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cavity: The role of non-Markovian phonon-induced decoherence
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We study the fundamental limit on single-photon indistinguishability imposed by decoherence due to phonon
interactions in semiconductor quantum dot-cavity quantum electrodynamics systems. Employing an exact
diagonalization approach we find large differences compared to standard methods. An important finding is
that short-time non-Markovian effects limit the maximal attainable indistinguishability. The results are explained
using a polariton picture that yields valuable insight into the phonon-induced dephasing dynamics.
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The study of the coherence properties of single photons
emitted from semiconductor cavity quantum electrodynamics
(cQED) systems is important for applications in quantum
information technology1 and provides insight into the fun-
damental decoherence effects induced by the environment.
For all-solid-state cQED systems, such as a quantum dot
(QD) embedded in a photonic crystal cavity2 [Fig. 1(a)] or
a micropillar cavity,3 the main decoherence mechanism at low
temperatures is the electron-phonon interaction,4–6 as many
recent studies show.2,7–14

Decoherence limits the degree of indistinguishability of
single photons emitted from cQED systems [Fig. 1(a)], thus
diminishing their applicability for scalable linear optical
quantum computing,1 where an all-solid-state single-photon
source is a key element. Furthermore, recent experimental
results2,8,9,11,12,14 necessitate a departure from the well under-
stood paradigms of atomic cQED, since the strong interaction
with reservoirs in the solid state calls for new basic models and
physical interpretations. A better understanding of phonon-
induced decoherence thus leads to insight into the fundamental
physics of nanostructured solids, and can help ushering novel
quantum technological devices. However, thus far only little
attention has been given to the influence of phonon interactions
on the indistinguishability. Only a few experiments have
been reported3,15,16 and previous theoretical studies have
employed a Markovian pure dephasing approximation17–24 or
phenomenological descriptions of finite-memory dephasing
processes,25 none of them treating the phonon interaction
microscopically while taking into account the cavity.

In this Rapid Communication we show that the non-
Markovian nature of the phonon reservoir has a large effect
on single-photon indistinguishability: Short-time virtual pro-
cesses occurring on time scales much shorter than a typical
“dephasing time” must be considered. Also, it is essential
to treat the phonon interaction microscopically and on equal
footing with the electron-photon interaction. The analysis is
based on an exact diagonalization (ED) technique, retaining
the inherent non-Markovian nature of the phonon interaction to
all orders in the phonon coupling. Our findings are contrasted
to standard approximate approaches for including phonon
interactions,13,26–29 namely, second-order expansions and phe-
nomenological pure dephasing descriptions. Figures 1(c)

and 1(d) show such a comparison. The deviations between the
approximate and the ED results are significant, demonstrating
that memory and back-action effects in the reservoir cannot be
neglected, as in Markovian approaches.

To calculate the indistinguishability, we model the cel-
ebrated Hong-Ou-Mandel experiment15,30 where two-time
correlation functions for the photon operator a need to be
considered,18 〈a†(t ′)a(t)〉 = 〈a†(t + τ )a(t)〉. These are defined
in the plane spanned by t and t ′ [Fig. 1(b)], whereas one-time
correlation functions 〈a†(t)a(t)〉 reside on the time diagonal
(τ = 0). Consequently, one-time functions only experience
short-time non-Markovian phonon effects within the phonon
reservoir correlation time τcorr [Fig. 1(b)] after the initial exci-
tation. In contrast, the two-time function implies that a photon
is removed, a(t), at each instant t and added again, a†(t + τ ),
an instant τ later. This results in a “continuous excitation” of
short-time transients, illustrated as the band surrounding the
time diagonal in Fig. 1(b). Short-time non-Markovian effects
thus play an important role throughout the entire lifetime of the
excitation, strongly affecting physical quantities derived from
two-time functions, such as the indistinguishability which we
will demonstrate.

Theory. To model a QD coupled to a cavity interacting
with longitudinal acoustical phonons, we employ the
Jaynes-Cummings model including the electron-phonon
interaction7,9,10,31 [Fig. 1(a)]. We follow Hohenester32

and employ a set of effective phonon modes.
Expanding the QD-cavity system in the basis
{|1〉 = |e,n = 0〉,|2〉 = |g,n = 1〉,|3〉 = |g,n = 0〉}, where n

is the cavity photon number, the total Hamiltonian becomes

H = HJC +
∑

p

M̃p(b̃†p + b̃p)σ11 +
∑

p

h̄ωpb̃†pb̃p, (1)

where σij = |i〉〈j |. The second term describes the phonon
interaction with the QD, p denotes the effective phonon modes
with bosonic operators b̃p and b̃

†
p, and M̃p is the effective

phonon matrix element.33 The last term is the free phonon
Hamiltonian with ωp denoting the frequency of mode p.34

The Jaynes-Cummings model is

HJC = h̄�σ11 + h̄g(σ12 + σ21), (2)
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FIG. 1. (Color online) (a) Schematic of a coupled QD-cavity
system interacting with longitudinal acoustical phonons and a
photonic crystal cavity with an embedded QD. (b) Two-time plane
with the time diagonal τ = 0 and phonon reservoir correlation time
τcorr. The shaded region shows the extent of the short-time regime.
(c), (d) Calculated indistinguishability as a function of the QD-cavity
coupling strength for light emitted from the QD and the cavity.
Parameters: � = 0.5 ns−1, h̄κ = 125 μeV, h̄� = 27.78 μeV, and
h̄γ = 0.85 μeV.

where � = ωeg − ωcav is the QD-cavity detuning with ωeg

and ωcav being the QD and cavity transition frequencies,
respectively, and g is the QD-cavity coupling strength.

The system dynamics is obtained by employing the reduced
density matrix formalism including Lindblad decay terms.35,36

The master equation for the density matrix is

∂tρ(t) = −ih̄−1 [H,ρ(t)] + SLρ(t), (3)

where the Lindblad terms are SLρ(t) = (Lκ{σ32} +
L�{σ31})ρ(t). The rate κ describes the escape of cavity
photons, related to the Q factor as κ = Q/ωcav, and the rate
� describes the decay of the QD in the absence of the cav-
ity. The Lindblad operator is Lη {O} ρ(t) = − η

2 [O†Oρ(t) +
ρ(t)O†O − 2Oρ(t)O†]. Importantly, the electron-phonon in-
teraction is here included in the unitary part of the master
equation and not via approximate scattering terms. Thus, the
electron-phonon interaction is treated on equal footing with
the electron-photon interaction, ensuring a rigorous inclusion
of all non-Markovian phonon effects. To solve Eq. (3), we
expand the phonon operators in a multiphonon Fock state
basis,37 and propagate the equations numerically, providing
an exact diagonalization of the coupled QD-cavity-phonon
system. In the limit of g → 0, our model becomes the exactly
solvable independent boson model (IBM).38–41 The IBM can
thus extrapolate the ED results to this limit, where the ED
becomes cumbersome due to long numerical integration times.

We compare our simulations with two standard approaches.
The first treats the electron-phonon interaction to second order
using the time-convolutionless method (TCL).36,42,43 Here the
density operator is ρ̄(t) = Trphon [ρ(t)], where the phonons are
traced out and hence treated as a thermal reservoir.

Within this approximation, the master equation becomes

∂t ρ̄(t) = −ih̄−1 [HJC,ρ̄(t)] + STCL(t)ρ̄(t) + SLρ̄(t), (4)

where the effects of the phonons are contained in STCL(t).10,43

The second approach is a Markovian Lindblad description
of the pure dephasing processes, equivalent to the TCL
for a memoryless phonon reservoir. The consequence is the
replacement of STCL(t) with the Lindblad operator L2γ {σ11},
where γ is the pure dephasing rate.26–28 The rate γ will be
chosen to provide a reasonable fit to the ED.

To calculate two-time functions we invoke the quantum
regression theorem (QRT),35 which does not imply any ap-
proximations in describing non-Markovian phonon effects in
the ED approach. Applying the QRT to the TCL density matrix
in Eq. (4), however, requires more subtle considerations.
The TCL results in time-dependent scattering rates10,42 and
thus the substitution γTCL(t) → γTCL(τ ) might be expected to
include non-Markovian effects in the QRT. This is, however,
not the case, as recently shown by Goan et al.40,41 However,
in the long-time limit, STCL(t → ∞), the QRT becomes a
consistent approximation.

The indistinguishability of the emitted photons is quantified
as the normalized number of coincidence events at the HOM
output detectors and is calculated as18,24

I =
∫ ∞

0 dt
∫ ∞

0 dτ |〈A†(t + τ )A(t)〉|2
∫ ∞

0 dt
∫ ∞

0 dτ 〈A†(t + τ )A(t + τ )〉〈A†(t)A(t)〉 , (5)

where A is either the photon operator a = |n = 0〉〈n = 1| =
σ32 for light emitted from the cavity, or the QD operator
σ− = |g〉〈e| = σ31 for light emitted from the QD. We assume a
one-photon basis and second-order contributions are therefore
absent.

For all simulations, except when varying the detuning, a
QD-cavity detuning equal to the polaron shift10 has been used,
h̄� = h̄�pol ≈ 27.78 μeV, corresponding to an effective QD-
cavity detuning close to zero. To investigate the fundamental
limits on indistinguishability set by the vacuum phonon bath
we set T = 0 K. We emphasize that neither our model nor
approach are limited to zero temperature, however, finite
temperatures significantly increase the computational effort.
The initial condition is the QD in the excited state, with both the
photon and phonon fields in their ground states, corresponding
to the experimental situation of excitation of the system with a
short optical pulse, usually employed in measurements of the
indistinguishability. We neglect effects such as timing jitter and
nearby fluctuating charges, as these depend on the excitation
mechanism and can be avoided.

Dependence of QD-cavity coupling strength. Figures 1(c)
and 1(d) show the indistinguishability for light emitted from
the cavity and QD as a function of the QD-cavity coupling
strength g. The ED and IBM results44 differ quantitatively and
qualitatively from both the TCL and Lindblad results. For small
but increasing g the indistinguishability remains constant in
the ED and IBM approaches for the QD, which is also expected
for the cavity, where the IBM does not apply. The TCL may
predict an indistinguishability above unity [Fig. 1(c)], which
is unphysical and a well-known issue associated with this
method.45 Further increasing the QD-cavity coupling g, the
indistinguishability decreases for the ED and TCL, whereas
the Lindblad theory predicts saturation. The surprisingly large
deviations between the ED and common approaches are
important, especially for applications with strict requirements
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on the indistinguishability, e.g., in implementations of linear
quantum computing protocols.1

The Lindblad theory can qualitatively be interpreted
using17,22 I = �eff/(�eff + 2γ ), where �eff is the effective
decay rate of the QD. For large detuning or small QD-
cavity coupling, compared to the loss rates, one obtains28

�eff = � + 2g2γtot/(�2 + γ 2
tot),γtot = 1/2(κ + � + 2γ ). The

expression predicts an initial increase in indistinguishability
with coupling strength due to the Purcell effect, until it
saturates for h̄g > 100 μeV as the strong coupling regime
is entered. The results from the ED and TCL clearly cannot be
explained using this model.

It is instructive to write the Hamiltonian, Eq. (1), in terms
of polariton (dressed) states, which diagonalize the Jaynes-
Cummings Hamiltonian, Eq. (2). This results in terms such
as σlu

∑
p M̃p(b̃†p + b̃p), which cause phonon-mediated tran-

sitions between the upper (u) and lower (l) polariton branches.
These are separated by an energy ωu − ωl =

√
4g2 + �2, and

hence this energy is expected to play an important role in the
physical interpretation.

Figure 2(a) shows examples of time-dependent dephasing
rates calculated within the TCL, for two values of the
coupling strength g. Figure 2(b) shows the correspond-
ing effective phonon density, defined as (T = 0) dph(ω) =
π

∑
p |M̃p|2δ(ω − ωp). For both values of g, the dephasing

rate attains large values within the first 3 ps, after which it
settles to a smaller positive nonzero value. The initial temporal
variations of the rate are directly related to a sampling of
the entire effective phonon density through virtual processes,
which are allowed at short times due to the energy-time
uncertainty relation.

In the long-time limit, phonon-induced decoherence re-
flects real phonon-mediated transitions, corresponding to the
effective phonon density being sampled at specific energies.
This explains why the long-time value of the dephasing
rate is much larger for h̄g = 200 μeV compared to h̄g =
30 μeV. The phonon density is thus sampled, respectively,
at the energies given by the polariton transitions, namely,
h̄(ωu − ωl) = 2 × 30 μeV = 0.06 meV, where the phonon
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FIG. 2. (Color online) (a) Time-dependent dephasing rate from
the TCL. (b) Effective phonon density at zero temperature. (c) Phonon
population distribution function for h̄g = 30 μeV, � = 0.5 ns−1,
h̄κ = 125 μeV, and h̄� = 27.78 μeV. (d) As (c) with h̄g = 200 μeV.

density is small, and h̄(ωu − ωl) = 2 × 200 μeV = 0.4 meV,
where it is much larger. The TCL only considers the long-time
limit of the dephasing rate in Fig. 2(a), explaining why
the indistinguishability tends to unity for small QD-cavity
coupling strengths.

To verify the intuitive explanation provided by the polariton
picture, we show in Figs. 2(c) and 2(d) the phonon distribution
function 〈b̃†p(t)b̃p(t)〉 calculated using the ED approach.
For small QD-cavity coupling no specific phonon energy
is singled out, consistent with the small phonon density
at the corresponding energy of 0.06 meV, whereas for the
larger QD-cavity coupling a significant increase in phonon
population occurs near 0.4 meV, as expected from the polariton
interpretation.

The nearly constant indistinguishability for the ED and IBM
for small g arises due to the large difference in the involved
time scales, the QD decay time τQD = �−1

eff with γ = 0, and the
extent of the short-time non-Markovian regime τcorr [Fig. 1(b)],
where virtual processes dominate the decoherence.39 The
importance of the short-time regime is witnessed by the large
dephasing rate in Fig. 2(a), which is especially important for
the QD, and τQD needs to become comparable to τcorr to
affect the phonon dephasing. We note that for g → 0 other
phonon dephasing mechanisms can become important.6,46

Further increasing g in Figs. 1(c) and 1(d), real processes
become increasingly important and contribute further to the
decoherence, however, a stronger Purcell enhancement is also
in effect, combating the influence of decoherence by making
the QD decay faster. Including only virtual phonon processes
(IBM), the Purcell effect can increase the indistinguishability,
however, adding real processes (ED) the indistinguishability
is seen to decrease monotonically, partly due the saturation
of the Purcell enhancement, and hence τQD, in the strong
coupling regime. Comparing the indistinguishabilities for the
QD and the cavity, only the ED predicts a significant difference
between the two, which indicates that the difference arises
from short-time non-Markovian effects that are only retained
in the ED. The smaller indistinguishability found for the
QD is a result of the direct interaction between the QD
and the phonons, where the very strong short-time dephasing
[Fig. 2(a)] significantly decreases the indistinguishability of
photons emitted from the QD. The photons in the cavity do
not interact directly with the phonons, only indirectly through
the QD-cavity interaction, and hence do not suffer to the same
degree from the strong short-time dephasing as the QD does.
Furthermore, the longer lifetime of the QD compared to the
cavity, i.e., τQD ≫ 1/κ , is also expected to have an influence
as excitations residing in the QD simply have more time to
interact with the phonons. We note that in the case of the
phenomenological Lindblad theory, the same difference is not
expected as here no short-time dephasing is present, only the
constant pure dephasing rate γ .

Spectral asymmetries. Figures 3(a) and 3(b) show the
indistinguishability as a function of the QD-cavity detuning �,
which is an important experimentally controllable parameter.
The Lindblad theory is unable to explain the variations with
detuning that are predicted by the ED, both on a quantitive
and qualitative level. The behavior of the Lindblad theory can
again be understood using the analytical expression discussed
above, since the Purcell enhancement decreases for increasing
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FIG. 3. (Color online) (a), (b) Indistinguishability as a function
of QD-cavity detuning for QD and cavity emission. (c)–(e) Phonon
population distribution function for different QD-cavity detuning. For
� = 0 the population has been scaled by a factor of 2. Parameters:
h̄� = 1 μeV, h̄κ = 100 μeV, h̄g = 100 μeV, and h̄γ = 1.1 μeV.

detuning. A common feature displayed by both the TCL
and ED is a strong asymmetry with respect to the sign
of the detuning. For large detuning, |�| � g, the polariton
dispersion becomes ωu/l ≈ (� ± |�|)/2. Thus, to make real
transitions between the two polariton branches, the phonons
need to provide an energy ±h̄|�|, either through emission
(−) or absorption (+). At T = 0, only positive detuning
will lead to phonon emission and thus decoherence in the
long-time limit, hence a larger indistinguishability is expected
for negative detuning. Indeed, both the TCL and ED display
such an asymmetry. The effect of detuning on phonon emission
is shown in Figs. 3(c)–3(e), where, for h̄� = 0.5 meV, a
significant phonon population is observed at this phonon
energy.

While the detuning asymmetry of the cavity emission
directly reflects the shape of the effective phonon density in
Fig. 2(b), this is not the case for the QD emission. The reason
for this, perhaps surprising, difference between cavity and QD
emission is the following: To generate a cavity photon, the
QD must decay by coupling to the cavity, i.e., subject to the
Purcell effect. For large detuning (� � g,κ), the Purcell effect
is only effective if assisted by phonon emission.9–11 However,
the QD can generate a photon without coupling to the cavity,
namely, through the background decay rate �. Therefore we
expect the cavity to significantly influence the QD emission
only relatively close to resonance. For large detunings, we
expect the QD result to converge towards the g → 0 result,44

predicted in Fig. 1(c).
For negative detuning, the effect of virtual processes in

the short-time regime is clearly seen in the ED result, where,
despite the absence of phonon emission in the long-time
limit, the indistinguishability is still significantly below unity,
especially for QD emission. This is not the case for the TCL,
which only describes the long-time limit.

In conclusion, we have shown that non-Markovian phonon
interactions strongly influence the coherence of single photons
emitted from a cavity QED system. An exact diagonalization
approach predicts an upper limit for the indistinguishablity,
a feature not captured by the commonly used Lindblad
theory. We provided physical insight into the non-Markovian
dephasing processes using a polariton picture. Finally, we
predict an asymmetry in the indistinguishability with respect
to the QD-cavity detuning.
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