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Résumé

Mémoire quantique : influence du bruit sur les
processus de stockage et de récupération

Le stockage de photons dans un ensemble atomic est un sujet particuliérement
important pour le domaine des communications quantiques et de la cryptog-
raphy quantique. Les photons sont en effet de bons vecteurs de l'informations
quantique. Cependant le traitement de l'information nécessite leur stockage
dans une mémoire. Des recherches sur 'optimisation des processus de stockage
et de récupérations ont déja été effectuées. En partant de ces travaux, nous
avons étudié 'influence du bruit sur les processus mis en jeu. Nous avons mod-
élisé la mémoire par un systéme A a trois états, et avons considéré son interaction
avec un laser duquel sont dérivés le champ de controle et I'impulsion entrante.
Nous avons ensuite établis les équations donnant I’expression de 'efficacité en
fonction de I'intensité pour deux types de bruit différents : du bruit en amplitude
et en fréquence.

Les résultats analytiques sont développés au premier ordre en intensité du
bruit et comparés a des simulations. De plus nous montrons qu’en présence de
bruit en amplitude peut étre optimisé en modifiant I’enveloppe de 'impulsion &
stocker connaissant ’intensité du bruit. D’aprés les résultats obtenus, pour le
modéle de bruit considéré, I'efficacité est robuste.



Abstract

Quantum memory: influence of the noise on the
storage and retrieval process

The storage of photon in an atomic media is a topic of great interest for quantum
communications including quantum cryptography. In fact, photons are good
quantum information carriers. However processing the information requires to
store them locally in a memory. Research concerning the optimization of stor-
age and retrieval processes for quantum memories have already been achieved.
Starting with this work, the question was to study what happened in case there
was some noise that disturbed the storage and retrieval processes. So using a
three level A system as the memory model, and considering a laser as a single
source which produce the control field and the probe pulse, we derived the re-
lations that give the efficiency as function of the noise intensity for two types of
noise in the laser : amplitude noise and frequency noise.

The analytical results are given to first order in noise intensity and are com-
pared to simulated results. Furthermore, we show that the efficiency in presence
of amplitude noise can be optimized by shaping the probe pulse as function of
the noise intensity. According to the results we obtained, the efficiency is very
robuste to the kind of noise we have considered.
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Glossary

1.

AOM (Acousto Optic Modulator): The AOM is a device that uses sound
waves to modulate the shape and the frequency of an electromagnetic
signal by modifying the optical index of a medium which is crossed by the
laser pulse to modulate.

Coherent state: a coherent state |a) is the eigenstate of the annihilia-
tion operator G of the quantum harmonic oscillator system a |a) = a|a).
This is the quantum light state which is the closest to the classical light
sinusoidal wave representation.

EOM: Electro Optic Modulator uses electric current to modulate the shape
and the frequency of an electromagnetic signal.

Homodyne measurement: an homodyne measurement is a method for de-
tecting frequency modulated signal by making it interfer with a reference
signal that comes from the same source.

NBI: The Niels Bohr Institute

Probe pulse: We use probe pulse as a weak incoming signal we wish store
in a quantum memory.

QUANTOP: Danish National Research Foundation Center for Quantum
Optics



1 Introduction

Quantum information and quantum optics are fields that aim to use the most
fundamental properties of quantum mechanics to design new computation and
communication technologies. Quantum communications work experimentally
and some firms also commercialize quantum cryptography devices [17]. How-
ever, the ability to perform long distance quantum communication (more than
one hundred kilometers) is still the subject of research. The main promising ap-
proach is the use of quantum repeaters [12, 11]. Such device requires quantum
memory to work. That is why quantum memory is a topic on which several
laboratories around the world are working on [8, 5, 6, 7, 8].

This report is organized as follow. First, we give some informations about
the Niels Bohr Institute where two groups that belong to the Danish National
Research Foundation Center for Quantum Optics (QUANTOP) are working.
Then we give a short introduction to quantum cryptography and explain why
quantum memories are required to improve the communication distance. After
this, we give the model that we use for quantum memory and its principle.
Then we focus on the effect of the storage and retrieval efficiency of the memory
assuming there is noise.



Figure 1: The Niels Bohr Institute

2 The Niels Bohr Institute

2.1 History

The Institute of Theoretical Physics of the University of Copenhagen has been
founded in 1921 thanks to the famous Danish physicist Niels Bohr. During the
1920s, and 1930s, the Institute was the concordant crossroad of the develop-
ing disciplines of atomic physics and quantum physics. Physicists from across
Europe (and sometimes further abroad) often visited the Institute to confer
with Bohr on new theories and discoveries. The Copenhagen interpretation of
quantum mechanics is named after work done at the Institute during this time.
On Niels Bohr’s 80th birthday - October 7, 1965 - the Institute for Theoreti-
cal Physics of the University of Copenhagen officially became The Niels Bohr
Institute.

2.2 Organization

The Niels Bohr Institute belongs to the Faculty of Science of the Copenhagen
University. The Niels Bohr Institute is involved in research and education within
astronomy, geophysics, nanophysics, general physics and biophysics.

The institute is situated around ’Feelledparken’ at three different locations:
Rockefeller Komplekset at Juliane Maries Vej 26-32, H.C. Orsted Institutet at
Universitetsparken 5 and Blegdamsvej 17-21.

There are 76 scientific staff members, 74 technical and administrative staff
members, 69 PhD students, and a large number of international researchers and
students.
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2.3 QUANTOP (Danish National Research Foundation
Center for Quantum Optics )

Danish National Research Foundation Center for Quantum Optics - QUANTOP
was founded in 2001 and is funded until 2012. The Center involves research
groups at the Niels Bohr Institute of the University of Copenhagen and at the
Department of Physics and Astronomy at the University of Aarhus. Eugene
Polzik is the director of the Center.

The research activities of the Center are carried out by four groups:

Quantum Optics Lab (Copenhagen)

Quantum Theory Group (Copenhagen)

Ton Trap Group (Aarhus)

Quantum Gas Lab (Aarhus)

The research concentrates on quantum state engineering for light, atoms and
ions, including entangled, squeezed and other interesting states. Quantum in-
formation processing, including quantum computing, quantum teleportation,
quantum cryptography and quantum memory, is one of the major directions
of the research. Studies of ultra-cold atoms, both fundamental research on its
properties and dynamics, and applications for quantum information processing
and precision measurements are carried out theoretically and experimentally.
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3 Quantum cryptography

Quantum cryptography is a practical application of the field of quantum com-
munication and the technology is already available and commercialized.

3.1 Principle

The principle of quantum cryptography is to use a one-time-pad combined with
quantum mechanics to share the key. A one-time-pad is a cryptography method
that allows to send only one time a message with a key which has at least
the lenght of the message. This key is randomly generated and then is shared
between Alice and Bob. If Alice want to send one binary message to Bob, she
just need to make the addition between the message and the key. Then she
sends the encrypted message to Bob. And Bob just make the addition between
the encrypted message and the key. Then the key has to be discarded and not
used again.

Encryptedmessage = message ® key

Decryptedmessage = Encryptedmessage @ key

where @ stands for the bit to bit addition in the sense 01 =1@0 =1 and
161=060=0.

It is the most provable secure way to send a message to someone. However
the main problem is the ability to share the key. This is where quantum me-
chanics has a role to play. There is a protocole that requires one classical public
channel and one quantum channel that allows to share the key.

Before explaining the protocole in itself, let us tell some words about the
quantum channel. Here we assume that the quantum channel is perfect. Alice
has a perfect single photon source with an Electro Optical Modulator (EOM)
that can be seen as a switch that allows to turn on and off a half wavelength
plate. Bob has a polarizer. Since the quantum channel is ideal, there are no
absorption of photon or loss of polarization in the channel. The EOM makes
possible to rotate the polarization of the photon by 45°. The photon can thus
be sent in two differents basis (figure 3). The polarizer can be switched into
two different positions. These positions allow to make the measurement of the
photon in the two different bases. In each bases, there are two orthogonal states.
(H|V) =0, (—45]|45) = 0. The overlap of any two states of differents bases is
such that they give equal probabilities : |(—45|H)|> = |(—45|V)|* = [(45|V)|* =
|(45|H)|* = 1 . In order to make the correspondance with binary information,
we choose the convention that the states |H) and |[45°) stand for |1) and the
states |V) and |—457) stand for |0).

13



-45°

Figure 3: The two polarisation bases

Let us now explain the protocol.

e Alice send photons to Bob. Each photon is sent in one of the two bases
in one state of this bases |0) or |1). The choice of the bases is done by
a random number generator. The state of the photon |0) or |1) is also
chosen with a random generator. For each photon that Bob receives, he
makes a measurement in one of the two bases. The choice of the bases is
done by a random number generator that is not correlated to Alice’s one.
If no ones try to make a measurement between Bob and Alice, the error
rate in the raw key is 25%.

e Bob and Alice then announce the bases they have chosen with the public
channel. They then only keep the bits that have been measured in the
same bases as they have been sent. After having discarded the bits which
were measured in the wrong bases, a shorter key is obtained.

e By announcing some of the bits they have kept, they can then compare
if they are the same. If this is the case, this means that no one has tried
to intercept the key. They can for instance choose randomly 50% of the
bits of the shorter key. If they all matches, they keep the half of the key
that remains to encrypt the message. In fact the remaining key must be
at least of the length of the message.

e The message is then encrypted using the remaining key. This is a classical
one-time-pad.

We now just say a few words about the eavedropping. If an eavedropper, Eve,
attempts to get the key , Eve will need to measure some photons from Alice and
then send the same number of photon to Bob. To make the measurement, Eve
need to choose a bases. Since she does not know Alice’s bases, she will choose
it randomly. But Eve does not know wether she choses the good bases or not
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and so she sometimes send photons to Bob in the wrong bases. If in this case
Alice and Bob have the same bases. When they compare the shorter key, they
find some differences.

If someone attempts to intercept the communication, then there will be
difference in some bits which belong to the shorter key. The only thing to do is
in this case to discard the whole key. In practice however, there are many other
considerations to take into account : all kind of error that occurs, statistical
analysis, other kind of protocols . But the main principle remains the same :
using quantum mechanics to share the key. Much more informations about this
subject can be found in the paper [15].

3.2 Quantum repeaters

Today, the main obstacle to the commercialization at big scale of quantum
cryptography devices is its implementation on large distances. In practice, loss
of photons increase with the distance. Quantum repeaters are devices that use
property of entanglement swapping to teleport the state of a photon to another
distant photon. And such device could in principle enhance dramatically the
distance on which quantum key distribution can be done.

Let us now tell a few words about entanglement swapping. A system of two
photons is called maximally entangled if measuring one of these photons make
the other one in a determinate state, and if the single particle density is com-
pletely mixed (which means the probability to measure one state or the other are
the same). For instance \/Li (]0) |1) 4 |1)]0)) is a maximally entangled system.
The entanglement swapping is the ability to make two separated system entan-
gled without making them interact. For instance let us consider three persons
Alice, Bob and Claire. Alice and Bob share an entangle state % [04)1051) +
% [14)|1p1). Bob and Claire share % |0B2) |0¢) + % [152) |1c). Where the
index A stands for Alice’s photon state, B1 and B2 stands for Bob’s photons
states and C' stands for Claire’s photon state. Then if Bob perform a spe-
cial kind of measurement (called Bell’s measurement) that involves the photons
B1 and B2, the photons of Alice and Claire are then maximally entangled
% 104)[0c) + % [14)|1¢) even if they have not interacted. This is what is
called entanglement swapping.

One important problem is how to perform a measurement that involves two
photons? The main approach is to store locally in a memory the states of the two
photons, and then to perform the measurement by processing the information
in the quantum memory.

15



4 Quantum memory

This section presents the model that is used for the quantum memory and what
are the efficiency of storage and retrieval of photons that can be achieved.

4.1 Model
4.1.1 Main idea

The quantum memory is basically a three states quantum system. One state is
an excited state |e > with a short life time. The two others states are a ground
state |g > and a metastable state |s >. The long life time of the state |s > is due
to the fact that there is no electric dipole allowed transition between |s >and
|g >. The main idea is to couple this system with two electromagnetic fields:
the probe pulse which contains the information that we want to store, and the
control field which will help storing the probe pulse. The probe pulse is a weak
pulse, with few photons. Since we are interested in the quantum information of
the pulse, it will be described by an operator. On the contrary, the control field
is a strong pulse described in a classical manner.

At the end of the storage process, all the information is contained in a
superposition of |g > and |s >. It follows that the relevant operator to describe
the information that has been stored is in fact |s >< g¢|. Of course, it is
impossible to store anything on a transition involving the excited state because
of the fast decay. One can argue that in practice there is also a decay due to
higher order moment transitions between |g > and |s >. However what we need
is only to store the information during the time we need to process it. And this
can be achieved in this way. The retrieval of the photon is done by applying a
control field after the storage process.

In theory, the memory can work with only one atom. The three states are
those which can be reached by a single electron. The storage process for a
coherent probe pulse in one is shawn on figure {4}. However, the coupling
constant g between one atom and one photon is weak. In such case, the storage
can only be done by using extremely good cavities. Such cavities are however
very hard to build.

16



Detuning A
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Figure 4: Storage of a coherent probe pulse in one atom.

The figure {4} only shows what happens for a coherent state. But the prin-
ciple remains the same for a superposition of coherent states. For instance,
sending one photon on a beamsplitter gives a superposition of zero and one
photon on each path of the beam splitter. One can in principle store the su-
perposition of zero and one photon in the quantum memory as a superposition
of |g > and |s > . At the moment, experiments for storage have not only been
achieved for coherent pulses [13], but also for superpositions of states [14].

Although a quantum memory works in principle with a single atom, in prac-
tice, what is used is an atomic ensemble of N atoms. This has only advantages
compared to the case of a single atom.

e The memory is experimentally simpler to build since it is harder to select
only one atom.

e The effective coupling constant between the atomic ensemble and the
quantum electromagnetic field is enhanced by a factor v N so that the
effective coupling constant is given by gv N .

We furthemore assume that the atomic ensemble is surrounded by a cavity. In
this case, there is only one frequency mode for the probe pulse and the equations
are simpler compared to the case of the free space.

4.1.2 Operators and notations

In order to describe the storage and retrieval processes, some collective operators
are needed. Here we will only give and explain the role of these operators and

17



give the master equations that they follow. We need to describe the |s > —|g >
transitions, the |g > —|e > transitions, and the probe pulse.

The S operator describes the collective |s >< g| transitions for all atoms.
We call it spinwave annihilation operator. This is the one that describes
the stored information.

The P operator describes the |e >< g| transitions for all atoms. We call
it polarisation operator.

The &;,, operator describes the shape of the probe pulse during the storage.

The &,,+ operator describes the shape of the output pulse during the re-
trieval.

The classical control field is described by its Raby frequency 2 (Annexe
A).

The control field and the probe pulse are monomode.

The probe pulse frequency is w;.

The control field frequency is wa.

However, we prefer to describe the frequency of these fields respect to the rele-
vant atomic transitions.

w1 = weg — A1 where Ay is the detuning between the probe pulse frequency
and the |e > —|g > resonant frequency.

Wy = Wes — Ag where As is the detuning between the probe pulse frequency
and the |e > —|s > resonant frequency.

In all that follow, we will consider that these detuning are the sames. A; =
As = A.

Figure 5: A atomic media scheme. The blue dash line is the quantum field. The
red line is the classical field. [2]

18



We now need a few more physical quantities to write down the equations of
motion for the operators.

e 7 ig the total decay of the optical transition ., = |e >< g| including the
decay due to spontaneous emission 7. .

e r is the constant that caracterize the leakage of the pulse due to the cavity.

e We can now define C' = g’z_’zyv , the cooperativity parameter of the cavity.

The master equations are derived from the Hamiltonian H of the system using
the equations of motion %4 = i[A, H] where A stands for any operator. In the
interaction picture, H =hAc.. — (hQ(t)0es + hg€oey + h.c) where o;; = |i >< j|
and h.c stands for hermitian conjugate. However, this hamiltonian does not take
into account the decay between the states |e) and |g), |e) and |s), and |g) and |s).
Since the transition between |g) and |s) is not dipole allowed, we consider that
this decay is long enough compared to the time we want to store the photon.
We thus only consider the decay of the excited state 7. Using the assumption
that all the atoms are in the ground state at the beginning, and that there are
almost always most of the atoms in the ground state, taking into account the
decay ~ ,the master equations can be written as:

gout = gzn +1 V 2/YCP
P = —(y(14C)+iA)P +iQS +i\/2vC&, (1)
S = QP

All the details are given in the paper [2].

4.2 Experimental setup

We are going now to describe a typical experimental setup. This will be required
when we will add noise in the control field. In fact, the result that we will obtain
will be closely linked to the setup.

4.2.1 Storage

Our model is to derive the control field and the probe pulse from the same laser.
This may not be the case in industrial implementations, however this is the case
in most experiments which are performed on quantum memory. The required
shape for the probe pulse is realized by an Acousto Optic Modulator. The Rabi
frequency is chosen by a second AOM which shapes E(t). The storage is then
achieved in an atomic ensemble surrounded by a cavity.

19



Probe pulse

[ E AOM _4’1 ﬁl ------ ji
Control field
2, &
oy AOM &

Figure 6: Experimental setup for the storage of a probe pulse

The storage starts at time ¢ = 0 and stops at t =T

4.2.2 Retrieval

In practice, if there is a spinwave mode stored in the memory, applying a control
field will result in the retrieval of an output pulse. However, we need to have
some device to check the shape of the output mode. This is done by homodyning
the output pulse with an other signal that is generated from the same laser that
is used as control field for retrieval. The frequency shift of the homodyning
pulse is done by an AOM. The shaping of the control field is done by an AOM
too.

Dezired mode

I AOM {

H

' Control field
[} ool fie

Figure 7: Experimental setup for the retrieval of a probe pulse

The retrieval starts at Tr > T. However for all the calculations, we will use
Tr = 0 when we will consider only retrieval since it does not change anything.

4.3 Storage and retrieval efficiency

The total efficiency of the memory is given by the probability to store a photon
and retrieve it in the same mode. The following results will be given assuming
we are allowed to eliminate adiabatically the polarization. This means that we
put P ~ 0 in the relations (1). It has been proved that it is allowed when
TC~ > 1 [2].The whole details concerning the two following sub-sections are
explained in [2].

20



4.3.1 Storage efficiency

The storage efficiency is defined by the number of stored excitations divided by
the number of incoming photons. Without loss of generality, we renormalize the
probe pulse to have one photon. The efficiency is then given by the number of
excitations. Since S has all the properties of an annihilation operator [2], the
number of stored spinwave is given by the usual number operator SST . We are
not interested in each eigenvalue of the operator but only in the mean value. In
this case, the S operator can be considered as a complex number. The storage

efficiency is written as
ne = 55 =|S(T)’

Adding the assumption that £,,; = 0 since we are interesting in storage, one
can solve the two last equations of the system (1) and find that S operator is

then given by ( 2).
T
S =15 | Fsa b @)

where f(t) is the function defined by

2y(1+C) h(t,T)

ft) = _Q*(t)mefm (3)

and h(ty,t2) is given by

)
. ta) = [ 000 P (4)
t1

Let us just give some physical meaning about the phase factor in the ex-
ponential. This phase factor #&’?@2 is called the AC-stark shift and it
correponds to the phase that is added to the probe pulse due to its interaction
with the atomic ensemble.

Now the whole problem is to maximise the storage efficiency. It has been
proved that with the assumptions we have used, it is always possible to reach
a maximum efficiency equal to —£~. The maximal efficiency is obtained if the

1+C
following condition is fullfilled

Cin(t) = F(1)". (5)
We first see that this condition compensates the AC-stark shift since it is
the complex conjugate of f. One way to show that this condition gives the
maximal efficiency is to notice that f(¢) is normalized. This can be written
fOT f@)ft)*dt = 1. Since we want &;, to be normalized too and reminding
that the integral over the product of two normalized functions a(t) and b(t)
is a scalar product, the Cauchy-Schwarz inequality gives < alb >< 1 so that
fOT f(@®)&n(t)dt < 1. This integral is equal to one if and only if the condition
(5) is fullfilled. Since we know the optimized shape for the probe pulse, we can
then compute the storage efficiency and obtain
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2
27(1+C)
- 1 — ¢ Faror+azh(0D)
1+C

which gives n; ~ 1+Lc provided h(0,T) is big enough. Getting h(0,T) big
requires to apply a control field during a sufficiently long period, or a control
field with a strong enough amplitude.

(6)

TNs

4.3.2 Retrieval efficiency

The retrieval efficiency is defined by the number of retrieved photons divided
by the number of stored excitations. Without loss of generality, we renormalize
the spinwave to have one stored excitation (S(0) = 1). The efficiency is then
given by the number of retrieved photons into the desired output mode. This
o N 2

is given by 7, = AA* = |A|“where

A= . gout (t)gzi(esiredoutput (t) dt (7)

Here we just choose the desired mode equal to the output mode to get the
maximal efficiency £gesiredmode = Eout-

With the adiabatic elimination of P and assuming that &;,, = 0 since we
are interested in retrieval process, solving the master equations (1) gives the
following result

Q(t a1
fo) = ~VIO ey gy T ®)
The retrieval efficiency is then given by
c _ 2050 o o)
= ——— |1 —e Pa+o)P+az
T=1re | e (9)

The maximal retrieval efficiency can be achieved provided the control field is
applied for a sufficiently long period or provided the control field is strong enough
(that means to have h(0,00) big enough do drop the exponential).

4.4 Time reversal

Despite the system contains an irreversible decay <, time reversal is still an
important concept. It has been proved in the paper [3] that knowing the optimal
retrieval strategy gives the optimal storage strategy using the time reversal
concept. It works both for cavity and free space. And it shows that the optimal
incoming mode is the time-reverse of the optimized retrieved mode. Moreother,
the optimal storage control €2, is the time-reverse of the retrieval control g,

Q1) = QAT — ¢). (10)
In that case, the output pulse is simply linked to the input pulse by the relation:
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e(t) = & (T — 1) (11)

where e(t) stands for the output pulse which is renormalized to contain exactly
one photon. The results that we have just given previously fullfill this relation.
It is also time reversal that explain why the storage efficiency is equal to the
retrieval efficiency.
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5 Noise in quantum memory

We have seen that in certain limit the maximal storage and retrieval efficiency.
This has been done assuming a perfect probe pulse and a perfect control field. In
practice there is always some noise. The whole problem that we are interested
in is the behavior of the efficiency in such conditions. We will consider two
different types of noise : amplitude noise and phase noise.

5.1 Amplitude noise
5.1.1 Noise model

The amplitude noise is a random fluctuation of the amplitude of the electro-
magnetic field of the laser which is used for both the probe pulse and the control
field. We will assume that the noise is white gaussian noise and that there is a
feedback on the laser. We write the electric field as

t

E(t) = (Eo(t) + 6E(t))e”” (12)
where 0 F represents the noise. The given relation for §F taking the feedback
into account is :

JE(t) = AN Eon(t) — YnOE(t) (13)

e The strengh of the feedback is . The bigger is vy, the smaller is the
noise amplitude.

e 7)(t) is gaussian white noise normalized to have
Autocorr(n(t)n(t')) = Té(t —t') (14)

where T is the duration of the period on which we have computed the
autocorrelation.

e Ay is a normalization factor that gives the proportion of noise in the
signal. For Ay = 0, there is no noise. For Ay = 1, there is as much noise
as signal.

Solving the differential equation (13 gives the following result :

t
SE(t) = ANEy / n(t e ™ =) gy (15)

— 0o

In order to compute the efficiency in the following parts, we will need the
autocorrelation function for dE. Using the relations (15) and (14), we obtain
the autocorrelation function

Autocorr(SE(t)SE(t") = INTE3 .exp(—vyn [t — t']), (16)
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2
where Iy = 2X . What is interesting for us in the following is the instantaneous
value of the noise intensity. This is given by

< SE()SE() >= Aut"co”“(?(ﬂw(t’))

< SE(t)SE(t') >= INE3.exp(—yn [t —t']).

5.1.2 theoretical results

The theoretical results have been obtained with the help of MAPLE (Annexe
D.2).

Storage The point is now to compute the storage efficiency for the considered
experimental setup. One can express the Rabi frequency and the shape of the

probe pulse in function of E(t)

Q(t) = at).E(t) (17)

Ein(t) = BR)E(). (18)

Figure 8: Storage process including noise

a(t) is the shape of the Rabi frequency which is given by the AOM and (3(t) is
the shape of the probe pulse. Starting with there are two main ways to optimize
the storage process :

e Optimizing the shape of the control field for a given probe pulse.
e Optimizing the shape of the probe pulse for a given control field.

This is the last approach that we will consider. We will now compute the
efficiency using two differents shape for the probe pulse:

e The shape that maximizes the efficiency when we do not take into account
the noise. We will refer it as the standard mode.
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e The shape that maximizes the efficiency assuming we know something
about the average of the noise. We will refer it as the optimized mode.

Since we consider noise which is a random process, the relevant quantities will
be the average amplitude of the spinwave squared < S >< S§* > and the average
number of excitations stored < SS* > where () stands for averaging over the
noise.

Standard mode The shape 5(¢) of this mode is already known since it is
the one we have computed when there is no noise which is given by the relation

(5)

2y(1+C) e
= — - - @ 7 F(A+C)—i
Blt) = —a) e —xe T (19)
with
t2
ho(tl,tQ)z/ Q0 (t)|2dt (20)
tl

where the index 0 means that there is no noise in the electromagnetic field. In
practice, it means that when we compute the shape of the probe pulse, we will
take the value of the Rabi frequency of the control field assuming there is no
noise. Then, assuming there is one photon on average in the probe pulse,

29(1+C)  __not.m) 1
in = —Q(t S S S a+0o)—ia
¢ ()7(1+C)—2A6 ’ 1+ Iy

(21)

The I +1IN factor is the renormalization factor. It makes sure that we have on

average one photon in the probe pulse fOT (Ein()Er, (1)) dt = 1. If there is no
noise the renormalization factor is equal to 1 which gives the same expression
as in relation (5).

Using the definition of .S, we will compute the average efficiency

C T
< S>= A/ 1—|——O‘/O < f(t)gzn(t) > dt.

However, computing the exact < S > requires that we are able to compute

< Q(t)Q*(t)e_% > which is very hard. Considering this, the solution
that we will give is expanded to the second order in the noise 0 E (and so to the
first order in In). This solution requires that the noise must be low compared
to the amplitude of the field Iy < 1.

In that case, we obtain the following expression for the amplitude of the spin
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wave squared

(—15112 [T 20t |2 ar")

T 2 2
<S><5 > =57 o @Kl e

T T
« {1+In 2—4|K1|2/ |Qo(t')|%<-w<f’—t>dt'—|K1|2/ Q0 (t)]2 dt
t t
T T
+ 4(|K1|4—2|K°'*2)/ / 1Q0(t1)[? [Q0(t2) 2 ™ == dtydty | ¢ d
t t1

where Ko = (1 +C) +iA , Ki = YD and 0y(t) = a(t)Eo.

In order to get some intuition about the result, we make the assumption
that the amplitude of the control field is constant Ey(t) = Ey and that there is
no modulation of the electric field to generate the control field a(t) = a. We
also make the assumption that the control field is applied long enough to store
as much excitations as possible. To make this assumption more precise, when
we do the calculation, some decreasing exponential appears like in relation (6).

The assumption that we make is to assume that 7" is several time bigger than
A%+~42(1+0)32
27(1+0)3
now neglect all these exponentials and the solutions can be written as

the smallest dropping constant a = . For instance T' > 3a. We can

202 (A2 2(1+C)?
<S><S*>:L 1-1, 6 (A% 7201 + ))2
1+C Any(1+ C) (A2 +42(1 + C)2) 4 202+2(1 + C)2
(22)
02 (A2 214 0)?
<85 s= - i, 8(A%+7°(1+ C))
1+C YnY(1 4+ C) (A2 +~2(1 4+ C)2) +2Q572(1 + C)?

(23)

The first thing that we can see is that the error in the number of stored ex-
citations is just twice the error on the spinwave amplitude. So that maximizing
one of these quantity makes the otherone maximized too. What we want to see
is in which regime the error is the lowest. The error can be written as

v(14C) 272(1 + C)? )_1 (24)

E =

rr <7N 02 A2+ 42(1+CO)2

We immediately see that the bigger is the detuning A, the bigger is the error.
In the case limit where A = 0, the error can be written as

1
Err= ———
'YNTpulse + 2
where
A% 4+ 4214 C)?
Tpulse = 7 ( ) (25)

y(14C)Q3
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is, up to some constant of the order of 1(for instance g to have T = 5a), the
caracteristic time of the probe pulse. Since vy is the feedback amplitude, a
simple physical interpretation of the error is that the bigger the feedback is
compared to the time duration of the pulse, the more the laser have time to
average over the noise and so the less is the error.

In the limit A — oo, the error can be written as

1

ETT 'YNTpulse '

To understand what does mean this limit, let us consider the probe pulse which
is given by (21). Using a typical fixed pulse duration Tpuise, the phase in the
exponential can be written iWA(HC) . Taking the limit A — oo corresponds
thus to a random AC-stark shift on the probe pulse. And in this limit we see
that the condition ynTpuise > 1 must be fullfilled to minimize the error as for

A =0.

Optimized mode We have computed the efficiency considering a standard
mode. Now we consider what happens if we try to optimize the efficiency by
changing the probe mode shape. The first step to compute the solution in this
section is to compute the optimized mode. This is done by using the method
of the lagrange multiplicator assuming the probe pulse is normalized to contain
one photon. This method requires to solve the equation

0 r N B
86<<S> )\/O <§m§m>>—0 (26)

with the normalization condition

T T
/ <€, =16 E3(1+Iy) / BBt dt = 1 (27)
0 0

The expression for < S >is given by (2)

<S>—M1+O/ (t)in(t) > dt = ‘H+c/’<f t) > B(t)dt

then, using (19), we find

] V29(1+C) __ ke N
<8 >= 1+C/ 1+C)+ZA<6 aro+ia B(H)E(t)* > p(t)dt
(28)

In order to simplify the writing of the expression, we introduce m(¢) which is
defined by

29y(1+C) __nem

mlt) = —a* () G R T BB (29)
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Figure 9: Retrieval scheme

Eq. (28) can then be written as

T
<§>= ,/HLC/O < m(t) > Bt)dt (30)

Eq. (26) is then written as

- (\/1% [ s - s | Tﬁ(t)ﬁ(t)*dt> ~0 @

and using the normalization condition (27), it comes

"

 VEOUF I m@m e

Now we can compute the efficiency in the same way as we did for the standard
mode with the same assumptions. And we obtain the same result to the first
order in Iy which is given by the relations (22) and (23). It seems that doing
this optimization is useless for low noise. However, to see the effect of the
optimization, we will do some comparisons based on simulations. But first we
are going to do for retrieval what we have done for storage.

B(t) (32)

Retrieval The calculation of the retrieval efficiency assuming there is noise
in the laser source is very similar to the calculation of the storage efficiency.
Considering the experimental setup, we are interested in the overlap of the
homodyning pulse and the output pulse.

ghomodyning = ﬁhamodyning (t)E(t)
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The output mode is given by the relation (8). As for the storage process, we will
consider two different shape for the homodyning pulse. What we are interested
in computing are < A >< A* > and < AA* >

Standard mode The shape of the homodyning pulse is the same as the
shape of the output pulse when there is no noise

29(14+C) __ oo
o—————¢€ Y(1+C)+iA |
v(1+C)+iA

Then, assuming there is one photon in the homodyning pulse,

- 27 1 + C — e ’Y({Lig))jr)zA —1 (33)

Ehomodyning = —Q(t) (14 C) +iA 14+ Iy

We are now interested in the computation of < A >. Using the definition of
A in eq. (7) starting with Tr = 0, and using the relations (8) and (33), the
calculations give the same efficiency as for storage. The integration here is done
for time ranging from 0 to infinity. But in practice, it is the same condition
as we had for storage : the time duration of the control pulse must be long
enough so that all stored excitations are retrieved. Then we can drop all the
decreasing exponential that appears during the calculation and we obtain the
following results.

ﬁhomodyning (t) = -

202 (A2 +~42(1 4 C)?
<A><A*>:L 1-1, 0 (A% +77(1 + ))2
1+C nY(1+ C) (A2 +42(1 + C)2) + 2Q2y2(1 + O)2
(34)
2 2 2 2
<A s C I Q2 (A +7(1+C))2
1+C NY(1+ C) (A2 +42(1 + C)2) + 2Q272(1 + O)2
(35)

Optimized mode The optimization of the homodyning pulse is the same
as the optimization of the probe pulse in the storage. And then doing very
similar calculations as those that we have done for the storage process, one can
obtain the same result for < A >< A* > and < AA* > that we have just
obtained using the standard mode for the homodyning pulse.

5.1.3 Simulations

All the following simulations have been done for storage using MATLAB (An-
nexe D.1).
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Noise generation The first step of the simulation is to generate the noise
in the laser beam. We first generate an array that contains white noise. Then
the calculation of the noise is done by using relation {15} taking the integral
from t — iN to t instead of —oo to t . We want an array of colored noise
that has a size equal to Nbp x T" where Nbp is the number of point per unit
of time and T is the duration of the pulse. We thus need an array which
has at least a size of Nbp x (T + %) for the white noise. We then compute
the autocorrelation function of the colored noise array. The maximum of the
autocorrelation function is equal to the typical intensity of the noise times the
integration time In17 where the intensity Ini1 depends on the intensity of the
white noise. We know need to be able to choose the intensity of the colored noise
which means to be able to renormalize the colored noise. Using the property
of the autocorrelation function a? < E(t)JE(t + 1) >=< adE(t)adE(t + ) >,
we just mutiply the colored noise array by a = 1/vIy1 to get an a normilized
autocorrelation equal to 7', which means that the typical intensity of the colored
noise is equal to one. The figure {10} shows the result that we obtain for
the averaged noise autocorrelation compared to the theoritical autocorrelation
function (16).

1ug S SEM BEE)>
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Figure 10: Mean of the autocorrelations functions of 100 noise samples generated
(blue) and theoretical autocorrelation function (red), for T=100 with a step time
of 0.01, vy =1and Ey =1.
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Theoretical results and simulation The figure {11} is a comparison be-
tween the theoretical decrease of the efficiency (22) and the simulated efficiency
as function of the noise amplitude.

Theoretical and simulated eticiency

Simulated efficiency
Thearetical efficiency to the order 1 in |

08 — Delta=0
N gamma=1
c=10
T=100
0ar T gamma =1
- NBS=50

Storage eficiency

Normalized noise amplituds

I
—

Figure 11: Storage efficiency : simulation and theory with A = 0, ~
v =1,C =10, T =100

We are going to describe how this curve has been done. This plot has been
computed by considering 50 storage experiments. For each experiment, 100
storage shots are generated for the same noise amplitude. These 100 probe
pulses are then normalized to have on average one photon per shot for this
experiment.

< / Einkly >= 1 (36)

By doing this, we introduce correlation a-posteriori between the probe pulses
of the same experiment. That is why we cannot compute the standard error
with only one experiment of 100 storage shots. And so the method that we
have done is to do several experiments for the same noise amplitude to compute
the standard error. However, the efficiency for each noise amplitude has been
computed by recycling the same noise samples. That is why the curve is mono-
tonely decreasing without fluctuations of the order of magnitude of the root
mean square. However, the noise samples are different for each experiment.
The following plot {12} shows that the theoretical model and the simulation
agree for a noise amplitude smaller than 25% of the amplitude of the laser Ej.
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Figure 12: Storage efficiency : simulation and theory (II) with A =0, v =1,
v =1,C=10,T =100

This plot has been generated by using one experiment of 100 samples of S at
each point but without recycling the noise for differents noise amplitude. That
is why there are no error bar on this curve. However, one can see that the
random fluctuations are around the theoretical plot. The slight offset between
the two curves is due to two factors. In the simulation, the pulse energy is
finite, T is not infinite so that there is a slight decrease of the efficiency due to
the decreasing exponential. The other factor is the numerical error due to the
integration with the rectangle method.

These plots show that the efficiency remain still quite high even with big
noise amplitude. For instance, assuming a normalized noise amplitude of one,
which means there are as many photons that come from noise as from signal,
the figure {11} shows that the efficiency still remains greater than 70% for an
efficiency without noise of 91%.

Simulation of the optimized mode In this section, we have computed an
optimized mode to the first order in noise intensity Iy for storage. However, an-
alytically we only had a solution to the first order in the noise intensity and there
was no difference between the efficiency computed with the optimized mode and
the standard mode. The following plot shows three different efficiciency curves
that have been computed using the same noise but with three different probe
pulses.
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Figure 13: Storage efficiency : optimization

e The green curve has been computed using the standard probe pulse

e The red curve has been computed using the theoretical optimized probe
pulse to first order in the noise intensity.

e The blue curve has been computed using a numerical optimized probe.

This last pulse is computed in the following manner

< E(ti)*f(ti)* >
< E(tl)E(tl)* >
which is what is given by the optimal theoretical mode (32) at each time ¢;.
As a practical interest, it is impossible to use Boprimar since it requires to
now before the experiment the mean of quantities that are not known. However
a practical solution is to measure on a large sample the values of E(t¢;) and
f(t:;). Then it is possible to compute the mode that would have been optimal
to store this sample. Then, assuming the noise has the same properties in the
next experiment, one can use the computed optimal mode as probe pulse for
the storage in this experiment.
One can see that for these parameters, optimizing the shape of the probe
pulse is not really usefull for low noise smaller than 30% of Ey. However, for
bigger noise amplitude, it is interesting to consider optimisation.

6optimal (tz) =
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Influence of the detuning The following plot represents the storage effi-
ciency in function of the detuning for 6 differents values of the noise. For each
value of the noise, the calculations have been done both with and without adi-
abatic elimination of P.

Efficiency as function of the detuning

—— Efficiency computed using the general solver
— —— = . Efficiency computed using the adiabatic solver

Shmage efiiciency <85>
b o
g
I

] 5 10 15 20 25 30 35 40 45 50
Distuning (Delta)

Figure 14: Detuning influence on storage efficiency for differents noise values
withy=1,yv =1, C =10, T = 100

Concerning the difference between the two solvers : this plot shows that
the solver that computes P without adiabatic elimination adds an offset on the
curve but the behavior of the efficiency is preserved. Since the conditions for
adiabatic elimination are fullfilled with TC'y = 1000 > 1, this offset is due to
the numerical solver.

We see also that as long as we stay in the region where the detuning is small
enough to have the approximation 7' = co, the bigger is the noise, the worst is
the influence of the detuning. This is consistent with the theoretical result. For
big detuning, the decay of the efficiency is not only due to the noise but also to
the fact that some excitations are not stored (we can not drop the decreasing
exponential anymore in the calculations). The crossover between the different
curves for different noise might look not really intuitive. However, we remind
that this crossover appears in the region where we lack power to store all the
pulse. But the bigger is the noise, the bigger is the total power in the control
field. And so, at some point, the power given by the noise compensate the loss
of efficiency due to the same noise.

The main thing that this plot shows is that the best limit to optimise the
efficiency is A = 0 which is consistent with the theoretical result.
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5.2 Phase noise

All that we have done so far concerned amplitude noise. We are now going
to study what happens if there are random fluctuation of the frequency of the
laser.

5.2.1 Noise model

Here we assume that the amplitude is constant and equal Ey and that there is
a random fluctation of the frequency dw(t).

iwt+i [§ Sw(ty)dty

E = Eye (37)
The model that we assume for dw is a white gaussian noise with a feedback

8 (t) = Au(t) — Y dw(t) (38)

It is the same equation as the one we used for amplitude noise. And so the
autocorrelation function divided by the time duration of the pulse is

< dw(t)dw(t') >= L.exp(—y [t — t']) (39)
with
AQ
Iw = i 4
o (40)

5.2.2 Theoretical results

When we have inserted amplitude noise, the Hamiltonian of the system was un-
changed. However, when facing frequency noise, one way to deal with it is to go
into the interaction picture respect to the Hamiltonian Hy = héw(t) |e) (e| .The
details are given in the annexe B and it gives the following hamiltonian for the
system

H = MA — 0w(t))oee — (ABQ(t)Tes + hgloeq + h.c) (41)

and the master equations of the system becomes

gout = gzn +1 V 2/YCP
P —(Y(1 4+ C) +i(A = 6w(t)))P +iQS +i\/2vC&, (42)
S = QP

What we can see at this point for frequency noise is exactly the same as a
fluctuation of the detuning. Now we still assume that the adiabatic elimination
of P is valid. The exact condition for this adiabatic elimination will be discussed
in section 5.2.4. We also assume that €}y does not depends on time.
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Storage When considering the storage process and assuming the adiabatic
elimination of P, the behaviour of S is described by the two last equations of
(42). They can be combined to a single equation of motion :

(v(1 + C) 4+ i(A = dw(t))S + [Q° S = —Q*/2vC&in (43)

The method that we chose to solve this equation is to compute an analytical
solution for S and then to expand to the lowest order in intensity frequency
noise in order to get some simple result. The equation (43) can be written as

S +a(t)S =b(t) (44)
. . |02 _ —Q5€inV27C . .
with a(t) = ~reyrta—somy and b(t) = v(1+C§+i(A—’gaJ(t))' The solution of this

equation is given by the product of two functions Spand Sy. Sy is the solution
of the root equation S + a(t)S = 0. S; is the function that we find by replacing
S by SoS; in the relation (44). The calculations gives Sy = Ke~ /e and
S1 = Sy 'b(t) where K is some constant. One can then compute the complete
solution

T

S(T) = So(T)Sy(T) = e~ Jo @Byt / elo att)din ) gy, (45)

0
There is one case that gives some intuition about the influence of the phase
noise and that can be solved exactly. Let us assume that the noise dw is a con-
stant offset € on the frequency rather than a random fluctuation. It corresponds
to a feedback 7, = 0 but with a noise intensity I,, which is still finished. In this
case, the solution is easy to find from (45) and using a standard probe pulse ;,,

which is given by the relation (5) it follows that

2

SS*

C 1 —202~7(1+0) 272 (1+0)2 +A(A+e)+e?)
1—e

7 (Z(1+0)2+(A-)2)(v2(1+0)2+A42)
1+ C1+e2/(4y2(1 4 0)?2)

(46)
Taking the usual limit 77 — oo that corresponds to a time duration of the
control field pulse which is large enough to store all the excitations contained
in the probe pulse, we can drop the decreasing exponential in {46} and the
solution becomes

C 1
1+ C1+e2/(492(1+0)2)

This result shows that the efficiency still does not depend on the detuning when
there is an unknown constant frequency shift ¢ on the laser frequency.

This is also a result that can be compared to the solution that we will find
in the more general case of a time varying noise frequency. In this case we use
the autocorrelation function (39). After computing the Taylor expansion to the
first order in I, assuming that dw < A, v(1 4+ C) , the expression for S is

SS*

(47)
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442(14C)? Q22v(1+ O)

<S> = \/HIC
Y (A% +92(1+ C)?) H

(Y1 +C) +iA)2y(1 + C) [29(1 + O)Q2 + 7. (A2 +~42(1 + C)?)]

and it follows that

202(1 + C) + 492(1 + C)?,

11, { ! (1 NCIC kst 0)2))1 (48)

<S>< S > ——|1-1,41
1+O[ { +4~y2(1+0)2 271+ C) + 7w (A2 +~2(1 + C)2)]

(49)
In order to check if this expression is correct, we compare it to (47). Assuming
Sw(t) =€, < dw(t)dw(t') >= €2 = I,. Taking the limit v, — 0 and assuming
that the intensity of the noise is still finished by taking A2 o ~,,, we find that

L 1-1 ;
1+C “442(1+ C)2

which is exactly the result that we obtain by taking the Taylor expansion of
{47} to the first order in €.

Let us now come back to the description of the average spin wave amplitude
squared when there is a time dependent noise (49). The relation (49) describes
the behaviour of the amplitude of the spin wave squared as function of the
detuning. By looking at this relation, one can say that the bigger is the detuning,
the lower is the error due to frequency noise. But one should remember that
by increasing the detuning, the power of the laser must be increased to stay in
the limit where the whole probe pulse is stored (where we drop the decreasing
exponentials). moreover, increasing the detuning will increase the amplitude
noise as we have seen before.

However, we get more physical meaning by expressing the power of the
control field in function of the typical time duration of the probe pulse (25)
02 — A’+°0+0)°

0 Y(14+C)Tpuise
factor of £ in the definition of Tpusse-

<SS >< 8 >= (50)

to transform the relation (49). We then find absorbing a

A? + 4214 C)? + 492(1 + O) Vo Tpuise

<S>< S >=——-11-1,|1
1 + O { |: * (472(1 + C)Q(AQ + 72(1 + 0)2) [1 + FYprulse]

(51)
We see that the condition on the product 7, Tpuse to optimize the error is not
0 easy to get as for the amplitude noise. In the limit A = 0, the relation (52)
gives

C 1+4FYUJT ulse
<S><S*>=— {1-1,|1+ P .
1+C{ { (4'72(1+C)2 [1+7prulse]>}}
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In this limit, having a time pulse duration larger than the feedback time scale
increases the error. And it is still the case as long as the detuning is such that
|A] < V3y(1+0).

In the limit A — oo, while Tp,sc remains finished (which means that we
increase also the power of the control field) the relation (52) gives

c 1
<S>< S >=—<1-1,|1 . (52
1+0{ { +(4v2<1+0>2[1+~mTpulse1m (52)

In this limit A > (1 4+ C),2y(1 + C)\/YwTpuise, having a short feedback time
compared to the pulse duration 7, Tpuse > 1 makes the error decreases. It is
the same kind of behavior as for amplitude noise.

Retrieval According to our experimental scheme, the retrieval consists in
homodyning the output pulse &,,; with the homodyning pulse {nomodyne. The
analytical expression for the output pulse &, is given by solving the equation
system (42) with &, = 0. It can be done by solving

(v(1 4 C) +i(A = 6w(t)S + |Q* S =0

129

which gives S(T) = Ke™ Jo suvorrits=ssmn ¢, Taking K = 1 to start the re-

trieval with one stored excitation S(0) = 1, then using the first and the last
relations of (42), we find

= Y 27 / -Io w<1+c>‘Q —

dt

Eout(T it gy (53)

The analytical expression is the one that we use assuming there is no noise
and so the shape is the same as £,,; when there is no noise (8). However taking
the fact that we do not compensate the noise on the detuning, we get

o QO _ 1\90\2#
ghomodyne(t) =~V 2707(1 n C) T Z(A — 5w(t)) e Y+ +ia (54)

Then, the retrieval efficiency is given by using (7) and it follows that we get the
same result as for the storage efficiency

A e Ao 2027(1 + C) +492(1 + C)?~,, H

1+C {1 — L {1 + 492(1 4 0)2 [2927(1 + O) + v (A2 +42(1 + C)2)]

5.2.3 Simulation

The figure {15} has been plotted using \/72(1 + C)2 + A2 ~ 10 so that the
frequency noise is lower than /42(1 + C)2 + A2. The difference between the
simulation and the theory is due to the fact that the theoretical result is only a
taylor expansion to the second order in frequency noise amplitude.
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0 Theoretical and simulated efficiency
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Figure 15: Comparison between simulation and theory for frequency noise with
A=1,v=1,v,=1,C=10,T =100

5.2.4 Conditions for adiabatic elimination

The adiabatic elimination of P has been used to compute the theoretical results
that we obtained when there is frequency noise. The point is now to give
the conditions that the noise must fullfill to make this approximation. The
approximation is

P=0 (55)
When we set the time derivative of P equal to 0 in the second equation of the

system (42), we get

QS + iV T,
P= Y1+ C) +i(A = dw(t)) (56)

Taking the derivative of this expression gives

_ i(Q2S + Q9) (Y(1 + C) + i(A — bw(t))) — i6w(iS + iv/27CEimn)

P G0+ 0) (A — 60)?

(57)

The condition on P that comes from the second equation of the system (42) is
[P < |-+ ) +i(a - dwe)P| (58)

Here since we are interested in the condition on the noise, the relevant part of

. Sw(i i/ in ... . Sw(i i/ in
(57)is Mlig)sﬁ(ijgf(t);)z. The condition (58) then gives <7<1(+2)S++1-<A37§f<t)§)2 <
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(Y1 +C) +i(A = dw(t))) v(figﬁi&%ﬁt)) . And so it provides some require-

ment for dw and dw.
[0(0)| < 111+ €) +i(A - dw(t) (59)

We then want the noise to fullfill the relation (60). This gives a condition on
the average of all correlations to the second order that appears during a pulse
of a duration of T.

/OT <5w'(t)5w'(T)> dt < /OT <|7(1 FO) (A = dwt)P 1+ O) +i(A — 6w(T))|2>

(60)
We then obtain the following results that limits the feedback v, and the square
of the amplitude frequency noise I,.

L, < (FA+0)?*+A%):T
Yo < V2 +0)2 4+ A2 (61)

If we call the typical frequency shift T, I, = I'? and so the adiabatic elimination
of P can be performed as long as the feedback and the frequency shift are small
enough (61).

5.3 Time reversal and noise

The expressions of the efficiency that we have found for the storage and for the
retrieval processes in presence of noise in the system are both the same. As we
will now show, this is a more general property linked to time reversal. Let us
call U the unitary matrix that describes the evolution of the system. We now
assume that U stands for retrieval. U depends on the control field, starts at a
time ¢; and finishes at a time to.We write it U [t2, t1;82(¢)]. Let us say that the
system starts in a state |a) which is a spinwave. We call |b) the output mode
that we want to retrieve. The probability for the system to go from |a) to |b) is
just

Eff =|< BUIT,0;Q(t)]]a >|* = |< alU [T, 0; t)][b >|* (62)

where the last part of the relation (62) is due to the unitarity of U.

Eff is just the retrieval efficiency, but the last part of the relation shows
that provided we are able to invert the evolution, the storage efficiency is the
same. It has been proved in the paper [3] that this can be done by this way

U~YNT,0;Q(t)] = #U[T, 0; Q*(T — t)]# (63)

where 7 is the time reversal operator. Physically this means that, if we can
retrieve the spin wave onto £(t) using the control field Q(t), we can use the
control field Q*(T — t) to store the incoming pulse &;,(t) = £*(T — t).
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This works as long as there is no noise in the control field. If there is noise,
we should consider the transformation averaged over the noise < U > which is
not anymore a unitary transform.

< UNT,0;Q(t) + 6Q(t)] >=7 < U[T,0; (T — t) + 6Q*(T —t)] > 7 (64)

However, in practice, we can not time reverse the noise. And what we obtain
for U is U[T, 0; Q*(T —t) + 62*(¢)]. In the most general case, the matrix < U >
will contain correlation of the noise to all orders < §Q(t1)0Q(t2)0Q(t3)... >.
Since our model is based on gaussian noise, all correlations with an odd number
of terms vanish. We then use the property of gaussian noise that even corre-
lations can always be written as a product of correlation of the 2"¢ order. For
instance, the 4" order can be written

<n(t)n(t)n(ts)n(ts) > = <n(t)n(tz) >< n(ts)n(ts) >
+ < n(t)n(ts) >< n(t2)n(ts) >
+ < nt)n(ta) ><n(t2)n(ts) > (65)

Our noise model is not white noise since there is a feedback. Thus, the
n-order autocorrelation function is given by

T T> Ty
< OB(Ty)0E(Ty)...0B(T / / / < nt)n(t2).-n(tn) X66)

—Wv[(t t1)+(t—t2)+...+(t— t"]dtldtz dt,,

The odd order autocorrelation functions vanish and since the even autocorre-
lation function < n(t1)n(t2)...n(ten) > can be developped as a sum of product
of autocorrelation functions of the 2"¢ order, the < §E(T1)6E(Ty)...0 E(Tsy,) >
can be developped as a sum of product of integral of second order white noise
correlation functions

<SE(T1)0E(Ty)..0E(T,) > = /Tl/TQ /Tn
n(t)n(

+ n(t >< 77 )n(t4) > < n(t2n—l)77(t2n) >
+  <n(t)n(t ) ><n(t2)n(ta) > ... <nltan—2)n(tan) >
+ < n(til )n(tiz) >< n(tis)n(tizl) > < n(tianl)n(tiZn Q@)

N P A PP

and so the even n-order autocorrelation functions for the colored noise can be
written as a sum of products of 2"¢ order autocorrelation functions. Using the
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property that the 2% order autocorrelation function only depends on the time
difference between the two signals |t; — t;| (16), we find

< (SE(tl)(SE(tz)éE(tn) >=< 6E(T — tl)(SE(T — tz)&E(T — tn) > (68)

And thus it follows that

<U[T,0:Q*(T — t) + 0Q*(t)] >=< U[T,0; Q*(T — t) + 6Q*(T — )] > (69)

which means, for the noise model that we have considered, < U~! > can be
computed from < U > thanks to the relation (64) and so time reversal still

apply.
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6 Outlook : Free space

All the work that we have done so far assumes that memory is surrounded by a
cavity. An another case to study is the freespace. As for the cavity, the maximal
efficiency without noise has already been computed [3]. In the cavity, there is
only one mode available for the spinwave and one frequency mode for the probe
and output pulses. In the free space regime, the probe pulse is not anymore
rigorously monocromatic and there are several spinwaves modes that can be
stored. This makes the calculations more complicated although the principle
remains the same as for the cavity. Here we will first give the expression of the
retrieval and the efficiency when there is no noise. These results comes from
the paper [3]. Then we will point out which attempts have been made to get a
usefull analytical solution for the efficiency to the first order in noise intensity.

First, here are the results for retrieval when there is no noise. The optimized
output mode without noise is

- (! 1 _hodtzd h(0,t)zd
outz—\/ﬁm/cr _ wia o [ 270 (1 —2) (70
Eout (t) ()O P AC o( LA (1-2) (70)

S is the spinwave amplitude

t is the rescaled time ¢ = ty

d is the optical depth of the atomic media which is the equivalent of C for
the cavity

e Z is a rescaled space variable that allows to integrate all over the atomic
ensemble. This is to integrate over all spinwave modes.

e All others values A with a ™ are just rescaled as A/~.
2
dt’

o 1(0,7) = [I |

e Iy(z) is the modified Bessel function of the first kind.

The efficiency without noise is given by [1* &out(£)€5,, (t)dt. Using the following
identity [9]

o0 - 1 224p2 A
/0 drre™P Io()\T)Io(‘U/I“):%e Iy <2—Z> (71)

and assuming h(0, 00) is big enough, the retrieval efficiency is

T :/0 dz/o dz'k(2,2")5(1 - 2)S(1 - 2) (72)

where
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k(3,2 = ge—dé*f' Io(dV/3Z) (73)

When introducing noise in the control field Q = Qo + 69, the efficiency is
given by [0 Eout ())& omodyne (t)dE, where

- 1 Y1 _noiiza ho(0,1)2d 3
momt:————ﬂﬂQt/d —e na I (200 ) 5(1-
Sromodye(l) = = A== o VAl | AR 0( v )80

(74)

Ehomodyne 15 generated from the noisy field defined by the Raby frequency (2.
And so ghomodyne = QﬁshapeKnorm- But the Shape ﬁshape of ghomodyne is com-
puted assuming there is no noise and so it is the same shape as for &,,; when
there is no noise. K,orm =!/vI+Ix is a normalization constant ensure that there

is one photon in the pulse. ho(0,%) is defined as ho(0, ) fo ’QO

We will now consider the efficiency. The problem that we are facing is
to give an analytical solution for the efficiency assuming g is independant of
time and that the noise follows the same model as the one we used for the
cavity case. The first thing to do is to expand the Bessel function that contains

9 V10D pRALICE t)2d>. The main

1+iA 1+iA
problem that we then face is to compute this kind of integrals :

noise Iy ( . This expansion depends on [ <

/000 drro‘efprzlo(/\r)fl (ur) (75)

Facing this problem, one can think about using a generalized form of the
solution which is used when there is no noise (71). This is the following one [9]:

Up(7 (a+g+U) )

S drre e 1L () - e
, e u(br)ly(er) = @G+ (v + 1))

k
< T (k:+ %ﬂ) ((g;) P (—ky = — kv + 1;

X

s (C(u+ k + D&Y

where o Fi (a, b; ¢; 2) is Gauss’s hypergeometric function and T is the general-
ized factorial function. However, this was hard to make simplifications on series
terms in order to make some well known functions merge in the result.

One other method to compute an approximative analytical result of (75) is
to approximate the Bessel functions by their asymptotic forms Iy and I;. The
two functions Io(x) and I, (z) are discontinuous since they are defined by [10]

{O(x) =1 for small z (xr < 1) and Io({AE) = \/21?169” for big z, (z > 1)

Ii(z) = £ for small z (z < V2) and I1(z) = \/2171_761 for big z (z > 2)

This requires also to choose the cross-over between big x and small  which

can be chosen to be zg =~ 0.7 for both functions. However, this method still
gives an integral which is hard to compute analytically.
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7 Conclusion

We have seen that quantum memories are required to enhance quantum com-
munications distance. And so the storage and retrieval efficiency of the photons
is the criteria that is used to quantify the efficiency of the memory. In practice
there is always some noise in the electromagnetic fields which are used. We
have considered one kind of experimental setup and, under the assumptions
that TCy > 1 and that the memory was surrounded by a cavity, we have de-
rived the analytical solutions for the storage and retrieval efficiency for low noise
considering two differents types of noise. We have seen that the efficiency still
remain high compared to the efficiency without noise. Moreover, for amplitude
noise, it is possible to shape the probe pulse to optimize the efficiency taking
into account the noise. One interesting result is also the fact that the noise
model we have considered does not affect the time reversal property. And so,
all its usefull applications which are pointed out in this paper [3] remains still
valid.

The natural next step to this work would be to derive analytical solutions
or to perform simulations in the case of free space. Some attempts have been
pointed out in the outlook section.

46



References

1]

[2] Alexey V. Gorshkov, Axel André, Mikhail D. Lukin, and Anders S.
Serensen, e-print quant-ph/0612082 (2006) (Paper I)

[3] Alexey V. Gorshkov, Axel André, Mikhail D. Lukin, and Anders S.
Sgrensen, e-print quant-ph/0612082 (2006) (Paper II)

[4] A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett. 89, 067901 (2002).

[5] B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, Nature
432, 482 (2004).

[6] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490 (2001).

[7] D. F. Phillips, A. Fleischhauer, A. Mair, R.L.Walsworth, and M. D. Lukin,
Phys. Rev. Lett. 86, 783 (2001).

[8] J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich,
and H. J. Kimble, Science 303, 1992 (2004).

[9] E. Gray and G. B. Mathews, A Treatise On Bessel Functions and Their
Applications to Physics (MacMillan and Co., New York, 1895).

[10] G. N. Watson, A Treatise on the Theory of Bessel Functions, Second Edi-
tion, Cambridge University Press (1995)

[11] L. Childress, J.M. Taylor, A. S. Sgrensen, and M. D. Lukin Phy. Re. A 72,
052330 (2005)

[12] L. Jiang, J. M. Taylor, and M. D. Lukin, e-print quant-ph/0609236v3 (2007)

[13] M. Bajcsy, A. S. Zibrov and M. D. Lukin, e-print quant-ph/0311092v3
(2003)

[14] M. U. Staudtl, S. R. Hastings-Simonl, M. Nilssonl, M. Afzeliusl, V.
Scaranil, R. Ricken2, H. Suche2, W. Sohler2, W. Tittell, and N. Gisinl,
e-print quant-ph/0609201 (2006)

[15] Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden, Re-
views of Modern Physics, Volume 74 pages 147-150, January 2002

[16] The Niels Bohr Institute internet site : www.nbi.dk

[17] Toshiba Europe internet site http://www.toshiba-
europe.com /research /crl/qig/quantumecryptography.html

47



A Rabi oscillations

Let us consider a two states system |e) and |g). This is an atom with a ground
state |g) and an excited state |e). We apply an electromagnetic field of frequency
W = Weg — A to this system where the detuning A is the difference between the
transition frequency and the field frequency. Then, the atom will jump from
one state to the other with a fixed frequency. More accurately, if the atom is in
the ground state at the beginning, its probability P,(t) to be measured in the
excited state increases until it reaches a maximum (equal to one if A = 0). Then
the probability to be in the ground state increase until it reach the probability
of one. And it starts again. The frequency at which this happens is called the
Rabi frequency and it can be derived by considering the Hamiltonian of the
system

H = hweg |€) (e] — d.Eg cos(wot) (77)

and the state vector of the system

[T (1) = Cy(t) lg) + Ce(t)e™ ™" |e) (78)
Then using the Schrédinger equation that describes the time evolution of the
system iw = H |¥(t)), assuming that the atom is in the ground state at the

beginning C.(0) = 0 and C4(0) = 1, using the Rotating Wave Approximation to
keep only low frequency terms in wey — wp and dropping the terms in weq + wo,
the following results are obtained

(d,Eo)* o Qt
Pe(t) = —qape 50 (5) (79)
2 (dggEO)2

In this report, the resonant Rabi frequency describes the electric field and is
defined as the usual resonant Rabi frequency divided by 2.

_ dzyBo

0
0T Top

(81)

where d; is the dipole matrix element d;, =< e|c?|g >.
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B Derivation of the Hamiltonian of the system
including phase noise

The derivation of the hamiltonian is almost the same as in the paper [2]. The
electric field operator for the quantized field of the cavity is given by

1
2
El (Z, t) =€ (;Z:;) (dei(wlfJﬂﬁ(t)) + dTefi(wler(ﬁ(t))) (82)
where @' is the mode creation operator, w; is the mode frequency, €; is the
polarization unit vector, €y is the permittivity of the media in the cavity (vacuum
or air), and V is the quantization volume for the field. The excitations are
created in the cavity thanks to a laser. Since the laser has frequency noise, we
add the frequency noise of the excitations in the hamiltonian of the quantized
electric field and so ¢(¢) is the phase noise that results from the frequency noise
ow(t).

The single-mode plane-wave control field with frequency ws is described by
an electric field vector

By(2.1) = exalt)eos(wa(t = =) + (1)) (83)

where €3 is the polarization unit vector, ¢ is the speed of light and &»(¢) is the
amplitude. Since the control field is derived from the same laser as the one
which is used to generate the probe pulse, the frequency noise is described by
¢(t). Then using the dipole approximation, the Hamiltonian is

H=Hy+V (84)
where ﬁo = H field"’f{atoms is the Hamiltonian of the system without any inter-

action and V describes the coupling between the atoms and the free quantized
electromagnetic field

Hficta = hwid'a (85)
N . .
Hatoms = Z (hwsg&;s + hwgea.ée) (86)
=1
V=—d (Baz1) + Bi(2)) (87)

where d = d,, |€) (g| + d*¢g |g) (€] is the dipole moment operator for one atom.

In order to give an expression of V, we need to use the rotating wave approx-
imation (Annexe C.2). This approximation applies when very high frequency
terms of same amplitude as lower frequency terms appear while going into the
rotating frame. The rotating frame (Annexe C.1) is the frame in which the
system’s evolution is taken with respect to the quantized electromagnetic field
frequency. In this case we drop the high frequency terms because they quickly

49



average to 0 and so the dynamic of the system is driven by the low frequency
terms.

N
V= —hz (Q(t)&ise_i“’z(t_zi/c)e_i‘b(t) + dgeiwlzi/céige_id’(t)) +h.c (88)
i=1

where h.c stands for Hermitian conjugate, z; is the position of i*" atom, 6fw =

10" (v]" is the transition operator for i*" atom between states p and v, Q(t) =

%%52 (t) is the Rabi frequency (Annexe A) of the classical control field,

and g = (e|d.e; |s) Zhesy is the coupling constant between the atoms and the

quantized electromagnetic field mode.
We then introduce the collective operators

N

b = Z&;H (89)
1=1
N .

Gos = Y Gl (90)
1=1
N .

beg = Y Glge ) (91)
=1
N .

big = D Ghge ) (92)
1=1

& = ae™ (93)

It then follows that H is written Ho— A (Q(t)&ese_id’(t) + fg&ege_i‘b(t)) +h.c
Then going into the rotating frame respect to Hy = h(wy + 0w(t))Gee yields
to the interaction Hamiltonian

Hi(t) =U*(0)H()U(t) — Hy(t) (94)

where

U(t) — o= [0 FHL(t)at _ + (eﬂ'(mtw(t)) —1)6ee (95)

since [ dw(t')dt’ = ¢(t).

H; is chosen to have an Hamiltonian that describes the interaction of the
system with an electromagnetic field with a frequency equal to wy + dw(t).

The Hamiltonian in the rotating frame that is used to compute the efficiency
in presence of frequency noise is given by

Hi(t) = A — dw(t))oee — (AA(t)0es + hgloeg + h.c) (96)
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Sys s A Fge
N and the polarization operator P = < are

The spin wave operator S =
defined in the same manner as when there is no noise. Their equations of motion
are derived from the Hamiltonian (96) and taking into account the decay ~.
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C Physical tools

C.1 Rotating frame

Starting with a Hamiltonian in the Schrodinger picture, the evolution of the
system is describe by

O1v(t)
ot
Going into a given rotating frame means that we choose an operator f[o(t)
and we transform |¥(t)) and H into ‘\i/(t)> and H which are hopefully much
simpler provided we have chosen a judicious ﬁo(t) .
Let us consider the unitary operator U(t) = e~ # Jo Ho(t)dt"  We unitary
transform |¥(t)) to ‘\if(t)> using

ih = H|W¥(t)) (97)

(1)) = Ut w(e) (98)

We now then write the corresponding Hamiltonian

. a]\iz(t)> . 8’U(t)T\IJ(t)>
e OfW() L OU()T
= Ut 5 ih—p = 19(t))
. T(H)T
= ot ) + i )
= UTWH V@) — B0 [T
- UtwAT \il(t)> —Ho(t)‘\ll(t)>
and so
0 [W(t) o p
ih ‘(% >_H}\1/(t)> (99)
with
H(t) = UMW) A0 (1) ~ Ho(1) (100)

H(t) is the Hamiltonian in the rotating frame

C.2 Rotating Wave Approximation

The Rotating Wave Approximation consists in keeping only low frequency terms
in an Hamiltonian. In order to illustrate how this approximation can be per-
formed, we consider the two level atom system that interact with an electro-
magnetic field. This is the same we used to define the Rabi frequency.
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H = hweg |€) (e| — d.Eq cos(wot) (101)

Going into the interaction picture which means going into the rotating frame
respect to Hy = fuweg |e) (|, the interaction Hamiltonian is given by

H = U'HOU(t) - Ho(t)
_hQ(e*i(weg*WO)t + ei(weg+wo)t) |6> <g| _ hQ*(efi(wﬁquwo)t + ei(wegfwg)t) |@>qz)
Then assuming that A = wey —wy <K weg +wo, the high frequency terms are
dropped since they rapidely oscillate and averages to 0 quickly compared to the

dynamic of the system which is driven by the low frequency terms. And so the
interaction Hamiltonian becomes

Hy = —hQe™ "ol [e) (g] — hQ*e!@es0)t |g) (e] (103)

One can wonder why we switched to the interaction picture. This is due to
the fact that the state vector of the system is given by

(W (1) = Cy(t) lg) + Celt)e™ " |e) (104)

and so going to the interaction picture just moves the oscillations of the
excited states from the state vector to the interaction Hamiltonian.
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D Informatic tools

In order to compute the simulation and to get the analytical expressions for the
efficiency, we respectively used MATLAB and MAPLE.

D.1 MATLAB simulations

The MATLAB simulations have been performed using different m-files. The
architecture is very simple.

e One m-file is used to generate some noise samples which are stored on a
remote scratch disk.

e To compute the efficiency, the noise is loaded, renormalized to get the
proper amplitude and the efficiency is computed using a chosen solver.

e Then the last step is the plot using MATLAB plotting tools.

The different types of solver are each in one m-file. The RK4solver uses the
Runge Kutta method of the 4" order to compute the storage efficiency without
performing the adiabatic elimination. The adiabatic solver uses the adiabatic
elimination and thus does not require any special numerical tool since we know
the analytical solution. However it requires to compute integrals with fixed step
time. For instance it is not possible to use optimal method with error control
and adaptive step integration since there is noise in the signal that we consider.

D.2 MAPLE calculations

There is no general method to get the result you want using MAPLE. However
here are a few thing that have been useful to get the solutions.

e To group as much as possible all constants greatly improve the quality of
the result and the time it takes to compute the result.

e Using commands like convert to transform big additions in a list makes
calculations easier since it enables to focus independently on each part of
the expression.

e Using the subs and algsubs commands was helpful to replace correlations
of the noise by analytical expressions of these correlations

e Doing an expansion of an expression 7)(t) that depends on time can be
perform quite easily by multiplying 7(¢) by = and then using a Taylor
expansion of the expression respect to x. This is especially really helpful
if there are expressions where each 7 are not taken at the same time such
like n(t)elo nt)dtr,
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e Sometimes, MAPLE does not compute an integral even if you see that it
is the kind of integral you could solve with an easy method by hand (but
that could take plenty of time). In this case, what may be tried is to group
constants that can be grouped and if this is can be written in term of a
sum, to integrate each part of the sum step by step.

39



