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We apply a pulsed-light interferometer to measure both the intensity and the phase of light that is transmitted
through a strongly scattering disordered material. From a single set of measurements we obtain the time-
resolved intensity, frequency correlations and statistical phase information simultaneously. We compare several
independent techniques of measuring the diffusion constant for diffuse propagation of light. By comparing
these independent measurements, we obtain experimental proof of the consistency of the diffusion model and
corroborate phase statistics theory.
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I. INTRODUCTION

Diffusion is one of the most widely encountered phenom-
ena in physics. The dissolving of sugar in water, the transfer
of heat in a wire and the transport of carriers in a photodiode
are all examples of diffusion. These processes are all de-
scribed by the same diffusion equation. This equation also
describes the diffuse transport of waves in disordered scat-
tering materials. An example of a diffusing wave is the trans-
port of light through a cloud or a colloid suspension. Wave
diffusion is not limited to light; acoustic waves, microwaves,
quantum particles or even seismic waves behave completely
analogously.

The last couple of decennia wave diffusion has been of
strong interest both from applied as well as fundamental
points of view. In contrast to classical particle diffusion,
wave diffusion is influenced by interference. The recognition
that phase plays an important role in wave diffusion forms
the basis for applications like diffusing wave spectroscopy
f1g and optical coherence tomographyf2g, which are invalu-
able tools in the analysis of colloidal systems and in the
optical imaging of biological tissue. Fundamental interest is
motivated especially by the parallels between light diffusion
and transport of electrons in mesoscopic systems. These par-
allels have been demonstrated by the observation of the op-
tical equivalents of universal conductance fluctuationsf3g
and weak localizationf4,5g.

Multiply scattering media are characterized by the trans-
port mean free pathl sthe average distance a wave travels
through the medium before becoming diffused and the diffu-
sion constantD sthe rate at which diffuse waves spread over
the mediumd. For electronsl can be considerably smaller
than the wavelengthl of the electron. Whensl &l /2pd,
electrons become localized and the diffusion constant van-
ishesf6,7g. This breakdown of diffusion is called Anderson
localization. Anderson localization of microwaves has been
observed in quasi-1D systemsf8g. Observations at optical
wavelengthsf9g, however, remain under debatef10g.

In quasi-1D microwave experiments, localization was
shown to have a distinct effect on the statistical distributions
of the intensityf8g and the phasef11g. Recently it has be-
come possible to perform dynamic electric field measure-
ments also in the optical regime, which allow a study of the

optical phasef12,13g. These types of measurements provide
a direct measurement of the phase of diffusing waves and
they can give unambiguous proof of the presence of Ander-
son localization of light.

Here we report our optical experiments that thoroughly
test wave-diffusion theory by measuring the amplitude and
the phase of light transmitted through a strongly scattering,
nonlocalizing medium. Using the technique of ultrashort
pulse interferometryf12g, we have access to the time-
resolved intensity, the frequency-resolved intensity and the
statistical distribution of the phase delay time. We demon-
strate five different ways of extracting the diffusion constant
from this multitude of experimental data. By comparing the
results of these five different methods, we test the diffusion
model thoroughly and moreover show how to interpret time-
resolved and frequency-resolved measurements consistently.

In Sec. II of this paper we present a model for diffusion
through a slab. From this model we will derive both the
frequency-dependent and the time-dependent behavior and
identify characteristic parameters that can be extracted from
experimental data. The setup for measuring both the ampli-
tude and phase of transmitted light is described in Sec. III. In
Sec. IV we present our results and devote special attention to
the comparison of different techniques to measure the diffu-
sion constant. Our conclusions are given in Sec. V.

II. THEORY

A. An exact solution to the diffusion equation

We consider the diffusion of scalar waves through a slab
of random material. The slab fills the space 0øzøL and is
infinite in the other directions. In this geometry it is conve-
nient to use Fourier transformed coordinatesq';sqx,qyd for
the transverse directions. The slab is illuminated from the left
sz,0d by a pulse at timet=0. Since the incident light
quickly loses its directionality due to scattering, it is possible
to model the incoming light by a diffuse source inside the
material. In this paper we assume isotropic scattering. The
inclusion of anisotropic scattering in the source function and
the description of anisotropic diffusion are tremendous, and
basically unsolved complications. At this point we use a
source located at a depthz0< l f14g. Later we will use a more
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sophisticated source. Under these conditions, the ensemble
averaged energy density of diffuse lightI is described by the
diffusion equationf15g,

f]t + Dsq'
2 + a2 – ]z

2dgIsq',z;td = dsz− z0ddstdSsq'd. s1d

In this equationa;Î3/sll ad is the absorption coefficient cor-
responding to an absorption mean free pathla. The right
hand side of Eq.s1d is the source term, whereSsq'd de-
scribes the transverse distribution of the source and has the
unit of energy. The total energy in the source pulse is given
by Ssq'=0d.

The propagation of light is affected by the boundaries of
the slab. It has been shownf16,17g that reflections at the
surfaces impose mixed boundary conditions on the diffusion
equation,

]zIsq',0;td = Isq',0;td/ze1, s2ad

− ]zIsq',L;td = Isq',L;td/ze2, s2bd

whereze1 andze2 are so called extrapolation lengths. In the
diffusion model, their values are given byze1,2=2ls1
+R1,2d /3s1−R1,2d. The reflection coefficientsR1 andR2 cor-
respond to the left and the right boundaries, respectively.
These coefficients can be estimated from Fresnel’s law using
the refractive indices of the dielectrics outside of the slab and
the effective index of the random mediumf17g.

We solve the diffusion equationfEq. s1dg with mixed
boundary conditions analytically in the frequency domain.
This solution can conveniently be used to find the field cor-
relation function, the total transmission and the average dif-
fuse traversal time. We use the same approach as inf17g,
with the exception that we extend the model to allow for
different extrapolation lengths at the two boundaries and use
an exponential distribution of the source intensity.

When Eq.s1d is Laplace transformed with respect tot, an

expression for the energy densityĨ can be found directly
f18g,

Ĩsh,zd =
Ssq'd
2Dh

fe−huz−z0u + Ashdehz + BshdehsL−zdg, s3d

where we have definedh;ÎiV /D+q'
2 +a2. The Laplace

transform parameterV describes the frequency of intensity
oscillations and is much smaller than the optical frequency of
the fieldv. A andB are found from the boundary conditions
s2ad and s2bd after tedious algebra,

Ashd =
g+sz0d − 2fze1h + 1gehz0

g−sLdehL , s4d

Bshd =
g+sL − z0d − 2fze2h + 1gehsL−z0d

g−sLdehL , s5d

where we defined functiong± as

g±sxd ; sze1h + 1dsze2h + 1dehx ± sze1h − 1dsze2h − 1de−hx.

s6d

We now have the exact solution to the diffusion equation
with mixed boundary conditions. In order to find the trans-

mitted intensity flux, we calculate the forward fluxJ̃z

=−D ]zĨ at the slab surfacez=L,

J̃zsh,Ld = Ssq'd
Fz0

shd − Fz0
s− hd

g−sLd
, s7d

whereFz0
is given by

Fz0
shd ; fze1h + 1gehz0. s8d

Equations7d describes the transmission for a source lo-
cated at depthz0. A more realistic and more sophisticated
model assumes an exponential distribution of the source
light. The exponential distribution models how light becomes
diffuse by being scattered out of the incoming coherent
beam. We adapt Eq.s7d for the exponential source model by
convolvingFz0

with a snormalizedd exponential source func-
tion,

Flshd =E
0

L

dz0
exps− z0/ld

lf1 − exps− L/ldg
Fz0

sh;z0d

=
1 − expsLh − L/ld

1 − exps− L/ld
1 + ze1h

1 − lh
. s9d

We obtain the transmitted flux for the exponential source
from Eq. s7d by simply replacingFz0

by Fl.
An important quantity in the analysis of random media is

the total transmission. The total transmission is found by
integrating the flux over the whole back surface of the
samplesthis corresponds to takingq'=0d and integrating
over timesV=0d. The ensemble averaged total transmission
coefficientTtot is therefore defined as

Ttot ;
J̃zsq' = 0,V = 0d

Ssq' = 0d
=

J̃zsh = ad
Ssq' = 0d

. s10d

Neglecting absorption, the equation is evaluated to reproduce
the well known resultf19g

Ttot =
l + ze1

L + ze1 + ze2
+ O„exps− L/ld…. s11d

This relation betweenTtot, l andL is often used to determine
the mean free path experimentally by varyingL.

Next, we calculate the electric field correlation function
CE for the transmitted light. This correlation function con-
tains information about the dynamics of the diffusion pro-
cess,

CEsVd ;
kEsvdE*sv + Vdl

kuEsvdulkuEsv + Vdul
=

J̃zsÎiV/D + a2,Ld

J̃zsa,Ld
,

s12d

whereEsvd is the complex field amplitude of the transmitted
light for an incoming field of optical frequencyv and unit
amplitude. The bracketsk l are used to explicitly denote en-
semble averaging over all possible configurations of the dis-
ordered sample. We obtained the right hand side by assuming
ergodicity and applying the Wiener-Khinchin theorem.
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The field-field correlation function in Eq.s12d is the exact
result for diffuse transport through a slab using mixed
boundary conditions and an exponential source distribution.
Earlier resultssRefs. f17,20gd are reproduced by using the
simpler sheet source representation of Eq.s8d and choosing
ze1=ze2 or ze1=ze2=0.

We will now turn to the intensity correlation function.
This function relates two single channel transmission coeffi-
cients. The single channel transmission coefficientT de-
scribes transmission from one input angle to one output
angle. IntegratingT over all outgoing angles yields the total
transmission coefficientTtot. The intensity correlation func-
tion is defined as

CIsVd ;
kdTsvddTsv + Vdl
kTsvdlkTsv + Vdl

, s13d

where dTsvd;Tsvd−kTsvdl. A well known approximation
for the intensity correlation function is given by

CIsVd = uCEsVdu2. s14d

Equations14d is referred to as theC1 approximation and is
valid for diffusive transport in multiply scattering media far
away from the localization transitionf21g. Equationss12d
and s14d show that bothCEsVd and CIsVd depend on the
diffusion constant only by means of the reduced frequency
V /D. Fitting the frequency dependence ofCI is a commonly
used method to extract the diffusion constant from measured
correlation functions.

It is instructive to introduce the characteristic traversal
time for diffusive transmissiontt f22g, which is defined as
the average time it takes a pulse of light to travel through the
medium,

tt ;
E dt Jzst,Ldt

E dt Jzst,Ld
= i lim

V→0

]CEsVd
]V

. s15d

The right hand side was obtained by rewriting the definition
of tt in the Laplace domain representation and using Eq.
s12d. For zero absorption we find

tt =
Le

2 − 6l2 − 3ze1
2 − 3ze2

2

6D
+

ze1
3 + ze2

3

3LeD
+ Ose−L/ld. s16d

The diffuse traversal time is of fundamental interest since it
relates to the Thouless criterion for localizationf23g. Further-
more, the time scale is of practical interest since measuringtt
provides a method of determining the diffusion constant. Our
result in Eq.s16d gives corrections of orderzeL /D and higher
to the value oftt=L2/6D found by Landaueret al. f22g.
These corrections are especially relevant whenL /ze,10,
which is the case for thin samples or samples with a high
extrapolation length due to internal reflection.

B. Phase statistics

The crucial difference between diffusion of particles and
wave diffusion is interference. For this reason we are inter-

ested in the phase of light that propagates through a scatter-
ing medium. An analysis of phase information is comple-
mentary to the analysis of the intensity and provides an
independent method of measuring the traversal timett and
therefore the diffusion constant. We consider only single
channel phase statistics, which means that we relate phase
and amplitude for one input angle to the phase and amplitude
for a single output angle.

Since the diffusion equation only describes the average
intensity, an extension is needed in order to predict phase
statistics. The statistical properties of the phase were pre-
dicted by van Tiggelenet al. f24g by assuming Gaussian
statistics of the transmitted fieldf33g. This Gaussian assump-
tion is valid when a high number of independent paths con-
tributes to the field at the back surface of the random mate-
rial. The central limit theorem predicts that in this situation
the real and imaginary parts of the fields are described by a
normal distributionf25g. Equivalently, the field amplitude is
Rayleigh distributed and the phasef has a uniform distribu-
tion between 0 and 2p. Neither the distribution of the inten-
sity nor the distribution of the phase contains information
about the diffusion process. Much more interesting is the
probability distribution of the group velocity delay timef8
;df /dv. This probability distribution reflects dynamic
properties of the diffusion process and provides a method of
measuring the diffusion constant. The statistics of the delay
time f8 were calculated in Ref.f24g. For this calculation the
Gaussian field statistics were extended to describe the corre-
lations of two fields at nearby frequencies. These correlations
are given by the field-field correlation function. The resulting
joint Gaussian distribution was subsequently used to calcu-
late the probability distribution of the delay time,

Psf̃8d =
Q

2fsf̃8 − 1d2 + Qg3/2
, s17d

where f̃8;f8 / kf8l and Q is a dimensionless parameter.
kf8l andQ can be calculated from the first and second terms
in the Taylor expansion of the field-field correlation function:
CE=1–itt V−bV2+OsV3d, which results in kf8l=tt and
Q;2b/tt

2−1 f24g.
In Ref. f24g the correlation function for a system with

simplified boundary conditions was used to calculatett and
Q. Here it was shown that without absorptionQ equals 2/5
while with absorptionQ is reduced. However, by carefully
examining our solution for mixed boundary conditions, Eq.
s12d, we find thatQ increases above 2/5 when the extrapo-
lation lengths are nonzero.

The intensity-weighted delay timeW is a fundamental
quantity since the sum of this quantity over all incoming and
outgoing angles equalsp times the density of states in the
mediumf24,26g. The weighted delay time is defined as

W; Tf8. s18d

T and f8 are statistically dependent variables; for channels
with a low transmission the probability distribution off8 is
broaderf27g. Because of the statistical dependency, the sta-
tistics of the weighted delay time cannot be deduced from
the individual probability distributions ofT and f8 and has
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to be calculated on its own. The probability distribution ofW
was calculated in a similar way as the distribution off8 and
is given byf24g:

PsW̃d =
1

Î1 + Q
expS − 2uW̃u

sgnsW̃d + Î1 + Q
D , s19d

where sgn is the signum functionf34g andW̃;W/ kWl. The
average weighted delay time was foundf24g to relate to the
diffuse traversal time according tokWl=kTltt.

The correlation function of the weighted delay timeCW is
defined as

CW ;
kWsvdWsv + Vdl

kWsvdlkWsv + Vdl
. s20d

This correlation function was calculated in theC1 approxi-
mation fEq. s14dg using a joint Gaussian distribution that
relates the fields at four frequenciesf24g:

CWsVd =
1

2tt
2FU ]CEsVd

]V
U2

− ReSCEsVd
]2CE

* sVd
]V2 DG .

s21d

Microwave experiments showed that deviations from theC1
approximationsC2 and C3 correlationsd causeCW to decay
with frequency much slower than is described by Eq.s21d
f27g. Therefore measuringCW provides a good way of testing
the validity of theC1 approximation and of looking for signs
of localization.

C. Diffusion in the time domain

Although we found an exact solution to the diffusion
equation in the frequency domain, the time-domain behavior
is not obvious from Eq.s3d. In this section we analyze dif-
fusion in the time domain and we present an alternative tech-
nique for finding the diffusion constant. The time-resolved
transmission can, in principle, be calculated by inverse
Laplace transforming Eq.s7d by means of contour integra-
tion f28g. Unfortunately Eq.s7d has an infinite number of
poles, none of which can be found analytically when the
extrapolation lengths are nonzero. Using a different approach
we will show that the diffusion constant can be found by
analyzing only the long-time behavior of the transmitted
flux.

A complete set of solutions to the diffusion equationfEq.
s1dg is given by

Iqz,u
sq',z;td = sinsqzz+ udexps− fq2 + a2gDtdQstd,

s22d

whereq2;q'
2 +qz

2 andQstd is the Heaviside step function. In
an infinite medium the longitudinal spatial frequencyqz and
phaseu can be chosen freely. In a finite slab, however, there
is an infinite, discrete set of combinations ofqz and u for
which the boundary conditions are fulfilled. For the bound-
ary conditions given by Eqs.s2ad ands2bd, permitted values
of qz and the correspondingu can be calculated numerically.
Every solution forqz corresponds to two poles in Eq.s7d
with h= ± iqz.

We will only calculate the long-time behavior of diffu-
sion. In the long-time limit only the solution with the lowest
qz survives, since, according to Eq.s22d all other solutions
decay faster. We number this particular solutionqz1,u1. Now
we are able to calculate the diffuse flux fort@1/qz1

2 D,

Jzsq',z;td = − J0sq'dcossqz1z+ u1dexps− fqz1
2 + a2gDtd,

s23d

J0 can be calculated by contour integrating Eq.s7d around
the poles ath= ± iqz1. In this article we are interested only in
the exponential decay time of the transmitted flux and there-
fore will not explicitly specify J0. For the total fluxsq'

=0d we find an exponential decay with a decay timetd,

td
−1 = fqz1

2 + a2gD, s24ad

<Fp2

Le
2 + a2GD, s24bd

where the approximate solution in Eq.s24bd was found by
linearly extrapolatingIsq' ,z; td at the slab boundariessthis is
equivalent to the method of mirror images used in Ref.
f20,29gd and Le;L+ze1+ze2 is an effective slab thickness.
The approximate solutionfEq. s24bdg can be used for thick
samplessL@ze1,ze2d.

It is interesting to notice the differences between the de-
cay timetd and the diffuse traversal timett. The decay time
td describes the long-time decay rate of the energy density of
diffuse light in the sample. This decay rate is given by the
slowest term in Eq.s22d and does not depend on the distri-
bution of the source intensity. The diffuse traversal time, on
the other hand, has contributions from all terms in Eq.s22d
and is mainly determined by the short-time transmission. The
diffuse traversal time does depend on the distribution of the
source intensity. Concluding,td and tt are time scales that
correspond to different aspects of diffusion. Therefore, the
consistency of the diffusion model can be tested experimen-
tally by measuring bothtd andtt for a series of samples.

D. Apparent nonexponential decay in a realistic experimental
configuration

In the previous section we found that the total transmitted
flux decays single exponentially in the long-time limit. In an
actual experimental geometry, however, it is not possible to
collect all the transmitted light; only a finite area at the back
surface of the sample can be imaged on the detector. We
model the limited area by means of a Gaussian detection
efficiency with a known waistwd. Furthermore, we assume
that the source light,Ssq'd, has a Gaussian intensity distri-
bution with waistws. The total intensity reaching the detector
Jdet is found by integrating over all spatial frequenciesq',

Jdetstd =
pwd

2

2
E dq' Jzsq';L,tdexpS−

1

8
q'

2 wd
2D , s25d

The intensity profile at the sample surface is time dependent
according to Eq.s22d since modulations with a high spatial
frequencyq' decay faster than those with a low spatial fre-
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quency. Since we detect only the flux from a finite area, our
detection efficiency is time dependent as well. We definet f
;sws

2+wd
2d /8D, being the characteristic time scale for the

time-dependent detection efficiency, and find the total de-
tected flux from Eq.s25d,

Jdetstd =
wd

2/s8Dd
t + t f

Jzsq' = 0;L,td. s26d

This equation shows that a finite detection area imposes a
nonexponential envelope on the detected transmission and
increases the detected decay rate. For thicker samples the
additional decay will be more pronounced since the diffuse
decay, as described bytd, is slower. As a result, the diffusion
constant found from a linear fit of lnJstd is structurally over-
estimated. Usually the prefactor in Eq.s26d is omitted, cor-
responding to the assumption that the detection system col-
lects light from a large areaswd@wsd. The consequences of
omitting this correction can, however, be significant: in our
experimental configuration the correction results in up to a
25% modification of the measured diffusion constant.

Naturally, the finite-area correction given by Eq.s26d
equally applies for diffusion in the frequency domain. Unfor-
tunately, it is inconvenient to apply the correction in the fre-
quency domain analytically. Therefore we use a numerical
fast Fourier transform to correct the frequency-resolved
transmission, Eq.s7d, and all derived quantities.

E. Five ways of measuring the diffusion constant

In Secs. II A–II C we presented methods to calculate the
frequency correlations, the phase statistics and the transient
behavior of light diffusing through a slab of randomly scat-
tering material. Two important time scales were identified:
the diffuse traversal timett and the exponential decay time
td.

In our experiments we will test the consistency of the
diffusion model quantitatively by extracting the diffusion
constant from experimental data using five different tech-
niques. If the model is valid, we expect all techniques to
yield the same diffusion constant when the boundaries and
the source intensity distribution are accounted for correctly.
Furthermore, the methods will only give the same results
when coherent transmission, higher order correlations and
Anderson localization do not play a role. Therefore a com-
parison of the diffusion constants, measured using different
methods, provides an excellent way of testing our diffusion
model.

Method I: In the first method, the diffusion constant is
found from the diffuse traversal timett. The diffuse traversal
time is obtained from time-resolved transmission using the
definition in Eq.s15d. After applying the finite-area correc-
tion, the diffusion constant is found by means of Eq.s16d.
Since the transmitted intensity decays exponentially the
value oftt depends mainly on the transmission at short time
scales.

Method II: The second method is to measure the decay
time td by fitting the long-time decay of the transmitted flux.
Subsequently, Eq.s24ad is used to find the diffusion constant.
Since Method II relies on the time-resolved transmission at

long time scales, the parts of the data used in Method I and
Method II are nearly independent.

Method III: In the third method, the intensity correlation
function is extracted from frequency-resolved measurements.
Fitting Eq. s14d to the measured correlation function yields
the diffusion constant.

Method IV: The fourth method relies on the measured
optical phase and makes use of the statistics derived for the
phase of diffuse light. When the field obeys Gaussian statis-
tics kf8l equals the diffuse traversal timett. Consequently,
Eq. s16d can be used to extract the diffusion constant from
the measured phase. Since Method IV only uses phase infor-
mation and Methods III only uses the measured intensity,
these two methods are fully independent. In the case of
Anderson localization, the transmitted field does not obey
Gaussian statistics. The diffuse traversal time from Methods
I and V is influenced by resonant tunneling through localized
modes and will be significantly higher than the average
phase delay time measured using Method IVf11g.

Method V: In the last method the diffusion constant is
extracted from measurements of the weighted delay time.
With kWl / kTl=tt we find the diffuse traversal time. As in
Methods I and IV we calculate the diffusion constant using
Eq. s16d. It has been shownf30g that Method V is math-
ematically equivalent to Method I. Therefore, we will only
use Method V to verify the consistency of our data process-
ing.

All together we now have five different methods of mea-
suring the diffusion constant. A comparison of the results of
these methods provides a thorough test of the diffusion
model and the phase statistics. Furthermore it enables an
unambiguous determination of the diffusion constant.

III. EXPERIMENT

We have presented a theoretical framework connecting
time-resolved measurements to phase statistics and fre-
quency correlations. In order to test this framework, we need
to measure both the amplitude and the phase of the multiple
scattered light over a range of optical frequencies simulta-
neously. We perform these measurements using the tech-
nique of femtosecond pulse interferometry as described in
Ref. f12g. This technique involves an incoherent light source
and two interferometers. As is explained below, the coher-
ence time of the light source should be smaller than the rela-
tive delay that can be achieved in the interferometers. In
our case the light source is a mode-locked Ti:sapphire laser
sTsunami, Spectra Physicsd operating at 775 nm producing
femtosecond pulses with a bandwidth of about 6 nm. The
technique, however, is not limited to pulsed lasers. Any light
source with sufficient bandwidth, such as a super lumines-
cent diode or even a conventional lamp, can be used. In our
experiment we collect light from only a single speckle spot.
Therefore we require a high source intensitysabout 50 mW
at the sample surfaced. Furthermore, we need to focus the
beam in order to have large speckle spots. The excellent
beam quality and high power favor the use of a mode-locked
laser.

The first of the two interferometer is of the Mach-Zehnder
type and is shown schematically in Fig. 1. A beamsplitter
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divides the incoming light between a signal arm and a refer-
ence arm. In the signal arm the light of the laser is focused
on the sample to a waist diameter of approximately 30mm
using a lens with a focal length of 6 cm. In order to probe
different random configurations of scatterers we illuminate
different areas of the sample by translating the sample per-
pendicular to the incoming beam. For every sample position
the transmitted light forms a different volume speckle pat-
tern. The speckle is collimated using a second 6 cm lens and
an area smaller than a typical speckle spot is selected from
the pattern using an aperture with a diameter of 0.8 mm. At
the second beamsplitter the light transmitted through this ap-
erture is combined with the reference pulse yielding a beam
with two temporally separated pulses.

The double-pulsed signal is directed into a Fourier trans-
form infrared interferometersFTIRd. The FTIRsBiorad FTS-
60Ad is a Michelson interferometer and scans the delay time
between two copies of the signal. A detector directly behind
the FTIR obtains the field autocorrelation function of the
pulse pair as a function of the extra pathlength in the scan-
ning arm of the interferometer. It takes about 40 s to measure
the autocorrelation function. During this time, the speckle
pattern has to be stationary and the interferometer stable with
subwavelength accuracy. For this reason only solid samples
can be used.

Because of the temporal separation of the signal and ref-
erence pulses, it is possible to isolate the cross correlateCstd
of the signal pulse with the reference pulsef35g. In the fre-
quency domain the cross correlate is given by

Csvd = uSsvdu2HssvdHrsvdEsvd, s27d

whereSsvd is the spectrum of the incoming pulse,Hssvd and
Hrsvd are the transfer functions of the signal and reference
arm of the Mach-Zehnder interferometer, respectively and
Esvd is the transfer function of the sample that we wish to
extract. In order to find the transfer function of the sample,
the cross correlate is measured with and without the sample
consecutively. Dividing the two functions yields the complex
transfer functionEsvd containing both the phase and the am-
plitude of the transmitted light. Now the time-resolved field
transmissionEstd can in principle be obtained by means of
an inverse Fourier transform. In practice, however, the band-
width of the transfer function is limited by the bandwidth of
the source pulse. Outside this bandwidth the measured trans-
fer function is dominated by noise, therefore additional fil-
tering is required before calculatingEstd. We use a Cheby-
shev filter for filtering in order to have a minimum effect of
side lobes and a maximum time resolution.

In the experiment the signal and the reference beams have
to overlap both at the aperture and at the detector in order to
cause an interference signal. This condition implies that both
the direction and the position of the signal beam are fixed
and, as a result, the detection is limited to light emitted from
a small area of the sample surface. Based on the geometry of
the setup we approximate the detection area by a Gaussian
curve with a waist ofwd=10 mm.

We perform the measurements on samples consisting of a
layer of rutile TiO2 particles with a diameter between
150 nm and 290 nm that are deposited on a substrate of
fused silica. The titania grains have a refractive index of
approximately 2.8. The extrapolation lengths can be calcu-
lated from the effective refractive indexneff of the medium
f17g. The effective index can adequately be estimated from
Mie theory f31g. For our samples we findneff=1.34 and the
corresponding extrapolation lengths areze1/ l =0.69 for the
left boundary and ze2/ l =1.71 for the right boundary.
We measured the total transmission as a function of sample
thickness and found a transport mean free path ofl
=0.97±0.10mm by fitting Eq.s11d to the data.

Our samples range in thickness between 1.5±0.3mm and
18.0±0.3mm. Since the samples are on a substrate that is
much thicker than the layer of titania, it is necessary to com-
pensate for the extra delay in the substrate. In order to accu-
rately determine the extra pathlength, we direct the light that
is reflected from the substrate into the FTIR without reposi-
tioning the sample. The thickness of the substrate is deduced
from the time delay between the reflections from the front
and the back of the substrate.

With the setup described in this section we are able to
measure the complex transfer function of random media. Be-
low we analyze these transfer functions in the time domain,
the frequency domain and by looking at the phase statistics.

IV. RESULTS

A. Time domain measurements

First we consider the decay in time of a transmitted pulse.
The inset in Fig. 2 shows the raw data obtained by measuring

FIG. 1. Schematic representation of the Mach-Zehnder interfer-
ometer used in the setup. The first beamsplittersBS1d divides the
light between a reference arm and a signal arm. The light in the
signal arm is focused on the sample by lens L1. The transmitted
speckle pattern is collimated by lens L2 and recombined with the
reference beam at beamsplitter BS2. Since the reference arm is a
few millimeters shorter than the sample arm, the signal pulse does
not overlap the reference pulse temporally. Finally, apertureD1
selects an area that is smaller than the typical speckle size and
polarizer P1 blocks light with a polarization perpendicular to that of
the reference beam in order to increase the signal to noise ratio. The
beam containing the signal pulse and the reference pulse is propa-
gated into a scanning interferometersFTIRd. When a sample is
placed in the signal arm, only a fraction of the incident light reaches
the FTIR. In order to balance the interferometer, we use beamsplit-
ters sBS1 and BS2d that reflect approximately 4%.
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the cross correlate at a single position of the sample. For
different positions of the sample the transmitted pulse is dis-
torted differently. We extractEstd for every measurement as
described in Sec. III and average the corresponding intensi-
ties over 50 sample positions to obtain the normalized trans-
missionJstd;kuEstdu2l. Figure 2 shows the time-resolved in-
tensity transmissionJstd for a 10.1mm thick sample. We find
that in the long-time limitJstd has a nearly exponential decay
for more than four decades. The measurements are fitted with
the theoretical curve obtained from Eq.s7d convolved with
the frequency filter that was used in the processing of the raw
data. We find a good fit for a diffusion constant ofD
=27.0 m2 s−1, taking into account the effect of the limited
area of detection. For comparison, the theoretical curve with-
out correction for the detected area is also shown in Fig. 2.
The corrected curve exhibits a significantly faster decay, es-
pecially for t,2 ps.

In order to analyze the decay ofJstd more quantitatively,
we extract the diffuse traversal timett and the decay timetd
from the measured flux. In Sec. IV D the diffusion constant
will be calculated from these two times scales using Methods
I and II sSec. II Ed respectively. The first time scalett is
obtained from the time-resolved transmission directly using
Eq. s15d. The second time scaletd is extracted from an ex-
ponential fit of the intensity decay. We fit the data between
t.td and the point where the intensity is dropped below the
noise. It was found that the decay in the first half of this
range is always significatly faster than decay in the second
half, as is predicted by Eq.s26d. In Fig. 3 the decay timetd
is compared to the diffuse traversal timett. It was shown in
Sec. II that the differences between the two time scales are
caused by surface effects and the limited detection area. We

find a good agreement with theory for the decay time as well
as for the traversal time, both using the same fitted average
diffusion constant ofD=25.5 m2 s−1.

B. Phase statistics

An independent way of measuring the diffuse traversal
time is by analyzing the phase information. For different
positions of the sample we obtain the phasef from the com-
plex transfer functionEsvd that was measured using the
technique described in Sec. III. For all different frequencies
in the 6 nm bandwidth of the measurements, we calculate the
delay timef8svd;dfsvd /dv and the weighted delay time
Wsvd;f8svduEsvdu2. By binning the values off8 and W,
we obtain the probability distributions shown in Fig. 4. The
distributions are in good agreement with the predicted func-
tional forms from theory, Eq.s17d and Eq.s19d. This agree-
ment is a clear experimental proof that the transmitted light
is described well by a circular complex Gaussian distribu-
tion. For a sample with a thickness of 10.1mm, the charac-
teristic parameterQ determining the width of the distribution
is calculated to beQ=0.44. The experimental data gives
Q=0.47, corresponding to a slightly lower maximum of
Psf8d. The high value ofQ indicates that there is no mea-
surable effect of absorptionswhich would decreaseQd.
Moreover,Q is clearly larger than the value of 2/5 predicted
in Ref. f24g. This observation shows that even for thick
samplessL<10ld the effect of reflections at the surfaces can-
not be neglected.

We obtain the diffuse traversal time usingtt=kf8l
sMethod IVd and tt=kWl sMethod Vd and compare these
results to the value found from the time-resolved intensity

FIG. 2. Time-resolved intensity transmission for a 10.1mm
thick sample consisting of TiO2 grains. The observed nonexponen-
tial decay ssolid lined agrees with the finite-area correction, Eq.
s26d, over four decades. Theoretical curves are obtained from Eq.
s7d and the shape of the filter. The dotted line was corrected for the
time-dependent detection efficiency due to focusing, using Eq.s26d
with ws=15 mm andwd=10 mm as estimated from the experimen-
tal configuration and a fitted diffusion constant ofD=27.0 m2 s−1.
The dashed line is the uncorrected curve for the same diffusion
constant. The inset shows an example of the interference signal at
the detector as a function of the delay length in the scanning inter-
ferometer. The average intensity transmission is obtained from 50
such measurements performed on different areas of the sample.

FIG. 3. Diffuse traversal timett striangles pointing upwardd, and
scaled decay timetdp2/6 striangles pointing downwardd, as a func-
tion of sample thickness.td is found by fitting the exponential de-
cay of Jstd sMethod IId; the error bars indicate the values found
from fitting the first part of the decayslowest valued and the last
part of the decayshighest valued. The dashed line is the theoretical
value of td. The diffuse traversal time is found from the time-
resolved intensity transmission obtained by numerically evaluating
Eq. s15d sMethod Id. Without taking into account detection effi-
ciency, theorysdotted lined predicts that the two time scales con-
verge for thick samples. When the theory is compensated for the
effect of a finite detection areassolid lined, this convergence is lost,
in agreement with the experimental data.
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measurementssMethod Id. Figure 5 showstt, as obtained by
these three different methods. The values ofkf8l coincide
almost perfectly withtt found from time-resolved analysis.
This agreement again confirms the excellent validity of the
C1 approximation and the theory of phase statistics.

As expected, the results from Methods I and V agree very
well. Although these methods are equivalent in theory, the
time-domain data, on which Method I is based, have been
filtered ssee Sec. IIId, whereas Method V uses the unfiltered
frequency-domain measurements directly. Since the differ-
ences between the values obtained by Methods I and V are
minute, we conclude that the determination oftt is insensi-
tive to frequency domain filtering. In Sec. IV D we will use
tt to extract the diffusion constant for each sample.

C. Frequency domain measurements

In Secs. IV A and IV B we presented measurements of the
traversal timett andQ, the characteristic parameter for phase
statistics. These two parameters are related to the first and
second order terms in the Taylor expansion of the field-field
correlation functionCE aroundV=0. In this section we go a
step further and investigate the full frequency correlation
functions of the transmitted light. We investigate the field-
field correlation function, the intensity correlation function
and the correlation function of the weighted delay time con-
secutively.

We first look at the field-field correlation function. This
function is related to the time-resolved intensity transmission
by a Fourier transform and provides an alternative way of
studying the propagation of diffuse intensity without having
to worry about possible artefacts introduced by filtering. In
analyzing the time-resolved transmission plotted in Fig. 2 we
only extracted two parameters,tt andtd. Whereas the mea-
sured time-resolved transmission curve showed some minor
fluctuations compared to theory, the field-field correlation
function is perfectly smooth up toV=15tt and we find that
the theoretical curve matches the experimental data very
well, as is shown in Fig. 6.

In order to test theC1 approximationfEq. s14dg directly,
we examine the intensity correlation functionCIsVd. The
presence of long rangesC2d and infinite rangesC3d correla-
tions would show up by comparing the intensity correlation

FIG. 4. Probability distributions for the delay timef8 stopd and
the weighted delay timeW sbottomd as measured in a 10.1mm
thick TiO2 sample. The dimensionless parameterQ characterizes
the width of these distributions. We findQ=0.47 from a fit of the
theoretical curves given by Eqs.s17d and s19d ssolid linesd. The
average values off8 andW are used in Methods IV and V, respec-
tively, to find the diffusion constant.

FIG. 5. Diffuse traversal timett measured using three different
techniques. Method Issquaresd calculatestt from the time-resolved
intensity. Method IVstrianglesd obtainstt from the measured opti-
cal phase alone, whereas Method Vscirclesd uses the intensity-
weighted phase information. The excellent agreement indicates that
the transmitted field is described by Gaussian distribution. The solid
line are the theoretical values for a diffusion constant ofD
=25.5 m2 s−1.

FIG. 6. Measured field correlation functionCE sreal part:
circles, imaginary part: squaresd for a TiO2 sample of thickness
10.1mm as a function of the frequency differenceV between two
optical frequencies. The horizontal axis is scaled bytt

−1 as found by
measuringkf8l. Excellent agreement with theoryssolid linesd con-
firms the diffusion model with boundary corrections.
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function to theC1 contribution. In our experiment, however,
we find a good agreement to theC1 theory as is shown in
Fig. 7. At Vtt<8 a slight deviation of unknown origin is
found in the correlation function. Surprisingly this deviation
was absent in the field-field correlation functionCE. We de-
termine the diffusion constant by fitting the intensity corre-
lation function and find a diffusion constant of 27±3 m2 s−1

for a 10.1mm thick sample.
Finally, we present the correlation function for the

weighted delay timeCWsVd in Fig. 7. Apart from the same
deviations that were found in the intensity correlation func-
tion, the agreement with Eq.s21d is evident. This observation
provides the first experimental confirmation of the correla-
tion function of the weighted delay time at optical frequen-
cies.

D. The diffusion constant

Altogether we have presented five different methods of
determining the diffusion constant experimentally. Methods I
and II use the measured time-resolved intensity transmission
to find two time scales,td and tt, from which the diffusion
constant can be calculated. Subsequently, we showed thattt
can be obtained from phase statistics in two different ways
by analyzing the delay timesMethod IVd and the weighted
delay timesMethod Vd. Finally, we measured the diffusion
constant by fitting the intensity correlation functionsMethod
III d. The results of these five methods are summarized in Fig.
8 for nine samples of different thickness. We find that all
different methods yield the same diffusion constant, within
the experimental accuracy, for a given sample. This observa-
tion is an experimental proof of the consistency of the diffu-
sion model that was presented in Sec. II. An average diffu-
sion constant ofD=25.5±1.0 m2 s−1 is found; individual
samples with different thickness have slightly different val-
ues of the diffusion constant ranging from 19 m2 s−1 to
28 m2 s−1. Since these variations in the diffusion constants
are reproduced for all methods, we conclude that the scatter
is a result of the varying sample structure and that it is not
the result of a measurement error.

The error bars in Fig. 8 are derived from the uncertainty
in the sample thickness and the uncertainty in determining
the actual valuestt, td or the curve fit toCId that was used to
calculate the diffusion constant. For thinner samples we find
larger error bars since the uncertainty in the thickness is rela-
tively large. For the three methods that are based on the
traversal timett we find that the uncertainty inD decreases
with increasing sample thickness. The determination of the
decay timetd, on the other hand, becomes increasingly more
inaccurate because of the nonexponential decay of the trans-
mitted intensity.

The diffusion constants obtained by fitting the decay of
the transmitted intensitysMethod IId appear to be slightly
lower for thinner samples. This behavior is consistent with
earlier observationsf32g. It should be noted, however, that
the decay time in these samples is comparable to the time-
domain resolution. Measurements based on phase informa-
tion swhich are not limited by the time resolutiond show no
thickness dependence of the diffusion constant.

FIG. 7. Measured correlation functions for the intensityCIsVd
sdiamondsd, and the weighted delay timeCWsVd scirclesd, in a
10.1mm thick TiO2 sample. The solid lines are theC1 approxima-
tions for both correlation functions. Except for some spurious os-
cillations, agreement with theory is evident.

FIG. 8. Measured diffusion constant for samples of different
thicknesses obtained in five different ways. The top figure shows
the diffusion constant obtained from the diffuse traversal timett.
We measured the traversal time directly in the time domain
sMethod I, squaresd, by extracting the average of the delay time
kf8l sMethod IV, circlesd, and the weighted delay timekWl
sMethod V, trianglesd. Error bars are only presented forkf8l, but
the errors in the two other values are comparable. The diffusion
constants in the middle figure are calculated from the decay timetd

which is obtained by fitting the decay of the transmitted flux
sMethod IId. The bottom plot displays the diffusion constants ob-
tained from fitting the intensity correlation functionsMethod IIId.
Except for the two thinnest samples, the consistency of the five
different measurement methods is evident.
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For the thinnest sample we find different diffusion con-
stants depending on which method we use. The difference is
most apparent when comparing Methods I and V to Method
IV. Both the direct time-domain measurement oftt sMethod
Id and the average weighted delay timesMethod Vd are lower
than expected, resulting in significantly higher values of the
measured diffusion constant. The difference in observed dif-
fusion constants is a clear indication that the transmitted field
does not have a Gaussian distribution. The discrepancy be-
tween the different values oftt is consistent with an in-
creased transmission at short times. Therefore this observa-
tion suggests an influence of coherent transmission or single
scattering. Especially, it shows that shorter traversal times
are associated with higher intensities, since the low values of
tt are not reproduced in the unweighted delay time measure-
mentssMethod IVd.

V. CONCLUSION

Pulse interferometric measurements allow a sensitive de-
termination of the complex transfer function of a random
medium. This transfer function can be used to calculate the
time-resolved intensity, the frequency-resolved intensity and
notably the phase of diffuse light. These three complemen-
tary sets of data are obtained in a single measurement.

In Sec. II we presented a consistent theoretical framework
to interpret the experimental data. The framework is built
around an exact solution to the diffusion equation with
mixed boundary conditions. Our solution is a generalized
version of the result presented in Ref.f17g and uses a more
accurate description of the source intensity distribution. A
new result is the nonexponential envelope that is imposed on
the detected flux due to a finite detection area. This envelope
contributes to the detected intensity decay and should be
taken into account when extracting the diffusion constant.

By analyzing the diffusion theory both in the time domain
and in the frequency domain we have identified two relevant
time scales. The first is the diffuse traversal timett. The
traversal time is the natural time scale in the analysis of
phase statistics and correlation functions. The second time
scale is the decay timetd associated with the exponential
decay of diffuse intensity. These two times are affected dif-
ferently by the boundary conditions and the finite area of
detection.

We measured the diffusion constant using five different
methods, which allowed a comparison of time domain mea-
surements, frequency domain measurements and phase mea-
surements. We showed that the most accurate results are ob-
tained by calculating the diffusion constant from the traversal
time. The traversal time is obtained directly from intensity

measurementssMethod Id or from phase measurements
sMethods IV and Vd. These three methods have in common
that they provide a direct, unambiguous way of associating a
time scale to the transmission of light. This makes them
equally suited for the regimes of ballistic transmission, dif-
fusion and localization. In fact, a comparison of the values
obtained using Methods IV and V can distinguish between
these regimesf11g. Method I has the additional advantage
that it does not require phase information. Therefore this
method is still applicable in situations where pulsed interfer-
ometry cannot be used to measure the phase, for example, in
the analysis of colloidal suspensions that are nonstationary
samples. Methods II and III use a curve fit of, respectively,
the time-resolved intensity and the frequency correlation
function of the intensity. Such techniques that rely on fitting
of the experimental data are less accurate than direct calcu-
lation of the diffusion constant and explicitly use the diffu-
sion model. Therefore these two methods are the least attrac-
tive of the five methods.

For our samples consisting of TiO2 particles we found
that the results of the five complementary techniques agree
almost perfectly for samples thicker than twice the mean free
path. Our observations are strong experimental proof of the
validity of the diffusion model and the phase statistics theory.

Finally we measured the correlation function of the
weighted delay time. To our knowledge, this is the first re-
port of such a measurement at optical wavelengths. The ex-
perimental data agree very well with the measured intensity
correlation function and the predictions from phase statistics
theory. These measurements demonstrate that it is possible to
record phase-related correlation functions at optical wave-
lengths.

Our analysis clearly shows that care has to be taken in
including proper boundary conditions and correcting for the
detection efficiency, even for samples much thicker than the
mean free path. Provided these effects are taken into account
properly, the model used to describe the propagation of light
through a random medium is consistent for all different
methods of analysis. Our experiment demonstrates the ver-
satility and reliability of pulse-interferometric measurements
and validates the use of phase-sensitive quantities for the
identification of long range correlations and possibly the lo-
calization of light.

ACKNOWLEDGMENTS

We thank Boris Bret and Allard Mosk for stimulating dis-
cussions. This work is part of the research program of the
“Stichting voor Fundamenteel Onderzoek der Materie
sFOMd,” which is financially supported by the “Nederlandse
Organisatie voor Wetenschappelijk OnderzoeksNWOd.”

f1g D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer,
Phys. Rev. Lett.60, 1134s1988d.

f2g J. F. de Boer and T. E. Milner, J. Biomed. Opt.7, 359 s2002d.
f3g F. Scheffold and G. Maret, Phys. Rev. Lett.81, 5800s1998d.

f4g M. P. van Albada and A. Lagendijk, Phys. Rev. Lett.55, 2692
s1985d.

f5g P. E. Wolf and G. Maret, Phys. Rev. Lett.55, 2696s1985d.
f6g N. F. Mott, Metal-Insulator TransitionssTaylor & Francis,

VELLEKOOP, LODAHL, AND LAGENDIJK PHYSICAL REVIEW E 71, 056604s2005d

056604-10



London, 1974d.
f7g P. W. Anderson, Philos. Mag. B52, 505 s1985d.
f8g A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Nature

sLondond 404, 6780s2000d.
f9g D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini,

NaturesLondond 390, 671 s1997d.
f10g F. Scheffold, R. Lenke, R. Tweer, and G. Maret, Nature

sLondond 398, 206 s1999d.
f11g A. A. Chabanov and A. Z. Genack, Phys. Rev. Lett.87,

233903s2001d.
f12g R. H. J. Kop and R. Sprik, Rev. Sci. Instrum.66, 5459s1995d.
f13g P. M. Johnson, A. Imhof, B. P. J. Bret, J. G. Rivas, and A.

Lagendijk, Phys. Rev. E68, 016604s2003d.
f14g E. Akkermans, P. E. Wolf, and R. Maynard, Phys. Rev. Lett.

56, 1471s1986d.
f15g M. C. W. van Rossum and T. M. Nieuwenhuizen, Rev. Mod.

Phys. 71, 313 s1999d.
f16g A. Lagendijk, R. Vreeker, and P. de Vries, Phys. Lett. A136,

81 s1989d.
f17g J. X. Zhu, D. J. Pine, and D. A. Weitz, Phys. Rev. A44, 3948

s1991d.
f18g H. S. Carslaw and J. C. Jaeger,Conduction of Heat in Solids

sUniversity Press, Oxford, 1959d, 2nd ed.
f19g J. G. Rivas, R. Sprik, C. M. Soukoulis, K. Busch, and A.

Lagendijk, Europhys. Lett.48, 22 s1999d.
f20g A. Z. Genack and J. M. Drake, Europhys. Lett.11, 331s1990d.
f21g R. Berkovits and S. Feng, Phys. Rep.238, 135 s1994d.
f22g R. Landauer and M. Büttiker, Phys. Rev. B36, 6255s1987d.

f23g D. J. Thouless, Phys. Rev. Lett.39, 1167s1977d.
f24g B. A. van Tiggelen, P. Sebbah, M. Stoytchev, and A. Z.

Genack, Phys. Rev. E59, 7166s1999d.
f25g J. W. Goodman,Statistical OpticssWiley, New York, 2000d.
f26g G. Iannaccone, Phys. Rev. B51, 4727s1995d.
f27g A. Z. Genack, P. Sebbah, M. Stoytchev, and B. A. van

Tiggelen, Phys. Rev. Lett.82, 715 s1999d.
f28g J. W. Brown and R. V. Churchill,Complex Variables and

ApplicationssMcGraw-Hill, New York, 1996d, 6th ed.
f29g M. B. van der Mark,Propagation of Light in Disordered Me-

dia: A Search For Anderson LocalizationsUniversity of Am-
sterdam, Amsterdam, 1990d.

f30g P. Sebbah, O. Legrand, and A. Z. Genack, Phys. Rev. E59,
2406 s1999d.

f31g P. N. den Outer and A. Lagendijk, Opt. Commun.103, 169
s1993d.

f32g R. H. J. Kop, P. de Vries, R. Sprik, and A. Lagendijk, Phys.
Rev. Lett. 79, 4369s1997d.

f33g Referencef24g also gives corrections for non-Gaussian field
statistics. We do not consider these in this paper.

f34g We corrected the original formula in Ref.f24g that contains a
Heaviside step function in place of the signum function.

f35g Strictly speaking, temporal separation of the two pulses is not
a necessity. As long as the pathlength difference is much larger
than the correlation lengths of the light in the signal and the
reference arms, the cross correlate can be isolated. Therefore
incoherent continuous sources can be used instead of the
pulsed laser.

DETERMINATION OF THE DIFFUSION CONSTANT… PHYSICAL REVIEW E 71, 056604s2005d

056604-11


