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Abstract: Propagating quadrature squeezed light through a multiple
scattering random medium is found to induce pronouncedadgatantum
correlations that have no classical analogue. The coivakare revealed in
the number of photons transported through the sample thdieaneasured
from the intensity fluctuations of the total transmissiomedtection. In con-
trast, no pronounced spatial quantum correlations appetfiei quadrature
amplitudes where excess noise above the shot noise lewelns f
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1. Introduction

Multiple scattering of light is an interdisciplinary reseh field that connects traditionally re-
mote areas such as optical communication [1] or acous@¢ald biomedical [3] imaging to
fundamental physics studies of Anderson localization @ifitli{4, 5]. Most work on multiple
scattering concerns situations where a classical deggript both light and matter is sufficient
[6]. A notable exception is the case of coherent backsdagiétom cold atomic clouds that can
only be explained by implementing a quantum theory of mgteiQuantum optics studies of
multiple scattering, where light is quantized, have onlgrbmitiated recently [8, 9, 10, 11, 12].
A surprisingly rich variety of new phenomena is encountdrethe quantum optics theory,
including the identification of spatial [9] and frequenc@[fjuantum correlations, and the in-
formation capacity transmitted through a multiple scaigemedium [11]. Experimental work
on transport of optical quantum noise was only initiated/vecently [12].

The present paper concerns the transport of quadraturezepidight through a multiple
scattering random medium. Quadrature squeezed light cgarmrated iry(? frequency con-
version processes such as frequency doubling or opticahpetric oscillation [13]. Previous
work on scattering of squeezed light has been performed trg Bad Beenakker who studied
the degradation of squeezing due to absorption and amliiicim a random medium [8]. Here
we investigate to what extent quantum correlations of szerbdight survive multiple scatte-
ring. The outcome is found to depend significantly on the ipatars extracted. Thus, excess
guantum fluctuations are encountered in the quadratureitantgs, which can be traced back
to the randomization of the optical phase from multiple t&eatg. In contrast, pronounced spa-
tial quantum correlations can be found in the number of pi®#s was studied in [9] for the
case of thermal states and Fock states. In the present mgmgpatial photon correlations are
found to be induced by multiple scattering of quadratureesged light, and the nature of these
correlations differs when comparing amplitude squeezgtt to phase squeezed light.

2. Quantum optical model for multiple scattering

We describe the propagation of light through a multiple tecatg random medium. The
medium consists of a random distribution of particles treathehave a high cross-section for
light scattering. Such samples can be fabricated, e.g.fibgligg or electrochemical etching of
a high refractive index substrate [14]. The characteristigth scale that describes the multiple
scattering strength is the transport mean free paththe transport mean free path is much
shorter than the thickness of the samflex L), light is multiply scattered in the medium.
As a consequence, an incident wave will be diffused by theiunedvhereby the propagation
direction is randomized. Hence the multiple scattering inmadsplits the incoming beam into
a distribution of different output wavevectors that formaume speckle pattern. In the ex-
treme case where the transport mean free path becomes @iieptr the optical wavelength
(¢ ~ A) light diffusion is significantly altered and eventually bks down. In the present work
we restrict to the case where multiple scattering is wedledibed by diffusion theory, which
corresponds to the casedf« ¢ < L.

We wish to calculate the electric field of light that has beeuitiply scattered in the medium.
Multiple scattering in the diffusive regime can be desdlilas the result of many independent
random events. We discretize the system and allowNfdnput k-vectors (labelled’) and
N output k-vectors (labellety), cf. Fig. 1. The electric field in an arbitrary output 'chafin
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x=aorx= bis found by summing over a number of partial waves,Egr,t) =3 Aje¥

[15]. From the central limit theorem it immediately followisat the multiple scattering statis-
tics is Gaussian [16], which means that the electric fielceotitbn and transmission coeffi-
cientsraa; = Eg}"/Eg} andtap, = Eg}“/Eg} are complex Gaussian random variables. Hence

Faa; = \/Raa, € 71 andtap, = ,/Tap, € “* where the phase is uniformly distributed in the
interval|— 1T, 7} while the intensity amplitudeRandT are described by Gaussian statistics. The
ensemble averaged reflection and transmission coefficeatgiven byRaa; = (1—¢/L) /N
andTab, = ¢/LN [6]. The uniform distribution of the phase impligga, = @b, = 0.

The above discussion of the reflection and transmissiorstwity for a classical description.
When describing quantum optical properties of light, suctth@squantum fluctuations, the
theory must be generalized. The difference between thetgumaand classical theory is that
in the former we explicitly have to include input from all apehannels even the ones where
no light is injected. Thus, the contributions of vacuum fluations in all open channels are
crucial in quantum optics. The quantized electric field eorg the annihilation and creation
operatorsaanda [13]. The annihilation operators for output chanrelsr b are related to the
annihilation operator of all input channels through theregpion [8, 9]

&= ;ta/bég) + g Mybdly- (1)

Here we use the notation thatdenotes channels to the left abdchannels to the right of
the medium, c.f. Fig. 1. A similar expression can be giventfier operatoias, which is ob-
tained from Eq. (1) by substitutingy, — ty, andtyy, — rya. The operatorsl? and&l? de-
scribe the quantum state of all open channels, and even icagewhere no light is coupled
through a channel there will be an important contributicnfrvacuum fluctuations. The in-

put annihilation and creation operators obey the comnuna'élations{ég), (é';),)q =Oxa

{ég), (ég),)q = Oy 1, While all other commutation relations vanish. Note that @¢ describes
the very general situation dff input modes coupled tdl output modes, while the specific
characteristics of the multiple scattering random mediuenc@ntained in the reflection and
transmission coefficients. Eq. (1) can be used to evaluatprtbpagation of any quantum state
of light propagating through a lossless multiple scattgrimedium. In the present work we
describe the particular case of squeezed light.

3. Transport of quadrature squeezed light through multiple scattering medium

The quadrature amplitude representation is relevant fecrit®@ng quadrature squeezed light
generated, e.g., by® nonlinear processes. We introduce- 3+ 4" andg= —i(4— ") that
correspond to the real and imaginary components of the aogdectric field. A quadrature
minimum-uncertainty squeezed state can be described lppérators [13]

)25 =X+ eis)’zw (2)

where the operatorg andpy represent quadratures of the vacuum stea@dp are the classical
amplitudes, andis referred to as the squeezing parameter. Evaluating #gtguon expectation
values(O) and the varianc€r0)? = (O?) — <(5>2, the input squeezed state is characterized
by: (%) = X, (Ps) = P, (Axs)? = €25, (Aps)® = €%, where it has been used th&t) = (py) =0
and(Ax,)* = (Apy)? = 1.
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Fig. 1. lllustration of quadrature noise measurements of light transmittedgh a multiple
scattering medium. A squeezed state of light is injected through input ehagnvhile
vacuum fluctuations contribute to all other open channels (indicated byldot®vs). The
quadratures amplitudes of the light transmitted to chabnedin be measured by phase
sensitive homodyning with a strong classical local oscillator (LO). Bysiay the LO
phase either thg or p quadrature can be obtained by subtracting the two photo currents,
and their fluctuations can be recorded with a spectrum analyzer. ThHedlions in the
photon number is obtained by blocking the LO and adding the two photatsirre

Eqg. (1) can be expressed in terms of the quadrature ampiteti/ant for describing quadra-
ture squeezed light:

X = Y VTap [coS@yuRY — singyppl | + g /R [cos@ypRy — singypPhy],  (4)
a/

Py = Z /T [COS@a P + SingpX0] + g v/Rob [cOos@yp Pl +singypRy] . (5)
a

Commutation relations impl)[f(bi,ﬁbj} = 2idy, b, and by evaluating{ib“ﬁbj} and [)A(bi,f(bj}
explicitly, the following useful identities can be derived

; \/m [COS%/bi COSyb; + SiNQy, sin(pa,bj}
+ g \/W [coswdbi COS@yp; + SNy, sincpdbj} = Oy b, (6)

Z Tarby Tty [SiN@y1, COSPyb, — COSQyp, SINQy, |

a
+ g /Ry, Rorb, [SiN@y, COSPyL, — COSPyh, SiNGyL, | =0 (7

In addition to quadrature amplitudes also the number ofgtmtransported through the sample
will be evaluated. The photon number operator is defineu-asi"a and using Eq. (1) leads to
the relation

Ay = a8, = > tptarpAl A + > (ol oAl Ay + > [t;,brt,ba; a +hc|, (@8
aa’ b0 au
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where “h.c.” means Hermitian conjugate. Similar expressifor the quadratures and photon
number for channela to the left of the medium could be equally stated. Howevarpfevity
we will in the following sections detail only the calculati® for transmission, while the cor-
responding reflections can be obtained by a equivalent legilcn and the results will only be
stated.

4. Quadrature amplitude correlations due to multiple scattering

Consider the situation where quadrature squeezed ligbtigled through a single input chan-
nel denoteday. We wish to evaluate the expectation value, quantum fluiclosit and spatial
correlation for the light transmitted through the sampliee Expectation value of the quadra-
ture amplitude can be obtained experimentally from theay@photocurrent in the homodyne
detector of Fig. 1. The quantum fluctuations of a certain aiutpannel can be measured from
the fluctuations of the photocurrent while spatial coriels between two different output
channels are revealed in the fluctuations of the total trasssam [9].

4.1. Expectation values

In evaluating the expectation value of an observable in atgud channel, only the contribution
from the input coupling channeb needs to be included. Thus, for the input vacuum channels
a # ag or b/, the expectation values vanish, i{&0) = (p) = (%0) = (pI") = 0, which by
substitution into Egs. (4-5) leads to

(Ro) = /Tagh [COSPah (Rap ) — SiNGgp (B )] ©)
(o) = /Taoh [COSPag (Pl ) +SiNGagh (%)) - (10)

These results are identical to the predictions of a purelgsital theory for multiple scattering.
It reflects the fact that quantum optical signatures arealedein thefluctuationsof light and
not in the expectation valueSince the phasey,, is a random variable, Egs. (9-10) describe
a spatial volume speckle pattern expressed in the quadrataplitudes. Due to the random
phase shift encountered in the multiple scattering prodbssquadrature amplitudes vanish
when averaging over all ensembles of disord@p) = (fp) = 0, which is the well-known
classical result [15]. In contrast, the ensemble averageaber of photons does not vanish as
we will see in the following section.

4.2. Quantum fluctuations and spatial correlations

Quantum signatures of light are revealed, e.g., in the gumafitictuations. Other inherent quan-
tum signatures can be found from the temporal photon cdiwakthat are measured in a Han-
bury Brown-Twiss experiment [17], or through the spatiadlague where correlations between
two different positions are considered [9]. In order to oédée the variance and the spatial cor-
relation function we need to evaluate the product of two gatade amplitudes in two channels
bi andb;. The variance is obtained faw = b; and the spatial correlations foy # b;j. Egs. (4)
and (5) lead to

<>?bi ﬁbj> = Z\/Ta’biTa’bj [COS@yp, COSPyp, <( 20) >— COS@yp; SINQyp,
a

(%
— SiN@yp, COSPyp, (PORD) + sin@yp, Sinqﬂa/b,< >
+ bZ \/W [Cos%lbi COS(po/bj <()2I ) > - COS(po/bl S|n(po/b] <)'zltl),'| pb’>

— SiN@yp, COSGyp, (PR ) + SiNGyp, SNy, <(ﬁw)2>]

pa’ >

#70880 - $15.00 USD Received 11 May 2006; revised 30 June 2006; accepted 4 July 2006
(C) 2006 OSA 24 July 2006/ Vol. 14, No. 15/ OPTICS EXPRESS 6923



(11)
<ﬁbi I5b,-> = Z Tatt Tarh, [COS@y1y, COSp, <([5'a,) >+coscpa/b SiNgy, oKD
a

+ g \/ R Rop, [COS@yr, COSyh, <(I@i ) >+COS<Po'b Sin@yp,

(p
+SiN@yp, COSP; (R BY) + SiNGuty SNy, < >
(B
+ SNy, COS@yp, (R By ) +SiN@yp, SNy, <

b’Xb/
).
(12)

As opposed to the calculation of the expectation valuesérptievious section, it is here cru-
cial to include contributions from vacuum coupled througlopen channels. Thus, vacuum

fluctuations imply< ()”(2))2> = <(>2'g))2> = <(f)'§)2> = <(|6g2)2> =1 for all & # ap andb'.
Furthermore, the product of quadrature amplitudeadp can be evaluated identically for any
of the input channel:

(s5p) = (e = (- (a7 + @) (8- @) =i ([az. @)']) =i @93

and similarly( pgn) = (pIKN) =
Consider now a squeezed state coupled through chagnehich is squeezed in the quadra-

ture amplitudex, i.e. (R ) = x, (pl ) = p, (Ax'”) = exp(—2s), (Ap{%)z = exp(2s). These
relations imply that< (48] > =X te and<(pao)2> = p? 4 €, which can be substituted
into Egs. (11) and (12) together with the above relationglfervacuum channels. We obtain

Xp; b; = Oy b; + 1/ Taghi Tagh; [cos%obi COSPhgp; (€% — 1) +SiN@hgp; SiNGgp; (€°— 1)} :

(14)
Poi b; = Oby.b; + 4/ Tagh; Tagh, {sin(paobi SiN@ugb; (efzs— 1) + coSyyp, COSPagp; (ezs— 1)} ,
(15)

wherexy b, = <be > — (R;) <>2bj> and py b, = <f)bi f)bj> — <ﬁbi><ﬁb,->- In deriving Egs.
(14) and (15) contributions from all open vacuum channeleheeen added up taking advan-
tage of the identities of Egs. (6) and (7). A special cad® is bj = b, wherexy, p; and py, b
correspond to the fluctuations in a single output channel

Xo.p = DX = 1+ Tagp (COF @ugpe 2+ Sin? v — 1) , (16)

Pob = APE = 1+ Tagp (SINP @agp€ 2+ COF o™ — 1) . (17)
Egs. (14) to (17) represent the cross-correlation and fhtictos for a single realization of
a volume speckle pattern. As discussed above, the trariemissefficientsT,, and phases

@b are random variables and therefore theory only can predserable averaged quantities.
Averaging over all ensembles of disorder leads to

DG = ApE = 1+ Topp (cOShZ— 1), (18)
Xbi,bj = pbi,bj = 07 (19)

wherei # | in the latter equation. It is observed that the two-pointelation function vanishes
for the quadrature amplitudes. Therefore, no spatial quartorrelations will be observed
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Fig. 2. Excess fluctuations above the shot noise level defin?(ié% — 1 as a function

SN
of the squeezing parameter The excess fluctuations increase wii@e ¢/NL and the
squeezing parametsiare increased.

when measuring quadrature amplitudes, as opposed to theyroed photon number spa-
tial correlations first studied in [9] and also consideredhia following section in the case of
guadrature squeezed light. While no spatial correlatioagaind, the squeezed light leads to
enhanced noise in each individual output channel. Cunyoaglial excess noise is obtained in
both the squeezed and anti-squeezed quadratures, whicbisaquence of the random phase
response of the multiple scattering medium. The shot-rieisd (SN) is defined as the vari-

ance of a coherent state=0), i.e. (Txﬁ)s = 1. A squeezed input is seen to lead to excess
fluctuations above the shot noise level in both quadratuees,

2
ixb =1+ ! (coshz—1). (20)
(sz) N x L
b/sN
These excess fluctuations are in general relatively weaks,Tthe prefactor determining their
strength isC = ¢/NL = ¢?/L? x 1/g whereg = N//L is the mesoscopic conductance that is
much less than unity except for close to the Anderson loatdin transition, which is not

considered here. Figure 2 shows the excess fluctuationg élheghot-noise level as a function
of the squeezing parametefor three typical values dof [18].
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5. Photon correlationsinduced by multiple scattering of quadrature squeezed light

In this section we will focus on the fluctuations and coriiela in the number of photons that
are multiply scattered into a certain channel for the casguefdrature squeezed light. Pho-
ton number fluctuations can be recorded in the intensityenoidight transmitted or reflected
through the sample. As will be shown below, the spatial dafi@ function can be obtained
from the fluctuations of the total reflection or transmisdimm the multiple scattering medium.

The photon number operator can be expressed in terms of ajuaglmamplitudes as =
()‘(24— ﬁz) /4—1/2. Thus, the photon number fluctuations can in principle bevelé from the
expressions fox,"and pp, used in the previous section. However, this appears not tioc@ost
efficient strategy since it would require evaluation of dicaoperator products. Instead it is
more economic to follow the procedure outlined in [9] whére photon number operators are
equated directly from Eq. (1). This leads to

A, = égéb = t;’bta”bé;/éa” + rg,brbubég,éb” + {t;,brb/bé;,éy + hC:| R (21)
a ’a// .,b” a .,b/
where “h.c.” means Hermitian conjugate. Similarly the egsion fomp, ﬁbj can be derived and
contains in total 16 different terms. Restricting to theecaglight injected through the single
channel(ap), only a few terms do not vanish when calculating the expictatalue, which
implies that [9]

(fo) = Tag (M), (22)
Npib; = [Taobi 50i,bj Jr-I-aobi-I-f:lobj (Fallg - 1)] <ﬁiarl)>v (23)

whereny, b, = <ﬁbi ﬁbj> — {(fi,) <ﬁbj> and the Fano factdf) = (An{%)z/ (A ) measures the
photon number fluctuations of the input light. Taking j in Eq. (23) gives the variance of the

fluctuations while # j gives the spatial correlation function, i.e.
Ay = [Tagp+T2p (Fa—1)] (AR ), (24)
nbi,bj = Taobi Taobj (Fe:g — 1) <ﬁ|§0>, (25)

where the latter equation only holds far# b;.

The spatial correlations contribute significantly to thetliations of the total reflection and
transmission. In the following we will again for brevity coentrate on the case of transmission
while reflection can be treated equally. The total numberarigmitted photons are found by
summing over all transmission channbjs.e. rit = S fi, and the variance is given by

Aré = %An§+g ;b Moy b (26)
i bjFDb

Clearly the variance of the total number of transmitted phstis not just equal to the sum of
the variances of each of the individual conduction chanmédsice a cross-term that describes
spatial two-point correlations between different chaamehtributes to the fluctuations, and the
guantum noise provides a valuable tool of measuring sucktmaal correlations.

The fluctuations of the total transmission of a squeezed lisajuantified relative to the
fluctuations of a coherent state, i.e.

s - -
. (A”T)Fao P [Taobi + T (Fag— 1)} + Xy Ty 201 Teohs Taob; (Fag — 1) 27)
)y e |
2=
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where the average over ensembles of disorder has beerdoautie

As opposed to the case of quadrature amplitudes, discussth@ iprevious section, here
products of intensity transmission coefficients are seeapfear. The ensemble average of
these products are within the Gaussian approximation divejé, 19] Ta%bi = 2(%/L°N? and

Taobi Taob; = £2/L?N?, where in the latter case# j. Neglecting a term of order/N, which is
of the same order of magnitude as non-Gaussian correctios téeads to

Y/ .
ST:1+[(F;2—1). (28)
For a discussion of the/N corrections that only play a dominant role close to the itemms
to Anderson localization, see [9]. Through an equivaleltudation also the fluctuations of the
total reflections can be derived, which leads to

K=1+ (1-5) (Fa—1). (29)

Consequently, the total transmission and reflection of szt light is completely determined
by the mean free patt) the sample thicknedsand the Fano factor of the incoming beam. For
a quadrature squeezed sta'ggz“ X+ exp(—S) Ry, f)‘a’; = p+exp(s)py it is straightforward to
show that the Fano factor is given by

i Pp?e®+x2e >t coshs—1
o x2+p?+2(coshz—1)

(30)

-—
o
T

x=p=0

o
P P
e NS

-_—

Total noise transmission ST

00 05 10 15 20
Squeezing parameter s

Fig. 3. Total transmission of noise as a function of the squeezing pseesifier quadrature
amplitude-squeezed light addL = 0.2.

Now consider the photon number fluctuations of the totalsmginsion for various squeezed
beams. Figure 3 investigates the case of amplitude-sqddéghéwherep =0, i.e. the classical
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amplitude of the anti-squeezed quadrature vanishes. é&-ureats the phase-squeezed case
wherex = 0 such that the classical amplitude of the squeezed quaenanishes. In the figures
the shot noise level (SNL) is indicated, which is the noiselléor a coherent state, i.e. fer= 0.

In the amplitude-squeezed case, the fluctuations of théttatasmission are reduced below
SNL for moderate values of the squeezing paramgterf. Fig. 3. This implies that negative
spatial correlations are induced between photons tratesiniv different output channels, as
first pointed out in [9] for the case of Fock states. Incregire squeezing parameter for a fixed
classical amplitude leads to increased fluctuations abbdile &hich corresponds to positive
spatial correlations resembling what was found for therigat [9]. In the case of quadrature
phase squeezing, shown in Fig. 4, excess fluctuations abdlasIound for all finite values

of the squeezing parameter, i.e. positive spatial cofoglatare induced. A special casexis-

p = 0 corresponding to a squeezed vacuum state with no claasigditude. In this case excess
noise above SNL is obtained for allwhich is a direct consequence of the fact that the photon
statistics of a squeezed vacuum state always is supereR@ssi.eF > 1.

'_
S x=p=0
‘m 10| = = x=0, p=5 E
é’ | —-=x=0, p=10 N2
n
c
3
Q
R
o)
c
C_U | o ="
0.0 0.5 1.0 1.5 2.0

Squeezing parameter s

Fig. 4. Total transmission of noise as a function of the squeezing pteesifier quadrature
phase-squeezed light add. = 0.2.

6. Conclusions

The quantum optics theory of multiple scattering was usettszribe squeezed light. Focusing
on quadrature squeezed states, a pronounced differencensasntered when analyzing the
fluctuations of quadrature amplitudes as opposed to theophmimber fluctuations. In the

former case excess fluctuations above the shot noise lex&t @&m each output channel while
no spatial quadrature correlations were found. In contpashounced spatial correlations are
induced in the number of photons that can be either positiveegative depending on the

squeezing parametsiand the classical amplitude of the squeezed light.
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