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RésuméMémoire quantique : in�uence du bruit sur lesprocessus de stockage et de récupérationLe stockage de photons dans un ensemble atomic est un sujet particulièrementimportant pour le domaine des communications quantiques et de la cryptog-raphy quantique. Les photons sont en e�et de bons vecteurs de l'informationsquantique. Cependant le traitement de l'information nécessite leur stockagedans une mémoire. Des recherches sur l'optimisation des processus de stockageet de récupérations ont déjà été e�ectuées. En partant de ces travaux, nousavons étudié l'in�uence du bruit sur les processus mis en jeu. Nous avons mod-élisé la mémoire par un système Λ à trois états, et avons considéré son interactionavec un laser duquel sont dérivés le champ de contrôle et l'impulsion entrante.Nous avons ensuite établis les équations donnant l'expression de l'e�cacité enfonction de l'intensité pour deux types de bruit di�érents : du bruit en amplitudeet en fréquence.Les résultats analytiques sont développés au premier ordre en intensité dubruit et comparés à des simulations. De plus nous montrons qu'en présence debruit en amplitude peut être optimisé en modi�ant l'enveloppe de l'impulsion àstocker connaissant l'intensité du bruit. D'après les résultats obtenus, pour lemodèle de bruit considéré, l'e�cacité est robuste.
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AbstractQuantum memory: in�uence of the noise on thestorage and retrieval processThe storage of photon in an atomic media is a topic of great interest for quantumcommunications including quantum cryptography. In fact, photons are goodquantum information carriers. However processing the information requires tostore them locally in a memory. Research concerning the optimization of stor-age and retrieval processes for quantum memories have already been achieved.Starting with this work, the question was to study what happened in case therewas some noise that disturbed the storage and retrieval processes. So using athree level Λ system as the memory model, and considering a laser as a singlesource which produce the control �eld and the probe pulse, we derived the re-lations that give the e�ciency as function of the noise intensity for two types ofnoise in the laser : amplitude noise and frequency noise.The analytical results are given to �rst order in noise intensity and are com-pared to simulated results. Furthermore, we show that the e�ciency in presenceof amplitude noise can be optimized by shaping the probe pulse as function ofthe noise intensity. According to the results we obtained, the e�ciency is veryrobuste to the kind of noise we have considered.
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Glossary1. AOM (Acousto Optic Modulator): The AOM is a device that uses soundwaves to modulate the shape and the frequency of an electromagneticsignal by modifying the optical index of a medium which is crossed by thelaser pulse to modulate.2. Coherent state: a coherent state |α〉 is the eigenstate of the annihilia-tion operator â of the quantum harmonic oscillator system â |α〉 = α |α〉.This is the quantum light state which is the closest to the classical lightsinusoidal wave representation.3. EOM: Electro Optic Modulator uses electric current to modulate the shapeand the frequency of an electromagnetic signal.4. Homodyne measurement: an homodyne measurement is a method for de-tecting frequency modulated signal by making it interfer with a referencesignal that comes from the same source.5. NBI: The Niels Bohr Institute6. Probe pulse: We use probe pulse as a weak incoming signal we wish storein a quantum memory.7. QUANTOP: Danish National Research Foundation Center for QuantumOptics
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1 IntroductionQuantum information and quantum optics are �elds that aim to use the mostfundamental properties of quantum mechanics to design new computation andcommunication technologies. Quantum communications work experimentallyand some �rms also commercialize quantum cryptography devices [17]. How-ever, the ability to perform long distance quantum communication (more thanone hundred kilometers) is still the subject of research. The main promising ap-proach is the use of quantum repeaters [12, 11]. Such device requires quantummemory to work. That is why quantum memory is a topic on which severallaboratories around the world are working on [8, 5, 6, 7, 8].This report is organized as follow. First, we give some informations aboutthe Niels Bohr Institute where two groups that belong to the Danish NationalResearch Foundation Center for Quantum Optics (QUANTOP) are working.Then we give a short introduction to quantum cryptography and explain whyquantum memories are required to improve the communication distance. Afterthis, we give the model that we use for quantum memory and its principle.Then we focus on the e�ect of the storage and retrieval e�ciency of the memoryassuming there is noise.
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Figure 1: The Niels Bohr Institute2 The Niels Bohr Institute2.1 HistoryThe Institute of Theoretical Physics of the University of Copenhagen has beenfounded in 1921 thanks to the famous Danish physicist Niels Bohr. During the1920s, and 1930s, the Institute was the concordant crossroad of the develop-ing disciplines of atomic physics and quantum physics. Physicists from acrossEurope (and sometimes further abroad) often visited the Institute to conferwith Bohr on new theories and discoveries. The Copenhagen interpretation ofquantum mechanics is named after work done at the Institute during this time.On Niels Bohr's 80th birthday - October 7, 1965 - the Institute for Theoreti-cal Physics of the University of Copenhagen o�cially became The Niels BohrInstitute.2.2 OrganizationThe Niels Bohr Institute belongs to the Faculty of Science of the CopenhagenUniversity. The Niels Bohr Institute is involved in research and education withinastronomy, geophysics, nanophysics, general physics and biophysics.The institute is situated around 'Fælledparken' at three di�erent locations:Rockefeller Komplekset at Juliane Maries Vej 26-32, H.C. Ørsted Institutet atUniversitetsparken 5 and Blegdamsvej 17-21.There are 76 scienti�c sta� members, 74 technical and administrative sta�members, 69 PhD students, and a large number of international researchers andstudents.
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Figure 2: Organizational chart
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2.3 QUANTOP (Danish National Research FoundationCenter for Quantum Optics )Danish National Research Foundation Center for Quantum Optics - QUANTOPwas founded in 2001 and is funded until 2012. The Center involves researchgroups at the Niels Bohr Institute of the University of Copenhagen and at theDepartment of Physics and Astronomy at the University of Aarhus. EugenePolzik is the director of the Center.The research activities of the Center are carried out by four groups:
• Quantum Optics Lab (Copenhagen)
• Quantum Theory Group (Copenhagen)
• Ion Trap Group (Aarhus)
• Quantum Gas Lab (Aarhus)The research concentrates on quantum state engineering for light, atoms andions, including entangled, squeezed and other interesting states. Quantum in-formation processing, including quantum computing, quantum teleportation,quantum cryptography and quantum memory, is one of the major directionsof the research. Studies of ultra-cold atoms, both fundamental research on itsproperties and dynamics, and applications for quantum information processingand precision measurements are carried out theoretically and experimentally.
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3 Quantum cryptographyQuantum cryptography is a practical application of the �eld of quantum com-munication and the technology is already available and commercialized.3.1 PrincipleThe principle of quantum cryptography is to use a one-time-pad combined withquantum mechanics to share the key. A one-time-pad is a cryptography methodthat allows to send only one time a message with a key which has at leastthe lenght of the message. This key is randomly generated and then is sharedbetween Alice and Bob. If Alice want to send one binary message to Bob, shejust need to make the addition between the message and the key. Then shesends the encrypted message to Bob. And Bob just make the addition betweenthe encrypted message and the key. Then the key has to be discarded and notused again.
Encryptedmessage = message⊕ key

Decryptedmessage = Encryptedmessage⊕ keywhere ⊕ stands for the bit to bit addition in the sense 0 ⊕ 1 = 1 ⊕ 0 = 1 and
1 ⊕ 1 = 0 ⊕ 0 = 0.It is the most provable secure way to send a message to someone. Howeverthe main problem is the ability to share the key. This is where quantum me-chanics has a role to play. There is a protocole that requires one classical publicchannel and one quantum channel that allows to share the key.Before explaining the protocole in itself, let us tell some words about thequantum channel. Here we assume that the quantum channel is perfect. Alicehas a perfect single photon source with an Electro Optical Modulator (EOM)that can be seen as a switch that allows to turn on and o� a half wavelengthplate. Bob has a polarizer. Since the quantum channel is ideal, there are noabsorption of photon or loss of polarization in the channel. The EOM makespossible to rotate the polarization of the photon by 45�. The photon can thusbe sent in two di�erents basis (�gure 3). The polarizer can be switched intotwo di�erent positions. These positions allow to make the measurement of thephoton in the two di�erent bases. In each bases, there are two orthogonal states.
〈H |V 〉 = 0 , 〈−45|45〉 = 0. The overlap of any two states of di�erents bases issuch that they give equal probabilities : |〈−45|H〉|2 = |〈−45|V 〉|2 = |〈45|V 〉|2 =

|〈45|H〉|2 = 1
2 . In order to make the correspondance with binary information,we choose the convention that the states |H〉 and |45�〉 stand for |1〉 and thestates |V 〉 and |−45�〉 stand for |0〉.
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Figure 3: The two polarisation basesLet us now explain the protocol.
• Alice send photons to Bob. Each photon is sent in one of the two basesin one state of this bases |0〉 or |1〉. The choice of the bases is done bya random number generator. The state of the photon |0〉 or |1〉 is alsochosen with a random generator. For each photon that Bob receives, hemakes a measurement in one of the two bases. The choice of the bases isdone by a random number generator that is not correlated to Alice's one.If no ones try to make a measurement between Bob and Alice, the errorrate in the raw key is 25%.
• Bob and Alice then announce the bases they have chosen with the publicchannel. They then only keep the bits that have been measured in thesame bases as they have been sent. After having discarded the bits whichwere measured in the wrong bases, a shorter key is obtained.
• By announcing some of the bits they have kept, they can then compareif they are the same. If this is the case, this means that no one has triedto intercept the key. They can for instance choose randomly 50% of thebits of the shorter key. If they all matches, they keep the half of the keythat remains to encrypt the message. In fact the remaining key must beat least of the length of the message.
• The message is then encrypted using the remaining key. This is a classicalone-time-pad.We now just say a few words about the eavedropping. If an eavedropper, Eve,attempts to get the key , Eve will need to measure some photons from Alice andthen send the same number of photon to Bob. To make the measurement, Eveneed to choose a bases. Since she does not know Alice's bases, she will chooseit randomly. But Eve does not know wether she choses the good bases or not14



and so she sometimes send photons to Bob in the wrong bases. If in this caseAlice and Bob have the same bases. When they compare the shorter key, they�nd some di�erences.If someone attempts to intercept the communication, then there will bedi�erence in some bits which belong to the shorter key. The only thing to do isin this case to discard the whole key. In practice however, there are many otherconsiderations to take into account : all kind of error that occurs, statisticalanalysis, other kind of protocols . But the main principle remains the same :using quantum mechanics to share the key. Much more informations about thissubject can be found in the paper [15].3.2 Quantum repeatersToday, the main obstacle to the commercialization at big scale of quantumcryptography devices is its implementation on large distances. In practice, lossof photons increase with the distance. Quantum repeaters are devices that useproperty of entanglement swapping to teleport the state of a photon to anotherdistant photon. And such device could in principle enhance dramatically thedistance on which quantum key distribution can be done.Let us now tell a few words about entanglement swapping. A system of twophotons is called maximally entangled if measuring one of these photons makethe other one in a determinate state, and if the single particle density is com-pletely mixed (which means the probability to measure one state or the other arethe same). For instance 1√
2

(|0〉 |1〉 + |1〉 |0〉) is a maximally entangled system.The entanglement swapping is the ability to make two separated system entan-gled without making them interact. For instance let us consider three personsAlice, Bob and Claire. Alice and Bob share an entangle state 1√
2
|0A〉 |0B1〉 +

1√
2
|1A〉 |1B1〉. Bob and Claire share 1√

2
|0B2〉 |0C〉 + 1√

2
|1B2〉 |1C〉. Where theindex A stands for Alice's photon state, B1 and B2 stands for Bob's photonsstates and C stands for Claire's photon state. Then if Bob perform a spe-cial kind of measurement (called Bell's measurement) that involves the photons

B1 and B2, the photons of Alice and Claire are then maximally entangled
1√
2
|0A〉 |0C〉 + 1√

2
|1A〉 |1C〉 even if they have not interacted. This is what iscalled entanglement swapping.One important problem is how to perform a measurement that involves twophotons? The main approach is to store locally in a memory the states of the twophotons, and then to perform the measurement by processing the informationin the quantum memory.
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4 Quantum memoryThis section presents the model that is used for the quantum memory and whatare the e�ciency of storage and retrieval of photons that can be achieved.4.1 Model4.1.1 Main ideaThe quantum memory is basically a three states quantum system. One state isan excited state |e > with a short life time. The two others states are a groundstate |g > and a metastable state |s >. The long life time of the state |s > is dueto the fact that there is no electric dipole allowed transition between |s >and
|g >. The main idea is to couple this system with two electromagnetic �elds:the probe pulse which contains the information that we want to store, and thecontrol �eld which will help storing the probe pulse. The probe pulse is a weakpulse, with few photons. Since we are interested in the quantum information ofthe pulse, it will be described by an operator. On the contrary, the control �eldis a strong pulse described in a classical manner.At the end of the storage process, all the information is contained in asuperposition of |g > and |s >. It follows that the relevant operator to describethe information that has been stored is in fact |s >< g|. Of course, it isimpossible to store anything on a transition involving the excited state becauseof the fast decay. One can argue that in practice there is also a decay due tohigher order moment transitions between |g > and |s >. However what we needis only to store the information during the time we need to process it. And thiscan be achieved in this way. The retrieval of the photon is done by applying acontrol �eld after the storage process.In theory, the memory can work with only one atom. The three states arethose which can be reached by a single electron. The storage process for acoherent probe pulse in one is shawn on �gure {4}. However, the couplingconstant g between one atom and one photon is weak. In such case, the storagecan only be done by using extremely good cavities. Such cavities are howeververy hard to build.
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Figure 4: Storage of a coherent probe pulse in one atom.The �gure {4} only shows what happens for a coherent state. But the prin-ciple remains the same for a superposition of coherent states. For instance,sending one photon on a beamsplitter gives a superposition of zero and onephoton on each path of the beam splitter. One can in principle store the su-perposition of zero and one photon in the quantum memory as a superpositionof |g > and |s > . At the moment, experiments for storage have not only beenachieved for coherent pulses [13], but also for superpositions of states [14].Although a quantum memory works in principle with a single atom, in prac-tice, what is used is an atomic ensemble of N atoms. This has only advantagescompared to the case of a single atom.
• The memory is experimentally simpler to build since it is harder to selectonly one atom.
• The e�ective coupling constant between the atomic ensemble and thequantum electromagnetic �eld is enhanced by a factor √

N so that thee�ective coupling constant is given by g
√

N .We furthemore assume that the atomic ensemble is surrounded by a cavity. Inthis case, there is only one frequency mode for the probe pulse and the equationsare simpler compared to the case of the free space.4.1.2 Operators and notationsIn order to describe the storage and retrieval processes, some collective operatorsare needed. Here we will only give and explain the role of these operators and17



give the master equations that they follow. We need to describe the |s > −|g >transitions, the |g > −|e > transitions, and the probe pulse.
• The S operator describes the collective |s >< g| transitions for all atoms.We call it spinwave annihilation operator. This is the one that describesthe stored information.
• The P operator describes the |e >< g| transitions for all atoms. We callit polarisation operator.
• The ξin operator describes the shape of the probe pulse during the storage.
• The ξout operator describes the shape of the output pulse during the re-trieval.
• The classical control �eld is described by its Raby frequency Ω (AnnexeA).The control �eld and the probe pulse are monomode.
• The probe pulse frequency is ω1.
• The control �eld frequency is ω2.However, we prefer to describe the frequency of these �elds respect to the rele-vant atomic transitions.
ω1 = ωeg −∆1 where ∆1 is the detuning between the probe pulse frequencyand the |e > −|g > resonant frequency.
ω2 = ωes −∆2 where ∆2 is the detuning between the probe pulse frequencyand the |e > −|s > resonant frequency.In all that follow, we will consider that these detuning are the sames. ∆1 =

∆2 = ∆.

Figure 5: Λ atomic media scheme. The blue dash line is the quantum �eld. Thered line is the classical �eld. [2] 18



We now need a few more physical quantities to write down the equations ofmotion for the operators.
• γ is the total decay of the optical transition σeg = |e >< g| including thedecay due to spontaneous emission γe .
• κ is the constant that caracterize the leakage of the pulse due to the cavity.
• We can now de�ne C = g2N

κγ , the cooperativity parameter of the cavity.The master equations are derived from the Hamiltonian H of the system usingthe equations of motion dA
dt = i[A, H ] where A stands for any operator. In theinteraction picture, H =~∆σee−(~Ω(t)σes + ~gξσeg + h.c) where σij = |i >< j|and h.c stands for hermitian conjugate. However, this hamiltonian does not takeinto account the decay between the states |e〉 and |g〉, |e〉 and |s〉, and |g〉 and |s〉.Since the transition between |g〉 and |s〉 is not dipole allowed, we consider thatthis decay is long enough compared to the time we want to store the photon.We thus only consider the decay of the excited state γ. Using the assumptionthat all the atoms are in the ground state at the beginning, and that there arealmost always most of the atoms in the ground state, taking into account thedecay γ ,the master equations can be written as:

ξout = ξin + i
√

2γCP

Ṗ = −(γ(1 + C) + i∆)P + iΩS + i
√

2γCξin (1)
Ṡ = iΩ?PAll the details are given in the paper [2].4.2 Experimental setupWe are going now to describe a typical experimental setup. This will be requiredwhen we will add noise in the control �eld. In fact, the result that we will obtainwill be closely linked to the setup.4.2.1 StorageOur model is to derive the control �eld and the probe pulse from the same laser.This may not be the case in industrial implementations, however this is the casein most experiments which are performed on quantum memory. The requiredshape for the probe pulse is realized by an Acousto Optic Modulator. The Rabifrequency is chosen by a second AOM which shapes E(t). The storage is thenachieved in an atomic ensemble surrounded by a cavity.19



Figure 6: Experimental setup for the storage of a probe pulseThe storage starts at time t = 0 and stops at t = T .4.2.2 RetrievalIn practice, if there is a spinwave mode stored in the memory, applying a control�eld will result in the retrieval of an output pulse. However, we need to havesome device to check the shape of the output mode. This is done by homodyningthe output pulse with an other signal that is generated from the same laser thatis used as control �eld for retrieval. The frequency shift of the homodyningpulse is done by an AOM. The shaping of the control �eld is done by an AOMtoo.
Figure 7: Experimental setup for the retrieval of a probe pulseThe retrieval starts at TR > T . However for all the calculations, we will use

TR = 0 when we will consider only retrieval since it does not change anything.4.3 Storage and retrieval e�ciencyThe total e�ciency of the memory is given by the probability to store a photonand retrieve it in the same mode. The following results will be given assumingwe are allowed to eliminate adiabatically the polarization. This means that weput Ṗ ≈ 0 in the relations (1). It has been proved that it is allowed when
TCγ � 1 [2].The whole details concerning the two following sub-sections areexplained in [2]. 20



4.3.1 Storage e�ciencyThe storage e�ciency is de�ned by the number of stored excitations divided bythe number of incoming photons. Without loss of generality, we renormalize theprobe pulse to have one photon. The e�ciency is then given by the number ofexcitations. Since S has all the properties of an annihilation operator [2], thenumber of stored spinwave is given by the usual number operator SS† . We arenot interested in each eigenvalue of the operator but only in the mean value. Inthis case, the S operator can be considered as a complex number. The storagee�ciency is written as
ηs = SS? = |S(T )|2Adding the assumption that ξout = 0 since we are interesting in storage, onecan solve the two last equations of the system (1) and �nd that S operator isthen given by ( 2).

S(T ) =

√
C

1 + C

∫ T

0

f(t)ξin(t)dt (2)where f(t) is the function de�ned by
f(t) = −Ω?(t)

√
2γ(1 + C)

γ(1 + C) + i∆
e−

h(t,T )
γ(1+C)+i∆ (3)and h(t1, t2) is given by

h(t1, t2) =

∫ t2

t1

|Ω(t)|2dt (4)Let us just give some physical meaning about the phase factor in the ex-ponential. This phase factor i∆h(t,T )
∆2+γ2(1+C)2 is called the AC-stark shift and itcorreponds to the phase that is added to the probe pulse due to its interactionwith the atomic ensemble.Now the whole problem is to maximise the storage e�ciency. It has beenproved that with the assumptions we have used, it is always possible to reacha maximum e�ciency equal to C
1+C . The maximal e�ciency is obtained if thefollowing condition is full�lled
ξin(t) = f(t)?. (5)We �rst see that this condition compensates the AC-stark shift since it isthe complex conjugate of f . One way to show that this condition gives themaximal e�ciency is to notice that f(t) is normalized. This can be written∫ T

0 f(t)f(t)?dt = 1. Since we want ξin to be normalized too and remindingthat the integral over the product of two normalized functions a(t) and b(t)is a scalar product, the Cauchy-Schwarz inequality gives < a|b >≤ 1 so that∫ T

0 f(t)ξin(t)dt ≤ 1. This integral is equal to one if and only if the condition(5) is full�lled. Since we know the optimized shape for the probe pulse, we canthen compute the storage e�ciency and obtain21



ηs =
C

1 + C

[
1 − e

− 2γ(1+C)

γ2(1+C)2+∆2 h(0,T )
]2 (6)which gives ηs ≈ C

1+C provided h(0, T ) is big enough. Getting h(0, T ) bigrequires to apply a control �eld during a su�ciently long period, or a control�eld with a strong enough amplitude.4.3.2 Retrieval e�ciencyThe retrieval e�ciency is de�ned by the number of retrieved photons dividedby the number of stored excitations. Without loss of generality, we renormalizethe spinwave to have one stored excitation (S(0) = 1). The e�ciency is thengiven by the number of retrieved photons into the desired output mode. Thisis given by ηr = AA? = |A|2where
A =

∫ ∞

TR

ξout(t)ξ
?
desiredoutput(t)dt (7)Here we just choose the desired mode equal to the output mode to get themaximal e�ciency ξdesiredmode = ξout.With the adiabatic elimination of P and assuming that ξin = 0 since weare interested in retrieval process, solving the master equations (1) gives thefollowing result

ξout(t) = −
√

2γC
Ω(t)

γ(1 + C) + i∆
e−

1
γ(1+C)+i∆

h(0,t). (8)The retrieval e�ciency is then given by
ηr =

C

1 + C

[
1 − e

− 2γ(1+C)

γ2(1+C)2+∆2 h(0,∞)
]2

. (9)The maximal retrieval e�ciency can be achieved provided the control �eld isapplied for a su�ciently long period or provided the control �eld is strong enough(that means to have h(0,∞) big enough do drop the exponential).4.4 Time reversalDespite the system contains an irreversible decay γ, time reversal is still animportant concept. It has been proved in the paper [3] that knowing the optimalretrieval strategy gives the optimal storage strategy using the time reversalconcept. It works both for cavity and free space. And it shows that the optimalincoming mode is the time-reverse of the optimized retrieved mode. Moreother,the optimal storage control Ωr is the time-reverse of the retrieval control Ωs,
Ωr(t) = Ω?

s(T − t). (10)In that case, the output pulse is simply linked to the input pulse by the relation:22



e(t) = ξ?
int(T − t) (11)where e(t) stands for the output pulse which is renormalized to contain exactlyone photon. The results that we have just given previously full�ll this relation.It is also time reversal that explain why the storage e�ciency is equal to theretrieval e�ciency.
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5 Noise in quantum memoryWe have seen that in certain limit the maximal storage and retrieval e�ciency.This has been done assuming a perfect probe pulse and a perfect control �eld. Inpractice there is always some noise. The whole problem that we are interestedin is the behavior of the e�ciency in such conditions. We will consider twodi�erent types of noise : amplitude noise and phase noise.5.1 Amplitude noise5.1.1 Noise modelThe amplitude noise is a random �uctuation of the amplitude of the electro-magnetic �eld of the laser which is used for both the probe pulse and the control�eld. We will assume that the noise is white gaussian noise and that there is afeedback on the laser. We write the electric �eld as
E(t) = (E0(t) + δE(t))e

iωt (12)where δE represents the noise. The given relation for δE taking the feedbackinto account is :
˙δE(t) = ANE0η(t) − γNδE(t) (13)

• The strengh of the feedback is γN . The bigger is γN , the smaller is thenoise amplitude.
• η(t) is gaussian white noise normalized to have

Autocorr(η(t)η(t′)) = Tδ(t − t′) (14)where T is the duration of the period on which we have computed theautocorrelation.
• AN is a normalization factor that gives the proportion of noise in thesignal. For AN = 0, there is no noise. For AN = 1, there is as much noiseas signal.Solving the di�erential equation (13 gives the following result :

δE(t) = ANE0

∫ t

−∞
η(t′)e−γN (t−t′)dt′ (15)In order to compute the e�ciency in the following parts, we will need theautocorrelation function for δE. Using the relations (15) and (14), we obtainthe autocorrelation function

Autocorr(δE(t)δE(t′)) = INTE2
0 .exp(−γN |t − t′|), (16)24



where IN =
A2

N

γN
. What is interesting for us in the following is the instantaneousvalue of the noise intensity. This is given by

< δE(t)δE(t′) >=
Autocorr(δE(t)δE(t′))

T

< δE(t)δE(t′) >= INE2
0 .exp(−γN |t − t′|).5.1.2 theoretical resultsThe theoretical results have been obtained with the help of MAPLE (AnnexeD.2).Storage The point is now to compute the storage e�ciency for the consideredexperimental setup. One can express the Rabi frequency and the shape of theprobe pulse in function of E(t)

Ω(t) = α(t).E(t) (17)
ξin(t) = β(t)E(t). (18)

Figure 8: Storage process including noise
α(t) is the shape of the Rabi frequency which is given by the AOM and β(t) isthe shape of the probe pulse. Starting with there are two main ways to optimizethe storage process :

• Optimizing the shape of the control �eld for a given probe pulse.
• Optimizing the shape of the probe pulse for a given control �eld.This is the last approach that we will consider. We will now compute thee�ciency using two di�erents shape for the probe pulse:
• The shape that maximizes the e�ciency when we do not take into accountthe noise. We will refer it as the standard mode.25



• The shape that maximizes the e�ciency assuming we know somethingabout the average of the noise. We will refer it as the optimized mode.Since we consider noise which is a random process, the relevant quantities willbe the average amplitude of the spinwave squared < S >< S? > and the averagenumber of excitations stored < SS? > where 〈〉 stands for averaging over thenoise.Standard mode The shape β(t) of this mode is already known since it isthe one we have computed when there is no noise which is given by the relation(5)
β(t) = −α(t)

√
2γ(1 + C)

γ(1 + C) − i∆
e−

h0(t,T )

γ(1+C)−i∆ (19)with
h0(t1, t2) =

∫ t2

t1

|Ω0(t)|2dt (20)where the index 0 means that there is no noise in the electromagnetic �eld. Inpractice, it means that when we compute the shape of the probe pulse, we willtake the value of the Rabi frequency of the control �eld assuming there is nonoise. Then, assuming there is one photon on average in the probe pulse,
ξin = −Ω(t)

√
2γ(1 + C)

γ(1 + C) − i∆
e−

h0(t,T )

γ(1+C)−i∆

√
1

1 + IN
(21)The √ 1

1+IN
factor is the renormalization factor. It makes sure that we have onaverage one photon in the probe pulse ∫ T

0
〈ξin(t)ξ?

in(t)〉 dt = 1. If there is nonoise the renormalization factor is equal to 1 which gives the same expressionas in relation (5).Using the de�nition of S, we will compute the average e�ciency
< S >=

√
C

1 + C

∫ T

0

< f(t)ξin(t) > dt.However, computing the exact < S > requires that we are able to compute
< Ω(t)Ω?(t)e−

h(t,T )
γ(1+C)+i∆ > which is very hard. Considering this, the solutionthat we will give is expanded to the second order in the noise δE (and so to the�rst order in IN ). This solution requires that the noise must be low comparedto the amplitude of the �eld IN � 1.In that case, we obtain the following expression for the amplitude of the spin
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wave squared
< S >< S? > = C

1+C
1

1+IN

∫ T

0 |Ω0(t)|2 |K1|2 e
(−|K1|2

∫ T
t |Ω0(t′)|2dt′)

×
{

1 + In

[
2 − 4 |K1|2

∫ T

t

|Ω0(t
′)|2 e(−γN (t′−t)dt′ − |K1|2

∫ T

t

|Ω0(t
′)|2 dt′

+ 4
(
|K1|4 − 2 |K0|−2

) ∫ T

t

∫ T

t1

|Ω0(t1)|2 |Ω0(t2)|2 e(−γN (t2−t1)dt2dt1

]}
dtwhere K0 = γ(1 + C) + i∆ , K1 =

√
2γ(1+C)

K0
and Ω0(t) = α(t)E0.In order to get some intuition about the result, we make the assumptionthat the amplitude of the control �eld is constant E0(t) = E0 and that there isno modulation of the electric �eld to generate the control �eld α(t) = α. Wealso make the assumption that the control �eld is applied long enough to storeas much excitations as possible. To make this assumption more precise, whenwe do the calculation, some decreasing exponential appears like in relation (6).The assumption that we make is to assume that T is several time bigger thanthe smallest dropping constant a = ∆2+γ2(1+C)2

2γ(1+C)Ω2
0
. For instance T > 3a. We cannow neglect all these exponentials and the solutions can be written as

< S >< S? >=
C

1 + C

{
1 − In

2Ω2
0

(
∆2 + γ2(1 + C)2

)

γNγ(1 + C) (∆2 + γ2(1 + C)2) + 2Ω2
0γ

2(1 + C)2

}(22)
< SS? >=

C

1 + C

{
1 − In

Ω2
0

(
∆2 + γ2(1 + C)2

)

γNγ(1 + C) (∆2 + γ2(1 + C)2) + 2Ω2
0γ

2(1 + C)2

}(23)The �rst thing that we can see is that the error in the number of stored ex-citations is just twice the error on the spinwave amplitude. So that maximizingone of these quantity makes the otherone maximized too. What we want to seeis in which regime the error is the lowest. The error can be written as
Err =

(
γN

γ(1 + C)

Ω2
0

+
2γ2(1 + C)2

∆2 + γ2(1 + C)2

)−1

. (24)We immediately see that the bigger is the detuning ∆, the bigger is the error.In the case limit where ∆ = 0, the error can be written as
Err =

1

γNTpulse + 2where
Tpulse =

∆2 + γ2(1 + C)2

γ(1 + C)Ω2
0

(25)27



is, up to some constant of the order of 1(for instance 5
2 to have T = 5a), thecaracteristic time of the probe pulse. Since γN is the feedback amplitude, asimple physical interpretation of the error is that the bigger the feedback iscompared to the time duration of the pulse, the more the laser have time toaverage over the noise and so the less is the error.In the limit ∆ → ∞, the error can be written as

Err =
1

γNTpulse
.To understand what does mean this limit, let us consider the probe pulse whichis given by (21). Using a typical �xed pulse duration Tpulse, the phase in theexponential can be written i t∆

Tpulseγ(1+C) . Taking the limit ∆ → ∞ correspondsthus to a random AC-stark shift on the probe pulse. And in this limit we seethat the condition γNTpulse � 1 must be full�lled to minimize the error as for
∆ = 0.Optimizedmode We have computed the e�ciency considering a standardmode. Now we consider what happens if we try to optimize the e�ciency bychanging the probe mode shape. The �rst step to compute the solution in thissection is to compute the optimized mode. This is done by using the methodof the lagrange multiplicator assuming the probe pulse is normalized to containone photon. This method requires to solve the equation

∂

∂β

(
< S > −λ

∫ T

0

< ξinξ?
in >

)
= 0 (26)with the normalization condition

∫ T

0

< ξinξ?
in >= 1 ⇔ E2

0 (1 + IN )

∫ T

0

β(t)β(t)?dt = 1 (27)The expression for < S >is given by (2)
< S >=

√
C

1 + C

∫ T

0

< f(t)ξin(t) > dt =

√
C

1 + C

∫ T

0

< f(t)E(t) > β(t)dtthen, using (19), we �nd
< S >=

√
C

1 + C

∫ T

0

−α?(t)

√
2γ(1 + C)

γ(1 + C) + i∆
< e−

h(t,T )
γ(1+C)+i∆ E(t)E(t)? > β(t)dt(28)In order to simplify the writing of the expression, we introduce m(t) which isde�ned by

m(t) = −α?(t)

√
2γ(1 + C)

γ(1 + C) + i∆
e−

h(t,T )
γ(1+C)+i∆ E(t)E(t)? (29)28



Figure 9: Retrieval schemeEq. (28) can then be written as
< S >=

√
C

1 + C

∫ T

0

< m(t) > β(t)dt (30)Eq. (26) is then written as
∂

∂β

(√
C

1 + C

∫ T

0

m(t)β(t) − E2
0(1 + IN )

∫ T

0

β(t)β(t)?dt

)
= 0 (31)and using the normalization condition (27), it comes

β(t) =
m(t)

?

√
E2

0(t)(1 + In)

√∫ T

0 m(t′)m(t′)?dt′
(32)Now we can compute the e�ciency in the same way as we did for the standardmode with the same assumptions. And we obtain the same result to the �rstorder in IN which is given by the relations (22) and (23). It seems that doingthis optimization is useless for low noise. However, to see the e�ect of theoptimization, we will do some comparisons based on simulations. But �rst weare going to do for retrieval what we have done for storage.Retrieval The calculation of the retrieval e�ciency assuming there is noisein the laser source is very similar to the calculation of the storage e�ciency.Considering the experimental setup, we are interested in the overlap of thehomodyning pulse and the output pulse.

ξhomodyning = βhomodyning(t)E(t)
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The output mode is given by the relation (8). As for the storage process, we willconsider two di�erent shape for the homodyning pulse. What we are interestedin computing are < A >< A? > and < AA? >.Standard mode The shape of the homodyning pulse is the same as theshape of the output pulse when there is no noise
βhomodyning(t) = −α

√
2γ(1 + C)

γ(1 + C) + i∆
e−

h0(0,t)

γ(1+C)+i∆ .Then, assuming there is one photon in the homodyning pulse,
ξhomodyning = −Ω(t)

√
2γ(1 + C)

γ(1 + C) + i∆
e−

h0(0,t)

γ(1+C)+i∆

√
1

1 + IN
(33)We are now interested in the computation of < A >. Using the de�nition of

A in eq. (7) starting with TR = 0, and using the relations (8) and (33), thecalculations give the same e�ciency as for storage. The integration here is donefor time ranging from 0 to in�nity. But in practice, it is the same conditionas we had for storage : the time duration of the control pulse must be longenough so that all stored excitations are retrieved. Then we can drop all thedecreasing exponential that appears during the calculation and we obtain thefollowing results.
< A >< A? >=

C

1 + C

{
1 − In

2Ω2
0

(
∆2 + γ2(1 + C)2

)

γNγ(1 + C) (∆2 + γ2(1 + C)2) + 2Ω2
0γ

2(1 + C)2

}(34)
< AA? >=

C

1 + C

{
1 − In

Ω2
0

(
∆2 + γ2(1 + C)2

)

γNγ(1 + C) (∆2 + γ2(1 + C)2) + 2Ω2
0γ

2(1 + C)2

}(35)Optimized mode The optimization of the homodyning pulse is the sameas the optimization of the probe pulse in the storage. And then doing verysimilar calculations as those that we have done for the storage process, one canobtain the same result for < A >< A? > and < AA? > that we have justobtained using the standard mode for the homodyning pulse.5.1.3 SimulationsAll the following simulations have been done for storage using MATLAB (An-nexe D.1).
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Noise generation The �rst step of the simulation is to generate the noisein the laser beam. We �rst generate an array that contains white noise. Thenthe calculation of the noise is done by using relation {15} taking the integralfrom t − 5
γN

to t instead of −∞ to t . We want an array of colored noisethat has a size equal to Nbp × T where Nbp is the number of point per unitof time and T is the duration of the pulse. We thus need an array whichhas at least a size of Nbp × (T + 5
γN

) for the white noise. We then computethe autocorrelation function of the colored noise array. The maximum of theautocorrelation function is equal to the typical intensity of the noise times theintegration time IN1T where the intensity IN1 depends on the intensity of thewhite noise. We know need to be able to choose the intensity of the colored noisewhich means to be able to renormalize the colored noise. Using the propertyof the autocorrelation function a2 < δE(t)δE(t + τ) >=< aδE(t)aδE(t + τ) >,we just mutiply the colored noise array by a = 1/
√

IN1 to get an a normilizedautocorrelation equal to T , which means that the typical intensity of the colorednoise is equal to one. The �gure {10} shows the result that we obtain forthe averaged noise autocorrelation compared to the theoritical autocorrelationfunction (16).

Figure 10: Mean of the autocorrelations functions of 100 noise samples generated(blue) and theoretical autocorrelation function (red), for T=100 with a step timeof 0.01, γN = 1 and E0 = 1 . 31



Theoretical results and simulation The �gure {11} is a comparison be-tween the theoretical decrease of the e�ciency (22) and the simulated e�ciencyas function of the noise amplitude.

Figure 11: Storage e�ciency : simulation and theory with ∆ = 0, γ = 1,
γN = 1,C = 10, T = 100We are going to describe how this curve has been done. This plot has beencomputed by considering 50 storage experiments. For each experiment, 100storage shots are generated for the same noise amplitude. These 100 probepulses are then normalized to have on average one photon per shot for thisexperiment.

<

∫
ξinξ?

in >= 1 (36)By doing this, we introduce correlation a-posteriori between the probe pulsesof the same experiment. That is why we cannot compute the standard errorwith only one experiment of 100 storage shots. And so the method that wehave done is to do several experiments for the same noise amplitude to computethe standard error. However, the e�ciency for each noise amplitude has beencomputed by recycling the same noise samples. That is why the curve is mono-tonely decreasing without �uctuations of the order of magnitude of the rootmean square. However, the noise samples are di�erent for each experiment.The following plot {12} shows that the theoretical model and the simulationagree for a noise amplitude smaller than 25% of the amplitude of the laser E0.
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Figure 12: Storage e�ciency : simulation and theory (II) with ∆ = 0, γ = 1,
γN = 1, C = 10, T = 100This plot has been generated by using one experiment of 100 samples of S ateach point but without recycling the noise for di�erents noise amplitude. Thatis why there are no error bar on this curve. However, one can see that therandom �uctuations are around the theoretical plot. The slight o�set betweenthe two curves is due to two factors. In the simulation, the pulse energy is�nite, T is not in�nite so that there is a slight decrease of the e�ciency due tothe decreasing exponential. The other factor is the numerical error due to theintegration with the rectangle method.These plots show that the e�ciency remain still quite high even with bignoise amplitude. For instance, assuming a normalized noise amplitude of one,which means there are as many photons that come from noise as from signal,the �gure {11} shows that the e�ciency still remains greater than 70% for ane�ciency without noise of 91%.Simulation of the optimized mode In this section, we have computed anoptimized mode to the �rst order in noise intensity IN for storage. However, an-alytically we only had a solution to the �rst order in the noise intensity and therewas no di�erence between the e�ciency computed with the optimized mode andthe standard mode. The following plot shows three di�erent e�ciciency curvesthat have been computed using the same noise but with three di�erent probepulses. 33



Figure 13: Storage e�ciency : optimization
• The green curve has been computed using the standard probe pulse
• The red curve has been computed using the theoretical optimized probepulse to �rst order in the noise intensity.
• The blue curve has been computed using a numerical optimized probe.This last pulse is computed in the following manner

βoptimal(ti) =
< E(ti)

?f(ti)
? >√

< E(ti)E(ti)? >which is what is given by the optimal theoretical mode (32) at each time ti.As a practical interest, it is impossible to use βoptimal since it requires tonow before the experiment the mean of quantities that are not known. Howevera practical solution is to measure on a large sample the values of E(ti) and
f(ti). Then it is possible to compute the mode that would have been optimalto store this sample. Then, assuming the noise has the same properties in thenext experiment, one can use the computed optimal mode as probe pulse forthe storage in this experiment.One can see that for these parameters, optimizing the shape of the probepulse is not really usefull for low noise smaller than 30% of E0. However, forbigger noise amplitude, it is interesting to consider optimisation.34



In�uence of the detuning The following plot represents the storage e�-ciency in function of the detuning for 6 di�erents values of the noise. For eachvalue of the noise, the calculations have been done both with and without adi-abatic elimination of P .

Figure 14: Detuning in�uence on storage e�ciency for di�erents noise valueswith γ = 1, γN = 1, C = 10, T = 100Concerning the di�erence between the two solvers : this plot shows thatthe solver that computes P without adiabatic elimination adds an o�set on thecurve but the behavior of the e�ciency is preserved. Since the conditions foradiabatic elimination are full�lled with TCγ = 1000 � 1, this o�set is due tothe numerical solver.We see also that as long as we stay in the region where the detuning is smallenough to have the approximation T = ∞, the bigger is the noise, the worst isthe in�uence of the detuning. This is consistent with the theoretical result. Forbig detuning, the decay of the e�ciency is not only due to the noise but also tothe fact that some excitations are not stored (we can not drop the decreasingexponential anymore in the calculations). The crossover between the di�erentcurves for di�erent noise might look not really intuitive. However, we remindthat this crossover appears in the region where we lack power to store all thepulse. But the bigger is the noise, the bigger is the total power in the control�eld. And so, at some point, the power given by the noise compensate the lossof e�ciency due to the same noise.The main thing that this plot shows is that the best limit to optimise thee�ciency is ∆ = 0 which is consistent with the theoretical result.35



5.2 Phase noiseAll that we have done so far concerned amplitude noise. We are now goingto study what happens if there are random �uctuation of the frequency of thelaser.5.2.1 Noise modelHere we assume that the amplitude is constant and equal E0 and that there isa random �uctation of the frequency δω(t).
E = E0e

iωt+i
∫ t
0 δω(t1)dt1 (37)The model that we assume for δω is a white gaussian noise with a feedback

˙δω(t) = Aωηω(t) − γωδω(t) (38)It is the same equation as the one we used for amplitude noise. And so theautocorrelation function divided by the time duration of the pulse is
< δω(t)δω(t′) >= Iω .exp(−γω |t − t′|) (39)with

Iω =
A2

ω

2γω
(40)5.2.2 Theoretical resultsWhen we have inserted amplitude noise, the Hamiltonian of the system was un-changed. However, when facing frequency noise, one way to deal with it is to gointo the interaction picture respect to the Hamiltonian H0 = ~δω(t) |e〉 〈e| .Thedetails are given in the annexe B and it gives the following hamiltonian for thesystem

H = ~(∆ − δω(t))σee − (~Ω(t)σes + ~gξσeg + h.c) (41)and the master equations of the system becomes
ξout = ξin + i

√
2γCP

Ṗ = −(γ(1 + C) + i(∆ − δω(t)))P + iΩS + i
√

2γCξin (42)
Ṡ = iΩ?PWhat we can see at this point for frequency noise is exactly the same as a�uctuation of the detuning. Now we still assume that the adiabatic eliminationof P is valid. The exact condition for this adiabatic elimination will be discussedin section 5.2.4. We also assume that Ω0 does not depends on time.36



Storage When considering the storage process and assuming the adiabaticelimination of P , the behaviour of S is described by the two last equations of(42). They can be combined to a single equation of motion :
(γ(1 + C) + i(∆ − δω(t))Ṡ + |Ω|2 S = −Ω?

√
2γCξin (43)The method that we chose to solve this equation is to compute an analyticalsolution for S and then to expand to the lowest order in intensity frequencynoise in order to get some simple result. The equation (43) can be written as

Ṡ + a(t)S = b(t) (44)with a(t) = |Ω0|2
γ(1+C)+i(∆−δω(t)) and b(t) =

−Ω?
0ξin

√
2γC

γ(1+C)+i(∆−δω(t)) . The solution of thisequation is given by the product of two functions S0and S1. S0 is the solutionof the root equation Ṡ + a(t)S = 0. S1 is the function that we �nd by replacing
S by S0S1 in the relation (44). The calculations gives S0 = Ke−

∫
a(t) and

Ṡ1 = S−1
0 b(t) where K is some constant. One can then compute the completesolution

S(T ) = S0(T )S1(T ) = e−
∫

T
0

a(t)dt

∫ T

0

e
∫

t
0

a(t1)dt1b(t)dt. (45)There is one case that gives some intuition about the in�uence of the phasenoise and that can be solved exactly. Let us assume that the noise δω is a con-stant o�set ε on the frequency rather than a random �uctuation. It correspondsto a feedback γω = 0 but with a noise intensity Iω which is still �nished. In thiscase, the solution is easy to �nd from (45) and using a standard probe pulse ξinwhich is given by the relation (5) it follows that
SS? =

C

1 + C

1

1 + ε2/(4γ2(1 + C)2)

(
1 − e

−2Ω2
0γ(1+C)[2γ2(1+C)2+∆(∆+ε)+ε2]

(γ2(1+C)2+(∆−ε)2)(γ2(1+C)2+∆2)
T

)2(46)Taking the usual limit T → ∞ that corresponds to a time duration of thecontrol �eld pulse which is large enough to store all the excitations containedin the probe pulse, we can drop the decreasing exponential in {46} and thesolution becomes
SS? =

C

1 + C

1

1 + ε2/(4γ2(1 + C)2)
(47)This result shows that the e�ciency still does not depend on the detuning whenthere is an unknown constant frequency shift ε on the laser frequency.This is also a result that can be compared to the solution that we will �ndin the more general case of a time varying noise frequency. In this case we usethe autocorrelation function (39). After computing the Taylor expansion to the�rst order in Iω assuming that δω � ∆, γ(1 + C) , the expression for S is37



< S > =

√
C

1 + C

[
1 − Iω

{
1

4γ2(1 + C)2

(
1 +

γω(∆2 + γ2(1 + C)2)

Ω2
02γ(1 + C)

)−1 (48)
+

γω(∆2 + γ2(1 + C)2)

(γ(1 + C) + i∆)2γ(1 + C) [2γ(1 + C)Ω2
0 + γω(∆2 + γ2(1 + C)2)]

}]and it follows that
< S >< S? >

C

1 + C

[
1 − Iω

{
1 +

2Ω2
0γ(1 + C) + 4γ2(1 + C)2γω

4γ2(1 + C)2 [2Ω2
0γ(1 + C) + γω (∆2 + γ2(1 + C)2)]

}]
=(49)In order to check if this expression is correct, we compare it to (47). Assuming

δω(t) = ε , < δω(t)δω(t′) >= ε2 = Iω . Taking the limit γω → 0 and assumingthat the intensity of the noise is still �nished by taking A2
ω ∝ γω, we �nd that

< S >< S? >=
C

1 + C

[
1 − Iω

1

4γ2(1 + C)2

] (50)which is exactly the result that we obtain by taking the Taylor expansion of{47} to the �rst order in ε2.Let us now come back to the description of the average spin wave amplitudesquared when there is a time dependent noise (49). The relation (49) describesthe behaviour of the amplitude of the spin wave squared as function of thedetuning. By looking at this relation, one can say that the bigger is the detuning,the lower is the error due to frequency noise. But one should remember thatby increasing the detuning, the power of the laser must be increased to stay inthe limit where the whole probe pulse is stored (where we drop the decreasingexponentials). moreover, increasing the detuning will increase the amplitudenoise as we have seen before.However, we get more physical meaning by expressing the power of thecontrol �eld in function of the typical time duration of the probe pulse (25)
Ω2

0 = ∆2+γ2(1+C)2

γ(1+C)Tpulse
to transform the relation (49). We then �nd absorbing afactor of 1

2 in the de�nition of Tpulse.
< S >< S? >=

C

1 + C

{
1 − Iω

[
1 +

(
∆2 + γ2(1 + C)2 + 4γ2(1 + C)2γωTpulse

4γ2(1 + C)2(∆2 + γ2(1 + C)2) [1 + γωTpulse]

)]}(51)We see that the condition on the product γωTpulse to optimize the error is notso easy to get as for the amplitude noise. In the limit ∆ = 0, the relation (52)gives
< S >< S? >=

C

1 + C

{
1 − Iω

[
1 +

(
1 + 4γωTpulse

4γ2(1 + C)2 [1 + γωTpulse]

)]}
.38



In this limit, having a time pulse duration larger than the feedback time scaleincreases the error. And it is still the case as long as the detuning is such that
|∆| ≤

√
3γ(1 + C).In the limit ∆ → ∞, while Tpulse remains �nished (which means that weincrease also the power of the control �eld) the relation (52) gives

< S >< S? >=
C

1 + C

{
1 − Iω

[
1 +

(
1

4γ2(1 + C)2 [1 + γωTpulse]

)]}
. (52)In this limit ∆ � γ(1 + C), 2γ(1 + C)

√
γωTpulse, having a short feedback timecompared to the pulse duration γωTpulse � 1 makes the error decreases. It isthe same kind of behavior as for amplitude noise.Retrieval According to our experimental scheme, the retrieval consists inhomodyning the output pulse ξout with the homodyning pulse ξhomodyne. Theanalytical expression for the output pulse ξout is given by solving the equationsystem (42) with ξin = 0. It can be done by solving

(γ(1 + C) + i(∆ − δω(t))Ṡ + |Ω|2 S = 0which gives S(T ) = Ke−
∫

T
0

|Ω0|2

γ(1+C)+i(∆−δω(t))
dt. Taking K = 1 to start the re-trieval with one stored excitation S(0) = 1, then using the �rst and the lastrelations of (42), we �nd

ξout(T ) =

√
2γC

Ω?
0

∫ T

0

e
−
∫

t
0

|Ω0|2

γ(1+C)+i(∆−δω(t′))
dt′

dt (53)The analytical expression is the one that we use assuming there is no noiseand so the shape is the same as ξout when there is no noise (8). However takingthe fact that we do not compensate the noise on the detuning, we get
ξhomodyne(t) = −

√
2γC

Ω0

γ(1 + C) + i(∆ − δω(t))
e−

|Ω0|2t

γ(1+C)+i∆ . (54)Then, the retrieval e�ciency is given by using (7) and it follows that we get thesame result as for the storage e�ciency
< A >< A? >

C

1 + C

[
1 − Iω

{
1 +

2Ω2
0γ(1 + C) + 4γ2(1 + C)2γω

4γ2(1 + C)2 [2Ω2
0γ(1 + C) + γω (∆2 + γ2(1 + C)2)]

}]
.5.2.3 SimulationThe �gure {15} has been plotted using √γ2(1 + C)2 + ∆2 ∼ 10 so that thefrequency noise is lower than √γ2(1 + C)2 + ∆2. The di�erence between thesimulation and the theory is due to the fact that the theoretical result is only ataylor expansion to the second order in frequency noise amplitude.39



Figure 15: Comparison between simulation and theory for frequency noise with
∆ = 1, γ = 1, γω = 1, C = 10, T = 1005.2.4 Conditions for adiabatic eliminationThe adiabatic elimination of P has been used to compute the theoretical resultsthat we obtained when there is frequency noise. The point is now to givethe conditions that the noise must full�ll to make this approximation. Theapproximation is

Ṗ = 0 (55)When we set the time derivative of P equal to 0 in the second equation of thesystem (42), we get
P =

iΩS + i
√

2γCξin

γ(1 + C) + i(∆ − δω(t))
(56)Taking the derivative of this expression gives

Ṗ =
i(Ω̇S + ΩṠ)(γ(1 + C) + i(∆ − δω(t))) − i ˙δω(iΩS + i

√
2γCξin)

(γ(1 + C) + i(∆ − δω(t)))2
(57)The condition on Ṗ that comes from the second equation of the system (42) is

∣∣∣Ṗ
∣∣∣�

∣∣∣ ˙−(γ(1 + C) + i(∆ − δω(t)))P
∣∣∣ (58)Here since we are interested in the condition on the noise, the relevant part of(57) is ˙δω(iΩS+i

√
2γCξin)

(γ(1+C)+i(∆−δω(t)))2 . The condition (58) then gives ∣∣∣ ˙δω(iΩS+i
√

2γCξin)
(γ(1+C)+i(∆−δω(t)))2

∣∣∣�40



∣∣∣(γ(1 + C) + i(∆ − δω(t))) iΩS+i
√

2γCξin

γ(1+C)+i(∆−δω(t))

∣∣∣. And so it provides some require-ment for δω and ˙δω.
∣∣∣ ˙δω(t)

∣∣∣� |γ(1 + C) + i(∆ − δω(t))|2 (59)We then want the noise to full�ll the relation (60). This gives a condition onthe average of all correlations to the second order that appears during a pulseof a duration of T .
∫ T

0

〈
˙δω(t) ˙δω(T )

〉
dt �

∫ T

0

〈
|γ(1 + C) + i(∆ − δω(t))|2 |γ(1 + C) + i(∆ − δω(T ))|2

〉(60)We then obtain the following results that limits the feedback γω and the squareof the amplitude frequency noise Iω .
Iω �

(
γ2(1 + C)2 + ∆2

) 3
2 T

γω �
√

γ2(1 + C)2 + ∆2 (61)If we call the typical frequency shift Γ, Iω = Γ2 and so the adiabatic eliminationof P can be performed as long as the feedback and the frequency shift are smallenough (61).5.3 Time reversal and noiseThe expressions of the e�ciency that we have found for the storage and for theretrieval processes in presence of noise in the system are both the same. As wewill now show, this is a more general property linked to time reversal. Let uscall U the unitary matrix that describes the evolution of the system. We nowassume that U stands for retrieval. U depends on the control �eld, starts at atime t1 and �nishes at a time t2.We write it U [t2, t1; Ω(t)]. Let us say that thesystem starts in a state |a〉 which is a spinwave. We call |b〉 the output modethat we want to retrieve. The probability for the system to go from |a〉 to |b〉 isjust
Eff = |< b|U [T, 0; Ω(t)]|a >|2 =

∣∣< a|U−1[T, 0; Ω(t)]|b >
∣∣2 (62)where the last part of the relation (62) is due to the unitarity of U .

Eff is just the retrieval e�ciency, but the last part of the relation showsthat provided we are able to invert the evolution, the storage e�ciency is thesame. It has been proved in the paper [3] that this can be done by this way
U−1[T, 0; Ω(t)] = τ̂U [T, 0; Ω?(T − t)]τ̂ (63)where τ̂ is the time reversal operator. Physically this means that, if we canretrieve the spin wave onto ξ(t) using the control �eld Ω(t), we can use thecontrol �eld Ω?(T − t) to store the incoming pulse ξin(t) = ξ?(T − t).41



This works as long as there is no noise in the control �eld. If there is noise,we should consider the transformation averaged over the noise < U > which isnot anymore a unitary transform.
< U−1[T, 0; Ω(t) + δΩ(t)] >= τ̂ < U [T, 0; Ω?(T − t) + δΩ?(T − t)] > τ̂ (64)However, in practice, we can not time reverse the noise. And what we obtainfor U is U [T, 0; Ω?(T − t)+ δΩ?(t)]. In the most general case, the matrix < U >will contain correlation of the noise to all orders < δΩ(t1)δΩ(t2)δΩ(t3)... >.Since our model is based on gaussian noise, all correlations with an odd numberof terms vanish. We then use the property of gaussian noise that even corre-lations can always be written as a product of correlation of the 2nd order. Forinstance, the 4th order can be written

< η(t1)η(t2)η(t3)η(t4) > = < η(t1)η(t2) >< η(t3)η(t4) >

+ < η(t1)η(t3) >< η(t2)η(t4) >

+ < η(t1)η(t4) >< η(t2)η(t3) > (65)Our noise model is not white noise since there is a feedback. Thus, then-order autocorrelation function is given by
< δE(T1)δE(T2)...δE(Tn) > =

∫ T1

0

∫ T2

0

...

∫ Tn

0

< η(t1)η(t2)...η(tn) >(66)
× e−γN [(t−t1)+(t−t2)+...+(t−tn)]dt1dt2...dtnThe odd order autocorrelation functions vanish and since the even autocorre-lation function < η(t1)η(t2)...η(t2n) > can be developped as a sum of productof autocorrelation functions of the 2nd order, the < δE(T1)δE(T2)...δE(T2n) >can be developped as a sum of product of integral of second order white noisecorrelation functions

< δE(T1)δE(T2)...δE(Tn) > =

∫ T1

0

∫ T2

0

...

∫ Tn

0

[

+ < η(t1)η(t2) >< η(t3)η(t4) > ... < η(t2n−1)η(t2n) >

+ < η(t1)η(t3) >< η(t2)η(t4) > ... < η(t2n−2)η(t2n) >... ...
+ < η(ti1)η(ti2 ) >< η(ti3)η(ti4 ) > ... < η(ti2n−1)η(ti2n

) >(67)
× ] e−γN [(t−t1)+(t−t2)+...+(t−t2n)]dt1dt2...dt2n.and so the even n-order autocorrelation functions for the colored noise can bewritten as a sum of products of 2nd order autocorrelation functions. Using the42



property that the 2nd order autocorrelation function only depends on the timedi�erence between the two signals |ti − tj | (16), we �nd
< δE(t1)δE(t2)...δE(tn) >=< δE(T − t1)δE(T − t2)...δE(T − tn) > (68)And thus it follows that
< U [T, 0; Ω?(T − t) + δΩ?(t)] >=< U [T, 0; Ω?(T − t) + δΩ?(T − t)] > (69)which means, for the noise model that we have considered, < U−1 > can becomputed from < U > thanks to the relation (64) and so time reversal stillapply.
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6 Outlook : Free spaceAll the work that we have done so far assumes that memory is surrounded by acavity. An another case to study is the freespace. As for the cavity, the maximale�ciency without noise has already been computed [3]. In the cavity, there isonly one mode available for the spinwave and one frequency mode for the probeand output pulses. In the free space regime, the probe pulse is not anymorerigorously monocromatic and there are several spinwaves modes that can bestored. This makes the calculations more complicated although the principleremains the same as for the cavity. Here we will �rst give the expression of theretrieval and the e�ciency when there is no noise. These results comes fromthe paper [3]. Then we will point out which attempts have been made to get ausefull analytical solution for the e�ciency to the �rst order in noise intensity.First, here are the results for retrieval when there is no noise. The optimizedoutput mode without noise is
ξout(t̃) = −

√
dΩ̃(t̃)

∫ 1

0

dz̃
1

1 + i∆̃
e
−h(0,t̃)+z̃d

1+i∆̃ I0

(
2

√
h(0, t̃)z̃d

1 + i∆̃

)
S(1 − z̃) (70)

• S is the spinwave amplitude
• t̃ is the rescaled time t̃ = tγ

• d is the optical depth of the atomic media which is the equivalent of C forthe cavity
• z̃ is a rescaled space variable that allows to integrate all over the atomicensemble. This is to integrate over all spinwave modes.
• All others values A with a˜are just rescaled as A/γ.
• h(0, t̃) =

∫ t̃

0

∣∣∣Ω̃(t′)
∣∣∣
2

dt′

• I0(x) is the modi�ed Bessel function of the �rst kind.The e�ciency without noise is given by ∫∞
0 ξout(t̃)ξ

?
out(t̃)dt̃. Using the followingidentity [9]

∫ ∞

0

drre−pr2

I0(λr)I0(µr) =
1

2p
e

λ2+µ2

4p I0

(
λµ

2p

) (71)and assuming h(0,∞) is big enough, the retrieval e�ciency is
ηr =

∫ 1

0

dz̃

∫ 1

0

dz̃′kr(z̃, z̃′)S(1 − z̃)S(1 − z̃′) (72)where 44



kr(z̃, z̃′) =
d

2
e−d z̃+z̃′

2 I0(d
√

z̃z̃′) (73)When introducing noise in the control �eld Ω̃ = Ω̃0 + δ̃Ω, the e�ciency isgiven by ∫∞
0

ξout(t̃)ξ
?
homodyne(t̃)dt̃, where

ξhomodyne(t̃) = − 1√
1 + IN

√
dΩ̃(t̃)

∫ 1

0

dz̃
1

1 + i∆̃
e
−h(0,t̃)+z̃d

1+i∆̃ I0

(
2

√
h0(0, t̃)z̃d

1 + i∆̃

)
S(1−z̃).(74)

ξhomodyne is generated from the noisy �eld de�ned by the Raby frequency Ω.And so ξhomodyne = ΩβshapeKnorm. But the shape βshape of ξhomodyne is com-puted assuming there is no noise and so it is the same shape as for ξout whenthere is no noise. Knorm =1/
√

1+IN is a normalization constant ensure that thereis one photon in the pulse. h0(0, t̃) is de�ned as h0(0, t̃) =
∫ t̃

0

∣∣∣Ω̃0(t
′)
∣∣∣
2

dt′.We will now consider the e�ciency. The problem that we are facing isto give an analytical solution for the e�ciency assuming Ω0 is independant oftime and that the noise follows the same model as the one we used for thecavity case. The �rst thing to do is to expand the Bessel function that containsnoise I0

(
2

√
h(0,t̃)z̃d

1+i∆̃

). This expansion depends on I1

(
2

√
h0(0,t̃)z̃d

1+i∆̃

). The mainproblem that we then face is to compute this kind of integrals :
∫ ∞

0

drrαe−pr2

I0(λr)I1(µr) (75)Facing this problem, one can think about using a generalized form of thesolution which is used when there is no noise (71). This is the following one [9]:
∫ ∞

0

drrαe−pr2

Iµ(br)Iν (cr) =
bµcνp(− (α+µ+ν)

2 )

(2(µ+ν+1)Γ(ν + 1))

×
∞∑

k=0

Γ
(
k + (α+µ+ν)

2

)(
b2

(4p)

)k

2F1(−k,−µ − k; ν + 1; c2

b2 )

(Γ(µ + k + 1)k!)
(76)where 2F1(a, b; c; z) is Gauss's hypergeometric function and Γ is the general-ized factorial function. However, this was hard to make simpli�cations on seriesterms in order to make some well known functions merge in the result.One other method to compute an approximative analytical result of (75) isto approximate the Bessel functions by their asymptotic forms Î0 and Î1. Thetwo functions Î0(x) and Î1(x) are discontinuous since they are de�ned by [10]

Î0(x) = 1 for small x (x � 1) and Î0(x) = 1√
2πx

ex for big x, (x � 1
4 )

Î1(x) = x
4 for small x (x �

√
2) and Î1(x) = 1√

2πx
ex for big x (x � 3

4 )This requires also to choose the cross-over between big x and small x whichcan be chosen to be x0 ≈ 0.7 for both functions. However, this method stillgives an integral which is hard to compute analytically.45



7 ConclusionWe have seen that quantum memories are required to enhance quantum com-munications distance. And so the storage and retrieval e�ciency of the photonsis the criteria that is used to quantify the e�ciency of the memory. In practicethere is always some noise in the electromagnetic �elds which are used. Wehave considered one kind of experimental setup and, under the assumptionsthat TCγ � 1 and that the memory was surrounded by a cavity, we have de-rived the analytical solutions for the storage and retrieval e�ciency for low noiseconsidering two di�erents types of noise. We have seen that the e�ciency stillremain high compared to the e�ciency without noise. Moreover, for amplitudenoise, it is possible to shape the probe pulse to optimize the e�ciency takinginto account the noise. One interesting result is also the fact that the noisemodel we have considered does not a�ect the time reversal property. And so,all its usefull applications which are pointed out in this paper [3] remains stillvalid.The natural next step to this work would be to derive analytical solutionsor to perform simulations in the case of free space. Some attempts have beenpointed out in the outlook section.
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A Rabi oscillationsLet us consider a two states system |e〉 and |g〉. This is an atom with a groundstate |g〉 and an excited state |e〉. We apply an electromagnetic �eld of frequency
ω0 = ωeg −∆ to this system where the detuning ∆ is the di�erence between thetransition frequency and the �eld frequency. Then, the atom will jump fromone state to the other with a �xed frequency. More accurately, if the atom is inthe ground state at the beginning, its probability Pe(t) to be measured in theexcited state increases until it reaches a maximum (equal to one if ∆ = 0). Thenthe probability to be in the ground state increase until it reach the probabilityof one. And it starts again. The frequency at which this happens is called theRabi frequency and it can be derived by considering the Hamiltonian of thesystem

Ĥ = ~ωeg |e〉 〈e| − d̂.E0 cos(ω0t) (77)and the state vector of the system
|Ψ(t)〉 = Cg(t) |g〉 + Ce(t)e

−iωegt |e〉 (78)Then using the Schrödinger equation that describes the time evolution of thesystem i∂|Ψ(t)〉
∂t = Ĥ |Ψ(t)〉, assuming that the atom is in the ground state at thebeginning Ce(0) = 0 and Cg(0) = 1, using the Rotating Wave Approximation tokeep only low frequency terms in ωeg − ω0 and dropping the terms in ωeg + ω0,the following results are obtained

Pe(t) =
(d?

egE0)
2

Ω2~2
sin2(

Ωt

2
) (79)

Ω =

√√√√
(

∆2 +

(
d?

egE0

)2

~2

) (80)In this report, the resonant Rabi frequency describes the electric �eld and isde�ned as the usual resonant Rabi frequency divided by 2.
Ω0 =

d?
egE0

2~
(81)where d?

eg is the dipole matrix element d?
eg =< e|d̂|g >.
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B Derivation of the Hamiltonian of the systemincluding phase noiseThe derivation of the hamiltonian is almost the same as in the paper [2]. Theelectric �eld operator for the quantized �eld of the cavity is given by
Ê1(z, t) = ε1

(
~ω1

2ε0V

) 1
2 (

âei(ω1
z
c
+φ(t)) + â†e−i(ω1

z
c
+φ(t))

) (82)where â† is the mode creation operator, ω1 is the mode frequency, ε1 is thepolarization unit vector, ε0 is the permittivity of the media in the cavity (vacuumor air), and V is the quantization volume for the �eld. The excitations arecreated in the cavity thanks to a laser. Since the laser has frequency noise, weadd the frequency noise of the excitations in the hamiltonian of the quantizedelectric �eld and so φ(t) is the phase noise that results from the frequency noise
δω(t).The single-mode plane-wave control �eld with frequency ω2 is described byan electric �eld vector

E2(z, t) = ε2ξ2(t)cos(ω2(t −
z

c
) + φ(t)) (83)where ε2 is the polarization unit vector, c is the speed of light and ξ2(t) is theamplitude. Since the control �eld is derived from the same laser as the onewhich is used to generate the probe pulse, the frequency noise is described by

φ(t). Then using the dipole approximation, the Hamiltonian is
Ĥ = Ĥ0 + V̂ (84)where Ĥ0 = Ĥfield +Ĥatoms is the Hamiltonian of the system without any inter-action and V̂ describes the coupling between the atoms and the free quantizedelectromagnetic �eld

Ĥfield = ~ω1â
†â (85)

Ĥatoms =

N∑

i=1

(
~ωsgσ̂

i
ss + ~ωgeσ̂

i
ee

) (86)
V̂ = −d̂.

(
E2(z, t) + Ê1(z)

) (87)where d̂ = ~deg |e〉 〈g| + ~d?
eg |g〉 〈e| is the dipole moment operator for one atom.In order to give an expression of V̂ , we need to use the rotating wave approx-imation (Annexe C.2). This approximation applies when very high frequencyterms of same amplitude as lower frequency terms appear while going into therotating frame. The rotating frame (Annexe C.1) is the frame in which thesystem's evolution is taken with respect to the quantized electromagnetic �eldfrequency. In this case we drop the high frequency terms because they quickly49



average to 0 and so the dynamic of the system is driven by the low frequencyterms.
V̂ = −~

N∑

i=1

(
Ω(t)σ̂i

ese
−iω2(t−zi/c)e−iφ(t) + âgeiω1zi/cσ̂i

ege
−iφ(t)

)
+ h.c (88)where h.c stands for Hermitian conjugate, zi is the position of ith atom, σ̂i

µν =

|µ〉i 〈ν|i is the transition operator for ith atom between states µ and ν, Ω(t) =
〈e|d̂.ε2|s〉

2~
ξ2(t) is the Rabi frequency (Annexe A) of the classical control �eld,and g = 〈e| d̂.ε1 |s〉

√
ω1

2~ε0V is the coupling constant between the atoms and thequantized electromagnetic �eld mode.We then introduce the collective operators
σ̂µµ =

N∑

i=1

σ̂i
µµ (89)

σ̂es =

N∑

i=1

σ̂i
ese

−iω2(t− zi
c

) (90)
σ̂eg =

N∑

i=1

σ̂i
ege−iω1(t− zi

c
) (91)

σ̂sg =

N∑

i=1

σ̂i
sge−i(ω1−ω2)(t− zi

c
) (92)

ξ = âeiω1t (93)It then follows that Ĥ is written Ĥ0−~
(
Ω(t)σ̂ese

−iφ(t) + ξgσ̂ege
−iφ(t)

)
+h.cThen going into the rotating frame respect to Ĥ1 = ~(ω1 + δω(t))σ̂ee yieldsto the interaction Hamiltonian

ĤI(t) = Û−1(t)Ĥ(t)Û(t) − Ĥ1(t) (94)where
Û(t) = e−

∫
t
0

i
~

Ĥ1(t′)dt′ = 1 + (e−i(ω1t+φ(t)) − 1)σ̂ee (95)since ∫ t

0 δω(t′)dt′ = φ(t).
Ĥ1 is chosen to have an Hamiltonian that describes the interaction of thesystem with an electromagnetic �eld with a frequency equal to ω1 + δω(t).The Hamiltonian in the rotating frame that is used to compute the e�ciencyin presence of frequency noise is given by

ĤI(t) = ~(∆ − δω(t))σee − (~Ω(t)σes + ~gξσeg + h.c) (96)50



The spin wave operator Ŝ =
σ̂gs√

N
and the polarization operator P̂ =

σ̂ge√
N

arede�ned in the same manner as when there is no noise. Their equations of motionare derived from the Hamiltonian (96) and taking into account the decay γ.
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C Physical toolsC.1 Rotating frameStarting with a Hamiltonian in the Schrödinger picture, the evolution of thesystem is describe by
i~

∂ |Ψ(t)〉
∂t

= Ĥ |Ψ(t)〉 (97)Going into a given rotating frame means that we choose an operator Ĥ0(t)and we transform |Ψ(t)〉 and Ĥ into ∣∣∣Ψ̃(t)
〉 and ˜̂

H which are hopefully muchsimpler provided we have chosen a judicious Ĥ0(t) .Let us consider the unitary operator Û(t) = e−
i
~

∫
t

0
Ĥ0(t′)dt′ . We unitarytransform |Ψ(t)〉 to ∣∣∣Ψ̃(t)

〉 using
∣∣∣Ψ̃(t)

〉
= U † |Ψ(t)〉 (98)We now then write the corresponding Hamiltonian

i~
∂
∣∣∣Ψ̃(t)

〉

∂t
= i~

∂
∣∣∣Û(t)†Ψ(t)

〉

∂t

= i~Û †(t)
∂ |Ψ(t)〉

∂t
+ i~

∂Û(t)†

∂t
|Ψ(t)〉

= Û †(t)Ĥ |Ψ(t)〉 + i~
∂Û(t)†

∂t
|Ψ(t)〉

= Û †(t)Ĥ |Ψ(t)〉 − Ĥ0(t)Û
† |Ψ(t)〉

= Û †(t)ĤÛ
∣∣∣Ψ̃(t)

〉
− Ĥ0(t)

∣∣∣Ψ̃(t)
〉and so

i~
∂
∣∣∣Ψ̃(t)

〉

∂t
=

˜̂
H
∣∣∣Ψ̃(t)

〉 (99)with
˜̂
H(t) = Û †(t)Ĥ(t)Û(t) − Ĥ0(t) (100)

˜̂
H(t) is the Hamiltonian in the rotating frameC.2 Rotating Wave ApproximationThe Rotating Wave Approximation consists in keeping only low frequency termsin an Hamiltonian. In order to illustrate how this approximation can be per-formed, we consider the two level atom system that interact with an electro-magnetic �eld. This is the same we used to de�ne the Rabi frequency.52



Ĥ = ~ωeg |e〉 〈e| − d̂.E0 cos(ω0t) (101)Going into the interaction picture which means going into the rotating framerespect to Ĥ0 = ~ωeg |e〉 〈e|, the interaction Hamiltonian is given by
ĤI = Û †(t)Ĥ(t)Û(t) − Ĥ0(t)

= −~Ω(e−i(ωeg−ω0)t + ei(ωeg+ω0)t) |e〉 〈g| − ~Ω?(e−i(ωeg+ω0)t + ei(ωeg−ω0)t) |g〉 〈e|(102)Then assuming that ∆ = ωeg −ω0 � ωeg +ω0, the high frequency terms aredropped since they rapidely oscillate and averages to 0 quickly compared to thedynamic of the system which is driven by the low frequency terms. And so theinteraction Hamiltonian becomes
ĤI = −~Ωe−i(ωeg−ω0)t |e〉 〈g| − ~Ω?ei(ωeg−ω0)t |g〉 〈e| (103)One can wonder why we switched to the interaction picture. This is due tothe fact that the state vector of the system is given by

|Ψ(t)〉 = Cg(t) |g〉 + Ce(t)e
−iωegt |e〉 (104)and so going to the interaction picture just moves the oscillations of theexcited states from the state vector to the interaction Hamiltonian.
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D Informatic toolsIn order to compute the simulation and to get the analytical expressions for thee�ciency, we respectively used MATLAB and MAPLE.D.1 MATLAB simulationsThe MATLAB simulations have been performed using di�erent m-�les. Thearchitecture is very simple.
• One m-�le is used to generate some noise samples which are stored on aremote scratch disk.
• To compute the e�ciency, the noise is loaded, renormalized to get theproper amplitude and the e�ciency is computed using a chosen solver.
• Then the last step is the plot using MATLAB plotting tools.The di�erent types of solver are each in one m-�le. The RK4solver uses theRunge Kutta method of the 4th order to compute the storage e�ciency withoutperforming the adiabatic elimination. The adiabatic solver uses the adiabaticelimination and thus does not require any special numerical tool since we knowthe analytical solution. However it requires to compute integrals with �xed steptime. For instance it is not possible to use optimal method with error controland adaptive step integration since there is noise in the signal that we consider.D.2 MAPLE calculationsThere is no general method to get the result you want using MAPLE. Howeverhere are a few thing that have been useful to get the solutions.
• To group as much as possible all constants greatly improve the quality ofthe result and the time it takes to compute the result.
• Using commands like convert to transform big additions in a list makescalculations easier since it enables to focus independently on each part ofthe expression.
• Using the subs and algsubs commands was helpful to replace correlationsof the noise by analytical expressions of these correlations
• Doing an expansion of an expression η(t) that depends on time can beperform quite easily by multiplying η(t) by x and then using a Taylorexpansion of the expression respect to x. This is especially really helpfulif there are expressions where each η are not taken at the same time suchlike η(t)e

∫
t
0

η(t1)dt1 .
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• Sometimes, MAPLE does not compute an integral even if you see that itis the kind of integral you could solve with an easy method by hand (butthat could take plenty of time). In this case, what may be tried is to groupconstants that can be grouped and if this is can be written in term of asum, to integrate each part of the sum step by step.

55


