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Spatiotemporal structures in the internally pumped optical parametric oscillator

P. Lodahl,1 M. Bache,1,2 and M. Saffman3
1Optics and Fluid Dynamics Department, Riso” National Laboratory, Postbox 49, DK-4000 Roskilde, Denmark

2Department of Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby, Denmark
3Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706

~Received 31 August 2000; published 17 January 2001!

We analyze pattern formation in doubly resonant second-harmonic generation in the presence of a compet-
ing parametric process, also named the internally pumped optical parametric oscillator. Different scenarios are
established where either the up- or down-conversion processes dominate the spatiotemporal behavior. The
possibility of obtaining exact solutions above threshold for the parametric oscillation process allows detailed
analytical investigations of the parametric instability, that are supplemented by numerical analysis. We identify
secondary instabilities that lead to formation of negative patterns and gray solitons. Estimates of the thresholds
for pattern formation under experimentally relevant conditions are given.
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I. INTRODUCTION

Pattern formation in cavity enhancedx (2) nonlinear pro-
cesses has been a flourishing research area recently. Pa
are formed due to transverse instabilities in the plane perp
dicular to the propagation direction. Two fundamentally d
ferent processes have been described that are the op
parametric oscillator~OPO! @1–3# and second-harmonic gen
eration~SHG! @4–6#. The spontaneous formation of patter
has been attributed to an off-axis emission mechanism
diated by the nonlinearity and diffraction when the intraca
ity fields are detuned slightly from cavity resonance. T
detuning can either be introduced manually by scanning
cavity length or, in the case of SHG, occur as a nonlin
effect. The absence of nonlinear phase shifts in the O
appears since patterns are generated directly at the para
ric oscillation threshold while an oscillation threshold do
not exist in SHG. This is the major reason for the differenc
between SHG and OPO.

Pattern formation under the combined processes of S
with competing nondegenerate parametric oscillations
been treated recently both for singly resonant@7,8# and dou-
bly resonant@9# SHG. This combined system, also named
internally pumped optical parametric oscillator~IPOPO!,
was shown to be of experimental relevance by Schilleret al.
@10# in their work on efficient frequency doubling. Henc
the parametric fields can be generated in such a way that
automatically obey resonance conditions in the cavity, wh
lowers the oscillation threshold. This additional decay p
cess substantially alters the classical@11# as well as the quan
tum @12,13# behavior of SHG. The competing parametr
process turns out to be of great relevance also for studie
pattern formation in SHG.

Here we describe the formation of spatiotemporal str
tures in doubly resonant SHG under the influence of
competing parametric process. The parametric proces
found to influence pattern formation in two fundamenta
different ways. For some parameters the instabilities see
a pure SHG system, with the parametric process neglec
can exist, while completely different transverse structures
observed in other regions. The SHG instabilities were pre
1050-2947/2001/63~2!/023815~12!/$15.00 63 0238
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ously studied by Etrichet al. @4# but the analysis presente
here is generalized to include also the possibility of nonid
phase matching of the frequency conversion process in a
tion to unequal propagation distances for the fundame
and second harmonic. These extra degrees of freedom
out to be usable tuning parameters in order to reach n
parameter regions, especially for tuning the SHG instabilit
with respect to the parametric threshold.

The instabilities due to the parametric process are stud
in detail in this paper. The simplicity of the parametric inst
bility allows derivation of exact solutions valid above th
parametric threshold. Such exact solutions were previou
found in the externally pumped nondegenerate OPO
Longhi @3# and by Marte in the IPOPO without diffractio
@11#. Depending on the sign of the fundamental detuning,
parametric fields are either emitted as homogeneous off-
or on-axis waves in the cavity. None of these instabilit
lead to any spatially modulated intensity structure, but wh
the off-axis parametric solutions are proven to be linea
stable and hence quench pattern formation, the on-axis s
tions can destabilize through a secondary instability. T
instability was previously found to lead to formation of com
plicated spatiotemporal structures, as, e.g., intensity sp
patterns@14#. Here we will focus on other secondary inst
bilities of the IPOPO including a parametric bistability and
self-pulsing instability. They are found to lead to novel tran
verse structures such as honeycomb patterns and oscill
dark solitons.

In addition to these studies of the rich pattern formati
dynamics in the IPOPO, we also analyze a realistic exp
mental setup in order to address the question of the exp
mental realizability of the scheme. This is particularly re
evant in light of the recent progress in the experimen
realization of pattern formation inx (2) based resonators@15#.

II. BASIC MODEL

A. The configuration

Figure 1 shows the cavity configuration for doubly res
nant SHG. The cavity consists of two independent arms
the fundamental and the second-harmonic fields, resp
©2001 The American Physical Society15-1
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tively. We discuss a semimonolithic standing-wave geome
where one end of the nonlinearx (2) crystal serves as mirror
for both fields, and externally adjustable output coupli
mirrors are used. The two fields are separated by a dich
mirror that reflects the fundamental and transmits
second-harmonic. The cavity is pumped at the fundame
frequency through the input coupling mirror~M1! with an
intensity transmission coefficientT, while the mirror M2 in
the second-harmonic path is assumed to be highly reflec
The two-arm configuration is advantageous since it allo
independent tuning of the two frequencies and thus, from
experimental point of view, double resonance can be m
easily obtained as compared to monolithic devices. Indep
dent tunable doubly resonant cavities have been describe
Ou and Kimble@16#. In Fig. 1, Lc is the crystal length and
the propagation distances outside the nonlinear medium
denotedL1 andL2 for the fundamental and second harmon
respectively. The parametric fields that can be excited in
system are not shown in the figure, but since phase-matc
restrictions require them to be generated with frequen
close to the fundamental they will propagate in the sa
cavity arm.

A central point is to have a cavity with all transver
modes degenerate in order to obtain nonlinear boundary
dependent patterns in contrast to mode dynamics. We
investigate the plane-plane configuration but alternative
e.g., a confocal geometry could have been chosen in ord
enhance the nonlinear coupling with focused beams
eliminate the propagation losses occurring in the plane-p
cavity @7#. However, narrow focusing is in general not
interest since the spatial scale of the pattern under inves
tion might become too large compared to the width of
Gaussian beam and consequently the pattern can be
pressed. This point will be investigated further in Sec. V.
an experiment it could be favorable to use a stable cav
and close to degeneracy it might still be possible to see
tures of pattern formation dynamics as pointed out by V
cárcel @17#.

B. Mean-field model

Mean-field equations for the IPOPO can be derived fr
the paraxial wave equation. The equations hold under
assumptions of small cavity round-trip losses and detunin
The derivation will not be given here but is very similar
the one presented in Ref.@7# in the case of singly resonan
SHG. The following description will concern the specifi
experimental setup illustrated in Fig. 1. Experimental wo
on this configuration is currently in progress. The analy

FIG. 1. Doubly resonant SHG cavity geometry.
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presented here includes effects due to potentially differ
round-trip propagation distances of the fundamental and
ond harmonic as well as different diffraction coefficients i
side and outside the crystal. We obtain the following set
four coupled equations:

]A1

]t
5~211 iD1!A11 f ~j!A1* A21 i¹'

2 A11E, ~1a!

]A2

]t
5~2g1 iD2!A22t f * ~j!A1

222t f * ~ j̃ !A1A2

1
i

2
v¹'

2 A2 , ~1b!

]A1

]t
5~211 iD1!A11 f ~ j̃ !A2* A21 i¹'

2 A1 , ~1c!

]A2

]t
5~211 iD2!A21 f ~ j̃ !A1* A21 i¹'

2 A2 , ~1d!

where f (x)5 ie2 ixsin(x)/x. The equations are written in
scaled form and describe the amplitudes of the fundame
A1, second harmonicA2, and parametric fieldsA6 . We have
introducedg5g2 /g1 andv5v2 /v1 as the ratio of the loss
rates and effective propagation velocities between the sec
harmonic and the fundamental, respectively, whilet
5t1 /t2 denotes the ratio of the round-trip propagati
times. The loss rates are given byg15(T1L1)/2t1 , g2
5L2/2t2, whereT is the intensity transmission of the inpu
coupler andL1 ,L2 are residual passive losses of the fund
mental and second harmonic during one round trip. All tra
mission and loss parameters are assumed small compar
unity to ensure the validity of the mean-field model. T
propagation round-trip times aret j52(L j1nLc)/c, j 51,2,
wheren is the refractive index of the nonlinear crystal andc
is the speed of light in vacuum, while the effective propag
tion velocities are given byv j5(L j1Lc /n)/t j , j 51,2.

The detuning parametersD j5(v j2v j ,c)/g1 , j 51,2,1,
2 measure the difference between the optical frequency
the nearest cavity resonance frequency normalized to the
rate of the fundamental. We will study a situation whereD1
andD2 are free parameters that can be selected experim
tally using, e.g., pump-laser frequency and cavity length,
though other tuning control parameters are possible@10#. We
implicitly assume that the actual detuning of the parame
fields is selected by the oscillator in order to maximize t
parametric gain. When the frequency shift of the parame
fields with respect to the fundamental frequency is su
ciently small energy conservation written asv11v2

52v1 implies a slaving of the parametric detunings to t
fundamental according to

D11D2.2D1 . ~2!

As discussed in the Appendix, Eq.~2! is a good approxima-
tion for parametric frequency shifts of order ten cavity fr
spectral ranges, and we will assume Eq.~2! to be valid in this
5-2
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SPATIOTEMPORAL STRUCTURES IN THE INTERNALLY . . . PHYSICAL REVIEW A63 023815
paper. For larger parametric frequency shifts the parame
detunings may not satisfy Eq.~2!. Analysis of that situation
lies outside the scope of the present paper.

In addition to the slaving of the parametric detunings
will, without loss of generality, assume thatD15D2 for the
following reason. Making the transformationsA1→A1eidt,
A2→A2e2 idt, leaves Eqs.~1! unchanged apart from reno
malization of the parametric detunings asD1→D12d and
D2→D21d. Assume that we have unequal detunings w
D15D21e. Then choosingd5e/2 equalizes the renorma
ized D6 . We will therefore assume that a frequency shiftd
has been applied such thatD15D2 and using Eq.~2! then
gives D15D25D1, which will be used in the rest of this
paper.

The scaling used in Eqs.~1! is important in order to con-
nect to the physical parameters. The electric-field amplitu
have been defined asAj52kLcE j

(0)/(g1t1An), j 51,2,1,
2, where E j

(0) is the amplitude of the electric field in
vacuum andk5v1deff /(nc) is the strength of the nonlinea
coupling, withv1 the frequency of the fundamental field an
d eff the effective nonlinearity coefficient. The time and spa
coordinates have been scaled according to the transfo
tions g1t→t, (Ak1g1 /v1)r→r , wherek1 is the wave num-
ber of the fundamental in vacuum. The fundamental pu
field has been scaled asE52hkLcEpump

(0) /(g1
2t1

2An), where
Epump

(0) is the physical electric field in vacuum that can
chosen real due to the free choice of the absolute phash
5AT is the input coupling efficiency of the pump field. F
nally, j5DkLc , j̃5D k̃Lc are the dimensionless phas
mismatch parameters in the second-harmonic and param
processes, respectively, whereDk52k12k2 and D k̃5k1

1k22k2.
In Eqs. ~1! the parametric fields have been assumed

propagate the same distance and experience the same p
losses as the fundamental field. This is a very good assu
tion since phase-matching bandwidth restrictions imply t
the parametric pairs are created with a frequency close to
fundamental. Furthermore, their frequencies will be close
a cavity resonance positioned an integer multiple of the c
ity free spectral range away from the fundamental resona

III. STABILITY ANALYSIS

In this section we analyze the stability of the homog
neous solutions. The first subsection will concern the c
where the system is below the parametric oscillation thre
old where the parametric fields are zero. In this case in
bilities seen in a pure SHG system are encountered. Furt
more, a stability analysis of the vanishing paramet
solutions allows identification of the parametric oscillati
threshold. The second subsection concerns the IPOPO a
threshold for the parametric process. Exact solutions for
off-axis emitted parametric fields are derived and their s
bility is tested leading to secondary instabilities.

A. Ground-state solutions below parametric threshold

Below the parametric threshold, the homogeneous s
tions for the parametric fields areA1

0 5A2
0 50. The corre-
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sponding homogeneous solutions for the fundamental
second harmonic can be found from Eqs.~1! as a straight-
forward generalization of the expressions given in@5# to in-
clude phase-mismatch and different propagation distan
between the fundamental and second harmonic. We ob
the following expressions

F t2u f ~j!u4

g21D2
2

uA1
0u412

g2D1D2

g21D2
2

tu f ~j!u2uA1
0u2111D1

2G
3uA1

0u25E2, ~3a!

uA2
0u5

tu f ~j!u

Ag21D2
2

uA1
0u2. ~3b!

A linear stability analysis is performed by perturbing th
homogeneous solutions according to

A15A1
01a1exp~lt1 ik'•r !1b1exp~l* t2 ik'•r !, ~4a!

A25A2
01a2exp~lt1 ik'•r !1b2exp~l* t2 ik'•r !,

~4b!

A65a6exp~ l̃t1 i k̃'•r !1b6exp~ l̃* t2 i k̃'•r !. ~4c!

We note that the stability analysis for the parametric fie
determines the threshold for onset of the parametric osc
tions. The problem factorizes into two quartic characteris
polynomials in the two independent eigenvaluesl and l̃

@l412~11g!l31a2~k'
2 !l21a1~k'

2 !l1a0~k'
2 !#

3@ l̃212l̃111~ k̃'
2 2D1!22u f ~ j̃ !u2uA2

0u2#250,

~5!

where the coefficients are given by

a0~k'
2 !54tu f ~j!u2uA1

0u2~tu f ~j!u2uA1
0u21g2d1d2!

1~g21d2
2!~11d1

22u f ~j!u2uA2
0u2!, ~6a!

a1~k'
2 !54~11g!tu f ~j!u2uA1

0u212g~11g1d1
2!12d2

2

22gu f ~j!u2uA2
0u2, ~6b!

a2~k'
2 !5u f ~j!u2~4tuA1

0u22uA2
0u2!111g~41g!1d1

21d2
2 ,

~6c!

and all the dependence on the transverse wave numberk' is
in the generalized detuning coefficients

d15D12k'
2 , ~7a!

d25D22
1

2
vk'

2 . ~7b!

One class of instabilities is obtained by solving Re(l)
50. They appear in pure SHG, where the parametric fie
5-3
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are not excited, and the four different types of instabilit
were investigated first by Etrichet al. @4,5# and briefly re-
viewed below.

In the case of homogeneous perturbations without
spatial modulation (k'50) bistability occurs and the thresh
old is obtained by solvinga0(k'

2 50)50. In the bistability
regime localized structures can be found numerically.
solving l5 ivc in the characteristic equation, a Hopf inst
bility is obtained, which implies time oscillating solution
with a frequency given by

vc5A a1~k'
2 !

2~11g!
. ~8!

This phenomenon, known as self-pulsing, was first predic
by Drummondet al. @18#. Transverse instabilities are foun
by solving a0(k'

2 )50 allowing for k' to be different from
zero. The most unstable transverse wave-vector compo
kc is located by furthermore requiring]Re(l)/]k'50,
which is equivalent to]a0(k'

2 )/]k'
2 50. By differentiating

Eq. ~6a! a cubic equation ink'
2 is obtained that can be solve

to find kc . Finally, also an oscillatory transverse instabili
can occur with the oscillation frequencyvc given by Eq.~8!
and with the transverse wave number and threshold obta
by solving the equations

vc
42a2~k'

2 !vc
21a0~k'

2 !50, ~9a!

]a2~k'
2 !

]k'
2

1S a2~k'
2 !

a1~k'
2 !

2
1

11g D ]a1~k'
2 !

]k'
2

2
1

vc
2

]a0~k'
2 !

]k'
2

50.

~9b!

From the expressions in this paragraph the spatial scalekc ,
oscillating frequencyvc , as well as the threshold amplitude
E,uA1u,uA2u for the various instabilities can be found. In th
paper we are in particular concerned with how these S
instabilities are modified due to the competing parame
process in the IPOPO. The detailed analysis of this prob
is given in Sec. IV.

A fundamentally different instability is the oscillation o
the parametric process investigated by substitutingl̃Re50 in
the characteristic polynomial of Eq.~5! as treated in Ref.@9#.
The threshold amplitude for this instability is given by

uA1,p
0 u25

Ag21D2
2

tu f ~j!uu f ~ j̃ !u
3H 1 if D1.0

A11D1
2 if D1,0

~10!

The parametric pairs are emitted off axis withk̃c5AD1 for
D1.0 and on axisk̃c50 for D1,0. A more elaborate de
scription of this parametric instability is given in the ne
section where exact solutions above threshold for the p
metric process are found.

B. Exact solutions above parametric threshold

The exact analytical solutions are homogeneous pl
waves for the fundamental and second harmonic, and
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axis emitted traveling waves for the parametric fields, cor
sponding to the following ansatz

A15Ā1 , ~11a!

A25Ā2 , ~11b!

A65Ā6exp@6 i ~ k̃'•r1ṽt !#. ~11c!

After substitution into Eqs.~1!, and usingD15D25D1, we
obtain

~12 iD1!Ā15 f ~j!Ā1* Ā21E, ~12a!

~g2 iD2!Ā252t f * ~j!Ā1
222t f * ~ j̃ !Ā1Ā2 , ~12b!

@11 i ~ṽ1 k̃'
2 2D1!#Ā15 f ~ j̃ !Ā2Ā2* , ~12c!

@11 i ~ṽ2 k̃'
2 1D1!#Ā2* 5 f * ~ j̃ !Ā2* Ā1 . ~12d!

The existence of nontrivial solutions for the parametric fie
requiresṽ50 and we haveuĀ1u5uĀ2u[uĀu. The ampli-
tudes of the exact solutions are obtained by solving

uĀ1u25z1~E2!2z2uĀu2, ~13a!

uĀ2u25
d~ k̃'

2 !

u f ~ j̃ !u2
, ~13b!

uĀu41z3uĀu21z45
1

4

u f ~j!u2

u f ~ j̃ !u2
uĀ1u4, ~13c!

where we have introduced the coefficients

z1~E2!5
tu f ~ j̃ !u2E222d~ k̃'

2 !~g2D1D2!

tu f ~ j̃ !u2~11D1
2!1tu f ~j!u2d~ k̃'

2 !
, ~14a!

z25
4u f ~ j̃ !u2Ad~ k̃'

2 !@cosf~ k̃'
2 !1D1sinf~ k̃'

2 !#

u f ~ j̃ !u2~11D1
2!1u f ~j!u2d~ k̃'

2 !
,

~14b!

z35
Ad~ k̃'

2 !@gcosf~ k̃'
2 !2D2sinf~ k̃'

2 !#

tu f ~ j̃ !u2
, ~14c!

z45
d~ k̃'

2 !~g21D2
2!

4t2u f ~ j̃ !u4
, ~14d!

and all the dependence on the transverse wave numberk̃'
2 is

in the parameters

d~ k̃'
2 !511~D12 k̃'

2 !2, ~15a!

f~ k̃'
2 !5arctan~D12 k̃'

2 !. ~15b!
5-4
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These exact solutions above threshold of the parametric
cess were stated in Ref.@14# under simplified conditions o

v5t51 and equal phase-matching parametersj5 j̃. Relax-
ing on the latter condition is found to lead to new types
instabilities as investigated below.

In order to perform a stability analysis of the exact so
tions also the phases must be found. We introduce the
lowing notation:

Āj5uĀj ueifĀj, ~16!

j 51,2,1,2. It turns out that only the sum of the parametr
phases can be calculated from the Eqs.~12!. We will assume
symmetric conditions withf Ā1

5f Ā2
[f Ā/2. The phases

can be found by solving

f Ā1
5arg@t~11 iD1!uĀ1u21~g2 iD2!uĀ2u2

12tu f ~ j̃ !uuĀ2uuĀu2eif( k̃'
2 )#, ~17a!

f Ā2
5arg@2~g1 iD2!uĀ2u22tu f ~ j̃ !uuĀu2

3e2 if( k̃'
2 )#12f Ā1

2f f , ~17b!

f Ā5f Ā2
1f f̃1f~ k̃'

2 !, ~17c!

wheref f5arg@ f (j)# andf f̃5arg@ f ( j̃)#. Note that the free-
dom in choice of the parametric phases implies that th
difference is subject to a diffusive process@19#. Numerical
simulations in regimes where the exact solutions are sta
support the presence of such a phase diffusive process.
observed that different initial noise levels and noise val
result in different end results for the parametric phases,
though the sum of these is in correspondence with the v
calculated with Eq.~17c!.

Bistability in the parametric solutions occurs when E
~13c! has two physical solutions for a given value ofE. It
arises when the ground-state solutionsA650 become un-
stable through a subcritical bifurcation, and thus correspo
to bistability between the parametric solutions below a
above threshold. This turns out to happen only for nega
fundamental detuning where the parametric fields are em
on axis,k̃'50. Necessary conditions for the parametric
stability to exist include unequal phase mismatch of the t
competing processes (jÞj̃) as well as

u f ~j!u21u f ~ j̃ !u2

2u f ~j!uu f ~ j̃ !u
~D1D22g!.A~11D1

2!~g21D2!, ~18!

which implies D1D2.g. The bistability region isE1,E
,Ep with the boundary values given by

Ep
25

11D1
2

tu f ~ j̃ !u2
S u f ~j!u21u f ~ j̃ !u2

u f ~j!uu f ~ j̃ !u

3A~11D1
2!~g21D2

2!12~g2D1D2!D , ~19a!
02381
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E1
25

zu f ~j!u22u f ~ j̃ !u2z

tu f ~j!uu f ~ j̃ !u3
~11D1

2!uD21gD1u,

~19b!

whereEp is the parametric oscillation threshold. Thus, t
IPOPO contains two distinct types of bistabilities that can
attributed to the SHG and OPO processes, respectiv
However, while the SHG bistability is found to behave in
similar way as in a pure SHG system, the parametric bis
bility is found to lead to new effects compared to the ext
nally pumped OPO, as will be explored in Sec. IV B. Stud
of bistability and cavity solitons in the ordinary pumpe
OPO have been performed both in the degenerate@20–22#
and nondegenerate configurations@3,23–25#.

The exact parametric solutions can be tested by a stab
analysis. The solutions are perturbed according to

Aj5Āj1ajexp~Lt1 iK•r !1bjexp~L* t2 iK•r !, ~20a!

A65exp~6 i k̃'•r !@Ā61a6exp~Lt1 iK•r !1b6

3exp~L* t2 iK•r !#, ~20b!

j 51,2. This analysis is similar to the one described in S
III A except that it is further complicated by the nonvanis
ing amplitudes of the parametric fields leading to an 838
matrix problem for computation of the eigenvalues. Equ
tions ~11! constitute a continuous family of exact solution
by varying the wave numberk̃' . However, at thresholdk̃c ,
obtained from the parametric threshold analysis, is selec
The numerical analysis indicates that the solution excited
threshold also prevails further above threshold. The sa
conclusion is reached by investigating growth rates ab
threshold that are found to be peaked atk̃c , and hence we let
k̃'5 k̃c in Eqs. ~20!. For D1.0, the direction of the wave
vectorK introduced in the transverse perturbations becom
important. It can be directed either parallel or perpendicu
to the wave vectork̃c of the exact off axis solution, corre
sponding to Eckhaus and zig-zag instabilities, respectiv
For D1,0, the parametric fields are emitted on axis a
therefore the direction ofK is unimportant. The results o
this stability analysis are given in the following section.

IV. INSTABILITIES IN THE IPOPO

In this section results from the linear stability analysis a
presented, and the formation of patterns above instab
threshold is investigated numerically using a split-step r
tine previously discussed in Ref.@7#. The results illustrate
two fundamentally different situations. First we demonstr
that the SHG temporal and spatial instabilities can be
served also in the presence of the competing parametric
cess, which occurs for parameters where the SHG instab
thresholds are below the parametric threshold. In the op
site case, a stability analysis of the exact solutions in E
~13! predicts quenching of the SHG patterns. In certain
gions, these exact solutions may destabilize through a
ondary instability that recently was shown to lead to form
5-5
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tion of novel intensity spiral structures@14#. In this section
other examples of secondary instabilities are given includ
parametric bistability and self-pulsing.

In previous work the extra degrees of freedom associa
with phase mismatch of the conversion processes have
been considered. Introducing nonzero but equal phase
matches (j5 j̃Þ0) leads to an identical termf (j) in front of
all nonlinear terms in Eqs.~1! which can be scaled away
Hence,j5 j̃Þ0 does not lead to any new physical effec
but only to an increase in the thresholds for the instabiliti
This is in contrast to the singly resonant second-harmo
generation~SRSHG! configuration where phase mismatc
was found to be an important tuning parameter@7#. This
difference arises since the axial variation of the seco
harmonic field in doubly resonsant SHG is averaged ou
the well-established mean-field description, which is not
propriate for the second harmonic in SRSHG.

Introducing different phase mismatches for the twox (2)

processes (jÞj̃) allows independent tuning of the SHG in
stabilities and the parametric threshold, since the former
independent ofj̃ while the latter depend on bothj and j̃.
This can, e.g., be used to move the parametric instab
above the SHG instabilities in order to avoid undesir
quenching of the pattern formation. Furthermore, it turns
that new parametric instabilities can arise that are not pre
in the equally phase-matched case, as will be describe
Sec. IV B. However, in an experimental context, it is wor
emphasizing that while the phase-matching parameterj for
the SHG process can be controlled, the parametric pairs
be emitted with frequencies that lower the parametric thre
old. From Eq.~10! this is seen to lead toj̃50, which will be
assumed to be the case in this paper. In certain situations
may be a too simplistic description since also the requ
ment of a nearby cavity resonance contributes to the se
tion of the parametric frequencies, as was discussed ex
sively in Ref.@10#.

Unless otherwise stated, in this section we will assu
ideal phase matchingj5 j̃50 and equal propagation dis
tances for the fundamental and second harmonict5v51.
The significance of unequal propagation distances in an
perimental context is discussed in Sec. V.

A. SHG instabilities

In the ideally phase-matched case two distinct param
regions exist depending on the sign of the fundamental
tuningD1. For positiveD1, the parametric instability is low-
est in the system and dominates the behavior as dem
strated in Ref.@9#. Here the robustness of the paramet
off-axis solutions was seen numerically and found to lead
quenching of pattern formation. Although the paramet
fields are emitted off axis in the cavity, the process is
found to lead to any spatial intensity modulation since
nondegenerate parametric fields cannot interfere. In add
to the numerical studies, the parametric quenching of S
instabilities can be investigated analytically by the stabi
analysis of the exact parametric solutions as was outline
Sec. III B. The parametric solutions appear always to
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stable both for perturbations parallel and perpendicular

k̃c , thus indicating a complete quenching of pattern form
tion for positive detuning.

Introducing unequal phase mismatches in the compe

processes (jÞj̃), the parametric threshold may be shifte
above the SHG thresholds. In this way the SHG instabilit
can be excited also forD1.0 when using a pump leve
between the SHG and parametric thresholds. IncreasinE
above the parametric threshold, however, quenching is fo
both in the stability analysis and numerically, and it is aga
due to the off-axis emitted parametric fields. Quenching fr
the parametric process thus seems to be a generic prope
the IPOPO for positive fundamental detuning.

For negative fundamental detuningD1,0, parameter re-
gions exist where all types of SHG instabilities have low
threshold, i.e., they can be excited. Increasing the pu
above the parametric threshold, the SHG instabilities
prevail in this case leading to the formation of the sa
modulated structures also in the parametric fields. An
ample of hexagonal structures in all four fields can be fou
in Ref. @9#, and furthermore traveling waves have been o
served. In some cases the SHG instabilities may be chan
subsequently when increasing the pump above the para
ric threshold as well. Such an example is described in
next section.

Also the temporal self-pulsing instability can be excit
for D1,0. This is in contrast to the resonant case treated
Ref. @11# where the parametric process was found to que
self-pulsing completely. The presence of self-pulsing in
detuned system was suggested in@26# and is here demon
strated explicitly. For the parameters in Fig. 2, close to
self-pulsing threshold (ESP.10.4) a single-frequency oscil
lation is observed with a frequency in agreement with
linear stability resultvc . Further, above threshold, the par
metric threshold (Ep.10.9) is crossed, and self-pulsing
all four fields is obtained as shown in Fig. 2. The prima
frequency of the oscillations isv53.39, in reasonable agree
ment with the frequency predicted by the linear stabil
threshold analysis ofvc53.17. We observe the presence
period doubling as most clearly seen in the fundamen
field. Such period doubling was previously found in SHG
Savage and Walls@27# to be a prerequisite for chaotic osci
lations.

The presence of bistability in SHG was extensively d
cussed in Ref.@4#. In that case cavity solitons can be forme
as a consequence of bistability between homogeneous s
and modulationally unstable solutions. This SHG bistabil
is also found in the IPOPO in the case where both the f
damental and second harmonic have sufficiently large ne
tive detunings. In this region, excitation of cavity solitons
all four fields is possible but will not be discussed furth
here.

B. Secondary parametric instabilities

Also for negative fundamental detuning the parame
threshold can be the lowest instability in the system for c
tain parameters. Hence, the exact parametric solution in E
~11! can be excited, where in that case the parametric fie
5-6
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are emitted on axis withk̃'50. These solutions can becom
unstable when increasingE due to the presence of seconda
instabilities in the system. This is in contrast to the off-a
solutions discussed in the previous section that were alw
linearly stable. Spatiotemporal pattern formation from t
secondary instability was investigated in Ref.@14#. There the
formation of traveling roll patterns was observed that co
destabilize further to form intensity spiral structures con
tuting a novel type of nonlinear phenomenon in optics.

When the parametric threshold is above an SHG pat
threshold the assumption of spatially homogeneous fun
mental and second-harmonic fields may not be accur
However, if the modulation from the SHG instability is wea
the ansatz given by Eqs.~11! may still be a reasonable ap
proximation. This allows an analysis of the effect of t
parametric process, also in this case, as discussed in the
lowing.

Figure 3 shows growth rates found from stability analy
of the parametric solutions. The parameters in this fig
correspond to the case where the SHG traveling-wave thr
old is lowest,ETW.14.3, while the SHG self-pulsing thresh
old is ESP.15.3, and the parametric threshold isEp.15.7.
The full curve in Fig. 3 shows the growth rate just aboveEp .
The system is seen to be unstable towards perturbations
both Kc50 andKc.0.7, corresponding to self-pulsing an
traveling-wave instabilities, respectively, since both ha
Im@L max(Kc)#Þ0. They are remains of the SHG instabi
ties present belowEp . As E is increased slightly toE
516.2~dashed curve!, the self-pulsing is quenched while th
traveling-wave instability becomes quenched after increas

FIG. 2. Self-pulsing solution for all four cavity fields withD1

522.5, D251.2, andg51. The pump level isE511.7. The plots
display the scaled intensity in the four beams as a function of ti
The upper plot shows the fundamental~solid! and second-harmonic
~dashed! intensities, while the lower plot shows the parametric
tensities.
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the pump to E517.2 ~dotted curve!. However, another
traveling-wave instability is found at a pump level ofE
518.0 ~dash-dotted curve!, with a spatial instability wave
numberKc.1.65.

Numerical simulations confirm the above scenario. AtE
515.8 the SHG traveling waves are found with a transve
wave number close toK.0.7. At E518.0 the traveling
waves in Fig. 4 are obtained, which has a transverse w
vector close toKc.1.65 that was predicted from the das
dotted curve in Fig. 3. This clearly shows that the traveli
waves in Fig. 4 are due to a secondary parametric instabi
in this case different from the SHG instabilities.

Allowing the two competing nonlinear processes to
unequally phase matched (jÞj̃) and keeping the detuning
sufficiently negative, bistability from the parametric proce
can occur, as was shown in Sec. III B. Figure 5 show
bifurcation diagram forj52.5, j̃50, D1527, andg52,
where the parametric bistability is seen to set in atD2.
21.4. The phase-mismatch parameter for the SHG proce

e.

FIG. 3. Growth rates as a function of the transverse perturba
wave numberK for the parametersD1522.5, D253.0, andg51.
The pump level isE515.8 ~full curve!, E516.2 ~dashed curve!,
E517.2 ~dotted curve!, andE518.0 ~dash-dotted curve!.

FIG. 4. Space-time plot showing a traveling-wave pattern due
a secondary instability with parameters as in Fig. 3. The pictu
show the temporal evolution of a cut through the transverse pla
The horizontal box size is 27.0 while the vertical time axis is
time units. The pump level isE518.0.
5-7
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P. LODAHL, M. BACHE, AND M. SAFFMAN PHYSICAL REVIEW A 63 023815
chosen sufficiently large such that the parametric thresho
below the SHG thresholds. For a fixed value of the seco
harmonic detuning,D2524, the lower plot in Fig. 6 shows
the characteristic bistability curve of the intracavity param
ric intensity as a function of the pumpE. At the oscillation
threshold (Ep.66.2) the ground-state parametric solutio
A650 ~solid curve!, bifurcates subcritically into an unstab
branch ~dotted curve!. This middle branch is linearly un
stable and using Eq.~19b! is found to bifurcate atE1

.59.5 into a modulationally unstable upper branch~dashed
curve!. The corresponding bistability curves for the fund
mental and second harmonic are also displayed in Fig. 6.
fundamental bistability curve is seen to be inverted such
the modulational branch is below the homogeneous solut
The second harmonic, however, is clamped at a cons
value above the parametric threshold as is also seen from
~13b!, which follows from the exact balancing of the tw
competing frequency conversion processes in steady s
This clamping was observed in Ref.@28#.

The inverted bistability curve for the fundamental fie
promises formation of spatial structures consisting of ho
in the homogeneous background. An example of such a h
eycomb structure in the fundamental is shown in Fig. 7
E568.0 corresponding to a pump level above the bistabi
region. The modulated structures in the three other fields
ordinary hexagons in agreement with expectations from F
6. The average intensities are found to oscillate in time
to a self-pulsing instability in the system, which could not
predicted directly from the stability analysis.

Bistability between a homogeneous stable ground s
and a modulationally unstable upper state can lead to for
tion of localized structures, also called cavity solitons. U
like temporal solitons in, e.g., fiber optics, these solitons
a result of a careful preparation of the system. Using a lo
ized address beam a small part of the system is set in
modulationally unstable upper state, while the rest of
system is maintained at the homogeneous background le
These states must be connected to each other by transit
kink type waves, also called switching waves@29#, that can
lock mutually to form solitonlike structures.

FIG. 5. Bifurcation diagram forD1527, g52, j52.5, andj̃
50. The bold-solid line is the SHG transverse threshold while
bold-dashed lines are limit points of the SHG bistable area.
thin-solid line is the parametric threshold, the thin-dashed lines
limits of the parametric bistable area. Finally, the thin-dotted line
the self-pulsing secondary instability.
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In order to investigate the formation of cavity soliton
numerically, the system was prepared as follows. The lo
ized Gaussian address beam had a pump value well a
the upper limit of the bistable area. After 5 time units t
address beam was switched off and the evolution of
fields was followed. For a pump value close to the bista
lower limit, E559.7, it is possible to obtain stable cavi
solitons, where an example is shown in Fig. 8. The fun
mental soliton is a so-called gray soliton, since it constitu
a localized hole in the homogeneous background as a co
quence of the inverted fundamental bistability curve. T
second harmonic and parametric solitons are all bright s
tons, and generally the solitons may be seen as residua
the modulational structure of the upper branch, which in t
case are the hexagons shown in Fig. 7. Note that cavity s
tons may also be observed by pumping well above the bi
bility limits to obtain the hexagonal patterns in Fig. 7, a
then slowly decreasing the pump level to enter the bista
area. The appearance of two-dimensional~2D! gray solitons
is, to our knowledge, a new phenomenon inx (2) cavity in-
teractions. However, 1D dark solitons have been reporte
the OPO@30# due to a different mechanism based on t
coexistence of two parametric homogeneous solutions w

e
e
re
s

FIG. 6. Intracavity fields as a function ofE. The full ~dashed!
curves are the solutions below~above! the parametric threshold
while the dotted curves are linearly unstable homogene
branches. The parameters are as in Fig. 5, and withD2524.
5-8
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SPATIOTEMPORAL STRUCTURES IN THE INTERNALLY . . . PHYSICAL REVIEW A63 023815
different phases. In 2D these solitons are manifested as
stripes or domain walls.

Increasing the pump level, the modulational branch
comes Hopf unstable and self-pulsing solitons are obser
An example is shown in Fig. 9 where results from the first
time units of a simulation is shown, and after the addr
beam is turned off the soliton oscillates regularly. Simi
oscillating solitons have been observed numerically in
nondegenerate OPO@31# ~bright solitons! and in a cavity
filled with a saturable absorber@32# ~gray solitons!.

The exact solutions above the parametric threshold m
also destabilize through a homogeneous Hopf bifurca
corresponding to an instability to a perturbation withKc50
and L56 iVc . This self-pulsing secondary instability i
also included in the bifurcation diagram in Fig. 5. ForD2
50 and with a pump close to the self-pulsing threshold, i
possible to obtain single-frequency oscillations withV
.1.90 very close to the theoretical value ofVc.1.93. These
oscillations lead to similar self-pulsing intensity behavior
all four fields as shown in Fig. 2, however the mechanism
in this case different and due to a secondary instability. T

FIG. 7. Hexagons in the transverse plane originating from
modulationally unstable upper branch in Fig. 6. The fundame
field displays honeycomb hexagons, while the second-harmonic
parametric fields show ordinary hexagons. The window size
21.4321.4 and the parameters are as in Fig. 6 withE568.0.

FIG. 8. Cavity solitons forE559.7 and the parameters in Fig. 6
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self-pulsing threshold is found to occur above the pump le
where the oscillations of the hexagons and cavity solito
starts and could indicate the self-pulsing bifurcation is s
critical. However, more involved mechanisms may be
sponsible for the oscillations, as reported for nonlinear K
resonators@33#, where the self-pulsing is found from dest
bilization of the modulated structure as opposed to the
mogeneous solutions studied here.

V. EXPERIMENTAL PARAMETERS

The stability analysis presented in Sec. III was done
scaled parameters. In order to relate to parameters in a
experiment it is necessary to convert back to physical un
In the following we will calculate the thresholds for the di
ferent SHG instabilities and the corresponding spatial a
temporal scales for relevant physical parameters.

From the scalings introduced in Sec. II B, we obtain

t5
t1

t2

5
L11nLc

L21nLc

, ~21a!

g5
g2

g1

5
F1

F2

L11nLc

L21nLc

, ~21b!

D j5g1D̄ j5
pc

2F1

1

L11nLc

D̄ j , ~21c!

v5
v2

v1

5
n1L1 /Lc

11nL1 /Lc

11nL2 /Lc

n1L2 /Lc

, ~21d!

wherej 51,2,1,2, and we have adopted the convention th
scaled quantities are denoted with a bar. Furthermore,
finesseFj has been introduced as the cavity free spec
range Dn j

(FSR)51/t j , divided by the full-width-half-
maximum linewidthDn j.g j /p, j 51,2. The latter approxi-
mation is valid in the case of small cavity round-trip losse
which leads to the expressions

F1.2p/~T1L1!, ~22a!

e
al
nd
is

FIG. 9. Self-pulsing cavity solitons forE562.0 and the param-
eters in Fig. 6. The plot shows the average intensity of the param
ric fields as a function of time. The gray area indicates the first fi
time units of the simulation where the address beam is on wit
value ofE584.0.
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F2.2p/L2 . ~22b!

The intensity of the fundamental pump field is given by

I pump5
e0c

2
~Epump

(0) !25
e0cn3p2l2

32deff
2 Lc

2

1

TF1
4

E2, ~23!

wheree0 is the vacuum permittivity andl is the fundamen-
tal wavelength.

We consider an experiment consisting of a 1-cm lo
LiNbO3 crystal placed in a cavity withL15L251 cm.
LiNbO3 can be noncritically phase matched for frequen
doubling at the Nd:YAG wavelengthl51064 nm, where
the effective nonlinear coefficient isdeff54.7 pm/V and the
refractive index isn52.2 @34#. Furthermore, the finesse o
the fundamental and second-harmonic cavities are assu
to beF15F25100 and the fundamental input coupler tran
mission T53%. From these numbers the cavity linewid
for the fundamental and second harmonic are calculate
beDn15Dn2547 MHz. In Fig. 10 the pump intensity nec
essary to reach threshold for the different instabilities in
system is plotted as a function of the detuning of the sec
harmonic while the fundamental detuning is fixed atD15

2368 MHz, which corresponds to a scaled detuningD̄15
22.5. A typical threshold value is about 0.1 kW/mm2,
which should be easily accessible with a pulsed Nd:YA
laser. For comparison, experiments on spatial soliton for
tion in x (2) propagation geometries require on the order
1 GW/mm2 @35#.

The spatial scale of the transverse structurekc and the
self-pulsing frequencyvc can be transformed into physica
units as

kc5Ak1g1

v1

k̄c5A2np2

lF1

1

Lc1nL1

k̄c , ~24a!

vc5g1v̄c5
pc

2F1

1

L11nLc

v̄c . ~24b!

Defining l c52p/kc as the scale of the spatial modulation,
is favorable to havel c small since this allows more narrow

FIG. 10. The threshold pump intensity for the different instab
ties in the system. The parameters are specified in the text.
curve: parametric instability; bold curve: stationary transverse in
bility; thin-dashed curve: self-pulsing instability; bold-dash
curve: oscillatory transverse instability.
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focusing in the crystal and thus higher intensities. In orde
observe pattern formation in an experiment a minimum
quirement is that the width of the Gaussian beam is lar
than the pattern scale, i.e., 2w0> l c , wherew0 is the beam
radius at the waist. We observe from Eq.~24a! that to obtain
a small spatial scale requires a short cavity. It is especi
important to minimize the propagation distance outside
crystal since the beam diffracts less in a medium with
reduction factor given by the refractive index. The spat
scales for the stationary and oscillatory transverse struct
are plotted in Fig. 11 as a function of the scaled seco
harmonic detuningD̄2 for different values of the fundamen
tal finesse. The scaled detuning is used in order to relate
detunings of cavities with different values of the fundame
tal finesse. All other parameters are as described above
in particular D̄1522.5 for all curves. The typical spatia
scale is seen to be about 1 mm.

In Fig. 12 the self-pulsing frequencyvc is plotted as a
function of the second-harmonic detuning for the same va
of the fundamental detuning as in Fig. 10. The typical se
pulsing frequency is found to range from about 300 MHz
1 GHz, and is not changed considerably when varying
fundamental detuning.

Finally, the extra degrees of freedom contained in
ratios of the round-trip timest and the propagation velocitie
v should be considered. From an experimental point of vi

in
a-

FIG. 11. Spatial scale of the transverse instability displayed
function of the scaled second harmonic detuning. The bold and
curves are the stationary and oscillatory instabilities, respectiv
The full, dashed and dotted curves correspond to a fundame
finesse of 50, 100, and 150, respectively.F25100.

FIG. 12. Self-pulsing frequencyvc plotted as function of the
second-harmonic detuning forD152368 MHz. The thin and bold
curves correspond to the spatially homogenous and modulate
stabilities, respectively.
5-10
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SPATIOTEMPORAL STRUCTURES IN THE INTERNALLY . . . PHYSICAL REVIEW A63 023815
they may appear to be important since they can be use
convenient tuning parameters. Varyingt by changing the
propagation distances of the fundamental or the second
monic is seen to be a way to change the loss-rate ratiog,
which is more easily accessible experimentally than
changing the respective propagation losses of the two fie
The parameterv is found to influence only the diffraction
terms and can therefore be used to tune the spatial perio
the modulated structure. This may be convenient in orde
operate in a regime where the spatial period is small s
that a more narrow Gaussian pump beam can be use
enhance the nonlinearity. One way of changingv is to vary
the length of the second-harmonic armL2, while keeping the
length of the fundamental armL1 fixed. Figure 13 shows the
variation of the spatial scale withL2. It is observed that
substantial tuning of the spatial scale is possible and in g
eral a small value ofL2 is desirable.

VI. CONCLUSIONS

This paper concerned pattern formation in doubly re
nant SHG in a two-armed cavity configuration of relevan
for experimental realizations. As pointed out in previo
work the presence of a competing parametric process
influence the pattern formation of the system decisively
set of coupled cavity mean-field equations generalized to
clude also unequal phase mismatch for the two compe
processes as well as different propagation distances for
fundamental and second harmonic, was presented to m
this system. The instabilities were divided into SHG a
parametric instabilities, according to the relative position
the SHG instability thresholds to the parametric instabi
threshold. The parametric instability could be studied in
tail by deriving exact analytical solutions that were found
imply complete quenching of spatially modulated intens
structures for positive fundamental detuning. For nega
fundamental detuning, however, the parametric soluti
could destabilize leading to new phenomena. Here we h
considered parametric bistability and self-pulsing that o
were found for unequal phase mismatch of the two comp
ing processes. These instabilities were found to lead to
mation of a honeycomb pattern and gray solitons. Fina

FIG. 13. The spatial scale of the transverse instability as a fu
tion of the length of the second harmonic armL2. The lengths of the
fundamental arm areL1510 mm ~solid!, L1520 mm ~dashed!,
andL1550 mm~dotted!. The parameters are as in Fig. 10 and w

D̄2521.5.
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numerical estimates of the threshold intensity and spatiot
poral scales for the instabilities were given for realistic e
perimental parameters.

APPENDIX: DETUNING OF THE PARAMETRIC
FIELDS

In this appendix we discuss the relationship between
detuning of the fundamental and parametric fields. Ene
conservation requires

2v15v11v2 , ~A1!

wherev j is the angular frequency of fieldj. In a monolithic
resonator containing a dispersive crystal there are a se
resonances at vacuum wavelengthslp satisfying

2Lcnp

lp

5p, ~A2!

where Lc is the crystal length,p is an integer, andnp
5n(lp) is the crystal’s index of refraction atlp . For sim-
plicity we have neglected the distanceL1 in Fig. 1. The
corresponding set of resonant frequencies is

vp52p
c

lp

5p
pc

Lcnp

. ~A3!

Define detunings asd j5v j2vpj
, j 51,1,2. Then Eq.

~A1! implies

2vp1
2vp1

2vp2
5d11d222d1 . ~A4!

Assuming that the parametric fields are emitted symme
cally, we havevp6

5vp16m , wherem is an integer labeling
the axial mode the parametric fields are nearly resonant w
Hence, the left-hand side of~A4! can be written as

lhs5
2pc

lp1

F22
np1

np1

2
np1

np2

2
m

p1
S np1

np1

2
np1

np2

D G . ~A5!

Converting to normalized detunings using the same scal
as in Eqs.~1! then gives

D11D222D15
8pnp1

Lc

lp1

1

T1L1

3F22
np1

np1

2
np1

np2

2
m

p1
S np1

np1

2
np1

np2

D G .

~A6!

Whenm50, np1
5np2

5np1
andD11D222D150. At fi-

nite m this relation is only approximate. As an examp
consider LiNbO3 at room temperature,Lc51 cm, T5L1
50.03, lp1

51.06 mm, and m;20 ~corresponding to a
wavelength separation between the parametric beam
about 1 nm!. Equation ~A6! then givesD11D222D15

c-
5-11
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20.1, where the refractive indices have been calculated
ing the Sellmeier equations given in Ref.@34#. In practice the
axial mode shiftm, and the selected detuning of the param
ric fields from the nearest cavity resonances, depend on
interaction of the phase mismatch of the fundamental and
.

p

.

n.
,

02381
s-

-
he
e

cavity tuning in a rather complicated way@10#. Thus even
though the fundamental is close to phase matching there
be a large shift of the parametric frequencies. Analysis
that situation, which implies arbitrary parametric detunin
is not included in this paper.
m
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