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Abstract: Propagating quadrature squeezed light through a multiple
scattering random medium is found to induce pronounced spatial quantum
correlations that have no classical analogue. The correlations are revealed in
the number of photons transported through the sample that can be measured
from the intensity fluctuations of the total transmission orreflection. In con-
trast, no pronounced spatial quantum correlations appear in the quadrature
amplitudes where excess noise above the shot noise level is found.

© 2006 Optical Society of America

OCIS codes: (290.4210) Multiple scattering; (270.6570) Squeezed states; (270.5290) Photon
statistics

References and links
1. A.L. Moustakas, H.U. Baranger, L. Balents, A.M. Sengupta, and S.H. Simon, “Communication through a diffu-

sive medium: Coherence and capacity,” Science287, 287–290 (2000).
2. A. Derode, A. Tourin, J. de Rosny, M. Tanter, S. Yon, and M. Fink, “Taking advantage of multiple scattering to

communicate with time-reversal antennas,” Phys. Rev. Lett.90, 014301, 1–4 (2003).
3. D. Levitz, L. Thrane, M. Frosz, P. Andersen, C. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling,

and P. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence
tomography images,” Opt. Express12, 249–259 (2004)

4. D.S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature
390, 671–673 (1997).

5. A.A. Chabanov, M. Stoytchev, and A.Z. Genack, “Statistical signatures of photon localization,” Nature404,
850–853 (2000).

6. M.C.W. van Rossum and Th.M. Nieuwenhuizen, “Multiple scattering af classical waves: microscopy, mesoscopy,
and diffusion,” Rev. Mod. Phys.71, 313–371 (1999).

7. Y. Bidel, B. Klappauf, J.C. Bernard, D. Delande, G. Labeyrie, C. Miniatura, D. Wilkowski1, and R. Kaiser,
“Coherent light transport in a cold strontium cloud”, Phys.Rev. Lett.88, 203902, 1–4 (2002).

8. M. Patra and C.W.J. Beenakker, “Propagation of squeezed radiation through amplifying or absorbing random
media,” Phys. Rev. A61, 063805 1–8 (2000).

9. P. Lodahl, A.P. Mosk, and A. Lagendijk, “Spatial quantum correlations in multiple scattered light,” Phys. Rev.
Lett. 95, 173901, 1–4 (2005).

10. P. Lodahl, “Quantum noise frequency correlations of multiply scattered light,” Opt. Lett.31, 110–112 (2006).
11. J. Tworzydlo and C.W.J. Beenakker, “Quantum optical communication rates through an amplifying random

medium,” Phys. Rev. Lett.89, 043902, 1–4 (2002).
12. P. Lodahl and A. Lagendijk, “Transport of quantum noise through random media,” Phys. Rev. Lett.94, 153905,

1–4 (2005).
13. D.F. Walls and G.J. Milburn,Quantum Optics(Springer-Verlag, Berlin, 1994).
14. F.J.P. Schuurmans, D. Vanmaekelbergh, J. van de Lagemaat, and A. Lagendijk, “Strongly photonic macroporous

galium phosphide networks,” Science284, 141–143 (1999).
15. A.A. Chabanov and A.Z. Genack, “Field distribution in the crossover from ballistic to diffusive wave propaga-

tion,” Phys. Rev. E56, R1338–R1341 (1997).
16. J.W. Goodman,Statistical Optics(John Wiley & Sons, New York, 1985).

#70880 - $15.00 USD Received 11 May 2006; revised 30 June 2006; accepted 4 July 2006

(C) 2006 OSA 24 July 2006 / Vol. 14,  No. 15 / OPTICS EXPRESS  6919



17. R. Loudon,The Quantum Theory of Light(Oxford University Press, New York, 2000)
18. J.F. de Boer,Optical Fluctuations on the Transmission and Reflection of Mesoscopic Systems, (Ph.D. Thesis,

University of Amsterdam, 1995), available on: http://cops.tnw.utwente.nl/pdf/theses/deboer.pdf.
19. R. Berkovits and S. Feng, “Correlations in coherent multiple scattering,” Phys. Rep.238, 135–172 (1994).

1. Introduction

Multiple scattering of light is an interdisciplinary research field that connects traditionally re-
mote areas such as optical communication [1] or acoustical [2] and biomedical [3] imaging to
fundamental physics studies of Anderson localization of light [4, 5]. Most work on multiple
scattering concerns situations where a classical description of both light and matter is sufficient
[6]. A notable exception is the case of coherent backscattering from cold atomic clouds that can
only be explained by implementing a quantum theory of matter[7]. Quantum optics studies of
multiple scattering, where light is quantized, have only been initiated recently [8, 9, 10, 11, 12].
A surprisingly rich variety of new phenomena is encounteredin the quantum optics theory,
including the identification of spatial [9] and frequency [10] quantum correlations, and the in-
formation capacity transmitted through a multiple scattering medium [11]. Experimental work
on transport of optical quantum noise was only initiated very recently [12].

The present paper concerns the transport of quadrature squeezed light through a multiple
scattering random medium. Quadrature squeezed light can begenerated inχ(2) frequency con-
version processes such as frequency doubling or optical parametric oscillation [13]. Previous
work on scattering of squeezed light has been performed by Patra and Beenakker who studied
the degradation of squeezing due to absorption and amplification in a random medium [8]. Here
we investigate to what extent quantum correlations of squeezed light survive multiple scatte-
ring. The outcome is found to depend significantly on the parameters extracted. Thus, excess
quantum fluctuations are encountered in the quadrature amplitudes, which can be traced back
to the randomization of the optical phase from multiple scattering. In contrast, pronounced spa-
tial quantum correlations can be found in the number of photons as was studied in [9] for the
case of thermal states and Fock states. In the present manuscript spatial photon correlations are
found to be induced by multiple scattering of quadrature squeezed light, and the nature of these
correlations differs when comparing amplitude squeezed light to phase squeezed light.

2. Quantum optical model for multiple scattering

We describe the propagation of light through a multiple scattering random medium. The
medium consists of a random distribution of particles that each have a high cross-section for
light scattering. Such samples can be fabricated, e.g., by grinding or electrochemical etching of
a high refractive index substrate [14]. The characteristiclength scale that describes the multiple
scattering strength is the transport mean free pathℓ. If the transport mean free path is much
shorter than the thickness of the sample(ℓ ≪ L), light is multiply scattered in the medium.
As a consequence, an incident wave will be diffused by the medium whereby the propagation
direction is randomized. Hence the multiple scattering medium splits the incoming beam into
a distribution of different output wavevectors that form a volume speckle pattern. In the ex-
treme case where the transport mean free path becomes comparable to the optical wavelength
(ℓ ∼ λ ) light diffusion is significantly altered and eventually breaks down. In the present work
we restrict to the case where multiple scattering is well-described by diffusion theory, which
corresponds to the case ofλ ≪ ℓ ≪ L.

We wish to calculate the electric field of light that has been multiply scattered in the medium.
Multiple scattering in the diffusive regime can be described as the result of many independent
random events. We discretize the system and allow forN input k-vectors (labelleda′) and
N output k-vectors (labelledb′), cf. Fig. 1. The electric field in an arbitrary output ’channel’
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x = a or x = b is found by summing over a number of partial waves, i.e.Ex(r, t) = ∑ j A jeiφ j

[15]. From the central limit theorem it immediately followsthat the multiple scattering statis-
tics is Gaussian [16], which means that the electric field reflection and transmission coeffi-
cientsraia j = Eout

a j
/Ein

ai
and taib j = Eout

b j
/Ein

ai
are complex Gaussian random variables. Hence

raia j =
√

Raia j e
iφai aj andtaib j =

√

Taib j e
iφai bj where the phaseφ is uniformly distributed in the

interval[−π,π] while the intensity amplitudesRandT are described by Gaussian statistics. The
ensemble averaged reflection and transmission coefficientsare given by:Raia j = (1− ℓ/L)/N

andTaib j = ℓ/LN [6]. The uniform distribution of the phase impliesφaia j = φaib j = 0.
The above discussion of the reflection and transmission holds only for a classical description.

When describing quantum optical properties of light, such asthe quantum fluctuations, the
theory must be generalized. The difference between the quantum and classical theory is that
in the former we explicitly have to include input from all open channels even the ones where
no light is injected. Thus, the contributions of vacuum fluctuations in all open channels are
crucial in quantum optics. The quantized electric field contains the annihilation and creation
operators ˆa andâ† [13]. The annihilation operators for output channelsa or b are related to the
annihilation operator of all input channels through the expression [8, 9]

âb = ∑
a′

ta′bâin
a′ +∑

b′
rb′bâin

b′ . (1)

Here we use the notation thata denotes channels to the left andb channels to the right of
the medium, c.f. Fig. 1. A similar expression can be given forthe operator ˆaa, which is ob-
tained from Eq. (1) by substitutingrb′b → tb′a and ta′b → ra′a. The operators ˆain

a′ and âin
b′ de-

scribe the quantum state of all open channels, and even in thecase where no light is coupled
through a channel there will be an important contribution from vacuum fluctuations. The in-

put annihilation and creation operators obey the commutation relations
[

âin
a′ ,

(

âin
a′′

)†
]

= δa′,a′′ ,
[

âin
b′ ,

(

âin
b′′

)†
]

= δb′,b′′ , while all other commutation relations vanish. Note that Eq.(1) describes

the very general situation ofN input modes coupled toN output modes, while the specific
characteristics of the multiple scattering random medium are contained in the reflection and
transmission coefficients. Eq. (1) can be used to evaluate the propagation of any quantum state
of light propagating through a lossless multiple scattering medium. In the present work we
describe the particular case of squeezed light.

3. Transport of quadrature squeezed light through multiple scattering medium

The quadrature amplitude representation is relevant for describing quadrature squeezed light
generated, e.g., byχ(2) nonlinear processes. We introduce ˆx = â+ â† and p̂ = −i(â− â†) that
correspond to the real and imaginary components of the complex electric field. A quadrature
minimum-uncertainty squeezed state can be described by theoperators [13]

x̂s = x+e−sx̂v, (2)

p̂s = p+esp̂v, (3)

where the operators ˆxv andp̂v represent quadratures of the vacuum state,x andpare the classical
amplitudes, ands is referred to as the squeezing parameter. Evaluating the quantum expectation

values
〈

Ô
〉

and the variance(∆O)2 =
〈

Ô2
〉

−
〈

Ô
〉2

, the input squeezed state is characterized

by: 〈x̂s〉 = x,〈p̂s〉 = p, (∆xs)
2 = e−2s,(∆ps)

2 = e2s, where it has been used that〈x̂v〉 = 〈p̂v〉 = 0
and(∆xv)

2 = (∆pv)
2 = 1.
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Fig. 1. Illustration of quadrature noise measurements of light transmitted through a multiple
scattering medium. A squeezed state of light is injected through input channel a0 while
vacuum fluctuations contribute to all other open channels (indicated by dotted arrows). The
quadratures amplitudes of the light transmitted to channelb can be measured by phase
sensitive homodyning with a strong classical local oscillator (LO). By scanning the LO
phase either thex or p quadrature can be obtained by subtracting the two photo currents,
and their fluctuations can be recorded with a spectrum analyzer. The fluctuations in the
photon number is obtained by blocking the LO and adding the two photocurrents.

Eq. (1) can be expressed in terms of the quadrature amplitudes relevant for describing quadra-
ture squeezed light:

x̂b = ∑
a′

√

Ta′b
[

cosφa′bx̂in
a′ −sinφa′b p̂in

a′
]

+∑
b′

√

Rb′b
[

cosφb′bx̂in
b′ −sinφb′b p̂in

b′
]

, (4)

p̂b = ∑
a′

√

Ta′b
[

cosφa′b p̂in
a′ +sinφa′bx̂in

a′
]

+∑
b′

√

Rb′b
[

cosφb′b p̂in
b′ +sinφb′bx̂in

b′
]

. (5)

Commutation relations imply
[

x̂bi , p̂b j

]

= 2iδbi ,b j , and by evaluating
[

x̂bi , p̂b j

]

and
[

x̂bi , x̂b j

]

explicitly, the following useful identities can be derived

∑
a′

√

Ta′bi
Ta′b j

[

cosφa′bi
cosφa′b j

+sinφa′bi
sinφa′b j

]

+∑
b′

√

Rb′bi
Rb′b j

[

cosφb′bi
cosφb′b j

+sinφb′bi
sinφb′b j

]

= δbi ,b j (6)

∑
a′

√

Ta′b0
Ta′b1

[

sinφa′b0
cosφa′b1

−cosφa′b0
sinφa′b1

]

+∑
b′

√

Rb′b0
Rb′b1

[

sinφb′b0
cosφb′b1

−cosφb′b0
sinφb′b1

]

= 0 (7)

In addition to quadrature amplitudes also the number of photons transported through the sample
will be evaluated. The photon number operator is defined as ˆn = â†â and using Eq. (1) leads to
the relation

n̂b = â†
bâb = ∑

a′,a′′
t∗a′bta′′bâ†

a′ âa′′ + ∑
b′,b′′

r∗b′brb′′bâ†
b′ âb′′ + ∑

a′,b′

[

t∗a′brb′bâ†
a′ âb′ +h.c.

]

, (8)
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where “h.c.” means Hermitian conjugate. Similar expressions for the quadratures and photon
number for channelsa to the left of the medium could be equally stated. However, for brevity
we will in the following sections detail only the calculations for transmission, while the cor-
responding reflections can be obtained by a equivalent calculation and the results will only be
stated.

4. Quadrature amplitude correlations due to multiple scattering

Consider the situation where quadrature squeezed light is coupled through a single input chan-
nel denoteda0. We wish to evaluate the expectation value, quantum fluctuations, and spatial
correlation for the light transmitted through the sample. The expectation value of the quadra-
ture amplitude can be obtained experimentally from the average photocurrent in the homodyne
detector of Fig. 1. The quantum fluctuations of a certain output channel can be measured from
the fluctuations of the photocurrent while spatial correlations between two different output
channels are revealed in the fluctuations of the total transmission [9].

4.1. Expectation values

In evaluating the expectation value of an observable in any output channel, only the contribution
from the input coupling channela0 needs to be included. Thus, for the input vacuum channels
a′ 6= a0 or b′, the expectation values vanish, i.e.

〈

x̂in
a′
〉

=
〈

p̂in
a′
〉

=
〈

x̂in
b′
〉

=
〈

p̂in
b′
〉

= 0, which by
substitution into Eqs. (4-5) leads to

〈x̂b〉 =
√

Ta0b
[

cosφa0b
〈

x̂in
a0

〉

−sinφa0b
〈

p̂in
a0

〉]

, (9)

〈p̂b〉 =
√

Ta0b
[

cosφa0b
〈

p̂in
a0

〉

+sinφa0b
〈

x̂in
a0

〉]

. (10)

These results are identical to the predictions of a purely classical theory for multiple scattering.
It reflects the fact that quantum optical signatures are revealed in thefluctuationsof light and
not in the expectation values.Since the phaseφa0b is a random variable, Eqs. (9-10) describe
a spatial volume speckle pattern expressed in the quadrature amplitudes. Due to the random
phase shift encountered in the multiple scattering process, the quadrature amplitudes vanish
when averaging over all ensembles of disorder:〈x̂b〉 = 〈p̂b〉 = 0, which is the well-known
classical result [15]. In contrast, the ensemble averaged number of photons does not vanish as
we will see in the following section.

4.2. Quantum fluctuations and spatial correlations

Quantum signatures of light are revealed, e.g., in the quantum fluctuations. Other inherent quan-
tum signatures can be found from the temporal photon correlations that are measured in a Han-
bury Brown-Twiss experiment [17], or through the spatial analogue where correlations between
two different positions are considered [9]. In order to calculate the variance and the spatial cor-
relation function we need to evaluate the product of two quadrature amplitudes in two channels
bi andb j . The variance is obtained forbi = b j and the spatial correlations forbi 6= b j . Eqs. (4)
and (5) lead to

〈

x̂bi x̂b j

〉

= ∑
a′

√

Ta′bi
Ta′b j

[cosφa′bi
cosφa′b j

〈

(

x̂in
a′
)2

〉

−cosφa′bi
sinφa′b j

〈

x̂in
a′ p̂

in
a′
〉

−sinφa′bi
cosφa′b j

〈

p̂in
a′ x̂

in
a′
〉

+sinφa′bi
sinφa′b j

〈

(

p̂in
a′
)2

〉

]

+∑
b′

√

Rb′bi
Rb′b j

[cosφb′bi
cosφb′b j

〈

(

x̂in
b′
)2

〉

−cosφb′bi
sinφb′b j

〈

x̂in
b′ p̂

in
b′
〉

−sinφb′bi
cosφb′b j

〈

p̂in
b′ x̂

in
b′
〉

+sinφb′bi
sinφb′b j

〈

(

p̂in
b′
)2

〉

]
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(11)
〈

p̂bi p̂b j

〉

= ∑
a′

√

Ta′bi
Ta′b j

[cosφa′bi
cosφa′b j

〈

(

p̂in
a′
)2

〉

+cosφa′bi
sinφa′b j

〈

p̂in
a′ x̂

in
a′
〉

+sinφa′bi
cosφa′b j

〈

x̂in
a′ p̂

in
a′
〉

+sinφa′bi
sinφa′b j

〈

(

x̂in
a′
)2

〉

]

+∑
b′

√

Rb′bi
Rb′b j

[cosφb′bi
cosφb′b j

〈

(

p̂in
b′
)2

〉

+cosφb′bi
sinφb′b j

〈

p̂in
b′ x̂

in
b′
〉

+sinφb′bi
cosφb′b j

〈

x̂in
b′ p̂

in
b′
〉

+sinφb′bi
sinφb′b j

〈

(

x̂in
b′
)2

〉

].

(12)

As opposed to the calculation of the expectation values in the previous section, it is here cru-
cial to include contributions from vacuum coupled through all open channels. Thus, vacuum

fluctuations imply
〈

(

x̂in
a′
)2

〉

=
〈

(

x̂in
b′
)2

〉

=
〈

(

p̂in
a′
)2

〉

=
〈

(

p̂in
b′
)2

〉

= 1 for all a′ 6= a0 andb′.

Furthermore, the product of quadrature amplitudes ˆx and p̂ can be evaluated identically for any
of the input channel:

〈

x̂in
b′ p̂

in
b′
〉

=
〈

x̂in
a′ p̂

in
a′
〉

= (−i)
〈(

âin
a′ +

(

âin
a′
)†

)(

âin
a′ −

(

âin
a′
)†

)〉

= i
〈[

âin
a′ ,

(

âin
a′
)†

]〉

= i, (13)

and similarly
〈

p̂in
a′ x̂

in
a′
〉

=
〈

p̂in
b′ x̂

in
b′
〉

= −i.
Consider now a squeezed state coupled through channela0, which is squeezed in the quadra-

ture amplitudex, i.e.
〈

x̂in
a0

〉

= x,
〈

p̂in
a0

〉

= p,
(

∆xin
a0

)2
= exp(−2s),

(

∆pin
a0

)2
= exp(2s). These

relations imply that
〈

(

x̂in
a0

)2
〉

= x2 + e−2s and
〈

(

p̂in
a0

)2
〉

= p2 + e2s, which can be substituted

into Eqs. (11) and (12) together with the above relations forthe vacuum channels. We obtain

xbi ,b j = δbi ,b j +
√

Ta0bi Ta0b j

[

cosφa0bi cosφa0b j

(

e−2s−1
)

+sinφa0bi sinφa0b j

(

e2s−1
)

]

,

(14)

pbi ,b j = δbi ,b j +
√

Ta0bi Ta0b j

[

sinφa0bi sinφa0b j

(

e−2s−1
)

+cosφa0bi cosφa0b j

(

e2s−1
)

]

,

(15)

wherexbi ,b j ≡
〈

x̂bi x̂b j

〉

−
〈

x̂bi

〉

〈

x̂b j

〉

and pbi ,b j ≡
〈

p̂bi p̂b j

〉

−
〈

p̂bi

〉

〈

p̂b j

〉

. In deriving Eqs.

(14) and (15) contributions from all open vacuum channels have been added up taking advan-
tage of the identities of Eqs. (6) and (7). A special case isbi = b j ≡ b, wherexbi ,b j and pbi ,b j

correspond to the fluctuations in a single output channel

xb,b ≡ ∆x2
b = 1+Ta0b

(

cos2 φa0be−2s+sin2 φa0be2s−1
)

, (16)

pb,b ≡ ∆p2
b = 1+Ta0b

(

sin2 φa0be−2s+cos2 φa0be2s−1
)

. (17)

Eqs. (14) to (17) represent the cross-correlation and fluctuations for a single realization of
a volume speckle pattern. As discussed above, the transmission coefficientsTa0bi and phases
φa0bi are random variables and therefore theory only can predict ensemble averaged quantities.
Averaging over all ensembles of disorder leads to

∆x2
b = ∆p2

b = 1+Ta0b (cosh2s−1) , (18)

xbi ,b j = pbi ,b j = 0, (19)

wherei 6= j in the latter equation. It is observed that the two-point correlation function vanishes
for the quadrature amplitudes. Therefore, no spatial quantum correlations will be observed
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b

(

∆x2
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)

SN

−1 as a function

of the squeezing parameters. The excess fluctuations increase whenC ≡ ℓ/NL and the
squeezing parametersare increased.

when measuring quadrature amplitudes, as opposed to the pronounced photon number spa-
tial correlations first studied in [9] and also considered inthe following section in the case of
quadrature squeezed light. While no spatial correlations are found, the squeezed light leads to
enhanced noise in each individual output channel. Curiously equal excess noise is obtained in
both the squeezed and anti-squeezed quadratures, which is aconsequence of the random phase
response of the multiple scattering medium. The shot-noiselevel (SN) is defined as the vari-

ance of a coherent state(s= 0), i.e.
(

∆x2
b

)

SN
= 1. A squeezed input is seen to lead to excess

fluctuations above the shot noise level in both quadratures,i.e.

∆x2
b

(

∆x2
b

)

SN

= 1+
ℓ

N×L
(cosh2s−1) . (20)

These excess fluctuations are in general relatively weak. Thus, the prefactor determining their
strength isC ≡ ℓ/NL = ℓ2/L2 × 1/g whereg = Nℓ/L is the mesoscopic conductance that is
much less than unity except for close to the Anderson localization transition, which is not
considered here. Figure 2 shows the excess fluctuations above the shot-noise level as a function
of the squeezing parameters for three typical values ofC [18].
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5. Photon correlations induced by multiple scattering of quadrature squeezed light

In this section we will focus on the fluctuations and correlations in the number of photons that
are multiply scattered into a certain channel for the case ofquadrature squeezed light. Pho-
ton number fluctuations can be recorded in the intensity noise of light transmitted or reflected
through the sample. As will be shown below, the spatial correlation function can be obtained
from the fluctuations of the total reflection or transmissionfrom the multiple scattering medium.

The photon number operator can be expressed in terms of quadrature amplitudes as ˆn =
(

x̂2 + p̂2
)

/4−1/2. Thus, the photon number fluctuations can in principle be derived from the
expressions for ˆxb andp̂b used in the previous section. However, this appears not to bethe most
efficient strategy since it would require evaluation of quartic operator products. Instead it is
more economic to follow the procedure outlined in [9] where the photon number operators are
equated directly from Eq. (1). This leads to

n̂b = â†
bâb = ∑

a′,a′′
t∗a′bta′′bâ†

a′ âa′′ + ∑
b′,b′′

r∗b′brb′′bâ†
b′ âb′′ + ∑

a′,b′

[

t∗a′brb′bâ†
a′ âb′ +h.c.

]

, (21)

where “h.c.” means Hermitian conjugate. Similarly the expression for ˆnbi n̂b j can be derived and
contains in total 16 different terms. Restricting to the case of light injected through the single
channel(a0), only a few terms do not vanish when calculating the expectation value, which
implies that [9]

〈n̂b〉 = Ta0b
〈

n̂in
a0

〉

, (22)

nbi ,b j =
[

Ta0bi δbi ,b j +Ta0bi Ta0b j

(

F in
a0
−1

)

]

〈

n̂in
a0

〉

, (23)

wherenbi ,b j ≡
〈

n̂bi n̂b j

〉

−
〈

n̂bi

〉

〈

n̂b j

〉

and the Fano factorF in
a0

=
(

∆nin
a0

)2
/
〈

n̂in
a0

〉

measures the

photon number fluctuations of the input light. Takingi = j in Eq. (23) gives the variance of the
fluctuations whilei 6= j gives the spatial correlation function, i.e.

∆n2
b =

[

Ta0b +T2
a0b

(

F in
a0
−1

)]〈

n̂in
a0

〉

, (24)

nbi ,b j = Ta0bi Ta0b j

(

F in
a0
−1

)〈

n̂in
a0

〉

, (25)

where the latter equation only holds forbi 6= b j .
The spatial correlations contribute significantly to the fluctuations of the total reflection and

transmission. In the following we will again for brevity concentrate on the case of transmission
while reflection can be treated equally. The total number of transmitted photons are found by
summing over all transmission channelsb, i.e. n̂T = ∑b n̂b and the variance is given by

∆n2
T = ∑

b

∆n2
b +∑

bi

∑
b j 6=bi

nbi ,b j . (26)

Clearly the variance of the total number of transmitted photons is not just equal to the sum of
the variances of each of the individual conduction channels. Hence a cross-term that describes
spatial two-point correlations between different channels contributes to the fluctuations, and the
quantum noise provides a valuable tool of measuring such non-trivial correlations.

The fluctuations of the total transmission of a squeezed beamis quantified relative to the
fluctuations of a coherent state, i.e.

ST =

(

∆n2
T

)

Fa0
(

∆n2
T

)

Fa0=1

=
∑bi

[

Ta0bi +T2
a0bi

(

F in
a0
−1

)

]

+∑bi ∑b j 6=bi
Ta0bi Ta0b j

(

F in
a0
−1

)

∑bi
Ta0bi

, (27)
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where the average over ensembles of disorder has been carried out.
As opposed to the case of quadrature amplitudes, discussed in the previous section, here

products of intensity transmission coefficients are seen toappear. The ensemble average of
these products are within the Gaussian approximation givenby [6, 19] T2

a0bi
= 2ℓ2/L2N2 and

Ta0bi Ta0b j = ℓ2/L2N2, where in the latter casei 6= j. Neglecting a term of order 1/N, which is
of the same order of magnitude as non-Gaussian correction terms, leads to

ST = 1+
ℓ

L

(

F in
a0
−1

)

. (28)

For a discussion of the 1/N corrections that only play a dominant role close to the transition
to Anderson localization, see [9]. Through an equivalent calculation also the fluctuations of the
total reflections can be derived, which leads to

SR = 1+

(

1−
ℓ

L

)

(

F in
a0
−1

)

. (29)

Consequently, the total transmission and reflection of squeezed light is completely determined
by the mean free pathℓ, the sample thicknessL and the Fano factor of the incoming beam. For
a quadrature squeezed state ˆxin

a0
= x+ exp(−s)x̂v, p̂in

a0
= p+ exp(s)p̂v it is straightforward to

show that the Fano factor is given by

F in
a0

=
p2e2s+x2e−2s+cosh4s−1

x2 + p2 +2(cosh2s−1)
. (30)
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Fig. 3. Total transmission of noise as a function of the squeezing parameters for quadrature
amplitude-squeezed light andℓ/L = 0.2.

Now consider the photon number fluctuations of the total transmission for various squeezed
beams. Figure 3 investigates the case of amplitude-squeezed light wherep= 0, i.e. the classical
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amplitude of the anti-squeezed quadrature vanishes. Figure 4 treats the phase-squeezed case
wherex= 0 such that the classical amplitude of the squeezed quadrature vanishes. In the figures
the shot noise level (SNL) is indicated, which is the noise level for a coherent state, i.e. fors= 0.
In the amplitude-squeezed case, the fluctuations of the total transmission are reduced below
SNL for moderate values of the squeezing parameters, c.f. Fig. 3. This implies that negative
spatial correlations are induced between photons transmitted to different output channels, as
first pointed out in [9] for the case of Fock states. Increasing the squeezing parameter for a fixed
classical amplitude leads to increased fluctuations above SNL, which corresponds to positive
spatial correlations resembling what was found for thermallight [9]. In the case of quadrature
phase squeezing, shown in Fig. 4, excess fluctuations above SNL is found for all finite values
of the squeezing parameter, i.e. positive spatial correlations are induced. A special case isx =
p= 0 corresponding to a squeezed vacuum state with no classicalamplitude. In this case excess
noise above SNL is obtained for alls, which is a direct consequence of the fact that the photon
statistics of a squeezed vacuum state always is super-Poissonian, i.e.F > 1.
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Fig. 4. Total transmission of noise as a function of the squeezing parameters for quadrature
phase-squeezed light andℓ/L = 0.2.

6. Conclusions

The quantum optics theory of multiple scattering was used todescribe squeezed light. Focusing
on quadrature squeezed states, a pronounced difference wasencountered when analyzing the
fluctuations of quadrature amplitudes as opposed to the photon number fluctuations. In the
former case excess fluctuations above the shot noise level arose in each output channel while
no spatial quadrature correlations were found. In contrast, pronounced spatial correlations are
induced in the number of photons that can be either positive or negative depending on the
squeezing parameters and the classical amplitude of the squeezed light.
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