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1. INTRODUCTION

The design and development of future optical components
rely heavily on adequate descriptions of light propagation
in micro- and nano-structured environments. Although
the governing differential equations have been known for
over a century, analytical solutions are available only for
a limited number of highly symmetrical problems. There-
fore, in most cases of practical interest, numerical meth-
ods are employed. Ideally, the numerical method should
be accurate enough to capture all relevant physics and al-
low for understanding the different scattering channels;
yet it should be fast enough to ensure acceptable run-
times for practically relevant structures.

The invention of photonic crystals [1-3] has offered
hitherto unprecedented control of light propagation. Con-
sequently, these novel materials are of great importance
in the design of optical components for future information
technology as well as fundamental solid state quantum
optics experiments. In the context of light propagation in
micro- and nano-structured media, such as photonic crys-
tals, the full wave nature of the electromagnetic field
needs to be taken into account. A large number of differ-
ent methods are being explored in the investigation of
light propagation in these materials, including plane
wave expansion for band structure calculations [4], the
generalized multipole technique [5], as well as the finite
difference time domain (FDTD) [6] and finite element [7]
methods. In particular, we note that, for calculations in-
volving large numbers of scatterers in an otherwise homo-
geneous background, Rayleigh-multipole methods have
been used for calculations on micro-structured fibers
[8-11] as well as photonic crystals composed of cylinders
[12,13] or spheres [14,15]. The use of multipole expan-
sions for the fields ensures a significant reduction in the
number of basis functions, thus enabling calculations on
complex structures of practical interest.
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In addition to the above methods, various volume and
surface integral methods exist for the electric and/or mag-
netic fields. These methods typically rely on discretization
to express the integrals as linear systems of equations—a
procedure known as the method of moments. In the dis-
cretization process the solution is expanded in terms of
linearly independent basis functions which vary in com-
plexity, depending on the specific method employed [16]. A
particularly simple and convenient choice of basis func-
tion is the pulse basis function resulting in what is usu-
ally termed the coupled (or discrete) dipole approximation
(CDA) [17,18]. The CDA allows for relatively easy imple-
mentation as well as the physically attractive property
that the resulting field can be directly interpreted as the
sum of the field from all the individual cells in the scat-
tering structure oscillating as dipoles in response to the
incoming field. Depending on the desired accuracy and
the nature of the scattering problem at hand, however,
the required number of basis functions may become too
large for practical calculations on, e.g., photonic crystals.
In addition, this type of discretization may lead to stabil-
ity problems in the case of high refractive index contrasts
[16].

For the use in modeling of nano-photonic structures
and in particular in the context of light-matter interac-
tion in photonic crystals, we focus in this paper on an in-
tegral type scattering formulation of light propagation
based on the electric field Green’s tensor. The Green’s ten-
sor, G(r,r’), is the electromagnetic propagator which, for
a given system, holds all information necessary to solve
the inhomogeneous vector Helmholtz equation and may
be interpreted as the electric field at point r due to an os-
cillating point dipole at point r’. Of special importance in
nano-photonic modeling is the imaginary part of the
Green’s tensor at r=r’ which is proportional to the local
optical density-of-states (LDOS) [19]. The LDOS and/or
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the Green’s tensor for photonic crystals have previously
been investigated theoretically using plane wave expan-
sions [20-22] and FDTD [23,24] as well as through an ex-
pansion in eigenstates [25,26]. The application of the
CDA to the calculation of the Green’s tensor in a photonic
crystal slab was reported in [27]. Using the Green’s tensor
for the background medium, one may recast the wave
equation as a scattering problem, in which case the solu-
tion is given in terms of the so-called Lippmann—
Schwinger integral equation [28]. Since the Green’s ten-
sor is known for a number of simple material
configurations, these may be used as the background ma-
terial in order to limit the extent of the numerical calcu-
lations. In particular, expressions for the Green’s tensor
for stratified media are available [29,30].

In this article we describe a multiple scattering solu-
tion to the Lippmann—Schwinger equation. The method is
developed in two dimensions, but we note that a similar
approach is possible for three-dimensional problems as
well. The method will find applications in the modeling of
nano-photonic structures and devices, such as wave-
guides, junctions, and filters, as well as switches and
single photon sources based on photonic crystals. In light
of the above discussion the method may be viewed as a
hybrid between integral type method of moment calcula-
tions and multiple scattering multipole methods. In our
approach, the Lippmann—Schwinger equation is first ex-
panded in cylindrical wave functions (so-called normal
modes) and solved within the scattering elements. Solu-
tions at points outside the scattering elements are subse-
quently calculated directly wusing the Lippmann—
Schwinger equation. Because of the integral formulation
the method may benefit from known results for the
Green’s tensor in the background material while the nor-
mal mode expansion reduces the number of basis func-
tions needed, thus enabling calculations on material sys-
tems of practical relevance. In addition, we make use of a
number of theorems which are regularly employed in
multipole methods in order to simplify the evaluation of
the scattering matrix elements.

The article is organized as follows. Section 2 introduces
the method and provides a number of results that may be
of value in the practical implementation. The calculations
are illustrated in Subsection 2.F through the solution of
two small scattering problems and in Section 3 we use
these as examples to discuss a practical method of evalu-
ating the accuracy of a given calculation. In Section 4 we
provide an example application of the method in the form
of a two-dimensional (2D) photonic crystal waveguide at
the edge of a dielectric block. Section 5 gives the conclu-
sions.

2. FORMULATION OF SCATTERING
PROBLEM AND SOLUTION METHOD

We consider scattering of monochromatic light, E(r,t)
=E(r)exp(-iwt), in two dimensions, corresponding to scat-
tering problems in which the geometry is invariant along
the z-direction and the light travels in the xy-plane, r
=(x,y). We limit the discussion to non-magnetic materials
and consider general material systems, consisting of a fi-
nite number of piecewise constant dielectric perturba-
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tions to a piecewise homogeneous background. This is the
case, for example, for most photonic crystals. The electric
field E(r) solves the vector wave equation,

V X VX E(r) - k2e(r)E(r) = 0, (1)

where €(r) is the position dependent permittivity and &
=|ko|=w/c is the wave number in vacuum. For 2D prob-
lems, the vector equation decouples into two independent
equations for the transverse electric (TE) and the trans-
verse magnetic (TM) polarizations. In the case of TE po-
larization, the electric field is oriented in the xy-plane,
whereas for TM polarization the electric field is oriented
along the z-axis and the scattering calculation is essen-
tially a scalar problem. In order to reformulate Eq. (1) as
a scattering problem, we consider the change in permit-
tivity, Ae(r)=€(r)-ep(r), caused by the introduction of
scattering sites into the background medium described by
eg(r). The solution to Eq. (1) with e(r)=ep(r) is denoted by
EB(r) and represents the incoming field. The full solution
to Eq. (1) is the sum of the incoming and scattered fields.
It is given by the Lippmann—Schwinger equation as

E(r):EB(r)+J GB(r,r’)kgAs(r’)E(r’)dr’, (2)
D

in which GB(r,r’) is the Green’s tensor for the back-
ground medium and D denotes the area of the scatterers.
For a homogeneous background, ep(r)= eB=n%, the 2D
Green’s tensor is given as [31]

GE (r,xv')= 1+E iH (kgR) (3)
2D\1 > = k% 4 oO\'*B 5

in which kg=npgk is the wave number in the background
medium and R=|R|=|r'-r|. H; denotes the Hankel func-
tion of the first kind of order zero.

A. Expansion in Normal Modes

In two and three dimensions the real part of the Green’s
tensor diverges in the limit r’'=r, which means that for
integrals in which r is inside the scattering volume (such
as in this work) an alternative formulation of the
Lippmann—Schwinger equation must be employed in
which the singularity is isolated in an infinitesimal prin-
ciple volume and treated analytically [32]. Therefore, we
follow [31] and rewrite the equation as

E(r)=E®(r) + lim f GB(r,r’)kgAs(r’)E(r’)dr'
A-0Jp_s

A€e(r)

E(r), (4)
€B

in which L,,=L,,=1/2 and L ,;=0, otherwise, correspond-
ing to a circular exclusion area A centered on r'=r.

We will solve for the total field, E(r), inside the scatter-
ing material only, as the solution everywhere else can be
subsequently obtained by use of the Lippmann-—
Schwinger equation. The incoming field, EB(r), is a solu-
tion to the wave equation with no scatterers and thus, in
general, can be expanded on the solutions to the wave
equation in the bulk background material. Similarly, the
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total field at positions inside each scatterer may be ex-
panded on the solutions in a homogeneous material with
the permittivity of the scatterer. Based on these consider-
ations we construct a basis consisting of normal modes,
each with support on only one of the scattering sites,

U = Ky y(karg)e'?#aS4(x), (5a)

Uy = K y(kgrq)e'®#48 4(v), (5b)

where we have defined a combined index n=(q,d, ), in
which ¢ € 7Z denotes the order of the normal mode and d
denotes the particular subdomain D, of the scattering
material we consider, e.g., which cylinder. For conve-
nience we have included the field component a e {x,y,z}
in the index n as well. J, denotes the Bessel function of
the first kind of order ¢ and ky=n4ky, where n,; denotes
the refractive index in the subdomain D,. The cylindrical
coordinates (ry, ¢y) are defined in the local coordinate sys-
tem in the subdomain D, and S;=1 for r e D; and S;=0,
otherwise. K, and Kf are normalization constants. To
ease the notation we will write n in place of any of the in-
dices ¢,d,a and we will suppress the index on the coordi-
nates (r, ) as this will not lead to ambiguities.
We define an inner product as

(il ) = f U (), (x)dr, (6)

which is in general non-zero for m #n, and we normalize
the basis functions so that (¢, |¢,)=(4Z|yf)=1. By ex-
panding the electric fields as

E(r) = > e, i, (r)e,, (7a)

E’(r)= > e}y (v)e,, (7b)

where e, is a unit vector in the direction «, and projecting
onto the basis formed by ¢,,e,, and «//Zem, the Lippmann—
Schwinger equation may be rewritten in matrix form as

A
(1 +Lmn—6)2 (Unlth)en = 2, (Ul UP)el + R2Ae D, G,

€B
(8

in which

ngﬁj Yn(r) limf Glyr,x) g, (e )dr'dr,  (9)
D D-6A

SA—0

and we have written explicitly the directions «, B corre-
sponding to the indices m,n for clarity.

Equations (3)—(9) hold the complete formulation of the
method. The form of the central matrix equation (8) is
only slightly different from that of the CDA in that the
left hand side is generally a matrix (although this matrix
is very sparse since basis functions belonging to different
scattering domains are orthogonal by construction). The
underlying strategy and the practical implementation of
the two methods, however, are very different. In the CDA,
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the projection onto the basis functions is straightforward,
resulting typically in a very large matrix equation system
that is subsequently solved by iterative methods. In the
present method it is the projections onto the basis func-
tions that are potentially time consuming, but eventually
leads to a relatively small system of equations. A number
of mathematical results exist, however, that can dramati-
cally speed up the calculations of the matrix elements and
the implementation in general. In Subsections 2.B-2.E
we discuss these results.

The matrix elements need to be evaluated for basis
functions within the same domain (self-terms) as well as
different domains (scattering terms). The case of a homo-
geneous background is of special interest as one will often
be able to separate the background Green’s tensor into
terms corresponding to a homogeneous background and a
number of additional scattering terms. Therefore, we fo-
cus in this section on the evaluation of the matrix ele-
ments for a homogeneous background Green’s tensor [Eq.
(3)] and return to the additional terms due to scattering
in an inhomogeneous background in Section 4.

B. Self-Terms

The evaluation of the self-terms is complicated by the di-
vergence in the Green’s tensor for r’=r and the fact that
the integrand couples r’' and r, effectively resulting in a
four-dimensional integral. In the following we adopt a
particular method for the evaluation, in which the four-
dimensional integral [Eq. (9)] is rewritten in terms of a
number of 1D and 2D integrals. Although this method is
suitable for the evaluation of general matrix elements, we
note that other methods may be more efficient in the case
of a particular geometry and/or polarization.

Figure 1 shows a sketch of the local coordinates used
for the evaluation of the integral. In order to efficiently
treat the divergence, for each r we first integrate r’ over
the entire plane P less the principal volume centered on r.
Subsequently, we subtract the integral for r’' ¢ D, for
which the limit A — 0 is trivial since r’ #r. The matrix
element is thus rewritten as G# = A% —3%f in which

mn’

Fig. 1. Sketch of the local coordinates used for the calculation of
the self-term in scattering domain D.
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A = [y (x) hmJ Gfﬁ(r,r’)tﬁn(r’)dr’dr,
D SA—0 P-sA

Byt = f i (r) f GEy(r,x") i, (x")dr'dr.
D P-D

Using the Graf addition theorem (cf. Appendix A), we
can simplify the evaluation of .A%? by expanding the func-
tion ¢,(r') around point r so that

Aaﬁ:KmKnE f Jm(er)Jn+,u(er)ei(n+p.—m)(p
uw Jp
Xf GEB(O,R)JM(]CRR)(— 1)#e *RdRdr
P-sA

=K, K,> f T (kgr)d s (kgr)e ™ medy I6F,
# JD

where kr=n4k, and we have exploited the fact that the
integration over R=(R, 6) is over the entire plane (less
the principal volume) and thus does not depend on r. The
evaluation of this integral over R, denoted by I*? above,
can be reduced to a number of one-dimensional integrals
as shown in Appendix B. In addition, we note that the
simple angular dependence of the integrand in many
cases allows for a reduction in the remaining integral over
r to a sum of one-dimensional integrals.

The evaluation of Bzﬁl may also be substantially simpli-
fied using the Graf addition theorem to expand the Han-
kel function in terms of Bessel and Hankel functions de-
fined in the local coordinate system. The expansion differs
depending on the sign of r—r’; for r' >r we write the in-
tegrand as

b (r,x') = 4, (1) Ghy(r,x" ), (x')

. i .
=K, K, >, J,,(kgrie L ZJM(kBr)e“W’

o
XH ,(kpr')d,(kgr')e!m#¢", (10)

whereas for r' <r we write

b (r,x') = K, K, >, oJ ,(kgr)e e LF

"
i ' . ,
X ZHM(kBr)e‘M‘P Ju(kBr')Jn(er’)e“”‘”)“’ ,

(11)

in which £ is the «,8 component of the linear operator
in Eq. (3). Derivatives for the general cylindrical wave
functions d,d4{Z)(kr)exp(i\¢)} are provided in Appendix
C. For circular scatterers we always have r’' >r and the
expression for B% factors into a number of one-
dimensional integrals. Similarly, the evaluation of B4 for
non-circular scatterers may be conveniently split depend-
ing on whether r’ is outside or inside the circumscribing
circle (denoted by Cp in Fig. 1). In the former case, the
expression factors into separate integrals for r and r’,
whereas in the latter case, the two integrations are
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coupled. Again, the simple angular dependence of the in-
tegrands in many cases allows for a reduction in these in-
tegrals to a sum of 2D integrals.

C. Scattering Terms

For the calculation of scattering terms the integration do-
mains for r and r’ are completely separated in space and
so the Green’s tensor is well behaved at all points of in-
terest. In this case we employ the Graf addition theorem
twice to express the Hankel function in terms of the dis-
tance between the centers of the two local coordinate sys-
tems as illustrated in Fig. 2,

i ,
Gty = 7 2 Hyn(kpL) (= Dl
JTRN

Xf K, (ke e LAPLT, (R gr)e ™Y dr
D

m

X J K, (kpr')d,,(k,r')e! "¢ dr’, (12)
D

n

where (L, 6) are cylindrical coordinates of O’ with respect
to O (cf. Appendix A). Equation (12) shows that the scat-
tering matrix calculation factors into terms that depend
only on the geometries of the individual scatterers and
the distance between them. Since the Hankel functions as
well as the Bessel functions are well behaved at all points
of interest, the integrals may be directly evaluated. Note
that the procedure outlined above is compromised when
L<R,,+R,, where R,, and R, are the radii of the circum-
scribing circles of domains D,, and D,,, respectively. This
could happen in the case of close non-circular scatterers.
In this case the Graf addition theorem is not valid and
one can employ a strategy based on Eqs. (10) and (11) in-
stead.

D. Background Electric Field

The incident background electric field, EB(r), is a solution
to the wave equation without the scatterers. In the case of
a bulk background, the solutions are plane waves, and the
expansion in terms of cylindrical wave functions is readily
obtained using the Jacobi—Anger identity as discussed in
Appendix A. Instead of using plane waves as background
electric fields we may use the columns of the 2D Green’s
tensor. These are related to the electric field at r due to a
line source at r’ [31]. By comparing with Dyson’s equa-
tion,

Fig. 2. Sketch of local coordinates for r and r’ in two indepen-
dent scatterers.
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G(r,r')=GBr,r') + J GB(r,r”)k(Q,As(r”)G(r",r’)dr",
D

we see that the solution to the Lippmann—Schwinger
equation in this case exactly produces the corresponding
columns of the full 2D Green’s tensor for the scattering
problem.

E. Exterior Solution

The matrix equation (8) is solved using standard linear
algebra routines to yield the solution at any point inside
the scattering domains. The solution at any point outside
the scatterers can be subsequently obtained directly from
the Lippmann—Schwinger equation which is now an ex-
plicit equation,

E(r)=EB(r)+f GB(r,r)koAs(r') X, e, i, (r')e,dr’.
D n

(13)

The sum in Eq. (13) runs over all basis functions in all
scattering domains. Again, the calculation may be simpli-
fied considerably by the use of the Graf addition theorem
to rewrite the equation in terms of the distances from the
centers of the local coordinate systems. Considering for
simplicity the case of just a single scattering domain D we
rewrite the equation as

i .
E(r) = EB(r) + Zk%AeE L{H ,(kpL)e}

N
X(-1)*e, e, J K, (kpr')d (kpr')e! ¢ dy,
D

(14)

where now (L, 6) are cylindrical coordinates of O’ with re-
spect to r.

F. Example Calculations

To illustrate the method we consider now an example
scattering problem in which a TE plane wave is incident
from the top left on a small crystallite of air cylinders in a
high-index dielectric. Figure 3 shows the absolute square
of the total field as a function of position in the xy-plane.
Also we show the magnitudes of the E, and E, compo-
nents of the field along the line y=0 through the centers
of three of the cylinders. Clearly, the x component shows a
number of discontinuous jumps, whereas the y component
is continuous in accordance with the boundary conditions.
We note that the multiple scattering from the air cylin-
ders acts to partly block the light, resulting in the forma-
tion of a standing wave in the upper left part of Fig. 3.
Typically we use the same number of basis functions in
each scattering domain and for each polarization so that
|g|=@,,0x- This calculation was performed using Q,,q.
=10, resulting in a matrix equation system of 294 un-
knowns. Using the method outlined in Subsections 2.B
and 2.C and using an absolute tolerance on the numerical
integrals of 1076 the average calculation time per scatter-
ing matrix element was less than 0.1 s for the self-terms
and less than 0.01 s for the scattering terms on a 2.4 GHz
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Fig. 3. (Color online) Example calculation: A TE plane wave of
unit amplitude, E5(r)=e exp(ingk,-r), is incident from the top
left on a crystallite consisting of seven air holes (n;=1) in a high-
index dielectric background (np=3.5). Parameters are k,
=(,/3/2,-1/2) and Rpc=0.3a, where Rp is the radius of the cy-
lindrical holes and a=0.3\ is the distance in between. Top: Ab-
solute square, |[E(r)[?, of the resulting field as a function of posi-
tion in the xy-plane. Bottom: Absolute value of the components
E,(x) (red solid line) and E,(x) (blue dashed line) along the line
y=0.

processor. Making use of the symmetry of the crystallite
we reduced the problem to the calculation of matrix ele-
ments for scattering between 19 different pairs of scatter-
ers only. In addition, the form of Eq. (12) suggests that for
identical scatterers the integrals across the domains D,,
and D,, can be handled once only and stored for the use in
subsequent calculations of matrix elements for scattering
between other pairs of scatterers. Using this approach,
the total time for the calculation of all matrix elements
was approximately 13 s. Due to the small size of the scat-
tering problem, the solution of the linear equation system
was handled in approximately 1 s.

As noted in Subsection 2.D we may use the present
method to calculate the Green’s tensor for a given scatter-
ing structure. In Fig. 4 we consider a geometry consisting
of four square dielectric rods in air and we show the real
and imaginary parts of the TM Green’s tensor G,,(r,r’) as
functions of r for constant r’ indicated in Fig. 4. The real
part diverges in the limit r —r’, whereas the imaginary
part is continuous at all points. In the limit r=r’ it is pro-
portional to the LDOS as noted in the introduction. The
calculation was performed using @,,,,=10 resulting in
only 84 unknowns. We used an absolute tolerance on the
numerical integrals of 1078 and the average time per scat-
tering matrix element was 0.7 s for the self-terms and
0.04 s for the scattering terms. Based on symmetry the
problem was reduced to the calculation of scattering ma-
trix elements between nine pairs of scatterers resulting in
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Fig. 4. (Color online) Real (top) and imaginary (bottom) parts of
the total TM Green’s tensor G,,(r,r’) as functions of r with
kor'=(-1,1/4) (as indicated by the red dot) in a structure con-
sisting of four dielectric rods (n;=3.5) of square cross section in
air. Parameters are a=2L, where a is the distance between the
rods and L=\y/4 is the side length.

a total time for the matrix element calculations of ap-
proximately 200 s and a solution time of less than 1 s.

3. ACCURACY OF THE METHOD

The numerical error stems primarily from evaluation of
the matrix elements and the truncation of the basis set.
After solving the linear equation system [Eq. (8)], the ac-
curacy of a given solution may be estimated by substitu-
tion back into the Lippmann—Schwinger equation. To this
end we define the local error as

5L(r) = EB(r) - Enum(r)

+fGB(r,r')kgAe(r’)Enum(r’)dr’ s (15)

and we note that, since EB(r) and GB(r,r’) are known
analytically, we can use this as a measure of the accuracy
of a given solution even if we do not know the analytical
solution. Based on the local error, we define the global

relative error as
f Er(r)dr

Co=——

f [EB(r)|dr

where the integrals are taken over the area of the scatter-
ing sites only. Figure 5 shows the global error as a func-
tion of the number of basis functions used in the expan-
sions and dependent on the error in the matrix elements
for the solutions depicted in Figs. 3 and 4. The error
analysis was performed by first calculating the matrix el-
ements to a high precision, using an absolute error toler-
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Fig. 5. (Color online) Global error as a function of the number of
basis functions used in the expansion of the electric fields (con-
trolled by @,,,.). Circular markers correspond to the problem in
Fig. 3 with different curves corresponding to different fixed er-
rors on the relevant matrix elements as indicated. Square mark-
ers correspond to the problem in Fig. 4 calculated for the Green’s
tensor (G,,) and plane waves (PW) as the background field.

ance on the numerical integrals of 10~6. Subsequently, for
each value of @,,,,. the corresponding linear equation sys-
tem [Eq. (8)] was constructed and a random complex
number of fixed modulus, 8G,,,, was added to each ele-
ment in the matrix of modulus larger than &G,,, before
solving the equation system.

The analysis shows an exponential like decrease in the
global error as a function of the number of basis func-
tions, underscoring the massive reduction in basis func-
tions due to the expansion in normal modes when com-
pared to conventional discretization methods. This is the
case for the cylindrical holes in Fig. 3 as well as for the
square rods in Fig. 4. The convergence is faster in the case
of the cylindrical holes, which is partly because the basis
functions have the same symmetry as the scatterers and
partly because the plane wave field is easier to approxi-
mate than the (divergent) Hankel function. Clearly, the
artificial error on the matrix elements acts to limit the
minimum achievable global error, and the analysis thus
confirms that the global error is controlled by the number
of basis functions as well as the accuracy of the numerical
quadrature. We note that the measure [Eq. (15)] may be
viewed as a test of self-consistency of the method which is
of principal importance for any solution to Eq. (2). From
Fig. 5 we can see that the measure is also of practical im-
portance since, for a given tolerance on the numerical in-
tegrals, it can be used to estimate the number of basis
functions needed to reach the minimum global error.

4. EXAMPLE APPLICATION: LIGHT
EMISSION IN A FINITE-SIZED PHOTONIC
CRYSTAL WAVEGUIDE

As an example of the utility of the method we present in
this section results for the investigation of light propaga-
tion near the edge of a finite-sized 2D photonic crystal. We
consider a photonic crystal made from 80 circular rods of
refractive index n;=3.4 in a lower-index background (ng
=1.5). The cylinders are placed in a square lattice, and a
short waveguide is created by the omission of four rods
along the (11)-direction of the crystal. The waveguide
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along with the crystal is terminated by an interface to air.
We focus on TM polarized light and calculate the Green’s
tensor of the system G,,(r,r’). Although the integral ex-
pressions become larger, a similar procedure as the one
outlined below may be used for the calculation of TE po-
larized light as well as for multiple interfaces. We start by
extending the formalism of the previous sections to the
case of a non-homogeneous background Green’s tensor in
Subsection 4.A and go on to show example calculations of
light emission from a finite-sized photonic crystal in Sub-
section 4.B.

A. Additional Scattering Near Interface

For the scattering calculations near a dielectric interface
we use the Green’s tensor for the dielectric half-space as
the background Green’s tensor in Eq. (2). The 2D Green’s
tensor for general stratified media is given in [30]. It is
expressed in terms of an integral in k-space and below we
discuss the calculation of the elements G%;, in the special
case of a single dielectric interface. We consider TM polar-
ized light incident on an interface at y=0 between two
media with refractive indices n4 and ng. We will deal only
with scatterers in the lower layer (layer B) and so, follow-
ing [30], the 2D Green’s tensor is given as

vy A R ,
GE(r,xr')=- 6(R)+— —elkx@f—x etkBs ' ldR,
4’77 By
i (" Fy
4_ kBA eihale=x")gikp, ) g, (16)
T By

where k; =k} -k2 with k;=n;k, (I ¢ {A,B}) and

s
_ kgy - kA,y -k - \"kA - k3
BA kB,y+kA,y \kB—k§+ \"kA_kg%

is the Fresnel reflection coefficient.

In Eq. (16) the first two terms correspond to the Green’s
tensor of the homogeneous material whereas the last
term gives the reflection off the interface. This means
that the evaluation of the matrix element G%., naturally
splits into a direct homogeneous material part and an in-
direct interface scattering part. The former is exactly
what was handled in Subsections 2.B and 2.C so we con-
centrate in this section only on the scattering contribution

s i Foulky)

GS
mnza B kB,y(kx) J lﬂm(l‘)

mn?
X ethex—)gmikny k)04 )y, (p')dr'drdk,.  (17)

In order to carry out the integration we first write
(x,y)=(X,Y)+(r cos ¢,r sin ¢) and x',y)=X",Y")
+(r' cos ¢’',r' sin ¢’), where (X,Y) and (X',Y’) denote the
absolute coordinates of the centers of the local coordinate
systems. We then recast the expression in terms of local
coordinates as
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i [ Fhalky)

_ oilkx(X-X")~kp (k) (Y+Y"))
mn
4w ) _ kp,(k,)

Xf Kme(kmr)e—imtpeikB r cos(¢—9(kx))dr
D

m

Xf Kan(knrr)eimp'eikBr' cos(«p'—(?'(kx))drrdkx’
Dn

(18)

where we have rewritten the inner products of the wave
vectors and the position vectors in the two domains in
terms of the angles between them. This angle becomes
imaginary whenever k325>k123. As in the case of the homo-
geneous background we are able to simplify the expres-
sion further by factoring out the integrals over the do-
mains D,, and D,. To this end we use the Jacobi—Anger
identity (cf. Appendix A) to rewrite the matrix elements
as

i 2 At * ng(kx)
=— 12
4m Ny _% kB,y(kx)

ei(kx(X—X')—kB’y(kx)(Y+Y'))

X TNk 10 () f K, (k) (R pr)e’ = ¢dr
D

m

X J K, (k") (kgr’)e' "¢ dy’ | (19)
Dn

Due to the circular symmetry, the angular integrations
over the domains D,, and D,, lead to non-zero values only
for \=m and y=n. In these cases the radial integrals have
well known analytical values, leaving only a final integra-
tion over k,.

B. Light Emission in Finite-Sized Photonic Crystal
Waveguide

In Fig. 6 we show a contour plot of the absolute value of
the Green’s tensor |G,,(r,r’)| along with real and imagi-
nary parts at positions along the x-axis. Results are
shown for kyr'=(0,-7.58), in the center of the waveguide
at the location of one of the missing rods. In an infinite
waveguide, this would be the location of the field antinode
of the waveguide mode. The periodic Bloch-mode charac-
ter of the waveguide mode is evident also in the case of
this finite waveguide and the structure acts as a resona-
tor, greatly increasing the absolute value of the Green’s
tensor for positions r inside the waveguide as compared to
the bulk medium. For r—r’ the real part of G,,(r,r’) di-
verges. This is the case also in Fig. 6, but the divergence
is too weak to show up at the chosen discretization. Al-
though the finite waveguide acts as a resonator, light can
propagate out of the end facet. Figure 7 shows |G,,(r,r’)|
at positions outside the structure. As noted in Subsection
2.D, the Green’s tensor is related to the electric field at
point r due to a line source at point r’. Therefore, we may
interpret Fig. 7 as the emission pattern from the source
inside the waveguide. Due to the resonator effect of the
waveguide structure, the emission pattern does not show
up on the scale of the contour plot in Fig. 6.
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Fig. 6. (Color online) Top: Absolute value |G,,(r,r’)| of the TM
Green’s tensor for a finite-sized photonic crystal waveguide con-
sisting of 80 rods of refractive index n;=3.4 in a background with
an interface between a low-index dielectric (np=1.5) and air
(ng=1). The results are calculated as functions of r with kr’
=(0,-7.58) (indicated by the red dot and vertical dashed line).
Bottom: Real (red solid line) and imaginary (blue dashed curve)
parts of G,,(y,r’) along the line x=0. Parameters are Rpc
=0.25a where Rpc is the radius of the cylindrical holes and a
=0.28)\ the distance in between.

5. CONCLUSION

We have described a procedure for solving the Lippmann—
Schwinger equation for electromagnetic scattering in
which the field along with the electric field Green’s tensor
is expanded in a basis of cylindrical wave functions (so-
called normal modes) inside each scatterer. The projec-
tions of the electric field and the Green’s tensor onto the
normal modes are facilitated by the use of a number of ad-
dition theorems to simplify the integral expressions and
we have presented the method in general along with a
thorough discussion of the evaluation of the scattering
matrix elements, which may be helpful for practical
implementations.

The basis of normal modes ensures that all basis func-
tions have the correct wave number. This, combined with
the need for solving the system inside the scattering ele-
ments only, results in a relatively small linear equation
system as compared with other methods. Consequently,
the method is fast and capable of handling large material
systems such as photonic crystals. Furthermore, the use
of a local cylindrical wave function basis avoids the intro-
duction of fictitious charges which may lead to instabili-
ties for large refractive index contrasts in the case of TE
polarization [16], and the integration scheme is free of
staircasing errors along the boundaries. Due to the for-
mulation in terms of the Green’s tensor of the background
medium, there is no need for a calculation domain and the
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Fig. 7. (Color online) Contour plot of emission pattern,
|G,.(r,r")|, of the system in Fig. 6, but for positions outside the
photonic crystal.

radiation condition is automatically satisfied as are the
boundary conditions (limited only by the numerical preci-
sion chosen). The accuracy of the method is thus limited
only by the number of basis functions and the tolerance
on the numerical integrals employed for the evaluation of
the scattering matrix elements. We have introduced a
measure of accuracy based on self-consistency that is of
principal as well as of practical importance. Once the ma-
trix equation has been set up, it holds all information nec-
essary to carry out scattering calculations on the geom-
etry at the chosen frequency. It can thus be stored and
used for different choices of incoming fields as well as for
the calculation of the Green’s tensor between different
points r and r’.

We have illustrated the method by two example prob-
lems and we have shown an application of the method
where we have calculated the zz component of the Green’s
tensor of a finite-sized photonic crystal waveguide. Simi-
lar calculations will find applications in the development
of nano-photonic devices such as in the design of junctions
or cavities in photonic crystals or in the investigation of
emission patterns from single photon sources. Using a
similar procedure the method may be extended to three-
dimensional scattering geometries and, although we have
focused on applications in micro- and nano-photonic
structures, we believe that the method may be of use in
other areas of electromagnetic scattering calculations as
well.

APPENDIX A: ADDITION THEOREMS FOR MULTIPOLE
EXPANSIONS

The expansion of the Lippmann—-Schwinger equation
used in this work, and especially the calculation of matrix
elements, relies heavily on the use of cylindrical wave
functions. A number of addition theorems exist for cylin-
drical wave functions which may simplify the calculations
considerably. Of special interest in this work are the
Jacobi—Anger identity and the Graf addition theorem
[33]. Below we summarize the results in forms suitable
for the present application.

1. Jacobi-Anger Identity

For a plane wave, traveling at an angle 6 with respect to
the x-axis, the expansion in terms of cylindrical wave
functions is given by the Jacobi—Anger identity,
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Fig. 8. Sketch of relative coordinates as used in the expression
for Graf’s addition theorem.

eikor cos(¢—6) _ E ine—ineJn(kor)einq:, (A].)

n=-%

in which (r,¢) are cylindrical coordinates and </, is the
Bessel function of order n.

2. Graf’s Addition Theorem

The Graf addition theorem may be used to express the cy-
lindrical wave functions in one local coordinate system in
terms of cylindrical wave functions in a different local co-
ordinate system. We consider the cylindrical coordinates
r=(r,¢) and r'=(r',¢’), centered at two different posi-
tions O and O’, respectively, where (L, ) denote the coor-
dinates of O’ with respect to O as shown in Fig. 8. Using
this notation we express the Graf addition theorem as

Z,(kr)ee0 = ZpyouRL)T (k") (- 1)Hein(t=¢"),
/1,:-00

(A2)

where Z, is a solution to Bessel’s differential equation for
integer n. If Z, =/, the expansion is valid for all values of
r'; otherwise it is valid only for r’' <L.

APPENDIX B: CALCULATION OF MATRIX ELEMENTS
In this appendix we evaluate the integral

1% = f G540,R)J ,(kgR)(- 1)#e~*rdR,
P-5A

which enters the expression for .4%# in Subsection 2.B.
For TM polarization, («, 8)=(z,z), the angular integration
is non-zero only for ©=0 and the resulting integral is well
behaved, allowing for an easy evaluation. For TE polar-
ization, the integrand has a pole at the origin, so we re-
write this integral in a form more suitable for numerical
quadrature. Although the procedure is the same, the re-
sulting integrals differ slightly depending on which of the
elements of the Green’s tensor we consider (see [31] for
explicit expressions for the elements). For F;f we get
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X(— 1)'“6_”,' RRdBRdR = Z - 55”"_2 + 5#’0
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Wk%R2) ,u,( R ) 51;~>0 (S‘R( w2
J,(kgR)
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where &, , is the Kronecker delta. The first integral is
now well behaved and may be directly evaluated, whereas
for the second integral we may use the identity

lim
SR—0

F Jy(KxR) 1
s FiR? T 2k%

In a similar way we rewrite the expressions for I’; and I}
as follows:

i 1 1
13; = 4 E(SIL’_Z + 5,u,,0 + §5I’v72 HO(kBR) - (5M7_2 + 5#,2)
0

(Hl(kBR) 2i
X S —

1
+———— | tJ (kzgR)RAR - — (5, _
kgR Wk§R2) u(krR) 4k§,.( w2

+ 5,1/,,2) )

T~ 1
L=~ Zfo (8,,-2— 5#,2)(§H2(kBR)
21

i
kBR2)J (kRR)RdR+ k%(g“’"z_ 5”,2).

APPENDIX C: DERIVATIVES FOR CYLINDRICAL
WAVE FUNCTIONS

Reference [33] provides general derivatives for the cylin-
drical wave functions Z, (kr)exp(i\¢), in which (r,¢) are
cylindrical coordinates and Z, is a solution to Bessel’s dif-
ferential equation for integer . Below we summarize the
results for the double derivatives that enter the matrix el-
ements in the present application,

& R ) :
ﬁ{Zx(kr)e”"’} = Z{Zm(kr)el(mw + Zy_o(kr)e’ 2%
X

- 27, (kr)e™¢}, (C1)
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2

BRI = = 2,k 4 7o)

+ 27, (kr)e™¢}, (C2)
(92 2
M{Zx(kr)e”‘“’} =- iZ{ZH2(kr)ei(“2)‘P - Z) _o(kr)e'™=2¢}.

(C3)
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