and rapidly varying contributions as

Λ ¼ e
m0

XN
q¼1

ψ�
gðRqÞXqψeðRqÞ

Z
UC

d3ru�gðrÞp̂zueðrÞ; ð3Þ

where Rq denotes the position of the qth unit cell and N is
the total number of unit cells in the QD. In a homogeneous
region of the QD [the blue unit cell in Fig. 3(a)], the unit-cell
integrand of Eq. (3) is odd in the x and z directions,
cf. Fig. 3(c), which leads to a vanishing integral. However,
in the transition region around z ¼ zT strong gradients are
present, which destroy the parity of the integrand [see the
pink and green unit cells in Figs. 3(a) and 3(c)] and generate
a substantial contribution to Λ.
With the ansatz in Eq. (2) we first compute the dipole

Bloch matrix element hp̂xi and then evaluate Λ, which
can be expressed in terms of hp̂xi because the x and z
derivatives of the Bloch functions yield similar results,
cf. Eqs. (2)–(3). The resulting expression for Λ=μ reads

Λ
μ
¼ 1

kl

hψgjx2½∂zklðzÞ�jψei
hψgjψei

: ð4Þ

The mesoscopic strength scales quadratically with the
in-plane size of the QD, Λ=μ ∼ L2

r , because the term
hψgjx2½∂zklðzÞ�jψei contains the variance of the exciton
wave function in the x direction. Moreover, it increases
with decreasing QD height, Λ=μ ∼ L−1

z , since in shallow
QDs the relative importance of the lattice-constant tran-
sition region is increased. We use Eq. (4) to model the
spectral dependence of Λ=μ, see Fig. 2(b), where only the
height of QDs is assumed to vary across the spectrum
while the in-plane size remains constant, as justified in the
Supplemental Material [20]. By mapping the quantization
energy to the QD size, we are able to extract a QD height
that varies from 11 to 3 nm across the inhomogeneously
broadened spectrum, cf. Fig. 4(a), which agrees well with
the values obtained from atomic-force microscopy mea-
surements [19]. The details of the calculation are given
in the Supplemental Material [20]. From Fig. 2(b) we
conclude that QDs with larger emission energy have larger
mesoscopic strengths because they are shallow so that a
large part of the excitonic wave function is affected by the
lattice inhomogeneity.
Equation (4) is the most general expression for Λ=μ that

can be simplified in order to obtain an intuitive analytical
expression. We consider the particular case of in-plane
rotationally symmetric Gaussian slowly varying envelopes
and obtain

Λ
μ
¼ −

Δal
al

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξz
4π

r
σ2r
σz

; ð5Þ

where σz is the height (HWHM) of the electron envelope,
σr the QD radius, Δal=al the relative lattice-constant shift
and ξz ≈ 5 is the ratio between the electron and hole

FIG. 3 (color online). Sketch illustrating the microscopic model
for mesoscopic QDs. (a) The atomic lattice inside the QD is
assumed to change periodicity at the position z ¼ zT . (b) Sketch
of how the Bloch function u2g of the atomic lattice varies
spatially inside the QD. (c) Illustration of the matrix elements
hpxi≡ hugjp̂xjuei and hpzi≡ hugjp̂zjuei for the three colored
unit cells in (a). The symmetry of the integrand is broken in the
transition region around z ¼ zT , giving rise to pronounced
mesoscopic effects.
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effective masses [25]. We plot the mesoscopic strength as a
function of the in-plane radius for three fixed heights in
Fig. 4(b). The largest mesoscopic strengths are achieved for
shallow and wide (disk-shaped) QDs. For instance, taking
a relatively extreme yet experimentally realistic case of a
height 2σz ¼ 2 nm and radius σr ¼ 30 nm yields a meso-
scopic strength as large as Λ=μ≃ 120 nm, which is an
order of magnitude larger than the values observed in
experiments so far. In such QDs mesoscopic effects would
dominate the light-matter interaction strength. For instance,
if placed in front of a silver mirror it would exhibit a Purcell
factor nearly 100 times larger than a point-dipole source.
Such QDs may also be extremely efficient at interfacing
electric and magnetic degrees of freedom in structures that
conserve parity symmetry, such as photonic-crystal cavities
and waveguides, owing to the substantial increase of
second-order light-matter-interaction processes that are
weak for current In(Ga)As QDs.

Knowledge about the quantum-mechanical wave func-
tions allows computing the current density jQDðrÞ flowing
through the QD. We define the latter by comparing the
interaction Hamiltonian Ĥint ¼ ðe=m0ÞA · p̂, where A is
the vector potential, to the classical particle-field inter-
action Hamiltonian Hint ¼ AðrÞ · jðrÞ [9]. The quantum-
mechanical current density can therefore be written as
jQDðrÞ ¼ ðe=m0ÞΨ�

gðrÞp̂ΨeðrÞ or

jQDðrÞ ¼
e
m0

½Ψ�
gp̂xΨex̂þΨ�

gp̂zΨeẑ�: ð6Þ

In the following, Gaussian slowly varying envelopes are
used to model the current density. In QDs with a homo-
geneous crystal lattice and thus negligible mesoscopic
moment, the current density flows only along the direction
of the dipole moment because there are no gradients in the z
direction [see Fig. 4(c)]. Note that for simplicity we ignore
the modulation of jQD by the periodic Bloch functions in
Fig. 4. The presence of lattice inhomogeneities changes the
flow dramatically because strong gradients in the z direc-
tion arise. The current density flows along a curved path
as illustrated in Figs. 4(d)–4(f), conferring pronounced
mesoscopic properties to QDs. The wider the QD is, the
sharper the transverse oscillations of the current are and the
larger Λ=μ is. This effect offers the possibility to enhance
(diminish) the light-matter interaction by placing QDs in
environments where the electric vacuum field exhibits
gradients with the same (opposite) sign; see also Fig. 1.
Aside from the local light-matter coupling strength, other
degrees of freedom could be potentially tailored by
exploiting the mesoscopic interaction, such as the photon-
emission directionality or polarization.
We emphasize that the mesoscopic character of In(Ga)As

QDs could play an important role in any photonic nano-
structure that breaks parity symmetry along the QD height.
A particular example is the field of quantum plasmonics,
where QDs are placed in strong field gradients [26] to
achieve large Purcell factors [27] and strong quantum
nonlinearities [28]. Another example concerns the control
of spontaneous emission in photonic metamaterials [29], in
which the presented theory could be employed for tailoring
the electric and magnetic coupling to the QD. In contrast,
the dipole theory is highly robust in parity-symmetric
environments such as photonic-crystal cavities [2] and
waveguides [3] with QDs that are placed in the center of
the membrane structure because μ and Λ couple to modes
with different parity and do not interfere [7].
The present work concerns mesoscopic effects in self-

assembled In(Ga)As QDs, but the theory is generally valid
for all QDs grown by strain relaxation and thus exhibiting
distortions of the underlying crystal lattice, such as Ge/Si
self-assembled QDs [30]. An interesting question pertains
to the existence of such effects in other types of widely
studied solid-state quantum emitters, such as colloidal
[31] or monolayer-fluctuation [32] QDs. The presented

FIG. 4 (color online). The mesoscopic strength and the asso-
ciated current density running through the QD. (a) Spectral
dependence of the QD height predicted by the theoretical model.
(b) Mesoscopic strength as a function of the in-plane size of the
QD for three fixed QD heights. (c)–(f) Plots of quantum current
densities for various QD geometries. (c) Homogeneous crystal
lattice where the current flow is uniform and points in the
direction of the dipole moment. (d) Inhomogeneous lattice for a
QD radius of 5 nm giving rise to a nonuniform current flow
following a curved path. The QD height is 4 nm. (e),(f) Same as
(d) but for QD radii of 10 and 20 nm, respectively. In (c)–(f), both
the length of the arrows and the color scale indicate the magnitude
of the flow and the direction of the arrows indicates the pointwise
direction of the flow. The dashed white line sketches the position
and orientation of the QD.
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theoretical framework in conjunction with experiments in
photonic environments lacking parity symmetry may pro-
vide a valuable route to study such effects. The reported
deviations from dipole theory found for In(Ga)As QDs
are caused by the combination of two effects: the QD size
(∼20 nm) is comparable to the wavelength of light
λ0=2πn ∼ 45 nm, and the QD wave functions break parity
symmetry due to the lattice distortion.
In conclusion, we have developed an extension to the

effective-mass theory for nanostructures that successfully
explains the large mesoscopic strengths of In(Ga)As QDs
observed experimentally. We find the effect to be governed
by structural inhomogeneities at the level of the nanoscopic
crystal lattice, which generate a mesoscopic current density
that oscillates along a curved path inside the QD. Our work
is expected to be of significance for solid-state quantum
electrodynamics and quantum-information processing,
where efficient quantum interfaces between QDs and light
are exploited.
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