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Abstract

In this thesis we investigate the impact of noise on the experimental setup of Ramsey Spec-
troscopy.

In the first part of this thesis, we derive the standard quantum limit in a Markovian environ-
ment, where the presence of white noise dictates the precision of measurements. Our result matches
previous findings, but is derived from a more general setting.

We move on to a non-Markovian environment. Here it has previously been shown that one can
obtain a better precision than the standard quantum limit in terms of parameters T and L - being
the total time of the experiment and number of atoms respectively.

In our model we choose a spectral density function consisting of white noise with colored noise
added on top - where the colored noise is represented by a Gaussian.

We find that in our model it is not possible to surpass the fundamental scaling of the white
noise limit. We also find that the precision of a measurement is limited by the peak value of the
spectral density function, in the case where we assume pure colored noise.
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Introduction

The precision of a measurement is always limited by the uncertainty of our measurement apparatus.
Whether it be the measurement of length with a ruler or caliper, or it is the measurement of time
with a stopwatch or an atomic clock, there is always a fundamental uncertainty bound to each single
measurement.

The poor mans approach to improving his measurement, without investing in new and expensive
equipment, would be to perform several independent measurements. Now with L measurements, he
would be able to reduce the uncertainty on the average value by a factor of 1√

L
, because the poor man

has read about The Central Limit Theorem in R. Barlow’s priceless book on statistics[2]. We can now
measure anything with in principle infinite precision by performing infinitely many measurements.

The also not so rich physicist however, is wondering if it would be possible to get an even better
scaling in uncertainty than with repeated measurements. Performing an infinite number of measure-
ments would take a long time, there must be a better way to get better precision. Would it be possible
to get a scaling with more measurements of 1√

L3/2
or maybe even 1

L ?

The physicist knows of a world. The Quantum World. Where things do not behave the way we
are used to, and phenomena that sounds fantastic are actually real. Would it be possible to exploit
quantum effects to achieve better scaling?

Well the answer is; yes, no and maybe - it all depends on which environment you are in. In the
uncorrelated (quantum) world the best achievable scaling is what is know as The Standard Quantum
Limit or The Shot Noise Limit which is the familiar 1√

L
[3]. However if we instead use special entangled

states, meaning we are now in a correlated world, it is shown that one can achieve a scaling of 1
L ,

known as the Heisenberg limit.[3]
But all of this is in a world without noise, which is a good world, but not very realistic. Things

change in the presence of noise, and depends on what type of noise is present. In the white noise
case, it has been shown [7] that both using correlated and uncorrelated particles, the best possible
scaling is 1√

L
- where special entangled states yielding an improvement by a constant factor of

√
e -

to a fundamental limit
√

2γ
LT . This result seem to be more or less generally accepted.

In the presence of colored noise, the results are not as clear, and many different models and
approaches are made in order to optimize precision. Some assume an ohmic spectral density function
which has little to no noise at a given frequency and get a better scaling in number if atoms [4].
Others suggest quantum teleportation in order to avoid correlation with the environment and get
better scaling in total time of the experiment [9].

Motivation

The intention of this thesis is to find the limit of uncertainty in a specific colored noise scenario and
compare this to other results ([4],[9]) which claim to surpass the fundamental limit of white noise. This
should not be possible in general, given the fundamental limit of white noise, but might be possible in
some cases. The colored noise chosen in our model consist of white noise term, with a colored noise
contribution added on top. However, the first step is to derive the fundamental limit of white noise in
different and more general way than what is done in the article [7]. This also allows for a calibration
of the model used in this theses, so results are comparable.

The setup is Ramsey Spectroscopy, which is a highly useful experiment. Ramsey spectroscopy is
metrologically equivalent to Mach-Zehnder interferometry [3], and a central part of how an atomic
clocks work. Mach-Zehnder interferometers are widely used, and gained attention recently as large
interferometers are used as detectors of gravitational waves.

Until recently the SI-unit of a second was defined by: the ground-state hyperfine transition fre-
quency of the cesium-133 atom using Ramsey Spectroscopy [1]. Atomic clocks are however still very
applicable: for instance in GPS-satellites where corrections to the clocks in the satellites are constantly
made due to time dilation effects of both special and general relativity.
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1 Theory

1.1 Spectroscopy

This section is based on the theory part of Wineland et al. [12], but with additions based mostly on
the course Quantum Mechanics 1 [6].

One purpose of spectroscopy is to measure the transition frequency ω0 of a two-level system e.g. an
atom with some energy levels or a spin-particle in a magnetic field. The difference in energy between
two levels is related to the transition frequency by:

ω0 =
Ee − Eg

~
=

∆E

~
, (1.1)

where Ee and Eg denote the energy of the excited- and ground state respectively, and ~ is the reduced
Planck constant.

1.1.1 Population spectroscopy

By exposing L identical two level systems (the population) to an external field for a time T , and
afterwards observe how the population is distributed in the two energy levels (e.g. how many is
in the excited and the ground state), it is possible to determine the transition frequency. In this
derivation we assume a spin-1

2 model, where particles are exposed to an external uniform magnetic
field. Note that measuring either population will give the same answer because of conservation of
particles L = L+ + L−.1 Based on that measurement one can determine, with a certain precision
(later denoted σ∆), the transition frequency ω0.

In the spin-1
2 model, the magnetic field is applied in the z-direction B = B0ẑ, and each electron

(spin-1
2 two-level system), has a magnetic dipole moment µ = γS. This means the Hamiltonian for

each particle is:
H0 = −µ ·B = −γB0Sz, (1.2)

where no interaction between the atoms ir assumed. In the case of electrons γ = µBgJ/~, where µB is
the Bohr Magneton and gJ is the Landé g-factor. In all cases Sz = ~/2σz is the spin operator where
σz is the z-Pauli matrix. The eigenstates of this Hamiltonian are |m〉 =

∣∣±1
2

〉
, with the eigenvalue

Sz |m〉 = ~m |m〉. The eigenvalues for the full Hamiltonian are:

E+ =

〈
+

1

2

∣∣∣∣H0

∣∣∣∣+1

2

〉
= −γB0~/2, E− =

〈
−1

2

∣∣∣∣H0

∣∣∣∣−1

2

〉
= +γB0~/2. (1.3)

The transition frequency defined in equation (1.1) is related to the eigenenergies by:

ω0 =
γB0~
~

= γB0, (1.4)

which is known as the Larmor frequency. The spin precesses (Larmor Precession) around the B-field
at this frequency, which will be shown in the Heisenberg Picture.

The Heisenberg Equation for the spin operator S = (Sx, Sy, Sz) = Sxx̂ + Syŷ + Sz ẑ can now be
derived, starting form the Heisenberg Equation of motion:

dA(t)

dt
=

1

i~
[A(t), H] +

∂A(t)

∂t
, (1.5)

where the spin operator is independent of time, and hence the last term is zero. We are left with
calculating the elements of the commutator. For spin operators the commutator relation is:

[Si, Sj ] = i~εijkSk, (1.6)

1Note that L,L+, L− denotes; the total number of particles, the number of particles in the excited state, and the
number of particles in the ground state respectively. This has nothing to do with orbital angular momentum operators.
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using the compact form with the Levi-Civita symbol εijk. Note that H0 is a constant times the Sz
operator with the commutator:

ω0[S, Sz] = ω0([Sx, Sz]x̂+ [Sy, Sz]ŷ + [Sz, Sz]ẑ) = ω0i~(−Syx̂+ Sxŷ + 0ẑ),

dS

dt
= ω0(−Syx̂+ Sxŷ).

(1.7)

This expression looks very much like the the cross product between two vectors. One general 3-
component vector, and one which is oriented in the z-direction. If we define a new vector ω0 = ω0ẑ,
and calculate the cross product:

ω0 × S = ω0(−Syx̂+ Sxŷ) =
dS

dt
, (1.8)

which is the Heisenberg equation of motion. It is clear the the spin S rotates in the xy-plane.
To treat a system of L particles the collective angular momentum operator is defined by the sum

of the angular momentum of the individual L particles:

J =
L∑
l=1

Sl, (1.9)

where Sl is the spin of the lth particle, and the angular momentum part (J = L + S)2 of J is
assumed to be zero. This is valid since we assume stationary spin-1

2 particles with no orbital angular
momentum. It will be convenient to use the following basis: |J ,M〉, to describe the entire system.
Following equations 1.8 and 1.9, the Heisenberg equation for J is:

dJ

dt
= ω0 × J . (1.10)

In order to determine ω0, a clock radiation field must be applied. This magnetic field rotates around
the z-axis, following the precession of the spins. The applied field has the form:

B1 = B1 [cos(ωt+ θ)x̂+ sin(ωt+ θ)ŷ] , (1.11)

where ω ≈ ω0. The setup can now be described in a frame which rotates at frequency ω. Here the net
B-field is given by the two contributions from the two fields:

B = Brẑ +B1[cos(θ)x̂+ sin(θ)ŷ],

Br = B0 + ω/γ = B0(ω0 − ω)/ω0.
(1.12)

The parameter θ can be chosen freely. If θ = π/2 is assumed, the net field is B = Brẑ +B1ŷ. In the
rotating frame, the Hamiltonian is given by:

Hr = −γJ ·B = ω′ · J , ω′ ≡ ωrẑ + ω1ŷ,

ωr ≡ −γBr = ω0 − ω, ω1 ≡ −γB1.
(1.13)

Note that J is now in the rotating frame, but only it is only Jz which is of interest. Since the rotation
is around the z-axis the value of Jz is the same in both the stationary and rotation frame. In the
rotating frame, the Heisenberg equation for the angular momentum is:

dJ

dt
= ω′× J , (1.14)

which means that J rotates around ω′, which is parallel to B.
After a time tf where the clock radiation has been applied, a detector measures the number of

particles in the
∣∣+1

2

〉
state. This is given by:

L+(tf ) = Jz(tf ) + JI, (1.15)

2Here L denotes orbital angular momentum, but from now on L only denotes number the of particles.
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where I is the identity operator. To verify this expression, note that there are a total of L particles
and L+ particles are in the

∣∣+1
2

〉
state. That means L−L+ particles are in the

∣∣−1
2

〉
state, which are

the two states of Jz(tf ). The identity just returns L times the absolute value of the spin. Let us write
it generally where Jz can take values ±s, and not just ±1

2

L+ = L+s+ (L− L+)(−s) + Ls = 2L+s = L+, for s =
1

2
. (1.16)

1.1.2 Ramsey method

The idea of Ramsey spectroscopy is to divide the complex precession around B = Brẑ + B1ŷ into
three stages:

1. A rotation around the y-axis of π/2 = ΣRtπ/2,

2. A rotation (clock rotation) around the z-axis of (ω0 − ω)T ,

3. A rotation around the y-axis of π/2ΣRtπ/2.

The two rotations around the y-axis are know as the Ramsey-pulses with frequency ΩR known as the
Rabi frequency, for a time which makes the angle of rotation exactly π/w. The Rabi frequency is high
compared to ω0 − ω, which means one can assume pure rotation around the y-axis in these periods.
During the clock rotation the B-field which creates the Ramsey pulses is set to zero.

In the case where the system is prepared in the state: J(0) = −Jz(0)ẑ, the first Ramsey-pulse
rotates J to coincide with the x-axis. The clock radiation rotates the vector around the z-axis, starting
from the positive x-direction (assuming ΩR > 0) by an angle of ωrT . The second Ramsey-pulse aligns
J with the yz-plane. With this initial preparation, one finds that:

Jz(tf ) = −Jz(0) cos(ωrT ). (1.17)

This means that the number of particles in the state
∣∣+1

2

〉
- following equation (1.15):

〈L+(tf )〉 = J − 〈Jz(0)〉 cos(ωrT ). (1.18)

To describe a general vector J in this setup, the 3 rotations can be describe by 3-dimensional
rotation matrices. The rotation describe in equation (1.14), can be split into the 3 individual rotations.
In general ω′×J = Ω, where Ω is the frequency and holds information on the axis of rotation. For a
vector ~v which undergoes rotation, the new position ~v′ after the rotation is given by ~v′ = R~v. So the
final state is the initial state times the change of that state - in this case rotations. Rotations around
the y and z-axis can be describe by the 3d rotation matrices.

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 , Rz(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (1.19)

The Ramsey-pulses are always around the y-axis at an angle θ = π/2. The clock radiation is always
around the z-axis at an time dependent angle θ = ωrT . The matrix which describes the entire rotation
is the product the rotations - note the matrices of rotation are applied from the right in the order they
occur, although the first and last rotation are equivalent and therefore it does not make a difference
here.

RR = Ry(π/2)Rz(ωrT )Ry(π/2) =

−1 0 0
0 cos(ωrT ) sin(ωrT )
0 − sin(ωrT ) cos(ωrT )

 . (1.20)

In the case where we start in a general state J(0) = (Jx(0), Jy(0), Jz(0)), the final state is

Jx(tf ) = −Jx(0),

Jy(tf ) = Jy(0) cos(ωrT ) + Jz(0) sin(ωrT ),

Jz(tf ) = Jy(0) sin(ωrT )− Jz(0) cos(ωrT ),

(1.21)

where we recover the result from equation (1.17) in the case where the state is initially prepared in
the J(0) = −Jz(0)ẑ state (also known as

∣∣−1
2

〉
).
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2 White noise

A system subjected to white noise corresponds to the system being in a Markovian environment. This
environment is characterized by a short memory time, actually infinitely short, meaning the noise is
uncorrelated in time. The noise is only determined by the reservoirs present state and not the past
state - which one would expect in a general non-Markovian reservoir. The correlation function of
this environment is described by Dirac-Delta function, and therefore the spectral density function is a
constant. That means the same noise for all frequencies. The correlation function and spectral density
function are related by the Fourier transform.

2.1 Previous results

This section concludes the primary results from the article Improvement of Frequency Standards with
Quantum Entanglement by S. F. Huelga, C. Macchiavello, T. Pellizzari, and A. K. Ekert [7].

Their model of dephasing, a Lindblading Master Equation:

ρ̇(t) = i∆(ρ |1〉〈1| − |1〉〈1| ρ) + γ/2(σzρσz − ρ). (2.1)

The expression of uncertainty on a measurement of ∆ both for uncorrelated particles:

σ∆ =

√
1− cos2(∆t)e−2γt

nTte−2γt sin2(∆t)
, (2.2)

where ∆ is the value we want to measure, the decay rate τdec = 1/γ - τdec is the decoherence time, n
is the number of atoms (constant), T is the total time of the experiment (constant), t the time of a
single run of the experiment (performed T/t times for all n atoms).

The minimal uncertainty for both uncorrelated and maximally entangled particles:

σ∆,opt =

√
2γe

LT
. (2.3)

They then show that it is possible to overcome the limit with certain partially entangled states, to
achieve a new minimal value, which they say is not possible to overcome.

σ∆,opt ≥
√

2γ

LT
. (2.4)

2.2 Hamiltonian

We start of the calculation the same way as any textbook question in quantum mechanics - with the
Hamiltonian:

Ĥ = (∆ + F (t))Ŝz, (2.5)

where ∆ = ωr = ω0 − ω and F (t) is the noise which is characterized by the correlation function:〈
F (t)F (t′)

〉
= αγδ(t− t′),

〈F (t)〉 = 0,
(2.6)

where the brackets denote the expectation value. Note that we also require the noise to be symmetric.
γ = 1/τdec is the decay rate equal to the inverse of the decoherence time, and α is a constant which
will be determined by calibration to the article [7], so results are comparable. This Hamiltonian is for
1 particle, later we will expand to several particles.

Our task is to measure ∆ with the best precision possible, or rather to determine with what
precision one can measure ∆. Actually we are interested in measuring ω0, but we assume that ω -
the frequency of both the clock radiation - is known with infinite precision. Thus a measurement of
∆ = ω0 − ω and ω0 will have the same fundamental uncertainty.

5



In the full Hamiltonian for L particles, we assume the individual particles to uncorrelated. Also
we can rewrite the spin operator Ŝz = 1

2σz = 1
2(|0〉〈0| − |1〉〈1|) where ~ = 1. The full Hamiltonain is

thus:

Ĥ =
1

2

L∑
l=1

[(∆l + Fl(t))σz(l)]. (2.7)

2.3 Density matrix description

The density matrix is an operator which contains information both about the state and the Hamilto-
nian. It is defined as: The definitions below are from the lecture notes to Quantum Optics 2 [11], but
equivalent definitions can be found in [5].

ρ̂ =
∑
i,j

ρij |i〉〈j| , ρij = 〈i| ρ̂ |j〉 . (2.8)

We will also need the master equation which is defined

dρ̂S
dt

=
1

i~

[
ĤS , ρ̂S

]
+ L(ρ̂S), (2.9)

where L(ρ̂S) is the Liouvillian operator:

L(ρ̂s) = −γ
2

(ĉ†ĉρ̂s + ρ̂sĉ
†ĉ− 2ĉ†ρ̂sĉ), (2.10)

and ĉ, †ĉ is the annihilation and creation operator respectively.
We start out in the L = 1. In this model the Liouvillan is set to zero. The master equation in the

1 particle case is:[
ĤS , ρ̂S

]
=

1

2
(∆ + F (t))[ρ10 |1〉〈0| − ρ01 |0〉〈1| − (−ρ10 |1〉〈0|+ ρ01 |0〉〈1|)],

dρ̂

dt
= −i(∆ + F (t))(ρ10 |1〉〈0| − ρ01 |0〉〈1|),

(2.11)

where the diagonal terms cancel out. This is the differential equation which describe the dynamics
of the system which is solved by separation of variables. Let us resctrict our focus to just one of the
off-diagonal terms.

dρ10(t)

dt
= −i(∆ + F (t))ρ10(t)∫ t0+T

t0

1

ρ10(t)
dρ10(t) = −i

∫ t0+T

t0

∆ + F (t)dt,

ρ10(t0 + T ) = ρ10(t0) exp

(
−i
∫ t0+T

t0

F (t)dt− i∆T
)
.

(2.12)

It is clear that ρ10 of a present (or future) time is directly proportional to itself in the past, and the
exponential part looks like a phase - partly due to signal (∆) and partly due to the noise. Let us

change notation to φ(t) =
∫ t0+T
t0

F (t)dt, and look at the expectation value of this matrix element.

〈ρ10(t0 + T )〉 = 〈ρ10(t0) exp(−iφ(t)) exp(−i∆T )〉 . (2.13)

Because the environment is Markovian (uncorrelated in time) we can divide the expectation value into
a product of 3 expectation values.

〈ρ10(t0 + T )〉 = 〈ρ10(t0)〉 〈exp(−iφ(t))〉 〈exp(−i∆T )〉 . (2.14)

Here ρ10(t) and exp(−i∆T ) are just numbers, and therefore the expectation value is equal to that
number.

6



2.3.1 Gaussian Probability Density Function

We will now look into the expectation value of the noise. We assume the probability density function
for the noise to be a Gaussian distribution. This is a good assumption since the field is random
stochastic field, and by the central limit theorem, one would expect a Gaussian distribution.

P (x|µ, σ) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
. (2.15)

Here we assume the noise to be centered around 0 in φ-space, hence µ = 0. Furthermore from statistics
[2], we know that the expectation value of a function is the integral over all of space, of that function
times the probability distribution 〈f〉 =

∫∞
−∞ f(x)P (x)dx.

〈exp(−iφ(t))〉 =

∫ ∞
−∞

exp(−iφ)
1√

2πσ2
exp

(
− φ2

2σ2

)
dφ =

1√
2πσ2

∫ ∞
−∞

exp

(
− φ2

2σ2
− iφ

)
dφ. (2.16)

To solve this integral we use formula 18.75 in Schaum’s: [8]∫ ∞
−∞

exp
(
−(ax2 + bx+ c)

)
=

√
π

a
exp

(
b2 − 4ac

4a

)
. (2.17)

In our case a = 1
2σ2 , b = i, c = 0. This gives the following result.

〈exp(−iφ(t))〉 =
1√

2πσ2

√
π

(2σ2)−1
exp

(
i2

4(2σ2)−1

)
= exp

(
−σ

2

2

)
, (2.18)

but the variance of an operator A is defined σ2 =
〈
A2
〉
− 〈A〉2 [2], which is:

σ2 =
〈
φ(t)2

〉
− 〈φ(t)〉2 =

〈∫ t0+T

t0

∫ t0+T

t0

F (t)F (t′)dtdt′
〉

=

∫ t0+T

t0

∫ t0+T

t0

〈
F (t)F (t′)

〉
dtdt′, (2.19)

where 〈φ(t)〉 = 0 because of the symmetric condition on the noise. Note that this section is general
for any symmetric stochastic field, and will be used during colored noise as well.

2.3.2 Back to density matrix

In the case of the correlation function of white noise defined in equation (2.6) used in equation (2.19)
yields:

σ2 =

∫ t0+T

t0

∫ t0+T

t0

αγδ(t− t′)dtdt′ = αγT, (2.20)

which inserted back in the density matrix element gives:

ρ10(t0 + T ) = ρ10(t0) exp
(
−α

2
γT − i∆T

)
. (2.21)

2.4 Calibration of model

In order to move forwards and get comparable results, we need to calibrate our model to the article[7].
Their model is given in (2.1), which we reduce step by step.

ρ |1〉〈1| − |1〉〈1| ρ = [ρ, |1〉〈1|] = ρ01 |0〉〈1| − ρ10 |1〉〈0| ,
σzρσz − ρ = −2ρ10 |1〉〈0| − 2ρ01 |0〉〈1| .

(2.22)

The matrix element ρ10 which we looked at in our model gives in their model:

ρ̇10 = −(i∆ + γ)ρ10, (2.23)

which is a very similar differential equation to equation (2.12). Solving it gives:

ρ10(t0 + T ) = ρ10(t0) exp(−γT − i∆T ), (2.24)

which is easily comparable to equation (2.21) and we conclude α = 2 for the two models to agree.
Which means that the correlation function for the noise model now reads 〈F (t)F (t′)〉 = 2γδ(t− t′).
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2.5 The limit of uncertainty

With the model calibrated we want to express the noise as a Fourier Series. This is because we do
not know anything about F (t). We know what 〈F (t)F (t′)〉 is, but we want to just look at the zeroth
order component of the series. The definition of the Fourer series written in the exponential way is:
[10]

s(x) =

∞∑
n=−∞

cn exp(iωnx), cn =
1

P

∫
P
s(x) exp(−iωnx)dx. (2.25)

For a real valued function cn = c−n, and thus for F (t) - which is real valued - the Fourier series is:

F (t) = c0 + 2

∞∑
n=1

cn exp(iωnt). (2.26)

Inserting this in the Hamiltonian gives:

Ĥ =
1

2
[∆ + c0 + 2

∞∑
n=1

cn exp(iωnt)]σ̂z. (2.27)

Now it is clear that the last part contains both dependence on t and cn which one can tweak and
change, but we can never get rid of the zeroth order component. We can therefore write a new
Hamiltonian with a minimum of noise:

Ĥmin =
1

2
(∆ + c0)σ̂z. (2.28)

Where if we want to measure ∆, we would use an operator ∆̂ = 2Ĥ, where we expect and expectation

value of ∆, which it is
〈

∆̂
〉

= 2
〈
Ĥ
〉

= 1
2(〈∆〉+ 〈c0〉) = ∆ - where we used the fact that the noise is

symmetric. Also note that ∆ and c0 are both multiplied on the same σ̂z, thus for any state |ψ〉 the
Pauli matrix will return a common constant to both ∆ and c0. The variance on this operator is then:

σ2
∆̂

=
〈

∆̂2
〉
−
〈

∆̂
〉2

=
〈
(∆ + c0)2

〉
− 〈∆〉2 − 〈c0〉2 =

〈
∆2
〉

+
〈
c2

0

〉
+ 2 〈∆c0〉 − 〈∆〉2 =

〈
c2

0

〉
, (2.29)

where we again used the fact that the noise is symmetric, and that the expectation value and square
for a scalar A commutes: 〈A〉2 =

〈
A2
〉
.

Now we just need to calculate the expectation value of the square of the noise.

〈
c2

0

〉
=

〈
1

T 2

∫ t0+T

t0

∫ t0+T

t0

F (t)F (t′)dtdt′
〉

=
2γ

T
. (2.30)

From this we can conclude that the minimal uncertainty for the measurement of ∆ a single particle is

σ∆ ≥
√

2γ

T
. (2.31)

Now we want to improve this by performing experiments with L particles instead of one.

2.5.1 L particle case

In the case of L particles, the Hamilton for minimal uncertainty reads:

Ĥmin =
1

2

L∑
l=1

(∆l + c0,l)σ̂z, (2.32)

where
∑L

l=1 ∆l = L∆. Since all particles are exposed to the same field, a total of ”L times the amount
of signal” is present, but that is not the case for the noise which is assumed spatially uncorrelated
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meaning 〈Fl(t)Fl′(t′)〉 = 2γδl,l′δ(t − t′). Thus we can conclude that ∆̂ = 2Ĥ
L . This results in an

uncertainty of:

σ∆̂ =

〈
(
∑L

l=1 c0)2
〉

L2〈
(
l∑
l=1

c0)2

〉
=

〈
L∑
l=1

L∑
l′=1

∫ t0+T

t0

∫ t0+T

t0

Fl(t)Fl′(t
′)dtdt′

〉
=

2γL

T
.

(2.33)

Which means that the minimal uncertainty for L particles is given by:

σ∆ ≥
√

2γ

TL
. (2.34)

The same result as the article [7] and in agreement with the standard quantum limit. This calculation
is however more general, since no assumption on entanglement vs uncorrelated is made. That is also
expected since entangled and uncorrelated measurements are metrologically equivalent [4].

3 Colored noise

Colored noise is characterized by in principle any arbitrary correlation function. These environments
have nonzero (not infinitely short) correlation times, but for times longer than the correlation time one
would expect a white noise-like behavior. In order to incorporate both white noise and colored noise
into our model, we choose our spectral density function wisely. Both to get a model which somewhat
resembles what one might expect from a real world experiment, but also one where we have a chance
of actually calculating something - read: not too complicated.

3.1 Previous results

Results in the case of non-Markovian dephasing (colored noise) goes far and wide, but many articles
pursuit the same - beating the Standard Quantum Limit. Here we present two articles which claim to
have done so. The presented scaling’s are in terms of variance.

One article [4], by the same authors as the article on white noise, obtain a better scaling than SQL
by a factor of 1√

L
. They using maximally entangled states in the case of an ohmic spectral density

function, in comparison to a product state (uncorrelated).
Another article [9], achieve a better scaling by a factor of 1/T compared to SQL. They use quantum

teleportation of the atoms around to different sites and thereby avoiding correlation with the environ-
ment.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

G
(

)

Colored noise
White noise

Figure 1: A sketch of our spectral
density function. Here A = 1, γ =
0.3, σ = 0.2.

The model of our choice is different. We stay far away from
quantum teleportation, and chose another spetral density func-
tion than an ohmic. An ohmic function is a viable choice, but it
tends to zero for low values, which we would like to avoid in our
model.

3.2 Model

The noise model (spectral density function) we choose is a Gaus-
sian centered around zero, but with the 2γ from the white noise
result added on top. A sketch is shown in figure 1.

G(ω) =
A√

2πσ2
exp

(
− ω2

2σ2

)
+ 2γ, (3.1)

where the factor of A adds an extra degree of freedom to the
otherwise regular normalized Gaussian. We also got the param-
eter σ which allows us to determine the width of the curve, note that it is NOT the uncertainty on
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∆. It is just a parameter in our function. Also the function is written in terms of frequency instead
of time, but as discussed in the white noise section, it is just a matter of the Fourier transform. The
full correlation function for this model is:〈

F (ω)F (ω′)
〉

= G(w)δ(ω + ω′). (3.2)

In this model we can not just integrate from start to end. Because the noise now depend on the
past, we have to divide the integration into sections and add them up in the end. We make the
following change: ∫ t0+T

t0

dt→
N∑
n=1

∫ tn

tn−1
dt, (3.3)

where tn − tn−1 = δt and Nδt = T . So now it is δt which is the time of one integration period. Note
that T is assumed constant, and not dependent of δt.

3.3 Ramsey spectroscopy

The idea is now to use the results of Ramsey Spectroscopy- where the noise is only present during the
clock radiation. To good approximation the two Ramsey-pulses are so fast, that the noise does not
really affect the rotation. Starting from equation (1.18) and using the results of J(tf ) from equation
(1.21), and the expected number of particles in the

∣∣+1
2

〉
-state at tf is:

〈L+(tf )〉 = J +
N∑
n=1

[
〈Jy(0)〉 sin

(
∆δt+

∫ tn

tn−1

F (t)

)
− 〈Jz(0)〉 cos

(
∆δt+

∫ tn

tn−1

F (t)

)]
. (3.4)

If the particles are prepared in an initial state

ψ(0) = |J = L/2,M = −L/2〉 , (3.5)

where all particles are in the
∣∣−1

2

〉
state - it has the following characteristics 〈Jz(0)〉 = −J , 〈Jx(0)〉 =

〈Jy(0)〉 = 0, σJz(0) = 0, σJx(0) = σJy(0) =
√
J/2. Then the expected number of particles in the up

state is given by, where we again substitute the integral of the noise with φn(t):

〈L+(tf )〉 =
L

2
(1 +

N∑
n=1

cos(∆δt+ φn(t))). (3.6)

3.4 Method

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
t

0.75

0.50

0.25

0.00

0.25

0.50

0.75

f(
t)

f (t) = sin( t)
f (t) = sin( t + (t))
f (t) = t /

Figure 2: The shape of a sine with noise
(blue), will vary slightly from a sine with-
out noise (blue). The value of ∆ can be
found by a straight line fit for small val-
ues of ∆T .

The way we want to determine ∆ as the slope of a straight
line for ∆ → 0. Cosine is not very good for this as the
slope of the tangent to a cosine varies for small arguments.
If we subtract a factor of π/2 we can transform the cosine
to a sine. Then for small arguments we can approximate
sin(∆δt) ≈ ∆δt. Because of the noise, we assume the slope
of the straight line to be off by a factor of β. This method is
sketched in figure 2. The correction β must be the same at
all times, since a straight line has the same slope between
any two points. This yields:

L+(tf ) =
L

2
(1 +

∆T

β
), (3.7)

where
∑N

n=1 δt = δtN = T . If now we want to determine
∆ based on the number of particles in the

∣∣+1
2

〉
state, we

can rewrite the expression.

∆ =
L+(tf )− L/2

L
2β. (3.8)
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If we are to express this in terms of an observable we can measure, we know from equation (1.15) that∑L
l=1 Jz,l(tf ) = L+−L/2 for this exact state (3.5). Thus we can change we can rewrite the expression

for ∆̂, which is an operator, just like in the white noise case:

∆̂ =

∑L
l=1

ˆJz,l(tf )

LT
2β. (3.9)

Finding the expectation value of this operator, means finding the expectation value of ˆJz,l since the
rest is just numbers, with trivial expectation values. But from equation (1.21) and the characteristics
for our wavefunction in the initial state described by equation (3.5) we know what Jz,l(tf ) gives. Note
that we subtracted a factor of π/2 which must also be included in all expressions for the clock rotation.
Thus:

〈Jz,l(tf )〉 = 1/2
N∑
n=1

〈sin(∆δt+ φn(t))〉 . (3.10)

We want to expand the sine to exponential form taylor expand around ∆ = 0

〈sin(∆δt+ φn(t))〉 =

〈
exp(i∆δt) exp(iφn(t))− exp(−i∆δt) exp(−iφn(t))

2i

〉
,

=
((1 + i∆δt) 〈exp(+iφn(t))〉 − (1− i∆δt) 〈exp(−iφn(t))〉

2i
.

(3.11)

Just like for white noise, the probability density function is assumed to be Gaussian. This means
we repeat section 2.3.1, and therefore just write down the result. Note however that 〈exp(iφn(t))〉 =
〈exp(−iφn(t))〉 because of the Gaussian integral (equation (2.17)). We thus have:

〈sin(∆δt+ φn(t))〉 ≈ ∆δt exp

(
−
〈
φn(t)2

〉
2

)
. (3.12)

This result is combined with the equation for the ∆ operator, where nothing anymore depends on l
and therefore the sum over l just gives a factor of L:〈

∆̂
〉

=
Lβ

LT

N∑
n=1

∆δt exp

(
−
〈
φn(t)2

〉
2

)
, (3.13)

where it is clear that for β = exp
(
+
〈
φn(t)2

〉
/2
)

we get the expected expectation value of ∆:〈
∆̂
〉

=
∆LT

LT
exp

(
+

〈
φn(t)2

〉
2

)
exp

(
−
〈
φn(t)2

〉
2

)
= ∆. (3.14)

Which is exactly the expectation value we want.
So far we have not used the correlation function. It will however be relevant now, when we need to

look at the expectation value of the square of the operator - which we need in order to determine the
uncertainty. We start this calculation from equation (3.9), or rather a squared slight modified version.

∆̂2 =
(2β)2

(TL)2

L∑
l=1

L∑
l′=1

N∑
n=1

N∑
n′=1

〈
ˆJz,l,n(tf ) ˆJz,l′,n′(tf )

〉
. (3.15)

Now we assume the individual particle spins to be uncorrelated, this means getting rid of one of the
sums over l. Note that the remaining sum over l just gives a factor of L. Thus when we now look at
the product of Jz(tf )’s, we restrict ourselves to the case where l = l′ and just remove the subscript of
l completely. 〈

ˆJz,n(tf ) ˆJz,n′(tf )
〉
,

=
〈

ˆJz,n(0) ˆJz,n′(0) sin(∆δt+ φn) sin(∆δt+ φn′)
〉

+
〈

ˆJy,n(0) ˆJy,n′(0) cos(∆δt+ φn) cos(∆δt+ φn′)
〉
.

+
〈

ˆJz,n(0) ˆJy,n′(0) sin(∆δt+ φn) cos(∆δt+ φn′)
〉

+
〈

ˆJy,n(0) ˆJz,n′(0) cos(∆δt+ φn) sin(∆δt+ φn′)
〉
.

(3.16)
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First of all the two last terms will always be zero since 〈Jy(0)〉 = 0. Let us divide the equation in to
different cases, and start with the case where n = n′ and n 6= n′ afterwards. We remove the subscript
of n since they are all the same.〈

Ĵz(tf )2
〉

=
〈
Ĵz(0)2 sin2(∆δt+ φ(t))

〉
+
〈
Ĵy(0)2 cos2(∆δt+ φ(t))

〉
. (3.17)

We now know that
〈
Jz(0)2

〉
=
〈
Jy(0)2

〉
= 1

4 , and 1 = cos2(x) + sin2(x),〈
Ĵz(tf )2

〉
=

1

4

[〈
sin2(∆δt+ φ(t)

〉
+ 1−

〈
sin2(∆δt+ φ(t)

〉]
=

1

4
. (3.18)

Now for the case where n 6= n′. The second term gives zero for the same reason as the two last terms
are zero. So here we just get 1

4 sin(∆δt+ φn) sin(∆δt+ φn′).The final result is then,

〈
∆̂2
〉

=
(β)2

T 2L

N +

N∑
n=1

N∑
n′ 6=n
〈sin(∆δt+ φn(t)) sin(∆δt+ φn′(t))〉

 , (3.19)

where the case of n = n′ gives a factor of N, since that happens N times when both variables are
summed over from 1 to N . The two sums still over n, n′ is only for n 6= n′.

Next up is the expectation value of the product of the sines.

〈sin(∆δt+ φn) sin(∆δt+ φn′)〉 ,

=
1

2

[
((∆δt)2 − 1) exp

〈
−(φn + φn′)

2/2
〉

+ ((∆δt)2 + 1) exp
〈
−(φn − φn′)2/2

〉]
.

(3.20)

where the expansion is the same as in equation (3.11) and (3.12), with the Gaussian probability distri-
bution. This expression can be simplified even further by the expansion of the correlation functions:〈

(φn ± φn′)2/2
〉

=
1

2
(
〈
φ2
n

〉
+
〈
φ2
n′
〉
± 2 〈φnφn′〉) =

〈
φ2
n

〉
± 〈φnφn′〉 , (3.21)

because
〈
φ2
n

〉
=
〈
φ2
n′
〉

as they are both summed from 1 to N . This allows us to rewrite

〈sin(∆δt+ φn) sin(∆δt+ φn′)〉 = exp
(
−
〈
φ2
n

〉) [
(∆δt)2 cosh(〈φnφn′〉) + sinh(〈φnφn′〉)

]
. (3.22)

3.5 Correlation functions

It is clear that two different correlation functions are present:
〈
φ2
n

〉
and 〈φnφm〉. Remember the

model defined in section 3.2. The spectral density function is defined in frequency space, but the noise
enters the equation in time-space (integrated in time in equation (3.4)). The noise is therefore Fourier
Transformed as the first step following the definition: [10]

F (t) =
1√
2π

∫ ∞
−∞

F̃ (ω) exp(iωt)dω. (3.23)

This means φn can be rewritten

φn =

∫ tn

tn−1

F (t)dt =
1√
2π

∫ tn

tn−1

∫ ∞
−∞

F̃ (ω) exp(iωt)dωdt. (3.24)

Now the correlation functions can be calculated separately. Note that the only difference between
them is the time integrals. In

〈
φ2
n

〉
the two integrals in time are over the same interval, and in 〈φnφn′〉

they are not.
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3.5.1
〈
φ2
n

〉
〈
φ2
n

〉
=

1

(2π)

∫ tn

tn−1

∫ tn

tn−1

∫ ∞
−∞

∫ ∞
−∞

G(ω)δ(ω + ω′) exp(iωt) exp
(
iω′t′

)
dωdω′dtdt′. (3.25)

The integral of the delta function in frequency space gives a factor of 1 when ω′ = −ω.

〈
φ2
n

〉
=

1

(2π)

∫ tn

tn−1

∫ tn

tn−1

∫ ∞
−∞

G(ω) exp(iωt) exp
(
−iωt′

)
dωdtdt′,

=
1

(2π)

∫ tn

tn−1

∫ tn

tn−1

∫ ∞
−∞

G(ω) exp
(
iω(t− t′)

)
dωdtdt′.

(3.26)

Now the integral in frequency space can be solved. Note that the result above is general for this model
- independent on the spectral density function G(ω).∫ ∞

−∞
G(ω) exp

(
iω(t− t′)

)
dω =

∫ ∞
−∞

(
A√

2πσ2
exp

(
− ω2

2σ2

)
+ 2γ) exp

(
iω(t− t′)

)
dω (3.27)

This integral of a sum can be split into two integrals. The result of the latter of the integrals is a
delta function in time multiplied with the same constant [10]. (Delta functions can also be represented
δ(x− x′) = 1

2π

∫∞
−∞ exp(it(x− x′))dt). The other integral is again formula 18.75 in Schaum’s [8]:

〈
φ2
n

〉
=

1

(2π)

∫ tn

tn−1

∫ tn

tn−1

A exp

(
−(t− t′)2σ

2

2

)
+ 2π2γδ(t− t′)dtdt′ (3.28)

This is again the (double) integral of a sum, which we can split. From the latter integral we just
recover the white noise result 2γδt, where the factor of 2π is canceled by the factor of 1/2π in front
of the integrals. The former is the double integral of a Gaussian where the first integration gives an
error function, and the integral of an error function gives:

∫
erf(z)dz = z erf(z) + exp

(
−z2

)
/
√
π3,∫ tn

tn−1

∫ tn

tn−1

A exp

(
−(t− t′)2σ

2

2

)
dtdt′,

= A

[
−2

σ2
+

√
2π

σ
(tn − tn−1) erf(

σ√
2

(tn − tn−1)) +
2

σ2
exp

(
−(tn − tn−1)2σ

2

2

)]
.

(3.29)

If we again use tn − tn−1 = δt, and combine the results of all the integrals, we obtain the final
expression: 〈

φ2
n

〉
=

A

2π

[
−2

σ2
+

√
2π

σ
δt erf(

σ√
2
δt) +

2

σ2
exp

(
−δt2σ

2

2

)]
+ 2γδt. (3.30)

3.5.2 〈φnφn′〉

The only difference in this section is the integrals in time which are no longer over the same intervals.
Thus we can reuse the result up to the integrals in time, which is equation (3.28).

Again the integral can be split in two, but this time the delta function gives 0, since the time
intervals do not overlap. The boundaries of the integrals coincide a finite number of times, but it is
only at a single point in time, and therefore give no net contribution will arise from it. The integral
of the Gaussian part is:

∫ tn
tn−1

∫ t′n
tn′−1

A exp
(
−(t−t′)2 σ

2

2

)
dt′dt=

√
πA√
2σ

[−(tn′−1−tn−1) erf( σ√
2

(tn′−1−tn−1))+(tn′−tn−1) erf( σ√
2

(tn′−tn−1))+(tn−tn′−1) erf( σ√
2

(tn−tn′−1))−(tn′−tn) erf( σ√
2

(tn′−tn))]

+ A
σ2

[− exp
(
−(tn′−1−tn−1)2 σ

2

2

)
+exp

(
−(tn′−tn−1)2 σ

2

2

)
+exp

(
−(tn−tn′−1)2 σ

2

2

)
−exp

(
−(tn′−tn)2 σ

2

2

)
].

(3.31)

3Found with the sympy integral package in Python
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Which we can be rewritten by the definition of δt - which is the same between any two neighboring
n, n′’s. We can also define a new variable n′ − n = δn. Combining it all gives the final expression:

〈φnφn′〉 =

A
√
πσ23/2

[
−2δtδn erf(

σ√
2
δtδn) + δt(δn+ 1) erf(

σ√
2
δt(δn+ 1)) + δt(δn− 1) erf(

σ√
2
δt(δn− 1))

]
+

A

σ22π

[
−2 exp

(
−(δtδn)2σ

2

2

)
+ exp

(
−(δt(δn− 1))2σ

2

2

)
+ exp

(
−(δt(δn+ 1))2σ

2

2

)]
.

(3.32)
with the new variable δn, the sums over n and n′ are not very useful. They can be transformed to a
single sum over the new single variable.

3.5.3 Rewriting the sums

To make our lives easier we changed from variables n and n′ to δn = n′ − n, which is a viable choice,
but the we must also change the two sums over n and n′. One way to tackle this problem, is by
imagining the two sums as a square matrix, where the rows correspond to n and columns to n′. We
then sum over all the matrix elements. δn = 0 corresponds to the diagonal elements (of which there
are N), but these should not be included in the sum. δn = ±1 corresponds to the diagonal ”rows”
just above and below the ”center diagonal row”, with N − 1 elements in each of these. Following the
pattern yields a total number of elements N − |δn| in the δn’th diagonal row.

Now the sums can be changed to δn, where we must include both negative and positive values of
δn and exclude 0. But we can do even better by realizing that the 〈φnφn′〉 is symmetric around δn = 0
- which one would also expect since it should not make a difference whether we define δn = n′ − n or
δn = n − n′. So we can change to only summing over positive values of δn and multiply by a factor
of 2. Thus the entire sum can be changed to:

N∑
n=1

N∑
n′ 6=n

→ 2
N−1∑
δn=1

(N − δn). (3.33)

3.6 Variance

We are now able to calculate the variance σ2
∆ =

〈
∆̂2
〉
−
〈

∆̂
〉2

. In general this can only be done

numerically, since variance contain a sum of hyperbolic trigonometric functions, which arguments
contain Gaussian functions and error functions - an impossible task analytically. The full expression
is given by:〈

∆̂2
〉

=
1

T 2L

[
T

δt
exp
(〈
φ2
n

〉)
+ (∆δt)22

N−1∑
δn=1

(N − δn) cosh 〈φnφn′〉+ 2

N−1∑
δn=1

(N − δn) sinh 〈φnφn′〉]

]
,

(3.34)
However, by investigating different limits the correlation functions can be simplified. Either by a

Taylor expansion or if terms converge to some constant value. The two limits of interest are: the short
time limit δt << 1/σ and long time limit δt >> 1/σ. Besides these limits, a numeric calculation is
done of the full expression. Both to get results which are valid in between the other models, but also
to check for errors in the analytical approximations.

3.6.1 Short time limit

For
〈
φ2
n

〉
this allows for a Taylor expansion of both the error function and the Gaussian around 0.

exp

(
−δt2σ

2

2

)
→ 1− δt2σ

2

2
, erf(

σ√
2
δt)→

√
2σ√
π
δt,

〈
φ2
n

〉
=

A

2π
δt2 + 2γδt. (3.35)

In the case of 〈φnφn′〉 there is also the variable δn, which we must consider. For the first part with the
error functions, the three terms will to good approximation cancel out for all δn. This is confirmed
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by visual inspection. For the Gaussians we can do the Taylor expansion which gives A
2π δt

2 and is only
valid for small δn. However by visual inspection, the behavior in δn for larger values, which the Taylor
expansion does not describe, is just the same Gaussian once again. Hence the final approximation is.

〈φnφn′〉 =
A

2π
δt2 exp

(
−(δtδn)2σ

2

2

)
. (3.36)

In the short time limit, it is also required that A/σ2 > 1. This translates to 1/σ2 > 1/A, means we
have a lower bound on 1/σ. But in the short time limit there is already a lower bound on 1/σ, which is
good since we then have no upper bound on 1/σ. This means that there will always exist a σ (actually
an infinite number of σ’s), for which these assumptions are true and where the approximation is valid.

In relation to 〈φnφn′〉 this requirement is useful since allows 〈φnφn′〉 to be small number. With
these requirements A can be arbitrarily large, but δt can also be arbitrarily small. If A is very large,
then the optimal δt - the δt which minimizes the variance - is also very small. For the δt’s of our
interest (depends on A, σ, γ) 〈φnφn′〉 will be small in which case we can Taylor expand; sinh(x) = x,
cosh(x) = 1.

This allows us to calculate the sums analytically. The sum independent of δn gives a factor of
N(N − 1)/2 which for N large is equal to N2/2. In the other sum, δn is the argument of a Gaussian.
We can approximate the sum with an integral since the steps in the sum is of unit length. Under the
assumption that N is large - by large we mean large enough that the Gaussian has effectively died out
at δn = N , we can change to an integral of a Gaussian to infinity. An integral of a Gaussian from 1 to
∞ cannot be evaluated exactly, but an integral from 0 to ∞ can. This introduces a small error, since
we now find the entire area under the Gaussian, whereas the very center part for |δn| should have
been excluded. This error will however introduce more noise, and in that sense we are not ”cheating”
by removing noise. To recap:

N−1∑
δn=1

[(N − δn) exp

(
−(δnδt)2σ

2

2

)
]→

∫ ∞
0

(N − x) exp

(
−(xδt)2σ

2

2

)
dx =

N

δtσ

√
π

2
− 1

δt2σ2
, (3.37)

where the integral can be solved using formula 18.72 and 18.77 in Schaum’s [8].
We can now write the final expression for the variance in the short time limit. Remember the

definition of the total time T = Nδt and in the limit of N large (N − 1) = N

σ2
∆̂

=
1

T 2L

[
T

δt
exp

(
A

2π
δt2 + 2γδt

)
+ T 2∆2 +

AT√
2πσ

− A

πσ2

]
−∆2 (3.38)

To find the minimum we can take the derivative with respect to δt and set equal to zero. Only two
terms are dependent on δt, so in the derivative, only these two will contribute. This gives an expression
with the general form a

x exp
(
bx2 + cx

)
, which has a minimum at 2abx2 +acx−a = 0, just a polynomial

of second order - we can even divide a out of the equation, which makes sense since a = 1/TL, and
we do not expect the optimal time to depend on number of atoms or the total time. Solving the
polynomial and plugging in values yields the minimum:

δtopt =

(
−γ +

√
γ2 +

A

π

)
π

A
(3.39)

At first it seems untrue, since one would expect the minimum to depend on σ. However the last two
terms (the only ones with σ) are independent of δt, and therefore the derivative is independent of σ.
By visual inspection of the numeric calculation, it’s minimum was found to be invariant of σ in the
short time limit, however for A/σ2 >> 1 the minimum started to diverge.

To get an algebraic result for the minimum, we assume ∆ = 0 and γ = 0 and also that T is large.
Then the variance for the optimal integration time gives:

σ2
∆̂,opt

=
1

TL

(√
A

π
exp

(
1

2

)
+

A√
2πσ

)
(3.40)
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In the limit A/σ2 >> 1 means the latter of the terms is the dominant one, hence the same scaling as
the standard quantum limit.

σ∆̂,opt ∝
√

1

TL

A

σ
, σ∆̂,opt ≥

√
1

TL

A√
2πσ

(3.41)

3.6.2 Long time limit

We can rewrite the long time limit as δtσ >> 1. This allows for investigation of the Gaussian and
error function

exp

(
−δt2σ

2

2

)
→ 0, erf(

σ√
2
δt)→ 1,

〈
φ2
n

〉
= − A

πσ2
+

A√
2πσ

δt+ 2γδt (3.42)

In the case of 〈φnφn′〉 we easily see that the error functions will again cancel out, and the Gaussians
will be zero. However two of the Gaussians contain a δn±1 so whenever δn = ±1 the entire argument
will be zero and hence the function will return a nonzero result. So for δn = ±1 the function will
return the value A

2πσ2 . Given that we restricted δn to only be positive integers in the sum, we can
write the function as:

〈φnφn′〉 =
A

2πσ2
δ(δn− 1) (3.43)

where we refer to the Dirac delta function of the argument (δn− 1).
In the long time limit we again require that A/σ2 < 1. Which now translates to no lower bound on

1/σ - following the same arguments as the short time limit. However 1/σ > 0, but we can in principle
get infinitely close to zero. This means that 〈φnφn′〉 < 1 and we can Taylor expand; cosh(x) = 1. Here
both sums are independent of δn, however the last sum only gives a contribution for δn = 1. Thus
the final result of variance is:

σ2
∆̂

=
1

T 2L

[
T

δt
exp

(
− A

πσ2
+

A√
2πσ

δt+ 2γδt

)
+ T 2∆2 + 2

T

δt
sinh

(
A

2πσ2

)]
−∆2 (3.44)

Again the minimum can be found by taking the derivative. The dominant terms is the first, so we
set sinh

(
A/(2πσ2)

)
= 0. This yields an expression of the general form a

x exp(bx+ c), which has a
minimum at abx− a = 0, with the almost trivial solution x0 = 1

b . Inserting values gives the minimum
value:

δtopt =
1

A√
2πσ

+ 2γ
(3.45)

Again, an algebraic expression can be obtained with ∆ = 0 and γ = 0.

σ2
ˆ∆,opt

=
1

TL

(
A√
2πσ

exp

(
− A

πσ2
+ 1

)
+ 2

A√
2πσ

sinh

(
A

2πσ2

))
(3.46)

In the limit A/σ2 → 0 we can rewrite exp(−x+ 1) = e and sinh(x) = x, yielding the standard
quantum limit as scaling.

σ∆̂,opt ∝
√

1

TL

A

σ
, σ∆̂,opt ≥

√
e

TL

A√
2πσ

(3.47)

3.6.3 Modified long time limit

Actually, we found by visual inspection that the approximation above for 〈φnφn′〉 works well in the
very long time limit, but when A/σ2 < 1 the long time approximation does diverge a bit from the
numeric graph around the minimum of the variance curve - which is the point we are mostly interested
in. We therefore found that by adopting the 〈φnφn′〉 of the short time approximation, we can create
a curve which follows the numeric in the limit A/σ2 < 1 around the δt’s that minimize variance. The
value of δt that minimizes this new curve (under the requirement A/σ2) is the same point, since the
first term in the expression of the variance is still the most dominant. Hence the final result is:

σ2
∆̂

=
1

T 2L

[
T

δt
exp

(
− A

πσ2
+

A√
2πσ

δt+ 2γδt

)
+ T 2∆2 +

AT√
2πσ

− A

πσ2

]
−∆2 (3.48)
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4 Discussion
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Figure 3: In the first plot A/σ2 = 25, the second A/σ2 =
0.25, and the third is a zoom of the second. On the third
plot, a golden dashed line is added which is the modified
long time. On the y-axis is variance, and on the x-axis is
integration time δt.
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Figure 4: In both plots γ = 0.3. The graphs shows the
minimal value of variance for the different limits. On the
first plot the x-axis is A/σ and the second A/σ2. The
golden line is the modified long time limit. On the y-axis
is variance.

In the case of white noise we find the exact same result as [7]. In our case we show that no matter
what, the zeroth order term of the Fourier series will always be present. This therefore stands as a
more general result since no assumptions are made on which states this result is valid for. It stand
as a fundamental minimum which nothing, nor quantum entanglement, can surpass. An interesting
question is now finding states which can achieve that scaling. The white noise articles proposes specific
entangled states which in theory should be able to, but it is unclear if they actually managed to reach

it. They definitely find improvements over the first limit
√

2γe
TL , but never seem to reach the actual

fundamental limit of
√

2γ
TL .

Given the fundamental limit of white noise, if more noise - white or colored - is added on top, logic
would say that we can never surpass the fundamental limit. This is however not what [4] did. They
assume an ohmic model which tends to zero for small and large frequencies. Given that our model is
white noise with colored noise added on top, we obviously would not get directly comparable results.
Our model in the case of only colored noise also tend to zero for large frequencies, but that behavior
seems to not be relevant, since the peak value of our spectral density function, is what sets the limit
of precision scaling.

Given that the models are not directly comparable, we could still investigate a few important
features of our model. First of all that this model would not actually beat the SQL, and second to
see how far from the pure white noise result we actually are.

To answer the first question, no we are never below fundamental limit. In the case where A/σ2

is very small, we can get arbitrarily close to the limit
√

2γe
TL , but never below it. This behavior is

demonstrated in figure 4, where it seen that both the numeric and the two long time limits tend to
the white noise limit when A/σ2 → 0 or A/σ → 0. The answer to the second question is, that we
are actually quite close. In both regimes of time the variance scales linearly as a function of A

σ , with
two different slopes. This behavior is also shown on the first plot of figure 4, where the numeric curve
(blue) changes from one linear regime to another, with what appears to be

√
A/σ scaling in between.

From both plots in figure 4, it is clear that the short time limit works when A/σ>1 and the long
time limit works for A/σ2 < 1, which is the assumption we made earlier. We can also see that modified
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long time model, actually works better in terms of describing the minimum of the variance compared
to the long time model. This is also clear on figure 3 where in the third plot, which is a zoom of the
second, that the golden dashed line (modified long time model) fits the numeric model around the
minimum.

Here the cyan dashed line (long time model) is actually lower than the numeric, which is also what
we see on figure 4, where the long time model, is consequently lower than the numeric, at least in the
regime of A/σ2 where the model is valid. Note however on figure 3 on the second plot. For long times
δt > 1σ - which in this case is δt > 4 - the long time model fits the numeric model very well. In this
regime of time, the modified long time model would not fit the numeric model as well.

On the first plot of figure 3 it is seen that the short time model fits the minimum of the numeric
model good, whereas the long time model is far off. This is expected since that plot is for A/σ2 = 25.
However at δt = 1/σ = 4, the short time model starts to diverge, since we leave its regime in time.
Had the plot gone wider we would see to long time model lining up with the numeric model for larger
times, even though we are not in its regime of A/σ2.

Another very interesting analytical result is in the long time limit for γ = 0 and A/σ2 → 0. The
expression for variance is σ2

∆̂
≥ e

TL
A√
2πσ

, which is exactly the same scaling as for white noise but with

2γ = A√
2πσ

, which is the maximal value of the spectra density function for ω = 0. The scaling also has

the factor of e as found by [7] in the case of white noise.
Similarly for the short time limit with γ = 0 and A/σ2 >> 1. Then the analytic expression for

variance is σ2
∆̂
≥ 1

TL
A√
2πσ

, but by an improvement of a factor of e. We are however still limited by

the peak value of the spectral density function at ω = 0. As seen by figure 4 the slope of the variance
for A/σ2 is lower in the region of A/σ2 > 1 than in the region of A/σ2 < 1. However if one were to
describe the variance as a linear function of A/σ, it would have a relatively large offset in the limit of
A/σ2 < 1.

These two regimes; integration time and A/σ2 are always relevant. Plotting the variance as a
function of integration time (as in figure 3), the value of A/σ2 determines which model fit at the
minimum value of variance, but both models still fit in their respective time regimes related to the
inverse of σ, no matter what the value of A/σ2 is. Off cause the value of σ determines where the
models fit. Changing to the minimal variance (as in figure 4), the integration time suddenly becomes
irrelevant.
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Figure 5: Variance of the colored noise
model (blue) in the white noise case,
compared to variance of the white noise
article (red) for.

An interesting and very important question which we
must address is how the colored noise model works in the
case of pure white noise. In this case our model should
be corrected. At the sum over n and n′ - white noise only
contributes when n = n′, since it is delta function correlated
in time. This was also seen in the section of 〈φnφn′〉, where
the white noise part gave no contribution, but it did in〈
φ2
n

〉
. Thus the final expression of variance is:

σ2
∆̂

=
exp(〈2γδt〉)

LT
(4.1)

In figure 5 the variance of the white noise paper and the
colored noise model are plotted. The uncertainty of the
white noise model is given by equation (2.2) where we plot
for ∆ = 2. Note how the local minima of the red curve
follows the shape of the blue curve, but the red curve oscil-
lates rapidly. This behavior is known as Ramsey-Fringes,
and is due to the probability of measuring a particle in the
excited he excited state is proportional to cos(∆T ). This follows equation (1.18). In our model this
behavior is killed by the approximation sin(∆δt+ φn) = ∆δt/β. Given that we are interested in the
minimal value of variance, our model is still viable in spite of it not capturing the full behavior of
Ramsey Spectroscopy.
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5 Conclusion and outlook

These sections recap the results of this thesis, and proposes open questions which would be interesting
to answer in the future.

5.1 Conclusion

In this thesis we have shown that the optimal precision, by it is possible to measure ∆, in the
Hamiltonian Ĥ = 1/2(∆ + F (t))σz, where F (t) is a symmetric field with the correlation function
〈F (t)F (t′)〉 = 2γδ(t− t′) is:

σ∆,opt ≥
√

2γ

TL
(5.1)

where the delta function correlation in time, is what characterizes white noise.γ is the inverse of the
decoherence time, T is the total time of the experiment and L is the number of atoms. This result
stands as a fundamental limit which no measurement - uncorrelated or entangled - can surpass. The
limit is in agreement with the result of others [7], however the result is derived from a more general
point in this theses, with no assumptions made on the states used to perform the measurement.

We can also conclude that in a non-Markovian environment composed of white noise and colored
noise, with the requirement on the spectral density function G(ω) ≥ 2γ for all ω, one can not surpass

the fundamental limit of white noise. Our spectral density function is G(ω) = A√
2πσ2

exp
(
− ω2

2σ2

)
+ 2γ,

and in the case of γ = 0 we found a scaling of the precision of:

σ∆ ∝

√
1

TL

A√
2πσ

(5.2)

In the short time limit the scaling is a factor of e better than in the long time limit, but with an offset.
Thus for pure colored noise γ = 0 in our model, it is still not possible to achieve a better scaling than
the square root of the peak value of the spectral density function divided by total time and number
of atoms. This means that precision in regards to total integration time T and total number of atoms
L, does not surpass the standard quantum limit which scales as 1/

√
LT . A scaling better than the

standard quantum limit has been proposed by many: ([4],[9]), but in all cases their spectral density
functions assume ohmic behavior.

We also derive two analytic approximations, which by visual inspection are found to describe the
full numeric expression well in their respective limits of integration time δt and noise level A/σ2 very
well.

5.2 Outlook

It would be interesting to see if entanglement could improve the limits of uncertainty found by this
model. In the paper on white noise [7] they find an improvement of a factor of

√
e by using special

entangled states. Our model - in the case of pure white noise - predicts
√

2γe
TL , would it also gain the

same improvement by using the exact same entangled states as proposed by the paper? And what
uncertainty would these special entangled states yield on a measurement in the presence of general
colored noise? Would other states do even better?

Another interesting numeric analysis would be to use an ohmic spectral density function like the
on from [4] as G(ω) in our model and then compare results. One would expect very similar if not
exactly the same result, but it is not given in advance.

Given our result in the case of γ = 0 it would also be interesting to take a Gaussian spectral
density function again, but displacing it by ωc is not centered around 0. This would mean that the
peak value is no longer at ω = 0 but ω = ωc. Thus the full model would be:

G(ω) =
A√
2πσ

exp

(
−(ω − ωc)2

2σ2

)
+ 2γ (5.3)

and see if the variance is determined by the peak value at ω = ωx, or if it would be limited by that
value at ω = 0. Maybe some third option in between.
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