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Einstein-Podolsky-Rosen correlations in second-harmonic generation

P. Lodahl
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A quantum model for singly resonant second-harmonic generation in a cavity with transverse degrees of
freedom is analyzed. An instability threshold for pattern formation exists in this system. Below threshold, a
strong modulation of the noise is demonstrated in the transverse structure of the far field. The performed
analysis encompasses both one- and two-point correlation functions. The noise in a single far-field point is
generally above the classical vacuum noise level. In contrast, strong nonclassical two-point correlations are
encountered between opposite emission directions in the far field. For the fundamental field the correlations are
shown to be of the Einstein-Podolsky-Rosen type, thus establishing a remarkable analog to the quantum
correlations found in a nondegenerate optical parametric oscillator.
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I. INTRODUCTION

The famous EPR paradox was put forward by Einste
Podolsky, and Rosen in 1935 with the purpose of dem
strating the incompleteness of quantum mechanics@1#. By
considering entangled states of two spatially separated q
tum systems, EPR showed that a measurement on one
system would predict the outcome of a similar measurem
on the other subsystem. This established quantum mecha
as a nonlocal theory, although this interpretation led EPR
reject the reality of the quantum description. Later devel
ments of hidden variable theories were aiming at a rest
tion of the local realistic description of EPR correlations. T
controversy was settled in the experiments by Aspectet al.
@2#, where a violation of the Bell inequality was realize
following a criteria by Bell for distinguishing local hidde
variable theories from the quantum theory@3#. These experi-
ments were utilizing discrete variables as, e.g., the polar
tion of single photons. In contrast, the original EPR propo
was for continuous variables, and the first experimen
achievement of this type of correlations was by Kimble a
co-workers based on the optical parametric oscillator~OPO!
@4#. Recently, the nonlocality of continuous variable e
tanglement was also established experimentally@5#. Both of
these experiments are based on continuous variables of l
Continuous variable quantum states of light have rece
found applications as the quantum resource for fundame
quantum information processes, such as quantum telep
tion @6,7# and dense coding@8#, and have been proposed fo
use in continuous variable quantum cryptography@9#.

The OPO has proven to be an efficient source for gen
ating light with quantum correlations@10#. In the OPO, a
nonlinearx (2) process converts the pump field at frequen
2v into signal and idler fieldsvs andv i . In the degenerate
case (vs5v i) , squeezed light can be generated with no
reduction in one quadrature amplitude below the vacu
noise level@11,12#. In the nondegenerate optical paramet
oscillator the signal and idler fields differ in polarizatio
and/or frequency, which allows spatial separation of the t
beams and the formation of continuous variable correlati
of the type originally envisioned by EPR@13#. These corre-
lations are observed as noise reduction below the vac
1050-2947/2003/68~2!/023806~8!/$20.00 68 0238
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level in the sum or difference of the signal and idler quad
tures. In contrast, a single beam of the EPR pair exhi
excess fluctuations above the vacuum level. The presenc
EPR correlations in the nondegenerate OPO can be attrib
to the two-photon character of the parametric dow
conversion process that ensures strong correlations betw
signal and idler.

Spatiotemporal instabilities in cavity enhancedx (2) pro-
cesses have attracted considerable attention. A large num
of theoretical predictions@14–25# have recently been supple
mented by experimental verifications of both a nonline
self-pulsing instability@26# and first evidence for spatial in
stabilities@27,28#. Most work has concentrated on the OP
where off-axis emission of the parametric beams was p
dicted from a spatial instability@14,15#. This mechanism
leads to the formation of modulated intensity patterns in
transverse plane perpendicular to the cavity axis@16#. Quan-
tum spatial properties of the OPO have been studied in
sively @17,18# and spatial correlations and squeezing ha
been identified @19# as well as EPR correlations@20#.
Second-harmonic generation~SHG! is the opposite proces
of the OPO. Here two fundamental photons are combin
into a second-harmonic photon at twice the frequency:v
1v→2v. The existence of an off-axis instability has als
been established in SHG@21–23#, enabling similar studies o
spatial structures in SHG as in the OPO. Investigation of
quantum properties of this SHG instability was only initiat
recently@24,25#, and the current work provides an extensi
of these studies.

It was recognized early that squeezed light correlatio
can be obtained not only in the OPO but also in SHG@29#.
This is not surprising since the same nonlinear interact
(x (2)) is responsible for the two processes. In contrast
does not seem immediately obvious that also EPR corr
tions can exist in SHG. The interacting fields in SHG a
degenerate in frequency and polarization, which makes it
possible to separate two correlated beams. The SHG off-
instability provides such a separation mechanism, allow
for the generation of spatially separated fields at both
fundamental and second harmonic frequencies. The m
finding of the present paper is that these spatially separ
fields can be EPR correlated. To the best of our knowled
©2003 The American Physical Society06-1



in
an
a
w

um
rs
d
in
a

or
n

m

in

. 1
by

t
tio
re

or

co
o

os

un
t i

he
tive

ing
ons

s

n-
ar-

ne-
put

rela-

for

e
a

h

e

are

in-
rk.
de-

n-
ta
n

v

P. LODAHL PHYSICAL REVIEW A 68, 023806 ~2003!
this is the first demonstration of nonlocal correlations
SHG. This ties a bond between spatially extended SHG
the nondegenerate OPO, where EPR correlations are
present. In addition, unique SHG correlations will be sho
to exist that have no analogies in the OPO.

In the present paper we will study the spatial quant
properties of singly resonant SHG using the model fi
treated in Ref.@24#. After introducing the scaled quantize
equations in Sec. II, the equations are solved in Sec. III
linearized approximation valid below threshold for the sp
tial instability. In Secs. IV and V analytical expressions f
one-point and two-point correlation functions are given, a
the presence of both squeezing and EPR correlations si
taneously in the spatial structures is demonstrated.

II. QUANTUM EQUATIONS FOR SINGLY
RESONANT SHG

In the most simple cavity enhanced frequency doubl
configuration only the fundamental field (v) is resonated,
while the second harmonic (2v) escapes freely from the
cavity. This is referred to as singly resonant SHG, cf. Fig
A quantum model for this configuration was introduced
Collett and Levien@30# and extended by Paschottaet al. to
squeezed light calculations@31#. The Collett-Levien model
can be generalized to the spatially extended case, relevan
transverse quantum noise studies, by including a diffrac
term @19#. As a result, the following operator equations a
obtained:

] tâ15~2g11 id1!â11x2f ~j!â1
†â1

21A2ixg* ~j!â1
†â2,in

1 i
c2

2v
¹'

2 â11A2g1â1,in , ~1a!

â2,out5
i

A2
xg~j!â1

21â2,in . ~1b!

Here â1 and â1
† are annihilation and creation operators f

the intracavity fundamental field,âj,in , j 51,2, account for
input vacuum noise seeded to the fundamental and se
harmonic fields, and the output quantum state of the sec
harmonic field is described byâ2,out. The equations contain
linear and nonlinear terms. The former describe cavity l
and detuning with ratesg1 and d1. It is assumed that the
input coupler transmission is the dominating loss for the f
damental. The diffraction term contains the speed of ligh

FIG. 1. ~Color online! Sketch of the singly resonant SHG co
figuration.A1 denotes the amplitude of the intracavity fundamen
field while A1,in/out are the input and output fundamental fields co
nected through the input coupling mirror.A2,out is the amplitude of
the generated second harmonic field that freely escapes the ca
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vacuum c and the transverse Laplacian¹'
2 5]2/]x2

1]2/]y2 that contains the spatial degrees of freedom. T
strength of the nonlinear terms is determined by the effec
nonlinear coefficientx and the phase mismatch parameterj.
The phase mismatch turns out to be a convenient tun
parameter that contributes through the complex functi
f (j)52i /j1(e22i j21)/j2 andg(j)5(e2i j21)/j @22#. We
emphasize in Eq.~1a! the nonlinear coupling of fluctuation
from the second harmonic field~throughâ2,in) into the intra-
cavity fundamental field. This term only appears in a qua
tum model where vacuum fluctuations of the second h
monic input field are taken into account.

A proper description of the spatially extended system
cessitates the use of a continuum of operators. The in
noise operators obey the standard boson commutation
tions

@ âi , in~r ,t !,â j , in
† ~r 8,t8!#5d i j 3d~r2r 8!3d~ t2t8!, ~2!

wherer5(x,y) is the transverse coordinate andt is time. In
general, these arguments will be omitted in the following
brevity. The photon number operator is defined asn̂i,in

5*dt*dr âi,in
† (r ,t)âi,in(r ,t).

The output fundamental field, exiting through the sam
mirror that couples light into the cavity, is described by
standard input-output relation@32#

â1,out5A2g1â12â1,in . ~3!

Note that the intracavity operatorâ1 has been scaled suc
that the photon number operator inside the cavity isn̂1

51/t*dt*dr â1
†(r ,t)â1(r ,t), wheret is the propagation time

of one round trip in the cavity.
Equations~1a! and ~1b! can be written in scaled form

after the transformationsA2vg1 /c2r→r , g1t→t, and defin-
ing Â15xâ1 /Ag1, Â1,in5A2xâ1,in /g1 , Â2,in/out

5A2xâ2,in/out/g1 , D15d1 /g1. All scaled parameters ar
unitless. We arrive at the equations

] tÂ15~211 iD1!Â11 f ~j!Â1
†Â1

21 ig* ~j!Â1
†Â2,in

1 i¹'
2 Â11Â1,in , ~4a!

Â2,out5 ig~j!Â1
21Â2,in . ~4b!

The commutation relations of the scaled amplitudes
given by

@Âj,in~r ,t !,Âj,in
† ~r 8,t8!#5kd~r2r 8!3d~ t2t8!, ~5!

with j 51,2 andk54x2v/c2. The input-output relation of
Eq. ~3! transforms into

Â1,out52Â12Â1,in , ~6!

with Â1,out5A2xâ1,out/g1.
Equations~4! are the scaled quantized equations for s

gly resonant SHG that will be examined in the current wo
The classical versions of these equations were studied in

l
-

ity.
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tail in Refs.@22,23#. Here it was shown that a spatial inst
bility exists for certain values of cavity detuningD1 and
phase mismatchj. Above the instability threshold, spatiall
modulated patterns can be excited as, e.g., squares or h
gons. The mechanism for pattern formation was found to
off-axis emission characterized by a critical transverse w
vector,

kc5AD11D1
NL, ~7!

with the nonlinear detuningD1
NL52 f i(j)uA1u2, and subscript

i denotes the imaginary part. This establishes the mechan
for pattern formation in SHG as being similar to the OP
case, i.e., compensation of cavity detuning by off-axis em
sion @14#.

Here we concentrate on the quantum properties. It will
shown that below threshold for the spatial instability, t
fluctuations are spatially modulated and possess correla
beyond the classical limit. Such structures have coined
name quantum images@33#. In contrast, the correspondin
averaged amplitudesA1,out andA2,out are homogeneous solu
tions with no spatial modulation.

III. ANALYTICAL SOLUTIONS OF LINEARIZED
EQUATIONS

The nonlinear quantum model of singly resonant SHG
Eq. ~4! is solved within the framework of the semiclassic
approximation@34#. With this technique the operator equ
tions are linearized, allowing for analytical solutions. W
substituteÂ→A1b̂, whereA is the averaged amplitude o
each field and the operatorb̂ accounts for the quantum fluc
tuations. The assumption behind this approximation is t
the quantum noise is a small perturbation to the class
amplitudes. In that case Eq.~4! can be linearized inb̂, lead-
ing to

] tb̂15~211 iD1!b̂112 f ~j!uA1u2b̂11 f ~j!A1
2b̂1

† ,

1 ig* ~j!A1* b̂2,in1 i¹'
2 b̂11b̂1,in , ~8a!

b̂2,out52ig~j!A1b̂11b̂2,in , ~8b!

which can be solved analytically relating the output fields
the input fields. The semiclassical equations can be dire
used to calculate expectation values of symmetrically
dered operator products, thus applicable to the quadra
correlations treated below. The method has proven its
pressive validity for quantum noise calculations ofx (2) non-
linear systems, and is expected to be of high validity
SHG where a large averaged amplitude is always presen
all pump levels. For a thorough discussion of the semic
sical approximation, see Ref.@34#.

The averaged amplitude of the fundamental field ins
the cavity, A1, is found by solving the classical equatio
@22#. Quantum noise coupled into the cavity is expressed
the operatorsb̂1,in and b̂2,in . The noise in the fundamenta
field is introduced by the pump field which is assumed to
in a coherent state. For the second harmonic field no pum
02380
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applied, i.e., the input is vacuum noise. At optical freque
cies thermal photons can be safely neglected, and the foll
ing correlation relations for the input operators hold@35#:

^b̂j,in~r ,t !&5^b̂j,in
† ~r ,t !&50, ~9a!

^b̂j,in
† ~r ,t !b̂j,in~r 8,t8!&50, ~9b!

^b̂j,in~r ,t !b̂j,in
† ~r 8,t8!&5kd~r2r 8!3d~ t2t8!, ~9c!

in accordance with the commutation relations in Eq.~5!.
The linear differential equation~8a! is most easily solved

after a spatiotemporal Fourier transformationb̂ j (V,k)
5*dr*dtb̂j (r ,t)ei (k•r1Vt), j 51,2. The operatorsb̂ j (k,V)
account for quantum noise at a frequencyV at a transverse
wave vectork in the far field. The Fourier transformed equ
tion is

c1~V,k2!b̂1~V,k!5c2b̂1
†~2V,2k!1c3b̂2,in~V,k!

1b̂1,in~V,k!, ~10!

where the following coefficients have been introduced:

c1~V,k2!5122 f ~j!uA1u22 i ~V1D12k2!, ~11a!

c25 f ~j!A1
2 , ~11b!

c35 ig* ~j!A1* . ~11c!

This equation is solved by applying the input-output re
tions ~4b! and ~6!. This leads to

b̂1,out~V,k!5~ c̄121!b̂1,in~V,k!1 c̄2b̂1,in
† ~2V,2k!

1 c̄3b̂2,in~V,k!1 c̄4b̂2,in
† ~2V,2k!, ~12a!

b̂2,out~V,k!5 ig~j!A1c̄1b̂1,in~V,k!1 ig~j!A1c̄2

3b̂1,in
† ~2V,2k!1@11 ig~j!A1c̄3#b̂2,in~V,k!

1 ig~j!A1c̄4b̂2,in
† ~2V,2k!, ~12b!

with the frequency and wave vector dependent coefficie
given by

c̄1~V,k2!5
2c1* ~V,k2!

uc1~V,k2!u22uc2u2
, ~13a!

c̄2~V,k2!5
2c2

uc1~V,k2!u22uc2u2
, ~13b!

c̄3~V,k2!5
2c1* ~V,k2!c3

uc1~V,k2!u22uc2u2
, ~13c!

c̄4~V,k2!5
2c2c3*

uc1~V,k2!u22uc2u2
. ~13d!
6-3
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These rather extensive expressions are the solutions rel
the output electric field operators for the fundamental a
second harmonic to the input fields.x (2) quantum correla-
tions are most conveniently expressed in quadrature am
tudes. Focusing only on far-field correlations, we define
quadratures

P̂j,in/out~u,V,k!5b̂ j,in/out~V,k!e2 iu1b̂ j,in/out
† ~2V,k!eiu,

~14!

characterized by the quadrature phase angleu. Quadrature
amplitudes are naturally measured in balanced homodyne
tection @36#. From Eq.~9! it is easy to show that

^P̂1,in~u,V,k!P̂1,in~u,V8,k8!&5kd~k2k8!d~V1V8!,
~15a!

^P̂2,in~u,V,k!P̂2,in~u,V8,k8!&5kd~k2k8!d~V1V8!.
~15b!

These input correlation functions provide the proper norm
ization for the output correlation functions discussed in
following sections. It will be shown that the output quadr
ture correlations can be reduced below the input, which
nonclassical phenomenon.

IV. ONE-POINT CORRELATIONS

In this section we concentrate on one-point temporal c
relations by calculating the quantum noise in a single spa
far-field pointk. The quadrature noise spectrum is defined

Sj~u,V,k!5
^P̂j,out~u,V,k!P̂j,out~u,2V,k!&

^P̂j,in~u,V,k!P̂j,in~u,2V,k!&
, ~16!

which measures the output quadrature noise relative to
vacuum noise level. Squeezed light corresponds toSj<1,
i.e., noise reduction below the vacuum noise level. Based
the solutions in Eqs.~12!, the noise spectrum is given,

Sj~u,V,k!5uj~V,k2!1[v j~V,k2!e22iu

1v j* ~V,k2!e2iu]
d~2k!

d~0!
, ~17!

where the following functions have been defined:

u1~V,k2!5uc̄1~V,k2!21u21uc̄2~V,k2!u21uc̄3~V,k2!u2

1uc̄4~V,k2!u2, ~18a!

v1~V,k2!5@ c̄1~V,k2!21# c̄2~V,k2!1 c̄3~V,k2!c̄4~V,k2!,
~18b!

u2~V,k2!5ug~j!A1u2@ uc̄1~V,k2!u21uc̄2~V,k2!u2#

1u11 ig~j!A1c̄3~V,k2!u2

1ug~j!A1u2uc̄4~V,k2!u2, ~18c!
02380
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v2~V,k2!52g2~j!A1
2c̄1~V,k2!c̄2~V,k2!1 ig~j!A1

3@11 ig~j!A1c̄3~V,k2!# c̄4~V,k2!. ~18d!

Due to the Diracd functions in Eq.~17!, a natural division
arises betweenk50 andkÞ0. The first case corresponds
the situation where diffraction is excluded. In that limit th
squeezing calculations of previous works can be reprodu
@31#. However, the model presented here is more general
includes both cavity detuning and phase mismatch of
nonlinear process. In far-field points wherekÞ0, the ob-
served light has been subjected to diffraction, which impl
a spatially modulated noise distribution. The sharp transit
between these two regions, as expressed by thed function, is
due to the assumption of an infinitely extended plane w
pump field, which corresponds to a single point (k50) in the
far field.

As discussed above, squeezing can occur in the part o
far-field image that has not been affected by diffraction.
sertingk50 in Eq. ~17! leads to

Sj~u,V,0!5uj~V,0!1v j~V,0!e22iu1v j* ~V,0!e2iu.
~19!

Here the noise spectrum is seen to depend on the quadr
angleu as is characteristic for phase sensitive nonlinear p
cesses, of which SHG is an example. This enables n
reduction of one quadratureP̂(u) below the vacuum noise
level ~squeezing! at the cost of increased noise inP̂(u
1p/2). The phase mismatch parameterj turns out to be an
important tuning parameter for the optimization of sque
ing. Figure 2 shows squeezing spectra of the fundame
and second harmonic fields at resonance (D150), and for
three different values of the phase mismatch. For per
phase matching (j50), best squeezing for the fundament
field is seen to be at zero frequency. Quite remarkably, s
stantially better squeezing performance is predicted for n
zero phase mismatch. Indeed, forj56p noise reduction to
better than 0.4 times the vacuum noise level is obtained
ceeding the maximum squeezing level of 2/3 for pha
matched singly resonant SHG@31#. Furthermore, forj,0
the strongest noise reduction can be obtained at a non
frequency. This will be advantageous in an experiment si
technical noise is more pronounced at low frequenciesV
→0). In the second harmonic@Fig. 2~b!# best squeezing is
found at zero frequency and for zero phase mismatch.

For far-field points withkÞ0, it follows from Eq. ~17!
that

Sj~u,V,kÞ0,!5uj~V,k2!. ~20!

In this case the noise spectrum is found to be independen
the quadrature angleu and is always above the vacuum noi
level, i.e.,Sj(u,V,kÞ0)>1. In contrast to the light emitted
with k50 ~the homogeneous solution!, the off-axis emitted
fields are not squeezed and contain substantial excess n
For cavity and pump parameters, where a spatial instab
exists in the system, the noise spectrum is found to
strongly modulated. An example is shown in Fig. 3 for
6-4
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pump level below threshold for the spatial instability. T
noise is clearly structured and forms a modulation ring t
increases in amplitude as approaching threshold. Simil
the radius of the ring approaches the critical instability wa
numberkc . This excess noise is due to spontaneous emis
of photons in the off-axis beams that are present also be

FIG. 2. Fundamental and second harmonic squeezing spect
a function of frequency for different values of the phase misma
parameterj. The fundamental detuning has been fixed at resona
D150, the quadrature phase angle isu50, and the intracavity
scaled intensity isuA1u250.5. Squeezing is noise reduction belo
the vacuum noise level~VNL !, which is marked with a horizonta
line in the plots.

FIG. 3. Fundamental noise spectrumS1(u50,V50,k) plotted
in the far-field transverse plane (kx ,ky) for D150 andj55. The
cavity pump level is chosen such that the scaled intracavity in
sity is uA1u252.5, which is below threshold for the spatial instab
ity that sets in atuA1u253.56 with a critical wave numberkc

51.73.
02380
t
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e
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instability threshold. This behavior has strong analogies
what is found in a nondegenerate OPO below oscillat
threshold@13#. In that case the quantum noise of both t
signal and idler beams is quadrature independent and a
the vacuum noise level. In fact, the similarities between
off-axis emitted beams in SHG and the signal and id
beams of the OPO hold even further. As will be shown in t
following section, the emission in two opposite points on t
modulation ring turns out to be strongly correlated beyo
the vacuum noise limit. In fact, these correlations will
shown to be of the EPR type, similar to what can be found
the nondegenerate OPO. This remarkable link between
tially separated SHG and the OPO can be given some in
tive backup from the fact that nonzero phase mismatch
sures that not only the SHG conversionv1v→2v occurs
in the nonlinear process but also the opposite dow
conversion 2v→v1v. The instability provides spatia
separation of two beams, allowing for two-point correlati
studies. The many quantitative similarities between the n
degenerate OPO and spatially extended SHG are strik
There also appear significant differences, the most p
nounced being that in SHG also nonclassical two-point c
relations are found in the second-harmonic field. This has
counterpart in the nondegenerate OPO where the separ
of two harmonic beams is not possible.

V. EPR CORRELATIONS

While the noise in spatial pointskÞ0 was found to be
above the vacuum noise level and hence classical, the q
tum behavior is revealed when considering two-point cor
lation functions for two opposite points on the emission rin
These two-point correlations can be measured by addin
subtracting the photocurrents from two homodyne detec
probing the wave vectorsk and2k in the far field. This is
indicated in Fig. 4. While each homodyne detector separa
will record excess noise in accordance with Fig. 3, the no
of the two detectors can be strongly correlated or antico
lated to a degree higher than possible with classical state
light.

The natural quadratures for expressing the two-point c
relations are

P̂j
6~u,V,k!5 P̂j~u,V,k!6gP̂j~u,V,2k!, ~21!

as
h
ce

n-

FIG. 4. ~Color online! Sketch illustrating the technique of mea
suring spatial two-point correlation functions. Two homodyne d
tectors~HD1 and HD2! record quadrature noise at spatially sep
rated points in the far field. Each homodyne detector will reco
excess noise above the vacuum noise level as indicated by the
spectrum that represents a cut through the emission ring of Fig
The quantum correlations are revealed by adding or subtracting
photocurrents from the two homodyne detectors.
6-5
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j 51,2 that measure the sum and difference of a fix
quadrature angleu at two opposite points on the emissio
ring. Furthermore, we have allowed for the attenuation
one of the beams through the parameter 0<g<1. This is a
well-known method of optimizing nonperfect EPR corre
tions @4#. The corresponding spectrum is given by

Sj
6~u,V,k!5

^P̂j,out
6 ~u,V,k!P̂j,out

6 ~u,2V,k!&

^P̂j,in
6 ~u,V,k!P̂j,in

6 ~u,2V,k!&

5
11g2

2
Sj~u,V,k!6gSj

CC~u,V,k!. ~22!

Here we have limited to the case where the same quadra
amplitude (u) is measured in the two different spatial poin
This turns out to be sufficiently general since the case w
two independent quadrature phasesu1 and u2 can be ob-
tained after the transformation 2u→u11u2. Thus all param-
eter regions can be accessed by adjusting onlyu. The spec-
trum Sj(u,V,k) was introduced already in Sec. IV, while th
cross correlation spectrum is defined as

Sj
CC~u,V,k!5

^P̂j,out~u,V,k!P̂j,out~u,2V,2k!&

^P̂j,in~u,V,k!P̂j,in~u,2V,k!&
, ~23!

and we have made use of the symmetry under the trans
mation k→2k. The cross correlation spectrum can
evaluated using Eqs.~12!. It follows that

Sj
6~u,V,k!5

11g2

2
uj~V,k!6g@v j~V,k!e22iu

1v j* ~V,k!e2iu#, ~24!

which is valid only forkÞ0. The functionsuj andv j were
defined in Eqs.~18!. It is observed immediately that

Sj
2~u1p/2,V,k!5Sj

1~u,V,k!, ~25!

which will be shown to simplify the EPR criteria stated b
low.

The spectraSj
6 can be used to express the EPR crite

formulated by Reid and Drummond@13#. EPR correlations
exist in regions determined by the inequality

Sj
1~u,V,k!Sj

2~u1p/2,V,k!,
1

4
. ~26!

The seeming paradox, as encountered by Einstein, Podo
and Rosen, is that this allowsP̂(u,V,k)1 P̂(u,V,2k) and
P̂(u1p/2,V,k)2 P̂(u1p/2,V,2k) to be measured simul
taneously with, in principle, arbitrary precision limited on
by the strength of the correlations. Due to the degener
expressed by Eq.~25!, the EPR criteria in this case simpl
reduce to

Sj
1~u,V,k!,

1

2
. ~27!
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The degeneracy also ensures that the entanglement crite
the two-mode quantum states, as was recently formulate
Duanet al. @37#, coincide with the above EPR criteria.

The upper bound of 1/2 for the EPR criterion in Eq.~27!
poses a stronger correlation requirement than squeez
where the upper bound is 1. Hence the EPR criterion
mands reduction of the noise in the sum or difference of t
separated beams below the vacuum noise level of a si
beam. In contrast, squeezing in theP̂6 quadratures is merely
reduction below the vacuum noise level of both beams
fering a factor of 2 from the single beam vacuum noise lev

Both two-mode squeezing and EPR correlations are fo
in the system for a wide range of parameters where the
tial instability exists. In general, the strongest nonclass
correlations appear close to the critical wave vectorkc char-
acterizing the spatial instability. Representative examples
displayed in Figs. 5~a! and 5~b! for the fundamental and
second harmonic fields, respectively, and plotted for sev
different values of the quadrature angleu. The nonclassical
correlations are strongest in the fundamental field where
EPR criterion can be met. Here the noise is reduced to 0
~for u50) which is far below the EPR limit of 0.5. The
noise reduction in the second harmonic field is more mod
typically to a level around 0.90. This is below the vacuu
noise level for two beams, and hence a signature of tw
mode squeezing. However, the second harmonic correlat
appear to be not strong enough to cross the EPR bound

Nonperfect correlations can be optimized by attenuat
one of the spatially separated beams. This was the reaso
introducing the attenuation parameterg in Eq. ~21!. Since the
correlation betweenP̂j (k) and P̂j (2k) is not perfect, it is

FIG. 5. Two-point correlation functions for the fundament
field ~a! and second harmonic field~b! with D150, j510, uA1u2

54.0, g51, and three values of the quadrature angleu. The insta-
bility threshold is uA1u255.58 with a critical wave numberkc

51.46. Two-mode squeezing is found when the correlation fu
tion is below unity, and the EPR criterion requires reduction bel
1/2.
6-6



o
e

ro
u

e
gl
ua

a
a

nt
s

co
o

ite
e
th
u
n
c
th

PO
rr
an
r-

hi
uc
n
te

int

o-
ia-
g
ical

or-
g.
si-

rved
po-

As
an
re-

or-
was
ion
m

ta
ow

be
am

ld

n

EINSTEIN-PODOLSKY-ROSEN CORRELATIONS IN . . . PHYSICAL REVIEW A68, 023806 ~2003!
favorable to inferP̂j (k)1gP̂j (2k), given the value of the
attenuation parameterg is known. An optimum exists for
each fixed set of parameters, allowing to maximize the c
relations in each separate far-field point. For the strong
EPR correlations in Fig. 5 (u50,k51.15),g51 turns out to
be optimum. For other parameters this is not the case. F
Eq. ~22! it is straightforward to see that the optimum atten
ation parameter for minimizingS1

1(u,V,k) is given by

gopt~u,V,k!52
Sj

CC~u,V,k!

Sj~u,V,k!
. ~28!

An example of this optimization is shown in Fig. 6 for th
fundamental field. For fixed frequency and quadrature an
the EPR correlations are increased significantly by atten
ing one beam according togopt.

Attempts to increase the correlations of the second h
monic field beyond the EPR limit by changing the attenu
tion parameter were not successful despite a substa
search in the very large parameter space present in the
tem. This suggests the conclusion that while strong EPR
relations are readily present in the fundamental field the n
classical correlations in the second harmonic field are lim
to squeezing. Nonetheless, the simultaneous existenc
nonclassical correlations in both the fundamental and
second harmonic fields is a surprising finding that is uniq
for SHG. This has no counterpart in an ordinary OPO a
appears as a consequence of the spatial instability that
ates off-axis emitted beams in both the fundamental and
second harmonic fields. Even in the spatially extended O
where a spatial instability does exist, spatial quantum co
lations have only been predicted in the fundamental field
not in the pump@20#. The reason for this pronounced diffe
ence between SHG and the OPO can be traced back to
existence of an oscillation threshold in the latter. Below t
threshold, the equation for the pump field decouples s
that no spatial dynamics is created in this field. In SHG
oscillation threshold exists and spatial modulation is crea
in both fields.

FIG. 6. Optimization of EPR correlations of the fundamen
field by varying the attenuation parameter. The dotted curve sh
the correlation forg51 while the solid curve is withg5gopt(k).
The optimum attenuation parameter depends on the wave numk
and is also displayed in the plot. All other parameters are the s
as in Fig. 5.
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An important tuning parameter is the cavity detuningD1.
Figure 7 gives an example of the variation of the two-po
correlation function with detuning forj510. For these pa-
rameters the spatial instability exists forD1>22 @23#, and
in this region a pronounced spatial modulation of the tw
point correlation functions is observed. The significant var
tions of the correlation functions with detuning allow tunin
to regions with either excess noise or strong nonclass
correlations.

Interesting time dependent behavior of the two-point c
relation functions is found when varying the cavity detunin
A representative example is given in Fig. 8. For large po
tive values of the detuning the best correlations are obse
at zero frequency. Decreasing the detuning translates the
sition of the optimum correlations to a nonzero frequency.
noted previously, such a behavior would be lucrative in
experimental situation since this would make the measu
ments less sensitive to technical noise.

VI. CONCLUSIONS

In the current paper the spatial structure of quantum c
relations in singly resonant second-harmonic generation
investigated. By quantizing the cavity mean-field equat
for the fundamental field, the spatial distribution of quantu

l
s

r
e

FIG. 7. Two-point correlation function for the fundamental fie
~solid curve! and second harmonic field~dashed curve! for uA1u2

54.0, j510, g51, and at the critical wave numberk5kc . The
spatial instability threshold isuA1u255.58.

FIG. 8. Plot of the fundamental two-point correlation functio
as a function of frequency withj510, uA1u254.0, g51, k5kc ,
and three different values of the detuningD1.
6-7
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noise of both the fundamental and second-harmonic ou
fields could be computed. A surprising result was the de
onstration of EPR correlations in second-harmonic gen
tion which are otherwise known to occur in the oppos
process of down-conversion in optical parametric oscillato
The EPR correlations are caused by off-axis emission cr
ing strongly correlated beams due to the requirement of
mentum conservation in the transverse plane. A notable
ference compared to the OPO is that also the seco
harmonic possess nonclassical spatial correlations in S
Strong squeezing was also identified in the system in
field points wherek50. Hence, this allows for the intriguing
situation of having both squeezing and EPR correlations g
erated simultaneously in the spatial structure of the emi
light. This emphasizes the amazing variety of spatial dyna
e

tt.
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le,

g

t.

o
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ics present in singly resonant SHG as evident here in
quantum noise that constitutes the predecessor for
equally rich pattern formation dynamics happening abo
instability threshold.
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