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Spatial Quantum Correlations in Multiple Scattered Light
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We predict a new spatial quantum correlation in light propagating through a multiple scattering random
medium. The correlation depends on the quantum state of the light illuminating the medium, is infinite in
range, and dominates over classical mesoscopic intensity correlations. The spatial quantum correlation is
revealed in the quantum fluctuations of the total transmission or reflection through the sample and should

be readily observable experimentally.
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When light propagates through a disordered scattering
medium, a strongly modulated interference structure,
known as a speckle pattern, is generated. Speckle patterns
are the most direct manifestation of wave coherence in
transport of light through samples that are thicker than the
transport mean free path €, which is the average distance
over which the direction of light is diffused due to random
scattering. By analyzing the statistical properties, such
volume speckle patterns reveal strong correlations that
are responsible for fundamental physical phenomena
such as the memory effect [1,2] and enhanced mesoscopic
fluctuations [3-7]. Furthermore, clear signatures of
Anderson localization of light have been observed by
analyzing intensity fluctuations [8].

While spatial correlations of the intensity of multiply
scattered light have been investigated intensely, spatial
correlations hidden in the quantum fluctuations of light
have to our knowledge not been addressed. Here we predict
that strong quantum correlations exist between spatially
separated parts of a far-field speckle pattern that have no
classical analog. The quantum correlation is infinite range,
since it is independent of the angular separation between
the parts of the speckle pattern under investigation, and
dominates over mesoscopic fluctuations. Therefore,
speckle patterns generated with quantum light are much
stronger correlated than classical theory predicts, and the
quantum corrections should be observable even for a mod-
erate amount of scattering. In contrast, the magnitude of
classical intensity correlations are all found to scale with
the inverse of the mesoscopic conductance g = N€/L,
where N is the number of conducting modes and L is the
thickness of the scattering medium [3-7]. Only for ex-
tremely strong scattering, i.e., close to the Anderson local-
ization transition (g =~ 1), do such mesoscopic correlations
dominate.

The quantum correlation will be shown to depend on the
quantum state of light illuminating the multiple scattering
sample. The physical origin of the effect is due to distri-
bution of photon correlations of the input state over the
spatial degrees of freedom of the speckle pattern. This
mechanism was previously predicted to lead to new long-
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range correlations of thermal radiation from a disordered
waveguide [9]. We evaluate the correlation function for
three different quantum states: coherent state, thermal
state, and Fock state. For a coherent state the spatial
correlation vanishes, while strong correlations and anticor-
relations are found for the thermal state and the Fock state,
respectively. We show that the spatial quantum correlation
can be measured conveniently by recording the quantum
noise of the total transmission or reflection from the me-
dium. Such measurements were carried out very recently
for a coherent state [10] and appear feasible also in the near
future for other quantum states. Our work is connected to
the field of quantum imaging, where spatial correlations
are employed for reconstructing images [11].

We describe the propagation of quantum states of light
through a nonabsorbing, multiple scattering medium using
the formalism developed by Beenakker et al. [12,13]. The
model describes effectively a quasi-1D configuration, but
this approximation is known to be excellent also for a 3D
slab geometry. The annihilation operator @, for an output
mode b is coupled to the annihilation operators associated
with all input modes @} and 4! through the relation a;, =
S tap@® + 3 yrypall, where ¢ and roare electric field
transmission and reflection coefficients, respectively, and
the summations are over all N input and output modes. We
use the notation that a denotes modes to the left and b
modes to the right of the medium; cf. Fig. 1. The modes
correspond to different propagation directions (k vectors)
of the incoming and outgoing light as measured directly in
the far field.

In the following, we explicitly outline the calculation of
the quantum fluctuations of the light transmitted through
the sample when light is coupled through a single input
mode a. In the quantum description, vacuum fluctuations
coupled into all other input modes a’ # a and b’ must be
included. The operator 71, = &;g a;, describes the number of
photons transmitted to the output mode b, and the total
number of transmitted photons is obtained by adding all
output modes: iy = > ,7,. In an experiment, the total
transmission can be measured with an integrating sphere
cf. Fig. 1. The quantum fluctuations are quantified through
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FIG. 1 (color online). Total transmission through a multiple
scattering sample. A quantum state of light is coupled through
mode a and the total number of photons is collected with an
integrating sphere. Vacuum fluctuations in all open channels
a' # a and b’ must be included in the quantum description.

the variance of the photon number: An? = (4) — (A)?,
where (-) is the quantum mechanical expectation value.
The fluctuations of the total transmission are straightfor-
wardly found to be

Ang = ZAnb 30> (g fin,) = (g Xy, ), (1)

b by %b,

where an index specifying the fixed input mode (a) has
been omitted for brevity of notation. We immediately see
that the variance of the total transmission is different from
the sum of the variances of all outgoing modes. Also cross
correlations between different output modes contribute,
and these correlations are shown to be significant in the
following.

In order to evaluate Eq. (1), (/i) and (f, 1, ) must be
computed. The nonvanishing contributions are
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The expectation values of the various operator products can

be evaluated using that the vacuum is coupled through all
other channels than a. We obtain

A1n1' Am > — <nm>5a aaa” w (3a)
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By combining Eqgs. (2) and (3) using an identity derived
from commutation relations [14], the photon number vari-
ance of mode b and the cross correlation between two

different directions by # b, can be found

= Tup + Top?(F? — D2 + 8/3g),
(4a)

()
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=T, (Fi = D(1 +4/3g).  (4b)

Here we have introduced the intensity transmission coef-
ficients T,, = |t,,|? that have been averaged over all real-
izations of disorder (denoted by a bar). Products of
transmission coefficients are expanded to first order in
1/g, ie., TaboTahI (1 + 8p,5)(1 + 4/3¢)T,,> [15].
The Fano factor FI* = A(n")?/{#") measures the variance
of the photon number relative to the average number of
photons and is equal to unity for Poissonian photon statis-
tics. We evaluate the Fano factor for three different single-
mode quantum states of light: a coherent state (CS), a
thermal state (TS), and an n-photon Fock state (FS), which
correspond to (FiM)eg =1, (FMpg =1+ (Al"), and
(FiM)gs = 0, respectively [16].

The classical transmission coefficient can be calculated
from the theory of light diffusion, which leads to T,, =
£/NL in the absence of absorption [17]. Inserting Egs. (4)
in Eq. (1), we arrive at the final expression for the quantum
fluctuations of the total transmission

— ,
(A’7T> =£+%(F'gl— 1)[1 +1<j+£>}. (5)
Aln 4

Neglecting at present correction terms of order 1/g, the
variance of the total transmission is seen to contain a linear
and a quadratic term in €/L. The former is the sum of the
variances of each individual channel, which corresponds to
incoherently adding the fluctuations of each output mode.
The quadratic term is due to correlations between different
output modes. Note that, while a quadratic scaling was
found also for transmission of classical noise through a
multiple scattering medium [10], the contribution dis-
cussed here is a quantum effect. The fluctuations of the
total reflection can be calculated in a similar way, and
neglecting correction terms of order 1/g leads to

2 R (I R

Figure 2 displays the variance of the total transmis-
sion and reflection for three different quantum states of
light as a function of the ratio of the mean free path € to the
sample length L. For a coherent state, the variance scales
linearly, which was experimentally confirmed in Ref. [10].
For other quantum states of light, a quadratic term contri-
butes by either a positive (for the thermal state) or a
negative amount (for the Fock state), which means that
the photon statistics of the total transmission and reflection
is super-Poissonian or sub-Poissonian, respectively. These
quantum correlations are found to be most pronounced in
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FIG. 2 (color online). Variance of the quantum fluctuations
of the total reflection (upper plot) and total transmission
(lower plot) for a coherent state (solid line), a thermal state
with (A"} = 1 (dashed-dotted line), and an arbitrary Fock state
(dotted line) as a function of €/L. All correction terms of order
1/g have been neglected. In the reflection (transmission), pro-
nounced variations in the photon statistics are found for decreas-
ing (increasing) €/L.

the reflection for thick samples (€¢/L — 0) and in the trans-
mission for thin samples (£/L — 1). This behavior can be
understood intuitively, since for thick (thin) samples rela-
tively few photons are transmitted (reflected) and vacuum
fluctuations coupled through all open modes lead to
Poissonian photon statistics. The validity of the diffusion
model for light propagation requires €/L < 1, and in this
limit each transmitted or reflected photon has experienced
numerous scattering events. Remarkably, the quantum cor-
relations of these multiply scattered photons are preserved,
and, for £/L — 0, the fluctuations of the total reflection
equal the fluctuations of the input light. This clearly dem-
onstrates that, deep in the multiple scattering regime, the
quantum corrections are most pronounced in the reflection
and, thereby, devises a route for experimental observation
of quantum correlations in a volume speckle pattern.

The quadratic terms in Egs. (5) and (6) originate from
spatial correlations between different output directions in
the speckle pattern. We define the two-point spatial corre-
lation function, which is evaluated using Eqgs. (2) and (3)
and [14]

Fin — 1
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IRRES)

(N

Cbobl

where by # b;. Cp j,, gauges the correlation between pho-
tons in modes b, and b; [18] and depends only on the
statistics of the input light. Note that Eq. (7) is exact and
independent of 1/g. The correlation function discussed
here is fundamentally different from the one encountered
in simpler systems as, e.g., a dual-port beam splitter, since
Eq. (7) is averaged over all ensembles of disorder. To
measure the two-point correlation function generally re-
quires involved coincidence detection schemes between

different output directions from the medium. However,
we find here that the quantum fluctuations of the total
transmission, or, equivalently, the total reflection, provide
an alternative way of extracting the two-point correlation.
The total transmission and the quantum correlation func-
tion are connected through

Ang
(@ir)

where again corrections of order 1/g have been neglected.

Figure 3 shows the two-point correlation function for
three different quantum states when varying the average
number of photons in the input state. For a coherent state
with an arbitrary average number of photons the correla-
tion function is unity, i.e., the spatial correlations vanish.
For single-mode thermal states, the spatial correlation
function is always equal to 2, which means that different
parts of the speckle pattern are strongly correlated. For
Fock states, a striking nonclassical behavior is found: The
spatial correlation function is reduced below unity, which
means that the spatial directions are anticorrelated. This
corresponds to spatial antibunching of light, and the corre-
lation function Cj;, is the spatial counterpart of the

second-order coherence function g?(7) that is omnipres-
ent in quantum optics [19]. For a single-photon Fock state,
the correlation function vanishes identically, since, if a
photon is detected in one channel, the probability of de-
tecting another photon in a different channel is zero. For
Fock states with an increasing number of photons, the
correlation function approaches unity, i.e., the spatial cor-
relations vanish.

In addition to the spatial correlations, mesoscopic fluc-
tuations also contribute to the quantum fluctuations of the
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FIG. 3 (color online). Two-point correlation function Cy, ;, for
three different quantum states of light as a function of the
average number of photons in the incoming field. The correlation
function exhibits either strong correlation (thermal state) or
anticorrelation (Fock state) relative to the uncorrelated case
(coherent state).
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FIG. 4 (color online). Fluctuations of the total transmission for
a coherent state, a thermal state with (ﬁi,“) = 1, and an arbitrary
Fock state as a function of the mesoscopic conductance g and for
a fixed amount of disorder: €/L = 1/3 For decreasing g, the
mesoscopic correlations either enhance or suppress quantum
fluctuations for the thermal state and the Fock state, respectively.
The fluctuations of the coherent state are unaltered for all values
of g. When g approaches unity, the localization regime is entered
and the model is invalid.

total transmission, cf. Eq. (5). Figure 4 displays these
fluctuations as a function of the mesoscopic conductance
g. For small values of g, the mesoscopic correlations either
enhance or reduce the quantum fluctuations for thermal
states and Fock states, respectively. In contrast, the quan-
tum fluctuations for a coherent state of light are unaltered.
These mesoscopic fluctuations provide another example of
correlations that are present only in a quantum description
of multiple scattering.

It is instructive to compare our findings on photon
fluctuations in diffusive propagation to the transport of
electrons through an elastically scattering disordered con-
ductor. In the diffusive regime of electron transport,
Poissonian electron fluctuations are reduced, which is a
direct consequence of the Fermi-Dirac statistics of elec-
trons in each individual conduction channel [20,21].
However, no correlations exist between different conduc-
tion channels and the fluctuations can simply be added up
incoherently. Our work demonstrates that the dominating
correlation in diffusive transport of photons is due to
correlation between different spatial modes that are the
optical analogy to electronic conduction channels, thus
pointing out a fundamental difference between electrons
and photons.

We have predicted a spatial correlation present in a
quantum description of multiple scattering of light. The
spatial correlation depends on the quantum state of the
light source illuminating the sample and can be measured
by recording the quantum fluctuations of the total trans-
mission or reflection from the sample. Our work shows that

multiple scattering of nonclassical light induces stronger
correlations than for classical light. The predictions should
be readily observable experimentally even for moderate
amounts of scattering.
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