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Planar photonic nanostructures have recently attracted a great deal of attention for quantum optics applications.
In this paper, we carry out full 3D numerical simulations to fully account for all radiation channels and thereby
quantify the coupling efficiency of a quantum emitter embedded in a photonic-crystal waveguide. We determine
the leakage from the quantum emitter to the surrounding environment and study its spectral and spatial
dependence. The spatial maps of the coupling efficiency, the β factor, reveal that even for moderately slow light,
a near-unity β factor is achievable and is remarkably robust to the position of the emitter in the waveguide. ©2018
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1. INTRODUCTION

Enhancing the spontaneous emission rate of a quantum emitter
by placing it in an optical cavity was first suggested by Purcell
[1]. In the following decades, it was realized that the sponta-
neous emission rate of a quantum emitter can also be
suppressed by placing it in a photonic bandgap [2–5]. This
has led to a significant research effort to manipulate the pho-
tonic environment surrounding quantum emitters to suppress
coupling to unwanted radiation modes and boost coupling to
specific localized modes. The spontaneous emission rate of a
quantum emitter scales with the projected local density of op-
tical states (LDOS). Significant enhancement of spontaneous
emission rates has been demonstrated in optical cavities
[6,7], nanophotonic waveguides [8], and surface plasmon
modes [9], while suppression of spontaneous emission has been
measured in the bandgap region of a photonic crystal [10].

Recently, there has been a growing interest in quantum
emitters coupled to planar nanostructures due to the potential
of the platform to create high-efficiency light–matter interfaces.
An efficient interface would have a wide range of applications,
from building quantum networks [11] to efficient quantum
computation [12,13]. Indeed, different quantum emitters such
as quantum dots [14–18], diamond color centers [19,20], and
atoms [21,22] have been efficiently coupled to planar nano-
structures. Planar photonic crystals typically only possess a
bandgap for a single polarization and for in-plane guided

propagation. Nevertheless, this partial bandgap can greatly re-
duce the LDOS for transition dipoles lying in the middle of the
waveguide (z � 0 plane in the rest of the paper) by suppressing
the coupling rate to the radiation modes, and therefore decrease
the spontaneous emission rate of embedded quantum emitters
[10,23]. By creating waveguides or cavities in the bandgap fre-
quency range, the spontaneous emission can preferentially be
directed with very high efficiency into a single mode. A com-
bination of suppression of the coupling to the radiation modes
and enhancement of coupling to a photonic-crystal waveguide
(PCW) mode has been predicted to enable a deterministic sin-
gle-photon source [24,25]. The fraction of emitted light that is
coupled into the waveguide is defined as the β factor. The cou-
pling of single quantum dots to PCWs has been studied by
several groups [8,26–28], and a record value of β > 98.4%
was recently achieved [29].

An important feature of PCWs is their wide bandwidth con-
trary to cavities. However, the β factor depends significantly on
the spatial position of the emitter in the PCW due to the cou-
pling to the waveguide mode as well as the coupling to radiation
modes. The spatial and spectral dependencies of the coupling to
the PCW guided mode are well understood [30], since they can
be obtained from eigenfunctions computed using standard
techniques, e.g., the plane-wave expansion method [30,31].
In contrast, the spatial and spectral dependencies of the
unguided radiation continuum in PCWs have thus far only
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been quantified at certain spatial positions [25,32]. A full map-
ping of the radiation modes is essential in order to find the β
factor and thereby determine how large coupling efficiencies
may be obtained under experimentally realistic conditions.

In order to accurately map out the position dependence of
the β factor, we develop the necessary tools to carry out a
detailed analysis of the LDOS in a PCW. The main challenge
in modeling an infinite PCW in a finite computation domain is
that, along the propagation direction, open boundary condi-
tions are required. Although perfectly matched layers are typ-
ically good approximations for open boundaries, they fail in
inhomogeneous dielectric structures [33], particularly at low
group velocities. To overcome this problem, we derive
Dirichlet boundary conditions, whose phase and amplitude
match a propagating PCW mode excited by a dipole at an ar-
bitrary point inside the waveguide. Armed with these boundary
conditions, we compute the LDOS contribution from the ra-
diation continuum for a range of frequencies across the wave-
guide band. We show that the coupling to the radiation
continuum is highly suppressed in a PCW. We map out the
dependence of the coupling to the radiation continuum on
the position, frequency, and orientation of the dipole. The re-
sulting β factor is remarkably robust to spatial position, dipole
orientation, and spectral tuning of the emitter, a fact which has
been confirmed experimentally [29].

This paper is arranged as follows: Section 2 discusses the
different decay channels for an emitter embedded in a PCW
and introduces the parameters that govern the emitter dynam-
ics. Section 3 includes the details of the simulations. We
present and discuss the results of the numerical simulations
in Section 4. Section 5 sums up our results and gives an over-
view of various applications that could benefit from an efficient
light–matter interface. The two appendices include the conver-
gence tests, as well as a short overview of the decay dynamics of
an emitter in a photonic crystal and comparison to a PCW.

2. ELECTRODYNAMICS OF A QUANTUM
EMITTER IN A PCW

Figure 1(a) shows the band diagram of the transverse electric
(TE) modes of a W1 PCW membrane [30]. Inside the

bandgap, light is mainly guided by three highly confined wave-
guide modes, and by matching the PCW to the targeted emit-
ter, the emitter is typically coupled to a single propagating
mode [cf. Fig. 1(a), solid black lines]. The waveguide modes
are highly dispersive, and the group velocity of the mode is re-
duced as its frequency approaches the band edge, where the
slow-down factor ng � c

dω∕dk (also known as the group index)
ideally diverges. Due to the partial bandgap of the 2D PCW
membrane, there exists a continuum of modes that are not
guided by the waveguide and leak to the surrounding environ-
ment [blue area in Fig. 1(a)]. In real PCWs, unavoidable fab-
rication imperfections influence light transport, leading to
multiple scattering effects. As a consequence, the guided mode
is coupled to radiation modes or back-scattered to the oppo-
sitely propagating mode in the waveguide [34–36], which
has been quantitatively studied in Ref. [37]. Effects of disorder
become dominating for long waveguides and large group indi-
ces, and may be eliminated by reducing both. In the present
work we only consider PCWs where effects of disorder are neg-
ligible, which in practice means that we consider quantum
emitters coupled only to moderately large values of ng � 100.
Such a slow-down factor is experimentally achievable [29].

An emitter embedded in a PCW can emit photons either to
the guided modes of the PCW or to the radiation continuum,
as schematically illustrated in Fig. 1(b). The general form for
the spontaneous emission rate of an excited emitter with an
arbitrarily oriented transition dipole moment d can be related
to d and the projected LDOS as [14,38]

γ � πω

ℏϵ0
jd j2ρ�ω0; r0; nd�; (1)

where

ρ�ω0; r0; nd� �
X
k

jnd · u�k�r0�j2δ�ω0 − ωk�; (2)

nd is a complex vector with unit length oriented along the di-
pole moment, ρ�ω0; r0; nd� is the projected LDOS, uk denotes
the electric field eigenmode, and

R
ϵ�r�uk�r� · u�k�r�d3r � 1.

The modes in Fig. 1(a) are classified into three categories:
the guided modes of the PCW, the slab guided modes present
outside the bandgap region [gray region in Fig. 1(b)], and the
continuum of radiation modes [39]. At each frequency, the to-
tal decay rate of the emitter can be written as a sum of the con-
tribution from these three sets of modes in addition to any
residual contributions from coupling to transverse magnetic
(TM) modes, i.e., γtotal�ω� � γwg�ω� � γrad�ω� � γslab�ω��
γTM�ω�, where the explicit dependence on spatial position
and dipole orientation has been omitted for brevity. The β
factor quantifying the fraction of radiation coupled to the pri-
mary waveguide mode is defined as β � γwg

γtotal
. Ideally, one is in-

terested in coupling a quantum emitter to a single optical
mode, as it allows the quantum emitter to be used for a wide
range of applications [11,14], which requires suppressing the
interaction between the quantum emitter and the unwanted
optical modes. This can be done either by designing the nano-
structure to spectrally detune the unwanted optical modes
from the resonance of the quantum emitter, or by placing
the quantum emitter in a node of the unwanted optical modes.
In the case of the TM modes, this can be done by placing the

(a) (b)

Fig. 1. (a) Band diagram of a PCW in a membrane for TE modes.
The solid black lines are the guided modes of the waveguide. The gray
regions mark the membrane guided modes. The blue region is the
continuum of the radiation modes that are not bound to the mem-
brane. The red circle and square mark the frequencies corresponding
to ng � 5 and ng � 58, respectively. (b) Sketch of a quantum emitter
in the middle of a PCW, showing the coupling to radiation continuum
(γrad) and to the guided mode (γwg).
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quantum emitter on the symmetry plane (z � 0) and making
sure that the transition dipole moments are oriented along the
symmetry plane. In this case, no coupling to TM modes would
be present, i.e., γTM � 0. The frequency range of interest for a
PCW single-photon source is mainly the primary guided mode
in the bandgap region, where also γslab � 0.

The contribution to the β factor describing the coupling
to the waveguide, γwg, is straightforwardly determined by
computing the eigenvalue and the corresponding eigenvectors
of the electric and magnetic fields Epg�ω; r�, Hpg�ω; r�
[25,32,40,41]. The corresponding Purcell factor is defined as

Fwg
p � γwg

γ0
� 6π2c3ϵ0jEpg · n�dj2

ω2
R
unitcell d

3rnRe�Epg ×H�
pg�∕a

; (3)

where n is the refractive index of the membrane material, a is
the lattice constant of the PCW, and γ0 � nω3d2

3πϵ0ℏc3
is the decay

rate of an emitter in a homogenous material of refractive
index n.

3. COMPUTING THE COUPLING OF A DIPOLE
TO THE RADIATION CONTINUUM

In this section, we detail how to extract the contribution of the
coupling to the radiation continuum to the β factor, i.e., γrad,
which is the most challenging part of the problem. This
coupling is quantified by the Purcell factor of coupling to
the radiation modes, which is denoted F rad

p . It is given by
F rad
p � γrad∕γ0 � Prad∕P0, where P0 and Prad are the power

emitted from the dipole in the reference medium and the power
emitted to the radiation modes in the nanophotonic structure,
respectively. The total power emitted from the dipole can be
extracted by integrating Poynting’s vector over a closed surface
around the dipole, i.e., Ptotal � 1∕2Re�H ds · E ×H��. The
Purcell factor can thereby be determined.

A main consideration in numerical simulations of optical
problems is to ensure proper convergence, i.e., the computed
quantities must not depend on the physical size of the compu-
tational domain. At the same time, it is desirable to limit the
geometrical size of the simulation domain as much as possible
in order to make the simulation efficient. A general approach to
tackling these problems has been to introduce an absorber in
the boundaries of a finite simulation domain and adiabatically
absorb the incoming wave [42,43]. This can be applied when
the geometry of the computational domain is invariant in the
direction perpendicular to the boundary and the solutions are
propagating waves rather than evanescent fields. In the case of a
PCW, the simulation domain is invariant at the z boundaries.
Moreover, the waveguide mode has a very low intensity at the
y boundaries and the simulation domain can be terminated us-
ing a homogenous domain. Hence, we can apply perfectly
matched-layers (PMLs) at these boundaries. However, this is
not applicable along the propagation direction (x) in the
PCW. The generalization of PMLs to photonic-crystal wave-
guides is challenging [33], particularly for slowly propagating
Bloch modes.

Instead of using PMLs along the direction of the waveguide
(x), a better choice is to introduce Dirichlet boundary condi-
tions for the purpose of mimicking an open system. This

corresponds to setting E jx	 � C	 at the two ends of the wave-
guide (x	), where C	 is the Dirichlet boundary condition for
the electric field. In general, C	 has contributions both from
the primary mode of the waveguide and the radiation modes,
but the main contribution stems from the guided mode of the
waveguides that are extended by many optical wavelengths, i.e.,
the contributions from radiation modes are negligible. This is
checked explicitly by running a convergence test while varying
the length of the simulation domain. Since the Purcell factor of
the guided mode is known, one can quantify the power that the
dipole radiates to the guided mode. With the knowledge of the
Bloch wavevector of the guided mode, we can therefore deter-
mine both the phase and the magnitude of the guided mode at
the edge of the computation domain for a given dipole. This
determines the phase and amplitude of the Dirichlet boundary
condition. The electric fields at the right and left boundaries
(x� and x−) can be written as

E jx	 � −jAr�l�
0 je−iϕ�r0�E���

pg �x	�e	ikx	 ; (4)

where r0 is the position of the dipole in the unit cell and ϕ�r0�
is the phase of the projection of Epg on the dipole at the
position r0. The amplitudes Ar�l�

0 can be calculated from the
knowledge of the guided modes of the PCW using
the Green function formalism. For linear dipoles, these
amplitudes simplify to

jAr
0j � jAl

0j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fwg
p P0

1∕a
R
unitcell d

3r Re�E�
pg ×Hpg�

s
;

ϕ � arg�−iEpg�r0� · d�: (5)

The term in the denominator is the average power in the cross
section of the eigenmode. γrad can subsequently be calculated as
the difference between γwg and γtotal. The particular form of the
boundary conditions in Eq. (4) assures that both in-phase and
out-of-phase reflections from the boundaries are suppressed.
However, for a PCW typically γrad ≪ γwg, and even small
reflections and numerical inaccuracies in γwg or γtotal limit
the obtainable precision of γrad. This can be circumvented
by calculating γrad directly by integrating Poynting’s vector over
a sheet surrounding the dipole and leaving out the integration
over the boundaries normal to the waveguide direction. This is
indicated by the green box in Fig. 2, which illustrates the geom-
etry of the computation domain. The sheet extends inside the
membrane and the U-like shape of the sheet helps to reduce the
simulation domain in the y direction. Due to the symmetry of
the structure and the position of the dipole being in the center
of the slab, the solutions of Maxwell’s equations are eigenvec-
tors of the mirror symmetry operator about the z � 0 plane. As
a result, the simulation domain can be cut in half along this
symmetry plane with the following boundary conditions:
Ez�z � 0� � 0 and ∂

∂z fEx; Eygjz�0 � 0. The PCW mem-
brane has a length of l � �2n� 1�a and a width of
w � ffiffiffi

3
p �2m� 1�a, and is surrounded by an air box of height

Dz . The refractive index of the PCW slab is chosen to be 3.5,
corresponding to the refractive index of GaAs. The simulation
domain is encapsulated by PMLs on all sides (blue box in
Fig. 2). The width of the PML layer is W PML. Dirichlet
boundary conditions override the PMLs on the two ends of
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simulation domain normal to the waveguide direction (red
plane in Fig. 2). The heights of these planes are hbnd and they
cover the full waveguide in the y direction. The green box in
Fig. 2 resembles the box that captures the radiation modes. l b,
wb, and hb are the length, width, and height of the radiation
box. Note that Fig. 2 is not to scale.

We assume a PCW with periodicity a � 240 nm, hole ra-
dius r � a∕3, and a membrane thickness of d � 2

3 a. The
length of the simulation domain is l � 33a. Table 1 presents
the rest of the parameter values that were used in the compu-
tations presented in the paper. We use a radiation box which is
slightly smaller than the full simulation domain (l b ∼ 0.94l ) in
order to avoid direct scattering from the boundaries to the ra-
diation box. To establish these numbers we have carried out
rigorous convergence tests. Appendix A contains the results
of some of the convergence tests for the most sensitive param-
eters, l , lbnd, and hb. From the convergence test results, we
estimate that the values of γrad are accurate to within 5%.

The simulation procedure can be summarized as follows:
We first carry out an eigenvalue calculation to determine
the eigenfrequency, group index ng , eigenvector of the primary
guided mode, and Fwg

p for a given dipole position. Using
Eq. (4), we determine the correct amplitudes for the respective
boundaries of the waveguide. We use a small linear current
element oscillating at frequency ω as a current source and
run a finite element frequency domain simulation of a dipole

in a PCW with the correct boundary conditions. The total
power emitted from the waveguide is calculated by integrating
Poynting’s vector over a small box around the current element.
The coupling rate γrad is extracted by integrating Poynting’s
vector over the radiation box. We repeat all the simulations
for ng � 5, 20, 58, and 120. These correspond to realistic val-
ues of the slow-down factor of light, which have been obtained
experimentally in GaAs PCWs [29,44].

We use the finite element package COMSOL to carry out
the numerical simulations. We run these simulations on a
Linux server with four CPUs, each with four cores (Xeon
E5-2620) and 256 GB of random access memory. We use a
mesh with tetrahedral elements of varying size to accurately
map out the features of the PCW. The maximum distance be-
tween the mesh nodes in each of the simulation domains is
0.41a∕n, where n is the refractive index of the domain. The
length of the simulation domain is 33a for the simulations
reported in the rest of the paper, unless specified otherwise.
For these parameters, the linear system of equations includes
around 20 million degrees of freedom. It takes 1 h to solve
for the electric field and LDOS for each dipole orientation,
position, and frequency. We use the general residual method
(GMRES) to diagonalize the resulting matrices, and multifron-
tal massively parallel solver (MUMPS) on a coarse mesh to
obtain the precondition for the iterative solver.

4. RESULTS

The Purcell factor of a quantum emitter coupled to a waveguide
is an important figure of merit, determining the rate of photon
generation and the ability to overcome decoherence processes.
We first use the frequency domain eigenvalue calculations to
reproduce the very well-known results for Fwg

p , Purcell fac-
tor due to coupling to the waveguide mode [32]. Figure 3
shows the position and frequency dependence of Fwg

p for
x- and y-oriented dipoles within a unit cell of the waveguide.
The four columns correspond to dipoles at different frequencies
ng � 5, 20, 58, and 120, respectively. The Purcell factor is less
than 1 at ng � 5, but it scales linearly with the group index and
reaches 23 at ng � 120. These results compare very well to the
previous reports [32,35]. At the band edge of the waveguide,
the group index and consequently the Purcell factor diverge.
However, in practice this Van Hove singularity in the LDOS
is damped by Anderson localization of light induced by
unavoidable fabrication disorder [45].

The actual excitation of the waveguide mode by a dipole
emitter is shown in Fig. 4, which plots jEj for a y-oriented
dipole in the antinode of the Ey field for ng � 5 and
ng � 58, corresponding to fast and slow light propagation
in the PCW. The plots are zoom-ins around the position of
the dipole, and it should be mentioned that the color bars have
been saturated since jEj diverges at the position of the point
source. Furthermore, a “chevron feature” in the field profile
is observed around the dipole, which is a manifestation of di-
pole-induced light localization coming from the coupling to
evanescent modes of the PCW [2,46–49]. We also observe that
the Dirichlet boundary conditions suppress the reflections from
the boundaries of the simulation domain very effectively, i.e.,
the field intensities on the right-hand and left-hand sides of the

Fig. 2. A cut through the simulation domain. The blue box is the
PML layer around the air domain. The green box is the integration
surface that captures the radiation modes, and the red plane is where
the Dirichlet boundary conditions are applied.

Table 1. Parameter List

Parameter w Dz l b wb hb hbnd
Value 9

ffiffiffi
3

p
a 6.6a 31a 8

ffiffiffi
3

p
a 2.5a 2a
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simulation domain are uniform (within ≈7%), as expected
from an infinite system. The field profiles plotted in Fig. 4
are subsequently integrated, as detailed in the previous section,
in order to extract coupling to radiation modes.

Subsequently we discuss the results of the computations of
the coupling to radiation modes. Figure 5 shows the position
dependence of the Purcell factor associated with the coupling
to radiation continuum, F rad

p � γrad∕γ0, inside one unit cell.
These results have been reconstructed by placing a dipole at dif-
ferent positions in the PCW, extracting F rad

p as described in
Section 3 for each position, and then interpolating the results
to create Fig. 5. We find that the suppression is better than a
factor of 10 for most spatial positions in Fig. 5, and importantly
F rad
p has a complex spatial structure. On the contrary, the

frequency dependence of F rad
p is rather weak and, e.g., changes

only about 10% for a y-oriented dipole between ng � 5

and ng � 120. The smallest achievable Purcell factor is F rad
p �

0.005, i.e., suppression of radiation modes by a factor of 200
relative to the emission rate of the dipole in a homogeneous
medium. The strong suppression of radiation modes in 2D
photonic-crystal membranes was first predicted in Ref. [23]
for photonic crystals without defects. Interestingly, the suppres-
sion achieved in a PCW reaches the value obtainable in a pho-
tonic crystal without defects, demonstrating that the missing
row of holes in the PCW does not induce additional leakage

(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 3. Spatial map of the waveguide Purcell factor, Fwg
p , for x- and

y-dipole orientations (upper and lower row, respectively) and for
modes with different group indices: (a) and (b) ng � 5; (c) and
(d) ng � 20; (e) and (f ) ng � 58; and (g) and (h) ng � 120. The
white circles represent the air holes. The light–matter interaction is
enhanced as the light propagation slows down, and hence the maxi-
mum value of Fwg

p increases. The spatial dependence of Fwg
p follows

the Bloch mode of the PCW.

(a)

(b)

Fig. 4. Spatial map of the magnitude of the electric field generated
by a y-dipole placed in the antinode of Ey for (a) ng � 5 and
(b) ng � 58. The blue arrow shows the dipole and its orientation.
The color scale is saturated at the point of the dipole.

(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 5. Map of the coupling to the radiation modes as quantified by
F rad
p for x- and y-dipole orientations: (a) and (b) at ng � 5; (c) and (d) at

ng � 20; (e) and (f ) at ng � 58; and (g) and (h) at ng � 120. We find
F rad
p ≤ 0.13 for all positions and a minimum value of F rad

p � 0.005.
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of the light from the membrane; see Appendix B for further
details.

Finally, the spatial map of the β factor and its frequency
dependence is investigated (see Fig. 6). Here, the green and
the blue contours correspond to β � 0.80 and β � 0.96, re-
spectively. Note that the implemented color bar showing the
magnitude of the β factor is highly nonlinear. Even at low
ng , cf. Figs. 6(a) and 6(b), a large β factor can be achieved
(higher than 96%) although limited to relatively small spatial
regions in the PCW. Increasing ng by moving into the slow-
light region [cf. Figs. 6(c)–6(h)] increases β factor significantly,
and we find β ≥ 0.96 for a very wide range of dipole positions.
More quantitatively, for any dipole located within	a from the
center of the waveguide, β ≥ 0.96 at the experimentally achiev-
able value of ng � 58. This demonstrates the remarkable
robustness of the β factor towards spatial and spectral detuning,
which was already confirmed experimentally where the statistics
of the β factor of more than 70 different quantum dots in a
PCW were reported [29]. It is also worth mentioning that it
takes between 55 and 60 h of computation time to produce
one of the panels in Fig. 6.

Disorder in the position and shape of the air holes affects the
performance of photonic-crystal nanostructures [36,50]. In the
context of the classical light transport, it is well established that

disorder can induce out-of-plane losses, backscattering, and
localization [34–36,45,50–53]. Around the band edge of the
waveguide, and typically within 3–4 nm from the band edge,
a series of Anderson localized modes limit useful bandwidth of
the waveguide. In the context of light–matter interaction, the
disorder-localized modes can inhibit or enhance the interaction
between the quantum emitter and the disorder localized mode
[54,55], which is more relevant close to the band edge, as dis-
order-induced localization is most significant in this region.
Moreover, disorder can break the symmetry of the structure
in the z direction and hence mix the TE and TMmodes, which
can result in coupling between the quantum emitter and the
TM modes. However, away from the band edge, these fluctua-
tions are unlikely to affect the β factor significantly. A recent
experimental study already confirmed strongly suppressed cou-
pling of quantum emitters to the radiation modes [10] in the
presence of typical amounts of fabrication disorder. Appendix B
shows the numerically expected Purcell factor of coupling to
the radiation modes for ideal dipoles positioned in the bandgap
of a perfect photonic crystal. The results reported in Ref. [10]
are comparable to the numerically expected values, and hence
indicate that the typical amounts of disorder that are encoun-
tered in the state-of-the-art nanofabrication methods are not
detrimental for achieving high coupling efficiency between
the waveguide mode and the embedded quantum emitters.
A more quantitative conclusion would require numerical
modeling of dynamics of emitters in the presence of disorder,
which is outside the scope of this paper.

5. CONCLUSIONS

We have presented detailed numerical calculations of the β factor
in a PCW. A key step has been to adopt mixed boundary con-
ditions, i.e., Dirichlet boundary conditions at the terminations of
the waveguide and PMLs at the other boundaries to treat the
radiation modes. Based on this approach, we calculated the cou-
pling rate from a quantum emitter to different optical channels
in a PCW. We achieve an accuracy of better than 1% of the
estimation of the β factor. Thanks to the speed of our numerical
method, we accurately mapped out the position dependence of
the β factor which had been missing so far. Our results show that
the coupling from the emitter to the radiation continuum is
highly suppressed compared to an emitter in a homogenous
medium. The spatial dependence of γrad quantifies that a sup-
pression factor larger than 10 is achieved for most regions in the
PCW and for all frequencies of the waveguide band. As a direct
consequence, the β factor is close to unity for essentially all emit-
ter locations in the PCW, even for moderately slow light propa-
gation. The detailed simulations confirm the remarkable
robustness of the β factor against spatial position and frequency
of the quantum emitter. Such a high coupling efficiency is of
importance for a wide range of photonic quantum technology
applications, including on-demand single-photon sources,
multi-qubit gates [56], and single-photon transistors [57,58].

APPENDIX A: INFLUENCE OF THE SIMULATION
PARAMETERS ON γrad
Figure 7 presents some of the convergence tests carried out to
ensure the validity of the simulations and to justify the choice of

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 6. Map of the β factor for x- and y-oriented dipoles: (a) and
(b) at ng � 5; (c) and (d) at ng � 20; (e) and (f ) at ng � 58; and (g)
and (h) at ng � 120. The green and blue contours correspond to β �
0.8 and β � 0.96, respectively. Note that the highly nonlinear scale
bar (i.e., β) is close to unity in very large spatial ranges.
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the radiation box size. We choose γbox∕γrad as the target
parameter for the convergence tests, where γbox is the amount
of radiation captured by the radiation box of size hb and l b, and
γrad is the value reported in Fig. 5. From Fig. 7(a), we conclude
that for l b∕a > 25 and hb∕2dz > 4, the value of γbox is inde-
pendent of the size of the box to within 5%. Furthermore, the
convergence of γrad with the size of the actual simulation
domain is plotted in Fig. 7(b), displaying a similar precision.
These convergence tests were carried out for a y-oriented dipole
at the Ey antinode and with ng � 58. We repeated the same
tests for dipoles at a few more positions, orientations, and
frequencies with very similar results.

APPENDIX B: POSITION AND FREQUENCY
DEPENDENCE OF COUPLING TO RADIATION
MODES IN A PHOTONIC CRYSTAL

As a comparison, we present the position and frequency
dependence of F rad

p for dipoles located in a photonic-crystal
membrane without any waveguide defect region. These
simulations were carried out in a similar fashion as for the
PCW case, but they did not require Dirichlet boundary con-
ditions as the photonic crystal already suppresses the light
propagation, and hence PML boundary conditions are
adequate. Figure 8 maps out the position-dependence of
F rad
p inside the bandgap of a photonic crystal for two orthogonal

dipole orientations. Furthermore, the frequency dependence of
F rad
p for an emitter in the photonic crystal is displayed. The

bandgap of the photonic crystal extends from a∕λ � 0.256
to a∕λ � 0.360. The main feature is the inhibition of sponta-
neous emission inside the bandgap of the photonic crystal,
which reaches values as high as 168. These values are very sim-
ilar to what is found in PCWs (see Fig. 5), and hence we con-
clude that the missing row of holes in the PCW does not
significantly alter the coupling to the radiation modes. We note
that these results compare very well to the values reported
in Ref. [23].
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