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The spontaneous emission rate of excitons strongly confined in

quantum dots (QDs) is proportional to the overlap integral of

electron and hole envelope wave functions. A common and

intuitive interpretation of this result is that the spontaneous

emission rate is proportional to the probability that the electron

and the hole are located at the same point or region in space, i.e.,

they must coincide spatially to recombine. Here, we show that

this interpretation is not correct even loosely speaking.
By general mathematical considerations we compare the

envelope wave function overlap, the exchange overlap integral,

and the probability of electrons and holes coinciding, and find

that the frequency dependence of the envelope wave function

overlap integral is very different from that expected from the

common interpretation. We show that these theoretical

considerations lead to predictions for measurements. We

compare our qualitative predictions with recent measurements

of the wave function overlap and find good agreement.
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction Self-assembled quantum dots (QDs)
are highly interesting for both applications and fundamental
studies in many areas of optoelectronics because of their
good optical properties and integrability with semiconductor
nanotechnology. The latter is a significant advantage over
atomic emitters, which implies, e.g., that the optical proper-
ties of QDs can be tuned by varying the QD size [1–5].
However, the integration in a solid-state environment can
lead to undesired effects such as dephasing [6–9] and non-
radiative decay processes [10, 11]. Furthermore, the physical
understanding of QDs remains much inferior to that of atoms
and thus improving the understanding of fundamental
concepts of QDs is essential to realize the full potential of
QD optoelectronics.

A key optical parameter characterizing an emitter is the
oscillator strength (OS), which describes the strength with
which the emitter interacts with an electromagnetic field. For
an atomic transition the OS has a fixed value, which is in stark
contrast to QDs where the OS can be tuned by varying the
size of the QD. Coulomb effects are predicted to become
dominating for large QDs [4, 5], i.e., in the weak-
confinement regime, which is relevant also for excitons
weakly bound to impurities [12]. For small QDs the
Coulomb interaction energy is negligible compared to the
energy level spacing originating from the confinement, and
in this strong-confinement regime the OS is proportional to
the square of the overlap integral of the envelope wave
functions of the electron and the hole [1]. The OS of the
lowest-energy transition in QDs is typically larger than that
of atoms by an order of magnitude and a pronounced
frequency dependence of the OS was recently found to be
due to the size-dependence of the envelope wave function
overlap integral [13]. In this paper, we show that very general
features of the size dependence of the envelope wave
function overlap integral lead to important predictions for
the optical properties of QDs in the strong-confinement
regime. These predictions are confirmed by both recent
experiment and numerical calculations using realistic
parameters. Our results show that the common interpretation
of the wave function overlap integral being loosely speaking
equal to the probability of the electron and hole overlapping
spatially is not correct.

2 Definition of the overlap integrals We discuss
QDs but note that our results apply for any quantum
structure, i.e., quantum wires and wells. For QDs the
emission energy can be tuned by varying the size and we
shall use QD radius and optical angular frequency
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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interchangeably in the understanding that large radii lead to
low emission frequencies. The OS f(v) of InxGa1–xAs QDs in
the strong-confinement regime is given by [4, 11]
� 20
f ðvÞ ¼ EpðxÞ
�hv

IWFðvÞ; (1)
where EpðxÞ ¼ ð28:8�7:3xÞ eV is the Kane energy and �hv is
the exciton transition energy. The envelope wave function
overlap integral IWFðvÞ is defined as
IWFðvÞ ¼
Z

d3rF�
e ðr;vÞFhðr;vÞ

�
Z

d3r0F�
hðr

0;vÞFeðr0;vÞ;
(2)
where Feðr;vÞ (Fhðr;vÞ) is the electron (hole) envelope
wave function. We use normalized envelope wave func-
tions, i.e.
Z
d3r Fðr;vÞj j ¼ 1; (3)
for both electrons and holes, which implies that Fðr;vÞ
scales as r�3/2, where r is the QD radius, which we shall use
in the following.

Equation (2) is often misunderstood in that it is
considered to roughly describe the probability of measuring
the electron and the hole in same point or region in space. It is
the main purpose of this paper to show that this interpretation
is not correct and that it leads to conclusions incompatible
with experiments and numerical simulations.

We consider also the exchange integral IExðvÞ, which
determines the energy splitting between dark and bright
excitons and is of relevance when calculating the spin-flip
rate of excitons [14, 15] and is given by [16]
IExðvÞ ¼
Z

d3r Feðr;vÞj j2 Fhðr;vÞj j2: (4)
It is immediately clear that the exchange integral has the
form of an overlap between the probability densities of the
electron and the hole. Note, however, that due to Eq. (3)
IExðvÞ scales as and has units of inverse QD volume, which
means that it cannot be interpreted as a probability and more
importantly it has direct consequences for the scaling
behavior of IExðvÞ as discussed below.

Finally, we introduce the quantity describing the
probability that both electron and hole are measured in the
same volume element V, which for instance could be taken
to be a unit cell. This quantity is given by the joint probability
density, which takes a particularly simple form for
independent quantities [17],
PVðvÞ ¼
Z
V

d3r Feðr;vÞj j2
Z
V

d3r0 Fhðr0;vÞj j2: (5)
We can then define the overlap probability as the
probability of measuring the electron and hole in the same
11 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
region of space,
PðvÞ ¼
X
i

PVi
ðvÞ; (6)
where it is important to realize that P(v) depends on Vi.
Since the squared wave functions are probability distri-
butions the point probabilities vanish and thus P(v) vanishes
as Vi becomes very small. Thus, we must consider finite Vi.

3 Size dependence of the overlap integrals The
size-dependence of the OS integral is commonly understood
as follows: when the size of the QD decreases the electron
and hole are gradually expelled from the QD and this is more
pronounced for the electrons because of the lighter effective
mass as compared to the heavy holes, which are the relevant
holes because vertical confinement and strain lift the
degeneracy with the light-hole band. The probability of the
electron and hole coexisting at the same region in space is
reduced and so the OS must decrease for decreasing QD size,
i.e., for increasing emission energy. Although this con-
clusion is correct the above reasoning is in fact incorrect. In
the following we discuss this point in further detail.

We consider the limits of very small and very large QD
radius as well as the intermediate size regime in order to
reconstruct the size dependence and hence frequency
dependence of the overlap integrals IWFðvÞ, IPðvÞ, and
P(v). For simplicity, and without loss of generality, we
consider a spherical potential. We note that the following
considerations are purely mathematical because, e.g., for
large radii the strong-confinement model breaks down so that
IWFðvÞ no longer describes the OS. Another issue is that for
very small radii a spherical three-dimensional potential has
no bound states while bound states always exist for one-
dimensional potentials. Here, we are not concerned with
these issues because we are interested in the mathematical
limits of the overlap integrals in order to reconstruct their
frequency dependences and, as we will show, the math-
ematical considerations lead directly to physical predictions
confirmed by recent experiments.

In Fig. 1 we consider infinite potential barriers, which are
of little physical relevance but important for the under-
standing. In this case the electron and hole envelope wave
functions are identical and independent of the QD size as
indicated in Figs. 1(a–c). Therefore, the wave function
overlap integral is unity and independent of the QD size as
shown in Fig. 1(d). The exchange overlap integral scales as
inverse volume and therefore it vanishes for very large wave
functions and diverges cubically for very small QD radii as
shown in Fig. 1(e). For a given Vi the probability of
measuring the electron and hole in the same region becomes
PðvÞ ¼ 1 when the QD radius becomes smaller than Vi

whilePðvÞ ¼ 0 when the QD radius goes to infinity as shown
in Fig. 1(f).

Let us now examine the more realistic situation of finite
barriers. We can gain physical insight into the problem by
considering the length scales entering the system, namely the
www.pss-b.com



Phys. Status Solidi B 248, No. 4 (2011) 857

Original

Paper

Figure 1 (online colour at: www.pss-b.com) Schematic illustra-
tion of the size frequency dependence of the overlap integrals for
infinite potential barriers in terms of the electron (E) and heavy hole
(HH) wave functions. (a–c) For infinite barriers the wave functions
are independent of the effective mass and hence follow the QD size,
which is indicated by the black circles. The wave function
amplitude is indicated by the color intensity. This leads to a constant
wavefunctionoverlap (d)andcharacteristic sizedependencies of the
exchange overlap (e) and the overlap probability (f).

Figure 2 (online colour at: www.pss-b.com) The same illustration
as Fig. 1 but for finite barriers. (a) The wave functions expelled
strongly from the QD for very large and very small QDs. (b) In the
intermediate regime the lighter electron mass leads to a significant
fractionof the electron residingoutside theQDwhile thehole ismore
confined. (c) For very large QDs the wave functions are approx-
imately identical. This leads to the wave function overlap exhibiting
a minimum (d) while the exchange integral (e) and overlap proba-
bility (f) exhibit a maximum.
QD radius and the penetration length L of the wave functions
into the surrounding material, which for a one-dimensional
square well is given by [18]
www
L ¼ �hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�ðV0�E0Þ

p ; (7)
where m� is the effective mass, E0 the energy, V0 the
confinement potential, and we have assumed E0<V0, i.e.,
we are considering a bound state. Here, E0 must be found
numerically by the wave function continuity criterion, hence
L depends on energy and therefore also the QD radius r. We
can therefore quantify three regimes. In the following E and
HH denotes electron and heavy hole respectively. In the
small dot regime, i.e., r � LHH, LE, the envelope wave
functions are strongly expelled from the QD as shown in
Fig. 2(a). In the intermediate regime, i.e., LHH< r< LE, the
electron is expelled more from the QD than the hole as
shown in Fig. 2(b). In the large QD regime, i.e., r � LHH,
LE, the small fractions of the envelope wave functions
leaking out of the QD become negligible and the envelope
wave functions become effectively identical as shown in
Fig. 2(c). This size dependence leads directly to the size
.pss-b.com
dependence of the three overlap integrals shown in
Figs. 2(d–f). In the small-dot regime the wave function
overlap will have a finite value, which will be very small due
to the strong dependence on the difference in effective mass
for electrons and holes. The clear qualitative differences
between the wave function overlap and the overlap
probability in particular for large QD radii directly shows
the incorrectness of the common wave function overlap
interpretation.

In order to test the findings above we have performed
numerical calculations of the three overlap integrals for a QD
comprised of InGaAs with 46% indium embedded in GaAs
using a finite-element model to solve the effective mass
equation. The result is shown in Fig. 3. The indium mole
fraction and size distribution have been optimized to fit
recent experimental data on the frequency dependence of
IWFðvÞ [10, 13] as shown in Fig. 3. We note, however, that a
similar frequency dependence of IWFðvÞ was found for all
parameters investigated in Ref. [10], i.e., also when
including various aspect ratios and strain models. Further
experimental and numerical details can be found in Ref. [10].
Notably, as predicted above on general grounds IExðvÞ and
P(v) exhibit very different frequency dependencies from
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 3 (online colour at: www.pss-b.com) Measured wave func-
tion overlap (circles) for different emission energies compared to
numerically calculated wave function overlap values (black curve,
left axis). Using the same numerical parameters we have calculated
the exchange overlap (red, right axis) and the overlap probability
(blue, right axis), which have been normalized to their maximum
values.
IWFðvÞ in good agreement with the qualitative predictions of
the previous sections. In the calculation of P(v) we have
chosen Vi� 1 nm3 but the appearance of the maximum
remains for all values of Vi that we have investigated.

4 Conclusions In conclusion, we have shown that
general mathematical aspects of the envelope wave function
overlap, the exchange overlap, and the overlap probability
lead to distinctly different frequency dependencies. We have
confirmed these predictions by numerical calculations and in
the case of the envelope wave function overlap also by recent
experiments. The essential conclusion is that the envelope
wave function overlap must increase with increasing QD size
(decreasing emission energy) which is even qualitatively
very different from the dependence exhibited by the overlap
probability. This shows that the common interpretation of the
envelope wave function overlap as an overlap probability is a
misconception leading to predictions incompatible with
experiments and numerical calculations.
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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[1] Al. L. Éfros and A. L. Éfros, Fiz. Tekh. Poluprovodn. 16,
1209 (1982) [Sov. Phys. Semicond. 16, 772 (1982)].

[2] L. E. Brus, J. Chem. Phys. 80, 4403 (1984).
[3] S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Phys.

Rev. B 35, 8113 (1987).
[4] E. Hanamura, Phys. Rev. B 37, 1273 (1988).
[5] L. C. Andreani, G. Panzarini, and J. M. Gérard, Phys. Rev. B

60, 13276 (1999).
[6] D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and

D. Park, Science 273, 87 (1996).
[7] P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichs-

dorff, M. H. Mao, and D. Bimberg, Phys. Rev. B 60, 7784
(1999).

[8] P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin,
D. Ouyang, and D. Bimberg, Phys. Rev. Lett. 87, 157401
(2001).

[9] M. Bayer and A. Forchel, Phys. Rev. B 65, 041308(R)
(2002).

[10] S. Stobbe, J. Johansen, P. T. Kristensen, J. M. Hvam, and P.
Lodahl, Phys. Rev. B 80, 155307 (2009).

[11] S. Stobbe, T. W. Schlereth, S. Höfling, A. Forchel, J. M.
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