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Spatiotemporal structures in the internally pumped optical parametric oscillator
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We analyze pattern formation in doubly resonant second-harmonic generation in the presence of a compet-
ing parametric process, also named the internally pumped optical parametric oscillator. Different scenarios are
established where either the up- or down-conversion processes dominate the spatiotemporal behavior. The
possibility of obtaining exact solutions above threshold for the parametric oscillation process allows detailed
analytical investigations of the parametric instability, that are supplemented by numerical analysis. We identify
secondary instabilities that lead to formation of negative patterns and gray solitons. Estimates of the thresholds
for pattern formation under experimentally relevant conditions are given.
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I. INTRODUCTION ously studied by Etrictet al. [4] but the analysis presented
here is generalized to include also the possibility of nonideal

Pattern formation in cavity enhanced® nonlinear pro- phase matching of the frequency conversion process in addi-
cesses has been a flourishing research area recently. Pattelif§ to unequal propagation distances for the fundamental
are formed due to transverse instabilities in the plane perper@nd second harmonic. These extra degrees of freedom turn
dicular to the propagation direction. Two fundamentally dif- Out to be usable tuning parameters in order to reach new
ferent processes have been described that are the optidirameter regions, especially for tuning the SHG instabilities
parametric oscillatofOPO) [1—3] and second-harmonic gen- With respect to the parametric threshold.
eration(SHG) [4—6]. The spontaneous formation of patterns The instabilities due to the parametric process are studied
has been attributed to an off-axis emission mechanism mdn detail in this paper. The simplicity of the parametric insta-
diated by the nonlinearity and diffraction when the intracav-bi'ity allows derivation of exact solutions valid above the
ity fields are detuned slightly from cavity resonance. TheParametric threshold. Such exact solutions were previously
detuning can either be introduced manually by scanning théound in the externally pumped nondegenerate OPO by
cavity length or, in the case of SHG, occur as a nonlineat-onghi [3] and by Marte in the IPOPO without diffraction
effect. The absence of nonlinear phase shifts in the OP®L1]. Depending on the sign of the fundamental detuning, the
appears since patterns are generated direcﬂy at the paramggrametric fields are either emitted as homogeneous off-axis
ric oscillation threshold while an oscillation threshold doesOr on-axis waves in the cavity. None of these instabilities
not exist in SHG. This is the major reason for the differencedead to any spatially modulated intensity structure, but while
between SHG and OPO. the off-axis parametric solutions are proven to be linearly

Pattern formation under the combined processes of SHStable and hence quench pattern formation, the on-axis solu-
with competing nondegenerate parametric oscillations haions can destabilize through a secondary instability. This
been treated recently both for singly resongh8] and dou-  instability was previously found to lead to formation of com-
bly resonanf9] SHG. This combined system, also named thePlicated spatiotemporal structures, as, e.g., intensity spiral
interna”y pumped 0ptica| parametric OSCi”a.tﬁrPOPQ, pattern5[14]. Here we will focus on other Secondary insta-
was shown to be of experimenta| relevance by Schdteal. bilities of the IPOPO inCIUding a parametric b|Stab|I|ty and a
[10] in their work on efficient frequency doubling. Hence, Self-pulsing instability. They are found to lead to novel trans-
the parametric fields can be generated in such a way that the4grse structures such as honeycomb patterns and oscillating
automatically obey resonance conditions in the cavity, whictlark solitons.
lowers the oscillation threshold. This additional decay pro- In addition to these studies of the rich pattern formation
cess substantially alters the classiddl] as well as the quan- dynamics in the IPOPO, we also analyze a realistic experi-
tum [12,13 behavior of SHG. The competing parametric mental setup in order to address the question of the experi-
process turns out to be of great relevance also for studies #fental realizability of the scheme. This is particularly rel-
pattern formation in SHG. evant in light of the recent progress in the experimental

Here we describe the formation of spatiotemporal structealization of pattern formation ip(*) based resonatof45].
tures in doubly resonant SHG under the influence of the
competing parametric process. The parametric process is Il. BASIC MODEL
found to influence pattern formation in two fundamentally
different ways. For some parameters the instabilities seen in
a pure SHG system, with the parametric process neglected, Figure 1 shows the cavity configuration for doubly reso-
can exist, while completely different transverse structures areant SHG. The cavity consists of two independent arms for
observed in other regions. The SHG instabilities were previthe fundamental and the second-harmonic fields, respec-

A. The configuration
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presented here includes effects due to potentially different
E round-trip propagation distances of the fundamental and sec-
— Ml ond harmonic as well as different diffraction coefficients in-
A ﬁ side and outside the crystal. We obtain the following set of
> four coupled equations:
= e
« »e > A,
L, L, Iz(—1+iAl)A1+f(§)A’l‘A2+inAl+ E, (1a)
FIG. 1. Doubly resonant SHG cavity geometry.
A,

——=(—y+iAy)A,— TF* (E)A2-27f* ()AL A_
tively. We discuss a semimonolithic standing-wave geometry gt (=7 A= T (OAI 27T (DAL

where one end of the nonlinegf?) crystal serves as mirrors
for both fields, and externally adjustable output coupling

i
2
mirrors are used. The two fields are separated by a dichroic + EUVLAZ’ (1b)
mirror that reflects the fundamental and transmits the
second-harmonic. The cavity is pumped at the fundamental gA , ~
frequency through the input coupling mirr@1) with an =(—1+iA+)A++f(§)AiA2+inA+, (10

intensity transmission coefficief while the mirror M2 in
the second-harmonic path is assumed to be highly reflecting.
The two-arm configuration is advantageous since it allows ="~ _ . . 2\ Ak So2
independent tuning of the two frequencies and thus, from an 4t =(CIHIA A FT(OALAHIVIA-, (1d
experimental point of view, double resonance can be more ,
easily obtained as compared to monolithic devices. Indeperwhere f(x)=ie™”sin(x)/x. The equations are written in
dent tunable doubly resonant cavities have been described Isgaled form and describe the amplitudes of the fundamental
Ou and Kimble[16]. In Fig. 1,L is the crystal length and Az, second harmonié,, and parametric field8.. . We have
the propagation distances outside the nonlinear medium afgtroducedy=y,/y; andv=v,/v, as the ratio of the loss
denoted., andL, for the fundamental and second harmonic, rates and effective propagation velocities between the second
respectively. The parametric fields that can be excited in thBarmonic and the fundamental, respectively, white
system are not shown in the figure, but since phase-matching 71 /7, denotes the ratio of the round-trip propagation
restrictions require them to be generated with frequenciemes. The loss rates are given by =(T+L,)/27;, v,
close to the fundamental they will propagate in the same= L,/27,, whereT is the intensity transmission of the input
cavity arm. coupler andZ,,L, are residual passive losses of the funda-
A central point is to have a cavity with all transverse mental and second harmonic during one round trip. All trans-
modes degenerate in order to obtain nonlinear boundary irmission and loss parameters are assumed small compared to
dependent patterns in contrast to mode dynamics. We willinity to ensure the validity of the mean-field model. The
investigate the plane-plane configuration but alternativelypropagation round-trip times arg=2(L;+nL.)/c, j=1,2,
e.g., a confocal geometry could have been chosen in order swheren is the refractive index of the nonlinear crystal and
enhance the nonlinear coupling with focused beams ani the speed of light in vacuum, while the effective propaga-
eliminate the propagation losses occurring in the plane-planton velocities are given by;=(L;+L./n)/7;, j=1,2.
cavity [7]. However, narrow focusing is in general not of  The detuning parametess;=(w;— )/ v1, j=1,2,+,
interest since the spatial scale of the pattern under investiga- measure the difference between the optical frequency and
tion might become too large compared to the width of thethe nearest cavity resonance frequency normalized to the loss
Gaussian beam and consequently the pattern can be supte of the fundamental. We will study a situation wharg
pressed. This point will be investigated further in Sec. V. Inand A, are free parameters that can be selected experimen-
an experiment it could be favorable to use a stable cavitytally using, e.g., pump-laser frequency and cavity length, al-
and close to degeneracy it might still be possible to see feahough other tuning control parameters are pos$itlé We
tures of pattern formation dynamics as pointed out by Valimplicitly assume that the actual detuning of the parametric
cacel [17]. fields is selected by the oscillator in order to maximize the
parametric gain. When the frequency shift of the parametric
B. Mean-field model fields with respect to the fundamental frequency is suffi-
. . . ciently small energy conservation written as, +w_
Mean-fl_eld equations fpr the IPOPO can be derived fromzzwl implies a slaving of the parametric detunings to the
the paraxial wave equation. The equations hold under th?undamental according to
assumptions of small cavity round-trip losses and detunings. 9
The derivation will not be given here but is very similar to A, +A_=2A,. 2
the one presented in Rdf7] in the case of singly resonant
SHG. The following description will concern the specific As discussed in the Appendix, E) is a good approxima-
experimental setup illustrated in Fig. 1. Experimental worktion for parametric frequency shifts of order ten cavity free
on this configuration is currently in progress. The analysisspectral ranges, and we will assume Ej.to be valid in this
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paper. For larger parametric frequency shifts the parametrisponding homogeneous solutions for the fundamental and
detunings may not satisfy E¢R). Analysis of that situation second harmonic can be found from E¢¥). as a straight-
lies outside the scope of the present paper. forward generalization of the expressions giveriGhto in-

In addition to the slaving of the parametric detunings weclude phase-mismatch and different propagation distances
will, without loss of generality, assume that, =A _ for the  between the fundamental and second harmonic. We obtain
following reason. Making the transformatioAs — A, e'?, the following expressions
A_—A_e ' leaves Egs(1) unchanged apart from renor-
malization of the parametric detunings As —A ., — & and ?f(§)]* y—AA

0 2 0 2
A_—A_+ 5. Assume that we have unequal detunings with 27 22 |Al|4+2TA2 TIH(&)1°|ALP+ 1+ AT
A, =A_+e. Then choosing= e/2 equalizes the renormal- Y a2 YAz
ized A .. We will therefore assume that a frequency shift % |A2|2= E2 (33)

has been applied such that, =A _ and using Eq(2) then
givesA,=A_=A,, which will be used in the rest of this
paper. 0 _ 02

The scaling used in Eg$l) is important in order to con- 1Azl Al (30)
nect to the physical parameters. The electric-field amplitudes
have been defined a& =2«L.&{?(y1m\n), j=1,2+, A linear stability analysis is performed by perturbing the
—, where £(? is the amplitude of the electric field in homogeneous solutions according to
vacuum antk = wqdeg/(NC) is the strength of the nonlinear
coupling, withe, the frequency of the fundamental field and  A;=AL+a,exp(At+ik, -r)+bexp\*t—ik, -r),  (4a
d ¢ the effective nonlinearity coefficient. The time and space
coordinates have been scaled according to the transformaA2=Ag+ a,expAt+ik, -r)+boexp\*t—ik, -r),

tions y,t—t, (Vkyy,/v)r—r, wherek; is the wave num- (4b)
ber of the fundamental in vacuum. The fundamental pump o _ 3

field has been scaled &= 27kl £ J(¥imsn), where  A.=a.exp(At+ik, -r)+b.expA*t—ik, -r). (40)
Ep is the physical electric field in vacuum that can be

We note that the stability analysis for the parametric fields
determines the threshold for onset of the parametric oscilla-
tions. The problem factorizes into two quartic characteristic

ﬁ)@lynomials in the two independent eigenvalieandx

chosen real due to the free choice of the absolute phase.
= /T is the input coupling efficiency of the pump field. Fi-
nally, é=AkL,, é€=AKkL. are the dimensionless phase-
mismatch parameters in the second-harmonic and paramet

processes, respectively, whetek=2k;—k, and Ak=k, [N*+2(1+ y)N3+ay(k?)N2+ay(K2)h +ag(k?)]
+ k, - kz.
In Egs. (1) the parametric fields have been assumed to X[N2+ 28+ 1+ (K2 — Ap)%—|f(D)|?|AY2]2=0,
propagate the same distance and experience the same passive
losses as the fundamental field. This is a very good assump- (5

tion since phase-matching bandwidth restrictions imply thabv
the parametric pairs are created with a frequency close to the
fundamental. Furthermore, their frequencies will be close 0a,(k2) = 47/ f(&)|2A%2(7|T(&)|H A2+ y— 8,5)
a cavity resonance positioned an integer multiple of the cav-

here the coefficients are given by

ity free spectral range away from the fundamental resonance. +(y?+ 85 (1+ 82— |1 (6)|3 AYJ?), (6a)
ll. STABILITY ANALYSIS a1 (k>)=4(1+ y) 7T (&2 A2+ 2y(1+ y+ 65)+ 265
In this section we analyze the stability of the homoge- —2—y|f(§)|2|Ag|2, (6b)

neous solutions. The first subsection will concern the case

where the system is below the parametric oscillation th_rESh'az(kf)z|f(§)|2(47-|A(1)|2— |AJ?) + 1+ y(4+ y) + 82+ 83,
old where the parametric fields are zero. In this case insta- (60)
bilities seen in a pure SHG system are encountered. Further-

more, a stability analysis of the vanishing parametricand all the dependence on the transverse wave nukgbisr
solutions allows identification of the parametric oscillationin the generalized detuning coefficients

threshold. The second subsection concerns the IPOPO above

threshold for the parametric process. Exact solutions for the 61=A— kf , (79
off-axis emitted parametric fields are derived and their sta-
bility is tested leading to secondary instabilities. 1

S,=Ap— Evkﬁ. (7b)

A. Ground-state solutions below parametric threshold

Below the parametric threshold, the homogeneous solu- One class of instabilities is obtained by solving Re(
tions for the parametric fields an&ﬂzA‘l:O. The corre- =0. They appear in pure SHG, where the parametric fields
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are not excited, and the four different types of instabilitiesaxis emitted traveling waves for the parametric fields, corre-
were investigated first by Etrickt al. [4,5] and briefly re-  sponding to the following ansatz
viewed below.

In the case of homogeneous perturbations without any A=A, (119
spatial modulationk, =0) bistability occurs and the thresh- o
old is obtained by solving,(k?=0)=0. In the bistability A=A, (11b
regime localized structures can be found numerically. By .
solving A =iw, in the characteristic equation, a Hopf insta- A.=A.exd xi(k, -r+wt)]. (110
bility is obtained, which implies time oscillating solutions
with a frequency given by After substitution into Eqs(1), and usingA , =A_=A,, we

obtain

ay(ki) = —
we= : (8) (1-i1A)A=f(HATA+E, (129
2(1+7y)

i N N2 _ * E\A A
This phenomenon, known as self-pulsing, was first predicted (y=142)A; T (OA- 27T (HALA-, (12

by Drummondet al. [18]. Transverse instabilities are found
by solving ao(kf)=0 allowing for k, to be different from
zero. The most unstable transverse wave-vector component
k. is located by furthermore requiringRe(A)/dk, =0,
which is equivalent tajay(k?)/dk?=0. By differentiating
Eq. (6a) a cubic equation ilkf is obtained that can be solved
to find k.. Finally, also an oscillatory transverse instability
can occur with the oscillation frequeney, given by Eq.(8)
and with the transverse wave number and threshold obtained

[1+i(0+K2—A)]A =f(E)AA (120
[1+i(w—K2+A)JA* =f*(HASA, . (120

The existence of nontrivial solutions for the parametric fields
requiresw=0 and we havdA,|=|A_|=|A|. The ampli-
tudes of the exact solutions are obtained by solving

N |12 2\ A2
by solving the equations |A1|“= {1(E?) = {o| A%, (13a
4_a,(k?) w2+ ag(k?) =0, 9 _ sk
(OF 2( L)ﬁ)c 0( L) ( a) |A2|2=|f(~é;|2, (13b)
da5(K?) +<az(kf) 1 |oa(k) 1 dag(ki)
K2 ak2) 1ty a2 w2 ad _ 1[f(o)? _
. e i ¢ : (9b) |A|4+§3|A|2+§4:Z|f(~§)|2|A1|4, (139

From the expressions in this paragraph the spatial dcale
oscillating frequencyy.., as well as the threshold amplitudes
E,|A4|,|A,| for the various instabilities can be found. In this ~ ~

paper we are in particular concerned with how these SHG (E2)= 7If(&)]7E?—25(kD) (y—A14) 14
instabilities are modified due to the competing parametric ! r|f(~§)|2(1+A2)+¢|f(§)|26(~k2),
process in the IPOPO. The detailed analysis of this problem ! +

where we have introduced the coefficients

is given in Sec. IV. ~ = ~ o~
A fundamentally different instability is the oscillation of _4|f(§)|2 Vo(ki)[cosp(k?) +Aysing(k?)]
the parametric process investigated by substitutiag= 0 in b2 1f(Z)|2(1+A2) +|f(&)|26(K)
the characteristic polynomial of E¢p) as treated in Ref9]. ! - (14b)
The threshold amplitude for this instability is given by
Y i VoK) [ycosp(k?) — A,sing (k)]
Vy2+A2 (1 if A,>0 Lom (140
AS,17= —x 5 | (10 ’ 62 |
Af@If@] " (V1+aT i A;<0

~ T2\ 24 A2
The parametric pairs are emitted off axis wikp= A, for e o(kD)(y*+A3)
A;>0 and on axik,=0 for A;<0. A more elaborate de- ! 472[1(§)|*
scription of this parametric instability is given in the next

section where exact solutions above threshold for the pargyg all the dependence on the transverse wave nukfbisr
metric process are found. in the parameters

(149

B. Exact solutions above parametric threshold o(k?)=1+(A,—K?)?, (153

The exact analytical solutions are homogeneous plane — —
waves for the fundamental and second harmonic, and off- ¢(kT)=arctarfA;—k7). (15b)
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These exact solutions above threshold of the parametric pro- If(&)12— (3

cess were stated in RdfL4] under simplified conditions of 2 (1+AY)|A,+yA,

v=r=1 and equal phase-matching parameters. Relax- LHENHEG]E

ing on the latter condition is found to lead to new types of (19b)

instabilities as investigated below. . . _—
In order to perform a stability analysis of the exact soly-WhereE, is the parametric oscillation threshold. Thus, the

tions also the phases must be found. We introduce the foII_PO.PO contains two distinct types of bistabilities that can be
lowing notation: attributed to the SHG and OPO processes, respectively.
However, while the SHG bistability is found to behave in a
K:|K|ei S, (16) similar way as in a pure SHG system, the parametric bista-
o ’ bility is found to lead to new effects compared to the exter-
j=1,2+,—. It turns out that only the sum of the parametric nally pumped OPO, as will be explored in Sec. IV B. Studies
phases can be calculated from the H4®). We will assume  of bistability and cavity solitons in the ordinary pumped
symmetric conditions withgx = ¢a =¢a/2. The phases OPO have been performed both in the degenejize-22

can be found by solving and nondegenerate configuratig@s23—295.
The exact parametric solutions can be tested by a stability
bx =ard 7-(1+iA1)|K1|2+(y—iA2)|K2|2 analysis. The solutions are perturbed according to
1
1+ 21]1(3)| | Ay [A]26 40D, (173 Aj=A;+a;exp(At+iK-r)+bexp(A*t—iK-r), (209
B, = ard — (y+i,)|Agl 27| (B) AT A.=exp( =ik, -N[A. +a.exp(At+iK-r)+b.
s Xexp(A*t—iK-r)], (20b)
xe"‘f’(kf)]+2¢;1—¢f, (17b) P

j=1,2. This analysis is similar to the one described in Sec.
da= dp+ di+ ¢(~ki): (170 Il A except that it is further complicated by the nonvanish-
z ing amplitudes of the parametric fields leading to axn&

whereg,=ard f(£)] and ¢==ard f(Z)]. Note that the free- matrix problem_for comput_ation of th_e eigenvalues. Equa-
dom in choice of the parametric phases implies that theifions (11) constitute a continuous family of exact solutions
difference is subject to a diffusive processd]. Numerical by varying the wave numbe, . However, at threshold,,
simulations in regimes where the exact solutions are stabl@btained from the parametric threshold analysis, is selected.
Support the presence of such a phase diffusive process. It -iBWG numerical analysis indicates that the solution excited at
observed that different initial noise levels and noise valueghreshold also prevails further above threshold. The same
result in different end results for the parametric phases, alconclusion is reached by investigating growth rates above
though the sum of these is in correspondence with the valughreshold that are found to be peakedat and hence we let

calculated with Eq(179). . . k, =k in Egs.(20). For A;>0, the direction of the wave
Bistability in the parametric solutions occurs when Eq.yectorK introduced in the transverse perturbations becomes
(139 has two physical solutions for a given valueBf It jmportant. It can be directed either parallel or perpendicular
arises when the ground-state solutichs=0 become un- .,y \yaye vectok, of the exact off axis solution, corre-
stab!e thr'o.ugh a subcritical b|furcat|oln, and 'ghus correspond ponding to Eckhaus and zig-zag instabilities, respectively.
to bistability between the parametric solutions below an or A,<0, the parametric fields are emitted,on axis and
above threshold. T.h's turns out to happef‘ o_nly for nega_'uv% erefcl)re t,he direction oK is unimportant. The results of
fundamental detuning where the parametric fields are emnte@iS stability analysis are given in the foIIoWing section
on axis,k, =0. Necessary conditions for the parametric bi- '
stability to exist include unequal phase mismatch of the two

competing processeg € £) as well as

[f(&)]2+]f(%)|2

IV. INSTABILITIES IN THE IPOPO

In this section results from the linear stability analysis are
presented, and the formation of patterns above instability
= 1A5—M)>V(1+A2)(¥?+45), (18 threshold is investigated numerically using a split-step rou-
2|F(OIIF(8)] tine previously discussed in Reff7]. The results illustrate
two fundamentally different situations. First we demonstrate
that the SHG temporal and spatial instabilities can be ob-
served also in the presence of the competing parametric pro-
1+A2 [ [§(O)12+ (B cess, which occurs for parameters where the SHG instability
2_ 1 thresholds are below the parametric threshold. In the oppo-
P r|f(E)|2 |f(§)||f(E)| site case, a stability.analysis of the exact solutions in Egs.
(13) predicts quenching of the SHG patterns. In certain re-
gions, these exact solutions may destabilize through a sec-
X \/(1+Af)(y2+ A§)+2(y—A1A2) , (1939 ondary instability that recently was shown to lead to forma-

which implies A;A,>vy. The bistability region isE;<E
<E, with the boundary values given by
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tion of novel intensity spiral structurdd4]. In this section stable both for perturbations parallel and perpendicular to

other examples of secondary instabilities are given including | thus indicating a complete quenching of pattern forma-
parametric bistability and self-pulsing. tion for positive detuning.

In previous'work the extra degrees_ of freedom associated Introducing unequal phase mismatches in the competing
with phase mismatch of the conversion processes have not 23 th tric threshold be shifted
been considered. Introducing nonzero but equal phase mig_rocessesg( ¢), the parametric threshold may be shifte

~ . . . above the SHG thresholds. In this way the SHG instabilities

matche; £=£70) Iefads to an |dent|cal terk(£) in front of can be excited also foA;>0 when using a pump level
all nonlmefr terms in Eqs(l) which can be scaled away. between the SHG and parametric thresholds. Increaing
Hence,{=¢+0 does not lead to any new physical effects ahove the parametric threshold, however, quenching is found
but only to an increase in the thresholds for the instabilitiespoth in the stability analysis and numerically, and it is again
This is in contrast to the singly resonant second-harmonigjye to the off-axis emitted parametric fields. Quenching from
generation(SRSHG configuration where phase mismatch the parametric process thus seems to be a generic property in
was found to be an important tuning parameftéf. This  the IPOPO for positive fundamental detuning.
difference arises since the axial variation of the second- Fqy negative fundamental detunidg <0, parameter re-
harmonic field in doubly resonsant SHG is averaged out inyions exist where all types of SHG instabilities have lowest
the well-established mean-field description, which is not aptnreshold, i.e., they can be excited. Increasing the pump
propriate for the second harmonic in SRSHG. ) above the parametric threshold, the SHG instabilities can

Introducing different phase mismatches for the %6 prevail in this case leading to the formation of the same
processesd+ &) allows independent tuning of the SHG in- modulated structures also in the parametric fields. An ex-
stabilities and the parametric threshold, since the former arample of hexagonal structures in all four fields can be found

independent of while the latter depend on both and €. in Ref. [9], and furthermore traveling waves have been ob-
This can, e.g., be used to move the parametric instabilitperved. In some cases the SHG instabilities may be changed
above the SHG instabilities in order to avoid undesiredsubsequently when increasing the pump above the paramet-
quenching of the pattern formation. Furthermore, it turns oufic threshold as well. Such an example is described in the
that new parametric instabilities can arise that are not preseR€Xt section.

in the equally phase-matched case, as will be described in Also the temporal self-pulsing instability can be excited
Sec. IV B. However, in an experimental context, it is worth for A;<0. This is in contrast to the resonant case treated in
emphasizing that while the phase-matching paramgter Ref.[11] where the parametric process was found to quench
the SHG process can be controlled, the parametric pairs wikelf-pulsing completely. The presence of self-pulsing in the
be emitted with frequencies that lower the parametric threshdetuned system was suggested 26] and is here demon-
old. From Eq.(10) this is seen to lead =0, which will be strated e_pr|C|tIy. For the parameter_s in Fig. 2, close to_ the
assumed to be the case in this paper. In certain situations t !f-pu]smg thresholq Hsp~10.4) a smgle-frequency O.SC'I'
may be a too simplistic description since also the requirelation is observed with a frequency in agreement with the

ment of a nearby cavity resonance contributes to the seledinear stability resulw, . Further, above threshold, the para-
tion of the parametric frequencies, as was discussed exte

metric threshold £,=10.9) is crossed, and self-pulsing in
sively in Ref.[10]. all four fields is obtained as shown in Fig. 2. The primary

Unless otherwise stated, in this section we will assumdréquency of the oscillations is=3.39, in reasonable agree-

ideal phase matching—E’—O and equal propadation dis- ment with the frequency predicted by the linear stability

b S qua’ propaga - threshold analysis of.=3.17. We observe the presence of
tances for the fundamental and second harmeme =1.

The significance of unequal propagation distances in an e veriod doubling as most clearly seen in the fundamental
> SI9 unequal propag ield. Such period doubling was previously found in SHG by
perimental context is discussed in Sec. V.

Savage and Wallg27] to be a prerequisite for chaotic oscil-
lations.

A. SHG instabilities The presence of bistability in SHG was extensively dis-
cussed in Refl4]. In that case cavity solitons can be formed

l.n the 'qef“éy phasg-matc?ﬁd case ?Nt?] d'fSt'rlet par?nr%teés a consequence of bistability between homogeneous stable
regions exist depending on the sign ot the Tundamental degp, modulationally unstable solutions. This SHG bistability
tuning A 4. For positiveA 1, the parametric instability is low-

in th d domi he behavi d is also found in the IPOPO in the case where both the fun-
est in the system and dominates the behavior as demoli, mental and second harmonic have sufficiently large nega-
strated in Ref[9]. Here the robustness of the parametric

. ; X tive detunings. In this region, excitation of cavity solitons in
oﬁ-aX|s'squt|ons was seen nl_JmerlcaIIy and found to lead _tQaII four fields is possible but will not be discussed further
quenching of pattern formation. Although the parametric, . .o
fields are emitted off axis in the cavity, the process is not
found to lead to any spatial intensity modulation since the
nondegenerate parametric fields cannot interfere. In addition
to the numerical studies, the parametric quenching of SHG Also for negative fundamental detuning the parametric
instabilities can be investigated analytically by the stabilitythreshold can be the lowest instability in the system for cer-
analysis of the exact parametric solutions as was outlined itain parameters. Hence, the exact parametric solution in Egs.

Sec. Il B. The parametric solutions appear always to bg11l) can be excited, where in that case the parametric fields

B. Secondary parametric instabilities
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time
0.005 . 101
00 02 04 06 08 10 12 14 16 18 20
0.004-
K
o 0.003 FIG. 3. Growth rates as a function of the transverse perturbation
< wave numbeK for the parameterd;=—2.5, A,=3.0, andy=1.
0.0021 1 The pump level isE=15.8 (full curve), E=16.2 (dashed curve
0.001 E=17.2(dotted curve, andE=18.0 (dash-dotted curye
0.000% r - - A the pump toE=17.2 (dotted curvé However, another
fime traveling-wave instability is found at a pump level &f

=18.0 (dash-dotted curye with a spatial instability wave
FIG. 2. Self-pulsing solution for all four cavity fields with, numberK .= 1.65.

=-2.5,A,=1.2, andy=1. The pump level i€E=11.7. The plots Numerical simulations confirm the above scenario.EAt
display the scaled intensity in the four beams as a function of time=15.8 the SHG traveling waves are found with a transverse
The upper plot shows the fundamen(sblid) and second-harmonic wave number close t&K=0.7. At E=18.0 the traveling
(dashedl intensities, while the lower plot shows the parametric in- waves in Fig. 4 are obtained, which has a transverse wave
tensities. vector close toK.=1.65 that was predicted from the dash-
dotted curve in Fig. 3. This clearly shows that the traveling

are emitted on axis withk, =0. These solutions can become Waves in Fig. 4 are due to a secondary parametric instability,
unstable when increasiri§jdue to the presence of secondary in this case different from the SHG instabilities.

instabilities in the system. This is in contrast to the off-axis Allowing the two competing nonlinear processes to be
solutions discussed in the previous section that were alwaysnequally phase matched# &) and keeping the detunings
linearly stable. Spatiotemporal pattern formation from thissufficiently negative, bistability from the parametric process
secondary instability was investigated in Rgf4]. There the can occur, as was shown in Sec. Ill B. Figure 5 shows a
formation of traveling roll patterns was observed that couldyifurcation diagram fore=2.5, =0, A;=—7, andy=2,
destabilize further to form intensity spiral structures constiyhere the parametric bistability is seen to set inAgt=

tuting a novel type of nonlinear phenomenon in optics.  _1 4. The phase-mismatch parameter for the SHG process is
When the parametric threshold is above an SHG pattern

threshold the assumption of spatially homogeneous funda-
mental and second-harmonic fields may not be accurate.
However, if the modulation from the SHG instability is weak
the ansatz given by Eq$l1) may still be a reasonable ap-
proximation. This allows an analysis of the effect of the
parametric process, also in this case, as discussed in the fol-
lowing. £
Figure 3 shows growth rates found from stability analysis : 2.96
of the parametric solutions. The parameters in this figure
correspond to the case where the SHG traveling-wave thresh-
old is lowest,E+y=14.3, while the SHG self-pulsing thresh-
old is Egp=15.3, and the parametric thresholdEg=15.7.
The full curve in Fig. 3 shows the growth rate just ab
The system is seen to be unstable towards perturbations with
both K,=0 andK.=0.7, corresponding to self-pulsing and
traveling-wave instabilities, respectively, since both have Fig 4. space-time plot showing a traveling-wave pattern due to
IM[A ma{Kc)]#0. They are remains of the SHG instabili- 5 secondary instability with parameters as in Fig. 3. The pictures
ties present belowE,. As E is increased slightly toE show the temporal evolution of a cut through the transverse plane.
=16.2(dashed curve the self-pulsing is quenched while the The horizontal box size is 27.0 while the vertical time axis is 10
traveling-wave instability becomes quenched after increasingme units. The pump level iE=18.0.

4.83

3.00
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FIG. 5. Bifurcation diagram foA,=—-7, y=2, £=2.5, and~§
=0. The bold-solid line is the SHG transverse threshold while the
bold-dashed lines are limit points of the SHG bistable area. The
thin-solid line is the parametric threshold, the thin-dashed lines are
limits of the parametric bistable area. Finally, the thin-dotted line is
the self-pulsing secondary instability.

chosen sufficiently large such that the parametric threshold is
below the SHG thresholds. For a fixed value of the second-
harmonic detuningA,= —4, the lower plot in Fig. 6 shows
the characteristic bistability curve of the intracavity paramet-
ric intensity as a function of the pump. At the oscillation
threshold E,=66.2) the ground-state parametric solution,

A. =0 (solid curve, bifurcates subcritically into an unstable z 21

branch (dotted curv@ This middle branch is linearly un- - .

stable and using Eq(19b) is found to bifurcate atE;

=59.5 into a modulationally unstable upper braridashed 0

curve). The corresponding bistability curves for the funda- 50 55 60 65 70 75
mental and second harmonic are also displayed in Fig. 6. The E

fundamental bistability curve is seen to be inverted such that g 6. Intracavity fields as a function & The full (dashed

the modulational branch is below the homogeneous solutionyyrves are the solutions belogabove the parametric threshold
The second harmonic, however, is clamped at a constamjhile the dotted curves are linearly unstable homogeneous
value above the parametric threshold as is also seen from Efranches. The parameters are as in Fig. 5, and Mjth — 4.

(13b), which follows from the exact balancing of the two

competing frequency conversion processes in steady state. |n order to investigate the formation of cavity solitons
This clamping was observed in R¢28]. numerically, the system was prepared as follows. The local-
The inverted bistability curve for the fundamental field ized Gaussian address beam had a pump value well above
promises formation of spatial structures consisting of holeshe upper limit of the bistable area. After 5 time units the
in the homogeneous background. An example of such a horaddress beam was switched off and the evolution of the
eycomb structure in the fundamental is shown in Fig. 7 forfields was followed. For a pump value close to the bistable
E=68.0 corresponding to a pump level above the bistabilitjower limit, E=59.7, it is possible to obtain stable cavity
region. The modulated structures in the three other fields argolitons, where an example is shown in Fig. 8. The funda-
ordinary hexagons in agreement with expectations from Figmental soliton is a so-called gray soliton, since it constitutes
6. The average intensities are found to oscillate in time due localized hole in the homogeneous background as a conse-
to a self-pulsing instability in the system, which could not bequence of the inverted fundamental bistability curve. The
predicted directly from the stability analysis. second harmonic and parametric solitons are all bright soli-
Bistability between a homogeneous stable ground stattons, and generally the solitons may be seen as residuals of
and a modulationally unstable upper state can lead to formahe modulational structure of the upper branch, which in this
tion of localized structures, also called cavity solitons. Un-case are the hexagons shown in Fig. 7. Note that cavity soli-
like temporal solitons in, e.g., fiber optics, these solitons aréons may also be observed by pumping well above the bista-
a result of a careful preparation of the system. Using a localbility limits to obtain the hexagonal patterns in Fig. 7, and
ized address beam a small part of the system is set in thiben slowly decreasing the pump level to enter the bistable
modulationally unstable upper state, while the rest of thearea. The appearance of two-dimensio2d) gray solitons
system is maintained at the homogeneous background leves, to our knowledge, a new phenomenonyift) cavity in-
These states must be connected to each other by transitiortaractions. However, 1D dark solitons have been reported in
kink type waves, also called switching waVe9], that can the OPO[30] due to a different mechanism based on the
lock mutually to form solitonlike structures. coexistence of two parametric homogeneous solutions with
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0.76 076 FIG. 9. Self-pulsing cavity solitons fdE=62.0 and the param-

eters in Fig. 6. The plot shows the average intensity of the paramet-
FIG. 7. Hexagons in the transverse plane originating from thdic fields as a function of time. The gray area indicates the first five
modulationally unstable upper branch in Fig. 6. The fundamentafime units of the simulation where the address beam is on with a
field displays honeycomb hexagons, while the second-harmonic an¢glue of E=84.0.
parametric fields show ordinary hexagons. The window size is
21.4x21.4 and the parameters are as in Fig. 6 \&th68.0. self-pulsing threshold is found to occur above the pump level
where the oscillations of the hexagons and cavity solitons
different phases. In 2D these solitons are manifested as dagtarts and could indicate the self-pulsing bifurcation is sub-
stripes or domain walls. critical. However, more involved mechanisms may be re-
Increasing the pump level, the modulational branch besponsible for the oscillations, as reported for nonlinear Kerr
comes Hopf unstable and self-pulsing solitons are observedgsonatorg33], where the self-pulsing is found from desta-
An example is shown in Fig. 9 where results from the first 20bilization of the modulated structure as opposed to the ho-
time units of a simulation is shown, and after the addresgnogeneous solutions studied here.
beam is turned off the soliton oscillates regularly. Similar
oscillating solitons have been observed numerically in the V. EXPERIMENTAL PARAMETERS
nondegenerate OP(B1] (bright solitong and in a cavity
filled with a saturable absorbgB2] (gray solitons.
The exact solutions above the parametric threshold mar%

The stability analysis presented in Sec. Ill was done in
caled parameters. In order to relate to parameters in a real
xperiment it is necessary to convert back to physical units.
n the following we will calculate the thresholds for the dif-
ferent SHG instabilities and the corresponding spatial and
temporal scales for relevant physical parameters.

From the scalings introduced in Sec. Il B, we obtain

also destabilize through a homogeneous Hopf bifurcatio
corresponding to an instability to a perturbation with=0
and A==*iQ.. This self-pulsing secondary instability is
also included in the bifurcation diagram in Fig. 5. Fbg
=0 and with a pump close to the self-pulsing threshold, it is

possible to obtain single-frequency oscillations with 7 Li+nl,

=1.90 very close to the theoretical value(®f=1.93. These = —=— (21a
oscillations lead to similar self-pulsing intensity behavior in 2 Latnl.
all four fields as shown in Fig. 2, however the mechanism is
in this case different and due to a secondary instability. The 72 Filitnle 210
T Rl
_mcC 1 _
A=y A=— ——— A, 219
YT L, (219
U2 n+L1/LC 1+nL2/LC
=—= (210

v=—"= 1
U1 1+nL1/LC n+L2/LC

wherej=1,2,+,—, and we have adopted the convention that
scaled quantities are denoted with a bar. Furthermore, the
finesseF; has been introduced as the cavity free spectral
range Av{F>P=1/r;, divided by the full-width-half-
maximum linewidthA v;=; /a7, j=1,2. The latter approxi-
mation is valid in the case of small cavity round-trip losses,
which leads to the expressions

IA 2

=Y
FIG. 8. Cavity solitons folE=59.7 and the parameters in Fig. 6. Fi=27l(T+Ly), (22a
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~ FIG. 10. The threshold pump intensity for the different instabili- £ 11, Spatial scale of the transverse instability displayed as
ties in the system. The parameters are specified in the text. Thinction of the scaled second harmonic detuning. The bold and thin
curve: parametric instability; bold curve: stationary transverse instag;rves are the stationary and oscillatory instabilities, respectively.
bility; thin-dashed curve: self-pulsing instability; bold-dashed the fy|I, dashed and dotted curves correspond to a fundamental
curve: oscillatory transverse instability. finesse of 50, 100, and 150, respectivefy= 100.

focusing in the crystal and thus higher intensities. In order to
observe pattern formation in an experiment a minimum re-
quirement is that the width of the Gaussian beam is larger
than the pattern scale, i.e.w@=1., wherew, is the beam
radius at the waist. We observe from Eg849 that to obtain
a small spatial scale requires a short cavity. It is especially
important to minimize the propagation distance outside the
whereey is the vacuum permittivity andl is the fundamen-  crystal since the beam diffracts less in a medium with a
tal wavelength. reduction factor given by the refractive index. The spatial
We consider an experiment consisting of a 1-cm longscales for the stationary and oscillatory transverse structures
LINbO; crystal placed in a cavity witl;=L,=1 cm. are plotted in Fig. 11 as a function of the scaled second-
LiINbO; can be noncritically phase matched for frequencynarmonic detuning, for different values of the fundamen-
doubling at the Nd:YAG wavelength=1064 nm, where 5| finesse. The scaled detuning is used in order to relate the
the effective nonlinear coefficient t4=4.7 pm/V and the  getunings of cavities with different values of the fundamen-

refractive index isn=2.2[34]. Furthermore, the finesse of | finesse. All other parameters are as described above and
the fundamental and second-harmonic cavities are assumed particular A, = — 2.5 for all curves. The typical spatial

to_be_]-]:z-‘%j/log and ;[rr]\e fundambentalt;]nput C(.)tupll.er trz_igti-scale is seen to be about 1 mm.
mission 1= 370. From tese numpbers the cavity inewl In Fig. 12 the self-pulsing frequency. is plotted as a

for the fundamental and second harmonic are calculated ®inction of the second-harmonic detuning for the same value

beAv;=Av,=47 MHz. In Fig. 10 the pump intensity nec- ¢ e fngamental detuning as in Fig. 10. The typical self-
essary to reach threshold for the different instabilities in th ulsing frequency is found to range from about 300 MHz to

system is plotted as a function of the detuning of the secon GHz, and is not changed considerably when varying the
harmonic while the fundamental detuning is fixed/st= fundarﬁental detuning

—368 MHz, which corresponds to a scaled detuning= Finally, the extra degrees of freedom contained in the
—2.5. A typical threshold value is about 0.1 kW/fim ratios of the round-trip times and the propagation velocities

which should be easily accessible with a pulsed Nd:YAG, should be considered. From an experimental point of view
laser. For comparison, experiments on spatial soliton forma-

tion in x(?) propagation geometries require on the order of

The intensity of the fundamental pump field is given by

€0C £0) )2 eoCn®mi\? , 23
| me=— —— T E2 (23
PP PR oz 2 T

1 GW/mnt [35]. 12001
The spatial scale of the transverse structikgeand the 1000 .
self-pulsing frequency, can be transformed into physical I~ ///'/
units as = 800; ]
< A s
o° 6001 o
kl')’l— 2n772 _ AN -
ke= —ke= —k, (249 4001 --
U1 )\fl LC+ nLl 200 i . .
-500 0 500
_m@C 1 A, (MHz)
W= Y1Wc= c- (24b)

i — )]
2F; Li+nl, FIG. 12. Self-pulsing frequency, plotted as function of the
o ) ] _ second-harmonic detuning fdr, = —368 MHz. The thin and bold
Definingl.=2/k, as the scale of the spatial modulation, it curves correspond to the spatially homogenous and modulated in-

is favorable to havé,. small since this allows more narrow stabilities, respectively.
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numerical estimates of the threshold intensity and spatiotem-
poral scales for the instabilities were given for realistic ex-
perimental parameters.

APPENDIX: DETUNING OF THE PARAMETRIC
FIELDS

In this appendix we discuss the relationship between the
detuning of the fundamental and parametric fields. Energy
conservation requires

0 50 100 150 200
L, (mm)

=w,+
FIG. 13. The spatial scale of the transverse instability as a func- 2m=osto, (A1)

tion of the length of the second harmqnic arm The lengths of the Wherewj is the angular frequency of fiefd In a monolithic
fundamental arm aré.,=10 mm (solid), L;=20 mm (dashedl  \o5onator containing a dispersive crystal there are a set of

%ndleSSO mm(dotted. The parameters are as in Fig. 10 and with resonances at vacuum wavelengihssatisfying
2: — 1.9.

2L¢ng
they may appear to be important since they can be used as =p, (A2)

convenient tuning parameters. Varyingby changing the Mo

propagation distances of the fundamental or the second haghere L, is the crystal lengthp is an integer, anch,,
monic is seen to be a way to change the loss-rate ratio —n() ) is the crystal’'s index of refraction at,. For sim-
which is more easily accessible experimentally than byyjicity we have neglected the distantg in Fig. 1. The

changing the respective propagation losses of the two fieldggrresponding set of resonant frequencies is
The parameter is found to influence only the diffraction

terms and can therefore be used to tune the spatial period of c C

the modulated structure. This may be convenient in order to wp=277)\—= p Ln (A3)

operate in a regime where the spatial period is small such p ¢

that a more narrow Gaussian pump beam can be used t0 pefine detunings a8, =w;—w,, j=1+,—. Then Eq.
J

enhance the nonlinearity. One way of changing to vary
the length of the second-harmonic atr while keeping the
length of the fundamental arixy fixed. Figure 13 shows the 20, —w, —w, =8, +5_—28,. (A4)
variation of the spatial scale with,. It is observed that ! -

substantial tuning of the spatial scale is possible and in gen- Assuming that the parametric fields are emitted symmetri-
eral a small value ok, is desirable. cally, we havew, =w »m, Wheremis an integer labeling

the axial mode the parametric fields are nearly resonant with.
VI. CONCLUSIONS Hence, the left-hand side dA4) can be written as

(A1) implies

nant SHG in a two-armed cavity configuration of relevance lhs= ——
for experimental realizations. As pointed out in previous Ap,
work the presence of a competing parametric process may

influence the pattern formation of the system decisively. AConverting to normalized detunings using the same scalings
set of coupled cavity mean-field equations generalized to inas in Eqs(1) then gives

clude also unequal phase mismatch for the two competing

processes as well as different propagation distances for the 8mnple 1
fundamental and second harmonic, was presented to mode4\++A——2A1:)\—
this system. The instabilities were divided into SHG and
parametric instabilities, according to the relative position of
the SHG instability thresholds to the parametric instability
threshold. The parametric instability could be studied in de-
tail by deriving exact analytical solutions that were found to
imply complete quenching of spatially modulated intensity (AB)
structures for positive fundamental detuning. For negativ ,
fundamental d%tuning, however, the parar%etric sol%tionil\_/henmzlo’ np+.=npf=npl andA+J.rA_—2A1=O. At fi-
could destabilize leading to new phenomena. Here we havaite m this relation is only approximate. As an example,
considered parametric bistability and self-pulsing that onlyconsider LINbQ at room temperature,. ;=1 cm, T=L,
were found for unequal phase mismatch of the two compet=0.03, Ap =1.06 um, and m~20 (corresponding to a

ing processes. These instabilities were found to lead to forwavelength separation between the parametric beams of
mation of a honeycomb pattern and gray solitons. Finallyabout 1 nm. Equation(A6) then givesA, +A_—2A;=

This paper concerned pattern formation in doubly reso- ch{ Np, Np m ( Np. Ny
1 1 1 1
2

P
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—0.1, where the refractive indices have been calculated ussavity tuning in a rather complicated w4$0]. Thus even

ing the Sellmeier equations given in RE34]. In practice the  though the fundamental is close to phase matching there may
axial mode shifim, and the selected detuning of the paramet-be a large shift of the parametric frequencies. Analysis of
ric fields from the nearest cavity resonances, depend on thbat situation, which implies arbitrary parametric detunings,
interaction of the phase mismatch of the fundamental and this not included in this paper.
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