
1
T
r
i
t
o
a
f
o
b
l
y
t

h
s
i
t
o
m
t
n
e
l
w
g
d
m
v
g
b
[
[
s
n
c

228 J. Opt. Soc. Am. B/Vol. 27, No. 2 /February 2010 Kristensen et al.
Light propagation in finite-sized photonic crystals:
multiple scattering using an electric field integral

equation
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We present an accurate, stable, and efficient solution to the Lippmann–Schwinger equation for electromagnetic
scattering in two dimensions. The method is well suited for multiple scattering problems and may be applied
to problems with scatterers of arbitrary shape or non-homogenous background materials. We illustrate the
method by calculating light emission from a line source in a finite-sized photonic crystal waveguide. © 2010
Optical Society of America
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. INTRODUCTION
he design and development of future optical components
ely heavily on adequate descriptions of light propagation
n micro- and nano-structured environments. Although
he governing differential equations have been known for
ver a century, analytical solutions are available only for
limited number of highly symmetrical problems. There-

ore, in most cases of practical interest, numerical meth-
ds are employed. Ideally, the numerical method should
e accurate enough to capture all relevant physics and al-
ow for understanding the different scattering channels;
et it should be fast enough to ensure acceptable run-
imes for practically relevant structures.

The invention of photonic crystals [1–3] has offered
itherto unprecedented control of light propagation. Con-
equently, these novel materials are of great importance
n the design of optical components for future information
echnology as well as fundamental solid state quantum
ptics experiments. In the context of light propagation in
icro- and nano-structured media, such as photonic crys-

als, the full wave nature of the electromagnetic field
eeds to be taken into account. A large number of differ-
nt methods are being explored in the investigation of
ight propagation in these materials, including plane
ave expansion for band structure calculations [4], the
eneralized multipole technique [5], as well as the finite
ifference time domain (FDTD) [6] and finite element [7]
ethods. In particular, we note that, for calculations in-

olving large numbers of scatterers in an otherwise homo-
eneous background, Rayleigh-multipole methods have
een used for calculations on micro-structured fibers
8–11] as well as photonic crystals composed of cylinders
12,13] or spheres [14,15]. The use of multipole expan-
ions for the fields ensures a significant reduction in the
umber of basis functions, thus enabling calculations on
omplex structures of practical interest.
0740-3224/10/020228-10/$15.00 © 2
In addition to the above methods, various volume and
urface integral methods exist for the electric and/or mag-
etic fields. These methods typically rely on discretization
o express the integrals as linear systems of equations—a
rocedure known as the method of moments. In the dis-
retization process the solution is expanded in terms of
inearly independent basis functions which vary in com-
lexity, depending on the specific method employed [16]. A
articularly simple and convenient choice of basis func-
ion is the pulse basis function resulting in what is usu-
lly termed the coupled (or discrete) dipole approximation
CDA) [17,18]. The CDA allows for relatively easy imple-

entation as well as the physically attractive property
hat the resulting field can be directly interpreted as the
um of the field from all the individual cells in the scat-
ering structure oscillating as dipoles in response to the
ncoming field. Depending on the desired accuracy and
he nature of the scattering problem at hand, however,
he required number of basis functions may become too
arge for practical calculations on, e.g., photonic crystals.
n addition, this type of discretization may lead to stabil-
ty problems in the case of high refractive index contrasts
16].

For the use in modeling of nano-photonic structures
nd in particular in the context of light-matter interac-
ion in photonic crystals, we focus in this paper on an in-
egral type scattering formulation of light propagation
ased on the electric field Green’s tensor. The Green’s ten-
or, G�r ,r��, is the electromagnetic propagator which, for
given system, holds all information necessary to solve

he inhomogeneous vector Helmholtz equation and may
e interpreted as the electric field at point r due to an os-
illating point dipole at point r�. Of special importance in
ano-photonic modeling is the imaginary part of the
reen’s tensor at r=r� which is proportional to the local

ptical density-of-states (LDOS) [19]. The LDOS and/or
010 Optical Society of America
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he Green’s tensor for photonic crystals have previously
een investigated theoretically using plane wave expan-
ions [20–22] and FDTD [23,24] as well as through an ex-
ansion in eigenstates [25,26]. The application of the
DA to the calculation of the Green’s tensor in a photonic
rystal slab was reported in [27]. Using the Green’s tensor
or the background medium, one may recast the wave
quation as a scattering problem, in which case the solu-
ion is given in terms of the so-called Lippmann–
chwinger integral equation [28]. Since the Green’s ten-
or is known for a number of simple material
onfigurations, these may be used as the background ma-
erial in order to limit the extent of the numerical calcu-
ations. In particular, expressions for the Green’s tensor
or stratified media are available [29,30].

In this article we describe a multiple scattering solu-
ion to the Lippmann–Schwinger equation. The method is
eveloped in two dimensions, but we note that a similar
pproach is possible for three-dimensional problems as
ell. The method will find applications in the modeling of
ano-photonic structures and devices, such as wave-
uides, junctions, and filters, as well as switches and
ingle photon sources based on photonic crystals. In light
f the above discussion the method may be viewed as a
ybrid between integral type method of moment calcula-
ions and multiple scattering multipole methods. In our
pproach, the Lippmann–Schwinger equation is first ex-
anded in cylindrical wave functions (so-called normal
odes) and solved within the scattering elements. Solu-

ions at points outside the scattering elements are subse-
uently calculated directly using the Lippmann–
chwinger equation. Because of the integral formulation
he method may benefit from known results for the
reen’s tensor in the background material while the nor-
al mode expansion reduces the number of basis func-

ions needed, thus enabling calculations on material sys-
ems of practical relevance. In addition, we make use of a
umber of theorems which are regularly employed in
ultipole methods in order to simplify the evaluation of

he scattering matrix elements.
The article is organized as follows. Section 2 introduces

he method and provides a number of results that may be
f value in the practical implementation. The calculations
re illustrated in Subsection 2.F through the solution of
wo small scattering problems and in Section 3 we use
hese as examples to discuss a practical method of evalu-
ting the accuracy of a given calculation. In Section 4 we
rovide an example application of the method in the form
f a two-dimensional (2D) photonic crystal waveguide at
he edge of a dielectric block. Section 5 gives the conclu-
ions.

. FORMULATION OF SCATTERING
ROBLEM AND SOLUTION METHOD
e consider scattering of monochromatic light, E�r , t�
E�r�exp�−i�t�, in two dimensions, corresponding to scat-

ering problems in which the geometry is invariant along
he z-direction and the light travels in the xy-plane, r
�x ,y�. We limit the discussion to non-magnetic materials
nd consider general material systems, consisting of a fi-
ite number of piecewise constant dielectric perturba-
ions to a piecewise homogeneous background. This is the
ase, for example, for most photonic crystals. The electric
eld E�r� solves the vector wave equation,

� � � � E�r� − k0
2��r�E�r� = 0, �1�

here ��r� is the position dependent permittivity and k0
�k0�=� /c is the wave number in vacuum. For 2D prob-

ems, the vector equation decouples into two independent
quations for the transverse electric (TE) and the trans-
erse magnetic (TM) polarizations. In the case of TE po-
arization, the electric field is oriented in the xy-plane,
hereas for TM polarization the electric field is oriented
long the z-axis and the scattering calculation is essen-
ially a scalar problem. In order to reformulate Eq. (1) as

scattering problem, we consider the change in permit-
ivity, ���r�=��r�−�B�r�, caused by the introduction of
cattering sites into the background medium described by
B�r�. The solution to Eq. (1) with ��r�=�B�r� is denoted by
B�r� and represents the incoming field. The full solution

o Eq. (1) is the sum of the incoming and scattered fields.
t is given by the Lippmann–Schwinger equation as

E�r� = EB�r� +�
D

GB�r,r��k0
2���r��E�r��dr�, �2�

n which GB�r ,r�� is the Green’s tensor for the back-
round medium and D denotes the area of the scatterers.
or a homogeneous background, �B�r�=�B=nB

2 , the 2D
reen’s tensor is given as [31]

G2D
B �r,r�� = �I +

��

kB
2 � i

4
H0�kBR�, �3�

n which kB=nBk0 is the wave number in the background
edium and R= �R�= �r�−r�. H0 denotes the Hankel func-

ion of the first kind of order zero.

. Expansion in Normal Modes
n two and three dimensions the real part of the Green’s
ensor diverges in the limit r�=r, which means that for
ntegrals in which r is inside the scattering volume (such
s in this work) an alternative formulation of the
ippmann–Schwinger equation must be employed in
hich the singularity is isolated in an infinitesimal prin-

iple volume and treated analytically [32]. Therefore, we
ollow [31] and rewrite the equation as

E�r� = EB�r� + lim
�A→0

�
D−�A

GB�r,r��k0
2���r��E�r��dr�

− L
���r�

�B
E�r�, �4�

n which Lxx=Lyy=1/2 and L��=0, otherwise, correspond-
ng to a circular exclusion area �A centered on r�=r.

We will solve for the total field, E�r�, inside the scatter-
ng material only, as the solution everywhere else can be
ubsequently obtained by use of the Lippmann–
chwinger equation. The incoming field, EB�r�, is a solu-
ion to the wave equation with no scatterers and thus, in
eneral, can be expanded on the solutions to the wave
quation in the bulk background material. Similarly, the



t
p
t
a
e

w
w
d
m
n
i
t
t
c
t
o
e
d
n

w
t
p

w
o
S

i

a
s

m
o
l
i
s
u
t

t
r
t
p
t
l
o
c
t
w

f
d
g
b
t
n
c
m
(
i

B
T
v
t
f
p
d
n
s
n
o

f
t
t
S
w
e

F
t

230 J. Opt. Soc. Am. B/Vol. 27, No. 2 /February 2010 Kristensen et al.
otal field at positions inside each scatterer may be ex-
anded on the solutions in a homogeneous material with
he permittivity of the scatterer. Based on these consider-
tions we construct a basis consisting of normal modes,
ach with support on only one of the scattering sites,

	n = KnJq�kdrd�eiq
dSd�r�, �5a�

	n
B = Kn

BJq�kBrd�eiq
dSd�r�, �5b�

here we have defined a combined index n= �q ,d ,��, in
hich q�Z denotes the order of the normal mode and d
enotes the particular subdomain Dd of the scattering
aterial we consider, e.g., which cylinder. For conve-

ience we have included the field component �� �x ,y ,z�
n the index n as well. Jq denotes the Bessel function of
he first kind of order q and kd=ndk0, where nd denotes
he refractive index in the subdomain Dd. The cylindrical
oordinates �rd ,
d� are defined in the local coordinate sys-
em in the subdomain Dd and Sd=1 for r�Dd and Sd=0,
therwise. Kn and Kn

B are normalization constants. To
ase the notation we will write n in place of any of the in-
ices q ,d ,� and we will suppress the index on the coordi-
ates �r ,
� as this will not lead to ambiguities.
We define an inner product as

		m�	n
 =� 	m
� �r�	n�r�dr, �6�

hich is in general non-zero for m�n, and we normalize
he basis functions so that 		n �	n
= 		n

B �	n
B
=1. By ex-

anding the electric fields as

E�r� = �
n

en	n�r�en, �7a�

EB�r� = �
n

en
B	n

B�r�en, �7b�

here en is a unit vector in the direction �, and projecting
nto the basis formed by 	mem and 	m

B em, the Lippmann–
chwinger equation may be rewritten in matrix form as

�1 + Lmn

��

�B
��

n
		m�	n
en = �

n
		m�	n

B
en
B + k2���

n
Gmn

�� en,

�8�

n which

Gmn
�� =�

D

	m
� �r� lim

�A→0
�

D−�A

G��
B �r,r��	n�r��dr�dr, �9�

nd we have written explicitly the directions � ,� corre-
ponding to the indices m ,n for clarity.

Equations (3)–(9) hold the complete formulation of the
ethod. The form of the central matrix equation (8) is

nly slightly different from that of the CDA in that the
eft hand side is generally a matrix (although this matrix
s very sparse since basis functions belonging to different
cattering domains are orthogonal by construction). The
nderlying strategy and the practical implementation of
he two methods, however, are very different. In the CDA,
he projection onto the basis functions is straightforward,
esulting typically in a very large matrix equation system
hat is subsequently solved by iterative methods. In the
resent method it is the projections onto the basis func-
ions that are potentially time consuming, but eventually
eads to a relatively small system of equations. A number
f mathematical results exist, however, that can dramati-
ally speed up the calculations of the matrix elements and
he implementation in general. In Subsections 2.B–2.E
e discuss these results.
The matrix elements need to be evaluated for basis

unctions within the same domain (self-terms) as well as
ifferent domains (scattering terms). The case of a homo-
eneous background is of special interest as one will often
e able to separate the background Green’s tensor into
erms corresponding to a homogeneous background and a
umber of additional scattering terms. Therefore, we fo-
us in this section on the evaluation of the matrix ele-
ents for a homogeneous background Green’s tensor [Eq.

3)] and return to the additional terms due to scattering
n an inhomogeneous background in Section 4.

. Self-Terms
he evaluation of the self-terms is complicated by the di-
ergence in the Green’s tensor for r�=r and the fact that
he integrand couples r� and r, effectively resulting in a
our-dimensional integral. In the following we adopt a
articular method for the evaluation, in which the four-
imensional integral [Eq. (9)] is rewritten in terms of a
umber of 1D and 2D integrals. Although this method is
uitable for the evaluation of general matrix elements, we
ote that other methods may be more efficient in the case
f a particular geometry and/or polarization.

Figure 1 shows a sketch of the local coordinates used
or the evaluation of the integral. In order to efficiently
reat the divergence, for each r we first integrate r� over
he entire plane P less the principal volume centered on r.
ubsequently, we subtract the integral for r��D, for
hich the limit �A→0 is trivial since r��r. The matrix

lement is thus rewritten as Gmn
�� =Amn

�� −Bmn
�� , in which

y

x

R

r

r′

D

P − D CD

ig. 1. Sketch of the local coordinates used for the calculation of
he self-term in scattering domain D.
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Amn
�� =�

D

	m
� �r� lim

�A→0
�

P−�A

G��
B �r,r��	n�r��dr�dr,

Bmn
�� =�

D

	m
� �r��

P−D

G��
B �r,r��	n�r��dr�dr.

Using the Graf addition theorem (cf. Appendix A), we
an simplify the evaluation of A�� by expanding the func-
ion 	n�r�� around point r so that

A�� = KmKn�
�
�

D

Jm�kRr�Jn+��kRr�ei�n+�−m�


��
P−�A

G��
B �0,R�J��kRR��− 1��e−i��RdRdr

= KmKn�
�
�

D

Jm�kRr�Jn+��kRr�ei�n+�−m�
dr I�
��,

here kR=ndk0 and we have exploited the fact that the
ntegration over R= �R ,�R� is over the entire plane (less
he principal volume) and thus does not depend on r. The
valuation of this integral over R, denoted by I�

�� above,
an be reduced to a number of one-dimensional integrals
s shown in Appendix B. In addition, we note that the
imple angular dependence of the integrand in many
ases allows for a reduction in the remaining integral over
to a sum of one-dimensional integrals.
The evaluation of Bmn

�� may also be substantially simpli-
ed using the Graf addition theorem to expand the Han-
el function in terms of Bessel and Hankel functions de-
ned in the local coordinate system. The expansion differs
epending on the sign of r−r�; for r�
r we write the in-
egrand as

bmn
�� �r,r�� = 	m

� �r�G��
B �r,r��	n�r��

= KmKn�
�

Jm�kRr�e−im
L��� i

4
J��kBr�e−i�



�H��kBr��Jn�kRr��ei�n+��
�, �10�

hereas for r��r we write

bmn
�� �r,r�� = KmKn�

�

Jm�kRr�e−im
L��

�� i

4
H��kBr�ei�

J��kBr��Jn�kRr��ei�n−��
�,

�11�

n which L�� is the � ,� component of the linear operator
n Eq. (3). Derivatives for the general cylindrical wave
unctions �����Z��kr�exp�i�
�� are provided in Appendix
. For circular scatterers we always have r�
r and the
xpression for Bmn

�� factors into a number of one-
imensional integrals. Similarly, the evaluation of Bmn

�� for
on-circular scatterers may be conveniently split depend-

ng on whether r� is outside or inside the circumscribing
ircle (denoted by CD in Fig. 1). In the former case, the
xpression factors into separate integrals for r and r�,
hereas in the latter case, the two integrations are
oupled. Again, the simple angular dependence of the in-
egrands in many cases allows for a reduction in these in-
egrals to a sum of 2D integrals.

. Scattering Terms
or the calculation of scattering terms the integration do-
ains for r and r� are completely separated in space and

o the Green’s tensor is well behaved at all points of in-
erest. In this case we employ the Graf addition theorem
wice to express the Hankel function in terms of the dis-
ance between the centers of the two local coordinate sys-
ems as illustrated in Fig. 2,

Gmn
�� =

i

4�
�,�

H�+��kBL��− 1��ei��+���

��
Dm

KmJm�kmr�e−im
L���J��kBr�e−i�
�dr

��
Dn

KnJ��kBr��Jn�knr��ei�n−��
�dr�, �12�

here �L ,�� are cylindrical coordinates of O� with respect
o O (cf. Appendix A). Equation (12) shows that the scat-
ering matrix calculation factors into terms that depend
nly on the geometries of the individual scatterers and
he distance between them. Since the Hankel functions as
ell as the Bessel functions are well behaved at all points
f interest, the integrals may be directly evaluated. Note
hat the procedure outlined above is compromised when
�Rm+Rn, where Rm and Rn are the radii of the circum-

cribing circles of domains Dm and Dn, respectively. This
ould happen in the case of close non-circular scatterers.
n this case the Graf addition theorem is not valid and
ne can employ a strategy based on Eqs. (10) and (11) in-
tead.

. Background Electric Field
he incident background electric field, EB�r�, is a solution

o the wave equation without the scatterers. In the case of
bulk background, the solutions are plane waves, and the

xpansion in terms of cylindrical wave functions is readily
btained using the Jacobi–Anger identity as discussed in
ppendix A. Instead of using plane waves as background
lectric fields we may use the columns of the 2D Green’s
ensor. These are related to the electric field at r due to a
ine source at r� [31]. By comparing with Dyson’s equa-
ion,

y

x

r

y′

x′

r′

R

Dm

Dn

L

θ

ig. 2. Sketch of local coordinates for r and r� in two indepen-
ent scatterers.
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G�r,r�� = GB�r,r�� +�
D

GB�r,r��k0
2���r��G�r�,r��dr�,

e see that the solution to the Lippmann–Schwinger
quation in this case exactly produces the corresponding
olumns of the full 2D Green’s tensor for the scattering
roblem.

. Exterior Solution
he matrix equation (8) is solved using standard linear
lgebra routines to yield the solution at any point inside
he scattering domains. The solution at any point outside
he scatterers can be subsequently obtained directly from
he Lippmann–Schwinger equation which is now an ex-
licit equation,

E�r� = EB�r� +�
D

GB�r,r��k0
2���r���

n
en	n�r��endr�.

�13�

The sum in Eq. (13) runs over all basis functions in all
cattering domains. Again, the calculation may be simpli-
ed considerably by the use of the Graf addition theorem
o rewrite the equation in terms of the distances from the
enters of the local coordinate systems. Considering for
implicity the case of just a single scattering domain D we
ewrite the equation as

E�r� = EB�r� +
i

4
k0

2���
�,n

L�H��kBL�ei���

��− 1��en en�
D

KnJn�kRr��J��kBr��ei�n−��
�dr�,

�14�

here now �L ,�� are cylindrical coordinates of O� with re-
pect to r.

. Example Calculations
o illustrate the method we consider now an example
cattering problem in which a TE plane wave is incident
rom the top left on a small crystallite of air cylinders in a
igh-index dielectric. Figure 3 shows the absolute square
f the total field as a function of position in the xy-plane.
lso we show the magnitudes of the Ex and Ey compo-
ents of the field along the line y=0 through the centers
f three of the cylinders. Clearly, the x component shows a
umber of discontinuous jumps, whereas the y component

s continuous in accordance with the boundary conditions.
e note that the multiple scattering from the air cylin-

ers acts to partly block the light, resulting in the forma-
ion of a standing wave in the upper left part of Fig. 3.
ypically we use the same number of basis functions in
ach scattering domain and for each polarization so that
q��Qmax. This calculation was performed using Qmax
10, resulting in a matrix equation system of 294 un-
nowns. Using the method outlined in Subsections 2.B
nd 2.C and using an absolute tolerance on the numerical
ntegrals of 10−6 the average calculation time per scatter-
ng matrix element was less than 0.1 s for the self-terms
nd less than 0.01 s for the scattering terms on a 2.4 GHz
rocessor. Making use of the symmetry of the crystallite
e reduced the problem to the calculation of matrix ele-
ents for scattering between 19 different pairs of scatter-

rs only. In addition, the form of Eq. (12) suggests that for
dentical scatterers the integrals across the domains Dm
nd Dn can be handled once only and stored for the use in
ubsequent calculations of matrix elements for scattering
etween other pairs of scatterers. Using this approach,
he total time for the calculation of all matrix elements
as approximately 13 s. Due to the small size of the scat-

ering problem, the solution of the linear equation system
as handled in approximately 1 s.
As noted in Subsection 2.D we may use the present
ethod to calculate the Green’s tensor for a given scatter-

ng structure. In Fig. 4 we consider a geometry consisting
f four square dielectric rods in air and we show the real
nd imaginary parts of the TM Green’s tensor Gzz�r ,r�� as
unctions of r for constant r� indicated in Fig. 4. The real
art diverges in the limit r→r�, whereas the imaginary
art is continuous at all points. In the limit r=r� it is pro-
ortional to the LDOS as noted in the introduction. The
alculation was performed using Qmax=10 resulting in
nly 84 unknowns. We used an absolute tolerance on the
umerical integrals of 10−6 and the average time per scat-
ering matrix element was 0.7 s for the self-terms and
.04 s for the scattering terms. Based on symmetry the
roblem was reduced to the calculation of scattering ma-
rix elements between nine pairs of scatterers resulting in
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ig. 3. (Color online) Example calculation: A TE plane wave of
nit amplitude, EB�r�=e exp�inBk0 ·r�, is incident from the top

eft on a crystallite consisting of seven air holes �nd=1� in a high-
ndex dielectric background �nB=3.5�. Parameters are k0

��3/2,−1/2� and RPC=0.3a, where RPC is the radius of the cy-
indrical holes and a=0.3�0 is the distance in between. Top: Ab-
olute square, �E�r��2, of the resulting field as a function of posi-
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=0.
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total time for the matrix element calculations of ap-
roximately 200 s and a solution time of less than 1 s.

. ACCURACY OF THE METHOD
he numerical error stems primarily from evaluation of
he matrix elements and the truncation of the basis set.
fter solving the linear equation system [Eq. (8)], the ac-
uracy of a given solution may be estimated by substitu-
ion back into the Lippmann–Schwinger equation. To this
nd we define the local error as

EL�r� = �EB�r� − Enum�r�

+� GB�r,r��k0
2���r��Enum�r��dr�� , �15�

nd we note that, since EB�r� and GB�r ,r�� are known
nalytically, we can use this as a measure of the accuracy
f a given solution even if we do not know the analytical
olution. Based on the local error, we define the global
elative error as

EG =
� EL�r�dr

� �EB�r��dr

,

here the integrals are taken over the area of the scatter-
ng sites only. Figure 5 shows the global error as a func-
ion of the number of basis functions used in the expan-
ions and dependent on the error in the matrix elements
or the solutions depicted in Figs. 3 and 4. The error
nalysis was performed by first calculating the matrix el-
ments to a high precision, using an absolute error toler-
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ig. 4. (Color online) Real (top) and imaginary (bottom) parts of
he total TM Green’s tensor Gzz�r ,r�� as functions of r with
0r�= �−1,1/4� (as indicated by the red dot) in a structure con-
isting of four dielectric rods �nd=3.5� of square cross section in
ir. Parameters are a=2L, where a is the distance between the
ods and L=�0 /4 is the side length.
nce on the numerical integrals of 10−6. Subsequently, for
ach value of Qmax the corresponding linear equation sys-
em [Eq. (8)] was constructed and a random complex
umber of fixed modulus, �Gmn, was added to each ele-
ent in the matrix of modulus larger than �Gmn before

olving the equation system.
The analysis shows an exponential like decrease in the

lobal error as a function of the number of basis func-
ions, underscoring the massive reduction in basis func-
ions due to the expansion in normal modes when com-
ared to conventional discretization methods. This is the
ase for the cylindrical holes in Fig. 3 as well as for the
quare rods in Fig. 4. The convergence is faster in the case
f the cylindrical holes, which is partly because the basis
unctions have the same symmetry as the scatterers and
artly because the plane wave field is easier to approxi-
ate than the (divergent) Hankel function. Clearly, the

rtificial error on the matrix elements acts to limit the
inimum achievable global error, and the analysis thus

onfirms that the global error is controlled by the number
f basis functions as well as the accuracy of the numerical
uadrature. We note that the measure [Eq. (15)] may be
iewed as a test of self-consistency of the method which is
f principal importance for any solution to Eq. (2). From
ig. 5 we can see that the measure is also of practical im-
ortance since, for a given tolerance on the numerical in-
egrals, it can be used to estimate the number of basis
unctions needed to reach the minimum global error.

. EXAMPLE APPLICATION: LIGHT
MISSION IN A FINITE-SIZED PHOTONIC
RYSTAL WAVEGUIDE
s an example of the utility of the method we present in

his section results for the investigation of light propaga-
ion near the edge of a finite-sized 2D photonic crystal. We
onsider a photonic crystal made from 80 circular rods of
efractive index nd=3.4 in a lower-index background �nB
1.5�. The cylinders are placed in a square lattice, and a
hort waveguide is created by the omission of four rods
long the (11)-direction of the crystal. The waveguide

EG
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10−5

10−6

10−7

Gzz

PW

Qmax

ig. 5. (Color online) Global error as a function of the number of
asis functions used in the expansion of the electric fields (con-
rolled by Qmax). Circular markers correspond to the problem in
ig. 3 with different curves corresponding to different fixed er-
ors on the relevant matrix elements as indicated. Square mark-
rs correspond to the problem in Fig. 4 calculated for the Green’s
ensor �Gzz� and plane waves (PW) as the background field.
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long with the crystal is terminated by an interface to air.
e focus on TM polarized light and calculate the Green’s

ensor of the system Gzz�r ,r��. Although the integral ex-
ressions become larger, a similar procedure as the one
utlined below may be used for the calculation of TE po-
arized light as well as for multiple interfaces. We start by
xtending the formalism of the previous sections to the
ase of a non-homogeneous background Green’s tensor in
ubsection 4.A and go on to show example calculations of

ight emission from a finite-sized photonic crystal in Sub-
ection 4.B.

. Additional Scattering Near Interface
or the scattering calculations near a dielectric interface
e use the Green’s tensor for the dielectric half-space as

he background Green’s tensor in Eq. (2). The 2D Green’s
ensor for general stratified media is given in [30]. It is
xpressed in terms of an integral in k-space and below we
iscuss the calculation of the elements Gmn

zz in the special
ase of a single dielectric interface. We consider TM polar-
zed light incident on an interface at y=0 between two

edia with refractive indices nA and nB. We will deal only
ith scatterers in the lower layer (layer B) and so, follow-

ng [30], the 2D Green’s tensor is given as

Gzz
B �r,r�� = −

ŷŷ

k2
2 ��R� +

i

4�
�

−�

� 1

kB,y
eikx�x−x��eikB,y�y−y��dkx

+
i

4�
�

−�

� FBA
S

kB,y
eikx�x−x��e−ikB,y�y+y��dkx, �16�

here kl,y=�kl
2−kx

2 with kl=nlk0 �l� �A ,B�� and

FBA
S =

kB,y − kA,y

kB,y + kA,y
=

�kB
2 − kx

2 − �kA
2 − kx

2

�kB
2 − kx

2 + �kA
2 − kx

2

s the Fresnel reflection coefficient.
In Eq. (16) the first two terms correspond to the Green’s

ensor of the homogeneous material whereas the last
erm gives the reflection off the interface. This means
hat the evaluation of the matrix element Gmn

zz naturally
plits into a direct homogeneous material part and an in-
irect interface scattering part. The former is exactly
hat was handled in Subsections 2.B and 2.C so we con-

entrate in this section only on the scattering contribution

mn
S ,

Gmn
S =

i

4�
�

−�

� FBA
S �kx�

kB,y�kx� �Dm

�
Dn

	m
� �r�

�eikx�x−x��e−ikB,y�kx��y+y��	n�r��dr�drdkx. �17�

In order to carry out the integration we first write
x ,y�= �X ,Y�+ �r cos 
 ,r sin 
� and �x� ,y��= �X� ,Y��
�r� cos 
� ,r� sin 
��, where �X ,Y� and �X� ,Y�� denote the
bsolute coordinates of the centers of the local coordinate
ystems. We then recast the expression in terms of local
oordinates as
Gmn
S =

i

4�
�

−�

� FBA
S �kx�

kB,y�kx�
ei�kx�X−X��−kB,y�kx��Y+Y���

��
Dm

KmJm�kmr�e−im
eikB r cos�
−��kx��dr

��
Dn

KnJn�knr��ein
�eikBr� cos�
�−���kx��dr�dkx,

�18�

here we have rewritten the inner products of the wave
ectors and the position vectors in the two domains in
erms of the angles between them. This angle becomes
maginary whenever kx

2
kB
2 . As in the case of the homo-

eneous background we are able to simplify the expres-
ion further by factoring out the integrals over the do-
ains Dm and Dn. To this end we use the Jacobi–Anger

dentity (cf. Appendix A) to rewrite the matrix elements
s

Gmn
S =

i

4��
�,�

i�+��
−�

� FBA
S �kx�

kB,y�kx�
ei�kx�X−X��−kB,y�kx��Y+Y���

�e−i����kx�+����kx��dkx�
Dm

KmJm�kmr�J��kBr�ei��−m�
dr

��
Dn

KnJn�knr��J��kBr��ei��+n�
�dr�. �19�

Due to the circular symmetry, the angular integrations
ver the domains Dm and Dn lead to non-zero values only
or �=m and �=n. In these cases the radial integrals have
ell known analytical values, leaving only a final integra-

ion over kx.

. Light Emission in Finite-Sized Photonic Crystal
aveguide

n Fig. 6 we show a contour plot of the absolute value of
he Green’s tensor �Gzz�r ,r��� along with real and imagi-
ary parts at positions along the x-axis. Results are
hown for k0r�= �0,−7.58�, in the center of the waveguide
t the location of one of the missing rods. In an infinite
aveguide, this would be the location of the field antinode
f the waveguide mode. The periodic Bloch-mode charac-
er of the waveguide mode is evident also in the case of
his finite waveguide and the structure acts as a resona-
or, greatly increasing the absolute value of the Green’s
ensor for positions r inside the waveguide as compared to
he bulk medium. For r→r� the real part of Gzz�r ,r�� di-
erges. This is the case also in Fig. 6, but the divergence
s too weak to show up at the chosen discretization. Al-
hough the finite waveguide acts as a resonator, light can
ropagate out of the end facet. Figure 7 shows �Gzz�r ,r���
t positions outside the structure. As noted in Subsection
.D, the Green’s tensor is related to the electric field at
oint r due to a line source at point r�. Therefore, we may
nterpret Fig. 7 as the emission pattern from the source
nside the waveguide. Due to the resonator effect of the
aveguide structure, the emission pattern does not show
p on the scale of the contour plot in Fig. 6.
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. CONCLUSION
e have described a procedure for solving the Lippmann–

chwinger equation for electromagnetic scattering in
hich the field along with the electric field Green’s tensor

s expanded in a basis of cylindrical wave functions (so-
alled normal modes) inside each scatterer. The projec-
ions of the electric field and the Green’s tensor onto the
ormal modes are facilitated by the use of a number of ad-
ition theorems to simplify the integral expressions and
e have presented the method in general along with a

horough discussion of the evaluation of the scattering
atrix elements, which may be helpful for practical

mplementations.
The basis of normal modes ensures that all basis func-

ions have the correct wave number. This, combined with
he need for solving the system inside the scattering ele-
ents only, results in a relatively small linear equation

ystem as compared with other methods. Consequently,
he method is fast and capable of handling large material
ystems such as photonic crystals. Furthermore, the use
f a local cylindrical wave function basis avoids the intro-
uction of fictitious charges which may lead to instabili-
ies for large refractive index contrasts in the case of TE
olarization [16], and the integration scheme is free of
taircasing errors along the boundaries. Due to the for-
ulation in terms of the Green’s tensor of the background
edium, there is no need for a calculation domain and the

ig. 6. (Color online) Top: Absolute value �Gzz�r ,r��� of the TM
reen’s tensor for a finite-sized photonic crystal waveguide con-

isting of 80 rods of refractive index nd=3.4 in a background with
n interface between a low-index dielectric �nB=1.5� and air
nA=1�. The results are calculated as functions of r with k0r�
�0,−7.58� (indicated by the red dot and vertical dashed line).
ottom: Real (red solid line) and imaginary (blue dashed curve)
arts of Gzz�y ,r�� along the line x=0. Parameters are RPC
0.25a where RPC is the radius of the cylindrical holes and a
0.28�0 the distance in between.
adiation condition is automatically satisfied as are the
oundary conditions (limited only by the numerical preci-
ion chosen). The accuracy of the method is thus limited
nly by the number of basis functions and the tolerance
n the numerical integrals employed for the evaluation of
he scattering matrix elements. We have introduced a
easure of accuracy based on self-consistency that is of

rincipal as well as of practical importance. Once the ma-
rix equation has been set up, it holds all information nec-
ssary to carry out scattering calculations on the geom-
try at the chosen frequency. It can thus be stored and
sed for different choices of incoming fields as well as for
he calculation of the Green’s tensor between different
oints r and r�.
We have illustrated the method by two example prob-

ems and we have shown an application of the method
here we have calculated the zz component of the Green’s

ensor of a finite-sized photonic crystal waveguide. Simi-
ar calculations will find applications in the development
f nano-photonic devices such as in the design of junctions
r cavities in photonic crystals or in the investigation of
mission patterns from single photon sources. Using a
imilar procedure the method may be extended to three-
imensional scattering geometries and, although we have
ocused on applications in micro- and nano-photonic
tructures, we believe that the method may be of use in
ther areas of electromagnetic scattering calculations as
ell.

PPENDIX A: ADDITION THEOREMS FOR MULTIPOLE
XPANSIONS
he expansion of the Lippmann–Schwinger equation
sed in this work, and especially the calculation of matrix
lements, relies heavily on the use of cylindrical wave
unctions. A number of addition theorems exist for cylin-
rical wave functions which may simplify the calculations
onsiderably. Of special interest in this work are the
acobi–Anger identity and the Graf addition theorem
33]. Below we summarize the results in forms suitable
or the present application.

. Jacobi–Anger Identity
or a plane wave, traveling at an angle � with respect to

he x-axis, the expansion in terms of cylindrical wave
unctions is given by the Jacobi–Anger identity,
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ig. 7. (Color online) Contour plot of emission pattern,
Gzz�r ,r���, of the system in Fig. 6, but for positions outside the
hotonic crystal.
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eik0r cos�
−�� = �
n=−�

�

ine−in�Jn�k0r�ein
, �A1�

n which �r ,
� are cylindrical coordinates and Jn is the
essel function of order n.

. Graf’s Addition Theorem
he Graf addition theorem may be used to express the cy-

indrical wave functions in one local coordinate system in
erms of cylindrical wave functions in a different local co-
rdinate system. We consider the cylindrical coordinates
= �r ,
� and r�= �r� ,
��, centered at two different posi-
ions O and O�, respectively, where �L ,�� denote the coor-
inates of O� with respect to O as shown in Fig. 8. Using
his notation we express the Graf addition theorem as

Zn�kr�ein�
−�� = �
�=−�

�

Zn+��kL�J��kr���− 1��ei���−
��,

�A2�

here Zn is a solution to Bessel’s differential equation for
nteger n. If Zn=Jn, the expansion is valid for all values of
�; otherwise it is valid only for r��L.

PPENDIX B: CALCULATION OF MATRIX ELEMENTS
n this appendix we evaluate the integral

I�
�� =�

P−�A

G��
B �0,R�J��kRR��− 1��e−i��RdR,

hich enters the expression for A�� in Subsection 2.B.
or TM polarization, �� ,��= �z ,z�, the angular integration

s non-zero only for �=0 and the resulting integral is well
ehaved, allowing for an easy evaluation. For TE polar-
zation, the integrand has a pole at the origin, so we re-
rite this integral in a form more suitable for numerical
uadrature. Although the procedure is the same, the re-
ulting integrals differ slightly depending on which of the
lements of the Green’s tensor we consider (see [31] for
xplicit expressions for the elements). For Ixx we get

θ

r r′

θ

L

O

O′

ig. 8. Sketch of relative coordinates as used in the expression
or Graf ’s addition theorem.
�

I�
xx =

i

4�0

��
0

2��sin2�RH0�kBR� +
cos�2�R�

kBR
H1�kBR�

+
2i

�

cos�2�R�

kB
2 R2 
J��kRR��− 1��e−i��RRd�RdR

−
i

4
lim

�R→0
�

�R

� �
0

2� 2i

�

cos�2�R�

kB
2 R2

J��kRR�

��− 1��e−i��RRd�RdR =
i�

4 �0

���−
1

2
��,−2 + ��,0

−
1

2
��,2�H0�kBR� + ���,−2 + ��,2��H1�kBR�

kBR

+
2i

�kB
2 R2�
J��kRR�RdR +

1

2
lim

�R→0
�

�R

�

���,−2

+ ��,2�
J��kRR�

kB
2 R2

RdR,

here ��,� is the Kronecker delta. The first integral is
ow well behaved and may be directly evaluated, whereas
or the second integral we may use the identity

lim
�R→0

�
�R

� J2�KRR�

kB
2 R2

RdR =
1

2kB
2 .

n a similar way we rewrite the expressions for I�
yy and I�

xy

s follows:

I�
yy =

i�

4 �0

���1

2
��,−2 + ��,0 +

1

2
��,2�H0�kBR� − ���,−2 + ��,2�

��H1�kBR�

kBR
+

2i

�kB
2 R2�
J��kRR�RdR −

1

4kB
2 ���,−2

+ ��,2�,

I�
xy = −

�

4�0

�

���,−2 − ��,2��1

2
H2�kBR�

+
2i

�kB
2 R2�J��kRR�RdR +

i

4kB
2 ���,−2 − ��,2�.

PPENDIX C: DERIVATIVES FOR CYLINDRICAL
AVE FUNCTIONS
eference [33] provides general derivatives for the cylin-
rical wave functions Z��kr�exp�i�
�, in which �r ,
� are
ylindrical coordinates and Z� is a solution to Bessel’s dif-
erential equation for integer �. Below we summarize the
esults for the double derivatives that enter the matrix el-
ments in the present application,

�2

�x2 �Z��kr�ei�
� =
k2

4
�Z�+2�kr�ei��+2�
 + Z�−2�kr�ei��−2�


− 2Z �kr�ei�
�, �C1�
�
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�2

�y2 �Z��kr�ei�
� = −
k2

4
�Z�+2�kr�ei��+2�
 + Z�−2�kr�ei��−2�


+ 2Z��kr�ei�
�, �C2�

�2

�x � y
�Z��kr�ei�
� = − i

k2

4
�Z�+2�kr�ei��+2�
 − Z�−2�kr�ei��−2�
�.
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