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Abstract

We study different factors that compromise the fidelity of a two-photon quantum
gate implemented in a waveguide. In particular, the gate consists of a finite 1D
array of N quantum emitters that implements a passive Control-Phase gate between
counter propagating photons. The realization is based on chiral coupling in the
waveguide. This means that when a photon interacts with a quantum emitter it
retains a fixed polarization and propagation direction. When propagating through
the waveguide, the photon is absorbed and reemitted by the quantum emitters in
the array, and a π-phase is introduced by each them. The non-linear interactions
that occur when two photons are simultaneously inside the waveguide, if engineered
adequately, can result in the implementation of a Controlled Phase gate. Our atten-
tion in this work focuses on two effects. Firstly, non-perfect chirality. The decrease
of the fidelity of the photon gate caused by it is quantified considering the simpler
situation of a single incident photon at a time. The second effect is the necessary
non-linear interaction between two photons. The role of the collision dynamics for
the case of two interacting photons is studied in detail.

Acknowledgements

First of all, I want to thank my supervisor Anders Søndberg Sørensen for giving me
the opportunity to work in such an interesting project for my Master’s Thesis and
for the guidance during this time.

Also, thanks to all the Theoretical Quantum Optics group. Specially to Bastian,
for the initial help, and to Björn, for all the patience and helpful discussions, but
most of all for the optimism.

Finally, to my family and closest friends, for not forgetting about me.

ii



Contents

1 Introduction 1

1.1 The quantum C-Phase gate . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Chiral quantum optics . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The two/three-level systems . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Fidelity measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Transmission of a single photon 7

2.1 Expansion of ω(k) around ko . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Change to the interaction picture with respect to ωo . . . . . . . . . . 8

2.3 Eq. of motion for the fields and the atomic operators . . . . . . . . . 9

2.4 Finding the transmission coefficient . . . . . . . . . . . . . . . . . . . 11

2.5 Numerical results for a single photon . . . . . . . . . . . . . . . . . . 13

3 Fidelity for the single photon case 19

3.1 Fidelity for one photon when βL, σ/γ � 1 . . . . . . . . . . . . . . . 20

4 Transmission of two photons 23

4.1 Interaction inside the waveguide . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 First ansatz: the naive approach . . . . . . . . . . . . . . . . . 26

4.1.2 Second ansatz: inelastic collision . . . . . . . . . . . . . . . . 27

iii



CONTENTS

5 Input/Output relation 35

5.1 Input relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Output relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Input/Output relation for a single photon . . . . . . . . . . . . . . . 38

5.4 Input/Output relation for the two photon case . . . . . . . . . . . . . 39

6 Fidelity measurements for the two photon case 41

7 Conclusions and outlook 45

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A Matrix inversion 49

A.1 Approximation to first order of M−1 . . . . . . . . . . . . . . . . . . 49

A.2 Inverse of a lower diagonal matrix . . . . . . . . . . . . . . . . . . . . 49

iv



Chapter 1

Introduction

Quantum computation emerged during the 80’s opening the possibility to solve new
problems unexplored until then exploiting the properties of quantum mechanics. It
was thanks to pioneers as Paul Benioff [1], Richard Feynman [2] or David Deutsch
[3]. During the 90’s more algorithms that could take advantage of this systems were
proposed by Peter Shor [4] or Lov Grover [5].

The scientific advances since the beginning of the century turned all of these
theoretical proposals into a tangible possibility. The applications of quantum com-
putation extend through countless fields: from biology and medicine to quantum
cryptography.

The interest of private companies and investors across the world has increased
remarkably during the last decade. Research groups and companies explore the
different platforms where these algorithms could be implemented, seeking for the
optimal one that allows to scale the system with high enough stability and fidelity.
Two examples of such platforms could be superconducting qubits [6] or trapped ions
[7].

Part of the inspiration for this project comes from the proposal of D. J. Brod and
J. Combes in [8]. In our case, we will study how to implement a passive Controlled-
Phase quantum gate exploiting recent advances in chiral quantum optics.

1.1 The quantum C-Phase gate

The most popular model for quantum computation is the quantum circuit model.
The building blocks for such circuits are the quantum logic gates. In the same
fashion that logic gates act upon bits in classical computation, the quantum gates
are the basic circuits acting on a few qubits (quantum equivalent of bits). Quantum
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CHAPTER 1. INTRODUCTION

gates are reversible unitary operators.

The ultimate goal when implementing quantum gates in any of the platforms
in which quantum computation is a possibility should always be to find a set of
universal quantum gates. As the name indicates, such a set serves as a base for any
unitary operation. Therefore, as building blocks for any quantum circuit one could
design.

The Controlled-Phase quantum gate is a two-qubit gate that forms a set of
universal quantum gates along with the single-qubit rotation operators Rx(θ), Ry(θ),
Rz(θ). This is the gate we are trying to implement in this Master’s thesis.

The matrix representation of the C-Phase gate is the following:

C-Phase(φ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ

 (1.1)

When the phase introduced is φ = π the gate is often called Controlled-Z.

1.2 Chiral quantum optics

The advances in nanotechnology and nanofabrication have provided a new toolbox
in the field of optics and photonics. The strong light confinement in nanostruc-
tures induces propagation-direction-dependent emission, scattering and absorption
of photons by quantum emitters built in them. This is known as chiral quantum
optics [9].

Our implementation of the C-Phase gate is based in this effect. We have an array
of emitters and the coupling with light depends on its propagation direction. In the
ideal and most extreme case, the propagation is unidirectional and the interaction
of light with the emitters never results in a reflection back. This is what we will
refer to as (completely) chiral interaction. In a more realistic case, all the light is
not emitted into the original propagation mode and there is a small part that is
scattered back. We will refer to this effect as partially chiral interaction.

In Figure 1.1 we can see our implementation of the gate. A 1D array of N emit-
ters integrated in a nanophotonic waveguide. Our two qubits will be two counter-
propagating photons. The coupling rates of the emitters will could different for each
propagation direction.

To implement a two-qubit gate, it is necessary to have some kind of non-linear
interaction between the two photons. This non-linear interaction will arise when
considering that two photons cannot excite the same emitter at the same time.
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1.3. THE TWO/THREE-LEVEL SYSTEMS

Figure 1.1: Finite 1D array of N quantum emitters integrated in a photonic waveg-
uide. The qubits are two counter-propagating photons represented in this figures by
an arroy entering the waveguide from the right and another doing the same from
the left. The emission rates Γ will be different for each of them.

1.3 The two/three-level systems

Throughout this project, we will study separately the cases in which a single photon
is propagating through the system and the case in which two photons simultaneously
propagate in opposite directions. For the sake of simplicity, in the first case we will
consider our emitters to be two-level systems, since the three levels effectively become
two when having a single propagation direction.

Figure 1.2: Two level system with partial chirality and decay to modes outside of
the waveguide.

The Hamiltonian of a two level system with ΓL = ΓR (non-chiral) and no decay
to modes outside the waveguide is [10] :

Ĥ = ~ωbaσ̂bb +

∫
dkω(k)â†kâk − ~g

∫
dk
(
σ̂baâke

ikza + h.c.
)
. (1.2)

Here g is a coupling constant related to ΓL and ΓR. The first term represents the
energy of being in the excited state |b〉. The second term is related to the electric
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CHAPTER 1. INTRODUCTION

field and the third one represents the light-matter interaction. The atomic operators
are simply σij = |i〉 〈j|.

Figure 1.3: Three level system, partial chirality and no losses to other modes.

In the case of the three-level system, we will consider that photons propagate at
infinite speed through the waveguide and therefore are only present in the system as
excitations. The Hamiltonian in the case of complete chirality and Γb,R = Γc,L = Γ1D

for an array of three-level emitters is:

H =− iΓ1D/2
∑
j

(
σjcaσ

j
ac + σjbaσ

j
ab

)
− iΓ1D/2

∑
j

[∑
i>j

eiko|zj−zi|σjcaσ
i
ac +

∑
i<j

eiko|zj−zi|σjbaσ
i
ab

]
.

(1.3)

The first term corresponds to the emission and re-absorption of a photon by the
same atom j. In the second term, we have the two cases of moving to the left or
to the right. In the first part a photon is emitted when decaying from c to a and
the excitation moves to the left (to lower index j). The second part corresponds
with the transition b → a, the excitation moves to the right (higher index j). The
exponential eiko|zj−zi| simply corresponds to the phase gained when traveling from
one photon to the next.

1.4 Fidelity measurements

The fidelity between two quantum states is a measurement of how ‘close’ those
states are [11]. Given two density operators ρ and σ, the fidelity is generally defined

as F (ρ, σ) =
(
tr
√√

ρσ
√
ρ
)2

. If ρ and σ represent pure quantum states, this is,
ρ = |ψρ〉 〈ψρ| and σ = |ψσ〉 〈ψσ|, the definition reduces to: F (ρ, σ) = |〈ψρ|ψσ〉|2.

This concept of fidelity for quantum states is well know and widely used, without
ignoring other metrics that might be more suitable for specific cases. However, we
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1.5. ORGANIZATION OF THIS THESIS

are interested in the fidelity of the gate as a whole, and not the fidelity in the
transmission of a single photon. The gate fidelity describes how noisy a quantum
gate is.

It is possible to define a fidelity for channels analogous to the fidelity for states
thanks to the Choi-Jamio lkowski isomorphism [12], [13]. To calculate the Choi-
Jamio lkowski fidelity we will consider a 4-qubit state as in [14]. In particular, we
take the following CJ input state:

|Φ〉 =
∣∣Φ+

〉
12
⊗
∣∣Φ+

〉
34

=
1√
2

(|00〉12 + |11〉12)⊗ 1√
2

(|00〉34 + |11〉34) (1.4)

Now we evaluate the output of the gate in qubits 2 and 3. The output state |Φ′〉
will be:

|Φ〉 =
1

2


|00〉12 |00〉34

|00〉12 |11〉34

|11〉12 |00〉34

|11〉12 |11〉34

 −→ |Φ′〉 =
1

2


|00〉12 |00〉34

tR |00〉12 |11〉34

tL |11〉12 |00〉34

tRL |11〉12 |11〉34

 (1.5)

Here, the coefficients tR and tL are the transmission coefficients when one photon
propagates through the system and tRL is the transmission coefficient when we have
propagation and interaction of two photons.

The ideal state after the gate, looking at the definition of a C-Phase gate, would
be:

|Φideal〉 =
1

2


|00〉12 |00〉34

|00〉12 |11〉34

|11〉12 |00〉34

− |11〉12 |11〉34

 (1.6)

The CJ fidelity is just calculated by comparing the two outputs:

F = |〈Φideal|Φ′〉|2 =
1

16
|1 + tR + tL − tRL|2 (1.7)

1.5 Organization of this thesis

In this work we will study in detail two different effects involved in the functioning
of the C-Phase gate. We will do it separately.

In Chapters 2 and 3 we focus on the effect that partial chirality has on the
transmission of a single photon through the gate and comment on the resulting
fidelity.
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CHAPTER 1. INTRODUCTION

In Chapter 4 we study the collision dynamics that appear when we have two
counter-propagating photons simultaneously inside the waveguide. We do so under
the approximation of an infinite 1D array of emitters. In Chapter 5 we undo this
approximation to consider what happens to a photon when it enters and leaves the
waveguide. Finally, in Chapter 6 we study the effect all this considerations have on
the fidelity.
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Chapter 2

Transmission of a single photon

The first effect that we are interested in is how do scattering and partial-chirality
decrease the fidelity of our gate when a single photon propagates through the wave-
guide.

Our starting point will be the Hamiltonian of the two level system [10]:

Ĥ = ~ωbaσ̂bb +

∫
dkω(k)â†kâk − ~g

∫
dk
(
σ̂baâke

ikza + h.c.
)
. (2.1)

Here the first term corresponds to the excitation of the atom, the second term is
related to the field and the third one is the interaction between them (absorption
and emission of a photon), with g being the coupling constant.

We make the approximation that left- and right- propagating photons form com-
pletely separate quantum fields. This means:∫ ∞

−∞
dkω(k)â†kâk −→

∫ ∞
0

dkω(k)
(
â†R,kâR,k + â†L,−kâL,−k

)
(2.2)

σ̂baâke
ikza −→ σ̂ba

(
âR,ke

ikza + âL,−ke
−ikza

)
(2.3)

We also consider two different coupling constants, gR and gL, that describe the
interaction of the atoms with photons propagating to the right or to the left respec-
tively. The Hamiltonian is then:

Ĥ =~ωbaσ̂bb +

∫
dkω(k)

(
â†R,kâR,k + â†L,−kâL,−k

)
− ~

∫
dk
[
σ̂ba
(
gRâR,ke

ikza + gLâL,−ke
−ikza

)
+ h.c.

]
.

(2.4)
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CHAPTER 2. TRANSMISSION OF A SINGLE PHOTON

2.1 Expansion of ω(k) around ko

Lets define the electric fields propagating to the right and to the left as:

ER(z) =
1√
2π

∫
k>0

dkei(k−ko)zaR(k) (2.5)

EL(z) =
1√
2π

∫
k>0

dke−i(k−ko)zaL(−k) (2.6)

Taking the first order expansion of the dispersion relation ω(k) around ko one
can write:

• For the photons propagating to the right:

∫
k>0

dkω(k)â†R,kâR,k =

∫
k>0

dkωoa
†
R(k)aR(k)− i2πvgE†R(z)

∂ER(z)

∂z
(2.7)

• For the photons propagating to the left:

∫
k>0

dkω(k)â†L,−kâL,−k =

∫
k>0

dkωoa
†
L(−k)aL(k) + i2πvgE

†
L(z)

∂EL(z)

∂z
(2.8)

If we substitute into the Hamiltonian we get:

Ĥ =
∑
j

~ωbaσ̂jbb + ~
∫
dkωo

[
a†R(k)aR(k) + a†L(−k)aL(−k)

]
(2.9)

+ i~2πvg

[
E†L(z)

∂EL(z)

∂z
− E†R(z)

∂ER(z)

∂z

]
(2.10)

− ~
√

2π

∫ ∑
j

δ(z − zj)
{
σ̂jba
[
gRER(z)eikoz + gLEL(z)e−ikoz

]
(2.11)

+
[
gRE

†
R(z)e−ikoz + gLE

†
L(z)eikoz

]
σ̂jab

}
dz (2.12)

2.2 Change to the interaction picture with re-

spect to ωo

Now we move to the interaction picture with respect to ωo. We take Ho as follows:
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2.3. EQ. OF MOTION FOR THE FIELDS AND THE ATOMIC OPERATORS

Ho =
∑
j

~ωoσ̂jbb + ~
∫
dkωo

[
a†R(k)aR(k) + a†L(−k)aL(−k)

]
(2.13)

The Hamiltonian in the interaction picture is given by [15]:

HI = eiHot/~He−iHot/~ −Ho (2.14)

The final Hamiltonian in the interaction picture is:

HI =− ~∆σ̂jbb − ~
√

2π

∫ ∑
j

δ(z − zj
{
σ̂jba

[
gRÊR(z)eikoz + gLÊL(z)e−ikoz

]
)

+
[
gRÊ

†
R(z)e−ikoz + gLÊ

†
L(z)eikoz

]
σ̂jab

}
dz

+ i~c
∫ [

ÊL † (z)
∂ÊL
∂z
− Ê†R(z)

∂ÊR
∂z

]
dz.

(2.15)

2.3 Equations of motion for the fields and the

atomic operators

In the interaction picture, the time evolution of an operator AI(t) is given by [15]:

i~
d

dt
AI(t) = [AI(t), HI ] (2.16)

We can apply this to the electric fields propagating to the right and to the left:

(
1

c

∂

∂t
+

∂

∂z

)
ÊR(z) =

igR
√

2π

c

∑
j

δ(z − zj)σ̂jabe
−ikoz−iωot (2.17)

(
1

c

∂

∂t
− ∂

∂z

)
ÊL(z) =

igL
√

2π

c

∑
j

δ(z − zj)σ̂jabe
−ikoz−iωot (2.18)

After that, we apply the same equation to find the time evolution of the atomic
operators:

˙̂σjab = i∆σ̂jab + i
√

2π
(
σ̂jaa − σ̂

j
bb

) [
gRÊR(zj)e

ikozj + gLÊL(zj)e
−ikozj

]
(2.19)

9



CHAPTER 2. TRANSMISSION OF A SINGLE PHOTON

The next step is to use the integrated equations of motion of the fields so that
we can substitute them in (2.19). At this point, we need to make use of the slowly
varying operator approximation. We can do this under the assumption of light
traveling at infinite speed inside the waveguide. The time it takes a photon to get
out of the atom, related to the decaying rate, is much larger than the time it takes
the same photon to reach any other atom. This means that σab(t− |zj−zi|c

) ∼ σab(t).

Integrating the fields we get that:

ÊR(zj) =
1

2

(
ÊR(z−j ) + ÊR(z+

j )
)

=
1

2

(
2ÊR,in +

igR
√

2π

c

∑
i≤j

σ̂iab(t−
zj−zi
c

)e−ikozi

)
(2.20)

ÊL(zj) =
1

2

(
ÊL(z−j ) + ÊL(z+

j )
)

=
1

2

(
2ÊL,in +

igL
√

2π

c

∑
i≤j

σ̂iab(t−
zi−zj
c

)eikozi

)
(2.21)

The resulting differential equation for the σ̂jab operators is:

˙̂σjab = [i∆− (γR + γL)] σ̂jab + i
√

2π
[
gRe

ikozj ÊR,in + gLE
−ikozj ÊL,in

]
− γR

∑
i<j

σ̂iabe
iko|zj−zi| − γL

∑
i>j

σ̂iabe
iko|zj−zi| (2.22)

We will consider the case of one photon traveling to the right (there is no input
for the left-traveling field). We can rewrite this set of equations in a matrix form by
defining a matrix form Hamiltonian HNH :

˙̂σjab = −
∑
i

HNH
ij σ̂iab +

igR
√

2π

c
eikozj ÊR,in (2.23)

where we have defined γR,L = g2
R,Lπ/c and the matrix elements of the Hamiltonian

are:

HNH
ij =


−i∆ + (γR + γL) if i = j
γRe

iko|zj−zi| if i < j
γLe

iko|zj−zi| if i > j
(2.24)

Additionally, we should also consider the possibility of having decay to modes
outside of the waveguide. To do so, one should consider an extra term in the
interaction Hamiltonian in (2.15) in which emitters excited in level |b〉 decay with
a decaying rate γs. By similarity with the ∆ term we can trace this new scatering
term into the matrix elements of the Hamiltonian. We will have:

HNH
ij =


−i∆ + (γs + γR + γL) if i = j

γRe
iko|zj−zi| if i < j

γLe
iko|zj−zi| if i > j

(2.25)
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2.4. FINDING THE TRANSMISSION COEFFICIENT

Instead of considering γs, γR and γL, it is easier to work with the relative coeffi-
cients βs = γs/γ, βR = γR/γ and βL = γLγ , with γ = γR + γL + γs. We should also
divide by γ the rest of the elements of our equations from now on. For the sake of
clarity, this factor is sometimes ignored.

In the next pages we will always consider the case of no detuning, ∆ = 0.

2.4 Finding the transmission coefficient

To find a solution for the differential equation in (2.23) we apply the properties of
the Fourier Transform:

− iω/γ~σab = −HNH~σab + ~g†ER,in (2.26)

~σab =
(
−iω/γ +HNH

)−1
~gER,in (2.27)

At this point we lose the hats over the operators for the sake of simplicity.
Also, the new vector ~g includes all the constants and exponentials and has elements

gj = igR
√

2π
c

eikozj .

The output field will be given by:

Eout = Ein + ~g† ~σab = Ein + ~g†
(
−iω/γ +HNH

)−1
~gER,in. (2.28)

If we rewrite this expression we can define our transmission coefficient t(ω):

Eout = t(ω)ER,in =
[
1 + ~g†

(
−iω/γ +HNH

)−1
~g
]
ER,in (2.29)

Therefore the transmission coefficient is:

t(ω) = 1 + ~g†
(
−iω/γ +HNH

)−1
~g (2.30)

The first thing we calculate is the case N = 1, this is, the transmission through
a single atom.

t1(ω) = 1− βR
−iω/γ + 1/2

(2.31)

In Figure 2.1 we see how the transmission coefficient drops on resonance. Un-
fortunately, it is in this regime that we want to work at, since it is where we would
expect the stronger non-linear interaction when two photons propagate simultane-
ously through the system. This indicates, even if it is just for a single atom, that
we will need a system where βL, βs � 1.
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CHAPTER 2. TRANSMISSION OF A SINGLE PHOTON

Figure 2.1: Transmission probability |t|2 as a function of ω/γ. The transmission
drops on resonance and has a minimum value of (1− 2βR)2.

The main problem to calculate this coefficient for bigger values of N is inverting
the matrix

(
−iω +HNH

)
. This task becomes easier under certain approximations.

First, we will assume a completely non-chiral system where βL = 0. This transforms
our problem of inverting a general matrix to a problem of inverting a lower triangular
one. This is a much simpler problem that can be solved trivially.

The result is exactly what one would expect. If there is no scattering back, the
field moves from one atom to the next with the only losses of the scattering to the
side of the waveguide, in other words, with a reduced amplitude. The interaction
with each atom is exactly the same N times in a row. The transmission coefficient
is:

t(ω) = (t1(ω))N . (2.32)

In this case, and as shown Figure 2.2, the drop of the transmission on resonance
is even more pronounced, with a minimum value of (1 − 2βR)2N . The functioning
of a gate that requires an array with N � 1 will we conditioned to have a strong
chiral interaction (βR ∼ 1).

However, we want to see the effect that some partial chirality has on the efficiency
of the gate. This partial chirality will be considered an imperfection. We have seen
that any functioning gate will require βL � 1. Therefore, it is justified to consider
the approximation βL � βR. This allows us to rewrite the matrix we want to invert
as M = A+ βLB. This way, it is decomposed into the sum of a lower and an upper
diagonal matrix and one can calculate the inverse as M−1 ≈ A−1[1−βLBA−1]. More
details about this approximation can be found in Appendix A. After inverting the

12



2.5. NUMERICAL RESULTS FOR A SINGLE PHOTON

Figure 2.2: Transmission probability |t|2 as a function of ω/γ for the case N = 5
and βL = 0. The transmission drops on resonance and has a minimum value of
(1− 2βR)2N .

matrix and approximating to first order in βL, the resulting transmission coefficient
is:

t(ω) = tN1 (ω)

{
1 + ei2kodβRβL(−iω/γ + 1/2)−2N − 1 +Nt1e

i2kod + t1e
i2kod

(1− t1ei2kod)2

}
(2.33)

We can further simplify this by considering N � 1. The final result is:

t(ω) = [t1(ω)]N
{

1 + βRβL (−iω/γ + 1/2)−2 ei2kod
N

1− ei2kodt1(ω)

}
, (2.34)

with
t1(ω) = 1− βR (−iω/γ + 1/2)−1 . (2.35)

2.5 Numerical results for the transmission of a

single photon

In Figures 2.3 and 2.4 we can see the transmission and reflection probabilities in
an a array with 30 atoms if the distance between them is set so that kod = 0 (or
realistically kod = 2π) and kod = π. In this case the result is practically the same
that when we had βL = 0.
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CHAPTER 2. TRANSMISSION OF A SINGLE PHOTON

Figure 2.3: Transmission, |t|2, and reflection, |r|2, probability for the propagation
to the right of a single photon over an array of 30 atoms with kod = 0.

If we set kod 6= nπ a sharp peak appears in the probabilities as we can see in
Figures 2.5 and 2.6. The position of this peaks depends on the value of kod. This
peak can be explained by a cavity-like behaviour at the ends of the waveguide that
gets amplified for a given frequency.

For the implementation of the quantum gate, this effect should be avoided. Luck-
ily, we will try to work in the vicinity of the values kod = nπ. At this points, the
transmission coefficient phase behaves as ∼ (−1)N , with non-existent imaginary
part. If we set the number of atoms N to be en even number we will achieve the
desired behaviour.

Finally, in Figure 2.8 we compare the results of our approximation in (2.34) with
the numerical solution. The approximation to first order in βL is good except around
the peak of increased reflection. This fact is compatible with the idea of having a
cavity like behaviour since it is in that case where the reflections described by βL
acquire the most importance.
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Figure 2.4: Transmission, |t|2, and reflection, |r|2, probability for the propagation
to the right of a single photon over an array of 30 atoms with kod = π.

Figure 2.5: Transmission, |t|2, and reflection, |r|2, probability for the propagation
to the right of a single photon over an array of 30 atoms with kod = 0.8.
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Figure 2.6: Transmission, |t|2, and reflection, |r|2, probability for the propagation
to the right of a single photon over an array of 30 atoms with kod = π/2.

Figure 2.7: Real and imaginary parts of the transmission coefficient on resonance
as a function of N for kod = π.
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Figure 2.8: Comparison between the numerical (exact) and the analytical (approx-
imated) solutions for 30 atoms.
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Chapter 3

Fidelity measurements for the
single photon case

We recover the expression we discussed in Chapter 1 for the fidelity of a quantum
gate (1.7):

F =
1

16
|1 + tR + tL − tRL|2 (3.1)

In Chapter 2, we have considered the case of a single photon propagating through
our system. Now we want to calculate how this process in particular affects the
fidelity of our gate. To do so, we will assume that everything else behaves as in an
ideal gate. This means that we will take tRL = −1.

The elements tR and tL will be given by:

tR,L =

∫
φ∗R,L(ω)φR,L(ω)tR,L(ω)dω (3.2)

where φR,L(ω) is the profile of the photon pulse. The transmission coefficient tR,L(ω)
is the one calculated in (2.34).

Assuming the propagation is the same in both propagation directions, the ex-
pression for the fidelity is:

F =
1

16

∣∣∣∣2 + 2

∫
φ∗R(ω)φR(ω)tR(ω)dω

∣∣∣∣2 (3.3)

We will assume both photons have a normalized Gaussian profile such as:

φL,R =
4

√
2

πσ2
e−

(ω−ω1)2

σ2 (3.4)
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3.1 Fidelity for one photon when βL, σ/γ � 1

To find an expression for F we need to perform the following integral:

∫
φ∗R(ω)φR(ω)tR(ω)dω =

√
2

π(σ/γ)2

∫
exp

[
−2

(ω/γ − ω1/γ)2

(σ/γ)2

]
tR(ω)dω (3.5)

If we assume a small deviation in the Gaussian profile (σ/γ � 1), we can expand
t(ω) around ω1, the central frequency.

t(ω) = t(ω1) +
∂t(ω)

∂ω

∣∣∣∣
ω1

(ω − ω1) +
∂2t(ω)

∂ω2

∣∣∣∣
ω1

(ω − ω1)2 + ... (3.6)

To facilitate the integration, we can also take the approximation βL � 1 and
simplify the derivatives of the transmission coefficient as:

∂t(ω)

∂ω
= Nt1(ω)N−1t′1(ω) {1 + βL...}+ βL... ≈ Nt1(ω)N−1t′1(ω)

∂2t(ω)

∂ω2
= N(N − 1)t1(ω)N−2t′1(ω)2 +Nt1(ω)N−1t′′1(ω)

t′1(ω) = −iβR (−iω/γ + 1/2)−2 t′′1(ω) = 2βR (−iω/γ + 1/2)−3

Finally we use the well known results for the Gaussian integrals to find an ex-
pression for the fidelity:∫ +∞

−∞
x2ne−

1
2
ax2

dx =

(
2π

a

)1/2
1

an
(2n− 1)!!

∫ +∞

−∞
x2n+1e−

1
2
ax2

dx = 0 (3.7)

The fidelity of the C-Phase gate is:

F =
1

16

∣∣∣∣2 + 2t1(ω1)N
{

1 + βRβL (−iω1/γ + 1/2)−2 ei2kod
N

1− ei2kodt1(ω1)

−βRN(N − 1) (−iω1/γ + 1/2)−4

t1(ω1)2

(σ/γ)2

8
+

2βRN (−iω1/γ + 1/2)−3

t1(ω1)

(σ/γ)2

8

}∣∣∣∣∣
2

(3.8)

In Figures 3.1 and 3.2 we can see how does F behave as a function of σ/γ and
the central frequency ω1.
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In the first case, the fidelity oscillates and reaches 0 for the cases in which the
phase gained propagating through the medium is π. When far from resonance, this
oscillation happens between 0 and 1. When closer to resonance, the envelope of the
oscillation behaves as the probability of transmission |t|2.

Figure 3.1: Fidelity as a function of the central frequency of a pulse with σ/γ = 0.03.

In Figure 3.2 we can see how the fidelity on resonance ω = 0 drops if the pulse
is too wide.
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Figure 3.2: Fidelity for ω = 0 as a function of the standard deviation of the Gaussian
pulse.
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Chapter 4

Transmission of two photons

In Chapter 4, we will focus on the case of two photons travelling simultaneously
through the waveguide in opposite directions. This is the last situation missing to
have a complete description of the operation of the C-Phase gate.

The two level system considered in the previous chapter becomes now a three-
level system such as the one in Figure 4.1. In this case, we will focus in the ideal case
of perfect chirality. One of the transitions will be excited by the photon traveling
to the left and the other one by the photon travelling to the right.

Figure 4.1: Scheme of the energy levels of each of the emitters of the 1D array. In
this general representation both interactions are partially-chiral and correspond to
different excitation energies.

The formalism used in Chapter 2 becomes too complicated and the impossibility
of solving the system analytically deprives us of information about what we are
really interested in, the interaction between the two photons. The approximation
we will consider simplifies the analysis by focusing only on the interaction. We will
assume that the transmission of each of the photons through the waveguide is not
affected by the presence of the other and study what happens when they cross paths.
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4.1 Interaction inside the waveguide

As explained before, we will now focus on what happens when the photons’ trajecto-
ries cross. We are working under the assumption of infinite speed of light inside the
waveguide. This means that the photons only appear in our formalism as excitations
of the atoms, since they travel instantaneously from one to the next. Moreover, we
are considering a perfectly chiral system in which each atom can only be excited by
a photon at a time.

In order to simplify the analysis, we will for the time being also consider that
this interaction occurs inside an infinite 1D array of atoms extending from −∞ to
∞.

The Hamiltonian of such system reads as follows:

H =− iΓ1D/2
∑
j

(
σjcaσ

j
ac + σjbaσ

j
ab

)
− iΓ1D/2

∑
j

[∑
i>j

eiko|zj−zi|σjcaσ
i
ac +

∑
i<j

eiko|zj−zi|σjbaσ
i
ab

]
.

(4.1)

The first term corresponds to the emission and re-absorption of a photon by the
same atom j. In the second term, we have the two cases of moving to the left or
to the right. In the first part a photon is emitted when decaying from c to a and
the excitation moves to the left (to lower index j). The second part corresponds
with the transition b → a, the excitation moves to the right (higher index j). The
exponential eiko|zj−zi| simply corresponds to the phase gained when traveling from
one photon to the next.

To proceed with the analysis, we define a basis of eigenstates with two excitations
defined by the distance ∆ between them:

|∆〉 =
∑
s

eik(zs+∆/2+zs−∆/2)σ
s−∆/2
ba σs+∆/2

ca |0〉 . (4.2)

Here, k is just the sum of the momentum of the individual photons, k = k1 + k2.

A general state using this basis will be:

|Φ〉 =
∑

∆

∑
s

eik(zs+∆/2+zs−∆/2)f(∆)σ
s−∆/2
ba σs+∆/2

ca |0〉 =
∑

∆

f(∆) |∆〉 . (4.3)

Here, s is the middle position between the two excitations (centre of mass) and ∆
is the difference between the two. We will assume that the two excitations can not
occur at the same atom at the same time, so this does not exist for ∆ = 0 and
f(0) = 0.
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4.1. INTERACTION INSIDE THE WAVEGUIDE

One can find the effect the Hamiltonian in (4.1) has when applied to each element
of this set of states |∆〉. It is useful to remember the commutation relation for the
atomic operators: [σiba, σ

j
ab] = δij(σ

i
bb − σiaa).

H |∆〉 =− iΓ1D/2 |∆〉

− iΓ1D/2
∑
s

eik(zs+∆/2+zs−∆/2)
∑
j

eiko|zj−zs+∆/2|θ(s+ ∆/2− j)σs−∆/2
ba σjca |0〉

− iΓ1D/2
∑
s

eik(zs+∆/2+zs−∆/2)
∑
j

eiko|zj−zs−∆/2|θ(j − s+ ∆/2)σjbaσ
s+∆/2
ca |0〉

(4.4)

This expression can be simplified with a change of variables that will allow us to
rewrite the Hamiltonian in matrix form. We introduce two new indexes s′ and ∆′

that relate to s, j and ∆ differently in the first and in the second sum. In the first
sum we perform the change:

s−∆/2 = s′ −∆′/2 j = s′ + ∆′/2. (4.5)

Meanwhile, in the second sum, the change we need is:

s+ ∆/2 = s′ + ∆′/2 j = s′ −∆′/2 (4.6)

We also change the way we refer to the position of each atom zj and consider
the distance between them is d so that zj = dj and ∆ −→ ∆d. With all this
considerations, we can rewrite the expression in (4.4) as:

H |∆〉 = −iΓ1D |∆〉 − iΓ1D/2
∑
∆′

{
ei(k+ko)d(∆−∆′) + e−i(k−ko)d(∆−∆′)

}
θ(∆−∆′) |∆′〉 .

(4.7)

Finally, we write the Hamiltonian in matrix form:

H =
∑
∆,∆′

H∆∆′ |∆〉 〈∆′| , (4.8)

with matrix elements

H∆∆′ = −iΓ1D/2 δ(∆−∆′)− iΓ1D/2
{
ei(k+ko)d(∆−∆′) + e−i(k−ko)d(∆−∆′)

}
θ(∆−∆′).

(4.9)

Now we apply the Schrödinger equation to the general state in (4.3):

H |Φ〉 = E |Φ〉 = E
∑

∆

f(∆) |∆〉 =
∑
∆,∆′

H∆′∆f(∆) |∆′〉 (4.10)
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Ef(∆) = −iΓ1D

2
f(∆)− iΓ1D

2

∑
∆′

[
ei(k+ko)d(∆−∆′) + e−i(k−ko)d(∆−∆′)

]
θ(∆−∆′)f(∆′)

(4.11)

The only thing left to do to solve the system is find f(∆).

4.1.1 First ansatz: the naive approach

Our first guess for the function f(∆) is the simplest we can make. We are considering
two photons propagating through a waveguide in opposite directions, unaffected by
each other. Therefore, before they cross (∆ < 0), f(∆) just corresponds with the
phase gained propagating over the distance of the waveguide. However, when they
cross (∆ = 0), an additional phase t is gained and conserved as they move far apart
(∆ > 0.)

Our ansatz is:

f(∆) =

{
eiqd∆ ∆ < 0
teiqd∆ ∆ > 0,

(4.12)

where q the difference in momentum between the two photons q = k2 − k1.

We can perform the sum in (4.11) distinguishing between the cases ∆ < 0 and
∆ > 0 to find expression for E and t.

• For ∆ < 0:

The resulting energy is:

E = −iΓ1D

2
+ i

Γ1D

2

{
1

1− ei(q−k−ko)d
+

1

1− ei(q+k−ko)

}
. (4.13)

As expected, it is real and does not depend on ∆, as it should be conserved
over time and constant no matter where the excitations are placed. The fact
that this is real can be seen considering that:

1

1− eiθ
=

1

2
+ i

sin θ

2(1− cos θ)
(4.14)

It is worth mentioning that this energy is just the sum of the energy of two
single excitations.

• For ∆ > 0:

The expression in this case is much more complex:
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Et =− iΓ1D

2
t− iΓ1D

2

[
ei(k+ko)d∆ e−i(q−k−ko)d

1− e−i(q−k−ko)d
+ e−i(k−ko)d∆ e−i(q+k−ko)d

1− e−i(q+k−ko)d

]
− Γ1D

2
t

[
ei(k+ko)d∆ ei(q−k−ko)

1− ei(q−k−ko)
+ e−i(k−ko)d∆ ei(q+k−ko)d

1− ei(q+k−ko)d

]
+ i

Γ1D

2
t

[
1

1− ei(q−k−ko)d
+

1

1− ei(q+k−ko)

]
(4.15)

Using (4.13) and (4.15) one cannot find a general expression for t (with no
dependence on ∆).

t

[
ei(k+ko)d∆ 1

1− e−i(q−k−ko)d
+ e−i(k−ko)d∆ 1

1− e−i(q+k−ko)d

]
= ei(k+ko)d∆ e−i(q−k−ko)d

1− e−i(q−k−ko)d
+ e−i(k−ko)d∆ e−i(q+k−ko)d

1− e−i(q+k−ko)d
.

(4.16)

This means our ansatz in (4.12) is not correct and we need to try a new one.

4.1.2 Second ansatz: inelastic collision

The new ansatz is quite similar, and still assumes that before the crossing (∆ < 0)
there is no interaction between photons. Looking at the energy in (4.13), one can
realize it is degenerated, and therefore, there are two different valid values of q for
a given E. We can also see this in Figure 4.2.

Our new hypothesis for the interaction is that some sort of inelastic collision
occurs:

f(∆) =

{
eiq1d∆ ∆ < 0

t1e
iq1d∆ + t2e

iq2d∆ ∆ > 0.
(4.17)

After the photons cross, there are two contributions with different q, and weights
t1 and t2. This means the total momentum k of the pair does not change but the
difference between k1 and k2 does, this is why we talk about an inelastic collision.
Both the total energy and the energy of the individual photons are conserved.

We proceed in the same way as before and perform the sum in (4.11) distin-
guishing between the cases ∆ < 0 and ∆ > 0.
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Figure 4.2: Total energy of the system with two excitations. One can clearly see
that there two values of qd corresponding to each value of E. In blue we have the
real part and in orange the imaginary part (always zero).

Figure 4.3: Scheme of the situation before and after the photons interact with each
other.

• For ∆ < 0:

The result is exactly the same as before (as so is the ansatz). Once again, the
energy is the sum of the energies of two single excitations.

E = −iΓ1D/2 + iΓ1D/2

{
1

1− ei(q1−k−ko)d
+

1

1− ei(q1+k−ko)

}
(4.18)

• For ∆ > 0:

E
[
t1e

iq1d∆ + t2e
iq2d∆

]
= −iΓ1D/2

[
t1e

iq1d∆ + t2e
iq2d∆

]
− iΓ1D/2

−1∑
∆′=−∞

[
ei(k+ko)d(∆−∆′) + e−i(k−ko)d(∆−∆′)

]
θ(∆−∆′)eiq1d∆′

− iΓ1D/2
∆−1∑
∆′=1

[
ei(k+ko)d(∆−∆′) + e−i(k−ko)d(∆−∆′)

]
θ(∆−∆′)

[
t1e

iq1d∆′ + t2e
iq2d∆′

]
(4.19)
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Using (4.18) and (4.19) we find the following equation:

t2

[
ei(k+ko)d∆ ei(q2−k−ko)

1− ei(q2−k−ko)
+ e−i(k−ko)d∆ ei(q2+k−ko)d

1− ei(q2+k−ko)d

]
= ei(k+ko)d∆ 1− t1ei(q1−k−ko)

1− ei(q1−k−ko)
+ e−i(k−ko)d∆ 1− t1ei(q1+k−ko)d

1− ei(q1+k−ko)d

(4.20)

In order to have a solution that does not depend on ∆ we need to find a solution
for the following system of equations:

t2 =
(1−t1ei(q1−k−ko)d)(1−ei(q2−k−ko)d)

(1−ei(q1−k−ko)d)ei(q2−k−ko)d

t2 =
(1−t1ei(q1+k−ko)d)(1−ei(q2+k−ko)d)

(1−ei(q1+k−ko)d)ei(q2+k−ko)d

(4.21)

In view of the difficulties to find an analytical solution to the system in (4.21),
finding a numerical solution seems a good approach. We should not forget to check
that probability is normalized and adjusted with the group velocity for each of the
contributions after the collision. This condition translates into:

1 = |t1|2 +
vg,2
vg,1
|t2|2, (4.22)

where the group velocity is defined as:

vg ≡
∂ω

∂k
= idΓ1D/2

{
ei(q1−k−ko)d

(1− ei(q1−k−ko)d)2 −
ei(q1+k−ko)

(1− ei(q1+k−ko)d)
2

}
. (4.23)

In the following figures we can see the transmission coefficients t1 and t2 and the
probabilities |t1|2 and |t2|2|v1|/|v2|. In particular, in Figure 4.4 we have kd = π and
kod = 0 (or equivalently kod = 2π). We see that for q1d = 0, 2π, the system behaves
exactly as we want it to, introducing a π phase for the elastic contribution. There is
no inelastic contribution since t2 = 0 for all values of q1d. The C-Phase gate would
have an ideal behavior when the two photons enter the waveguide with the same
momentum ( but opposite sign) so that q1 = 0.

For any set of k, ko and q1 we see that both t1 and t2 have nonexistent imaginary
part for q1d = ko +π. This is marked with the vertical dashed line in all the figures.

In Figure 4.4 we have kd = π/2 and kod = 0. In this case, even though it is
possible to have a completely elastic collision |t1|2 = 1 for some values, we never gain
a π phase. In Figure 4.6 we observe the same behaviour but displaced by kod = 0.2.

Finally, Figure 4.7 shows a more general case in which we cannot operate the
C-Phase gate either.
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Figure 4.4: In the figures on top we can observe the real and imaginary part of the
coefficients of the non-linear interaction t1 and t2 as a function of q1d for kd = π
and kod = 0. In the plot below we have the probabilities |t1|2 and |t2|2|v1|/|v2| of
having an elastic or an inelastic collision.
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Figure 4.5: In the figures on top we can observe the real and imaginary part of the
coefficients of the non-linear interaction t1 and t2 as a function of q1d for kd = π/2
and kod = 0. In the plot below we have the probabilities |t1|2 and |t2|2|v1|/|v2| of
having an elastic or an inelastic collision.
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Figure 4.6: In the figures on top we can observe the real and imaginary part of the
coefficients of the non-linear interaction t1 and t2 as a function of q1d for kd = π/2
and kod = 0.2. In the plot below we have the probabilities |t1|2 and |t2|2|v1|/|v2| of
having an elastic or an inelastic collision.
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Figure 4.7: In the figures on top we can observe the real and imaginary part of the
coefficients of the non-linear interaction t1 and t2 as a function of q1d for kd = π
and kod = 0. In the plot below we have the probabilities |t1|2 and |t2|2|v1|/|v2| of
having an elastic or an inelastic collision.
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Chapter 5

Input/Output relation

For the moment, we have found the key part of the two-photon case, the non-linear
interaction. However, in order to have a full description we still need to figure out
what happens in a finite waveguide when the photons enter and leave the system.

In particular, we will consider both situations (entering and leaving) separately
and change from the infinite array approximation to a semi-infinite one. We will
continue to work in the completely chiral case so that we can put this together with
the collision dynamics results.

5.1 Input relation

Our starting point will be the equation of motion that we calculated in Chapter 2. In
particular, we take an expression analogous to (2.23) but now the atomic operators
σab are represented by cn and the index has changed from j to n.

ċn(t) = g̃eikodnEin(t) + i
∑
m

Hmncm(t) (5.1)

The Hamiltonian in the completely chiral case with βR = 1 is simply:

Hmn =


1 if m = n

eiko|zn−zm| if m < n
0 if m > n

(5.2)

The Z-transform relates the coefficients cn in space time with the coefficients ck
in momentum space.
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cn(t) =
1

d

1

2π

∫ π/d+iη

−π/d−iη
eikdnck(t)dk ck(t) =

∞∑
n=0

e−ikdncn(t) (5.3)

For convergence reasons we need to introduce the parameter η and then take the
limit η → 0.

Applying this relations to (5.1) and knowing the matrix elements of the Hamil-
tonian Hmn we get:

ċk(t) =
∞∑
n=0

g̃eikodne−ikdnEin(t) +
∞∑
n=0

n−1∑
m=0

e−ikdneikod(n−m)cm(t) + 1
2
ck(t) (5.4)

For the input, we are considering a semi-infinite array of atoms that goes from 0 to
+∞. This defines the limits of the sums above.

If we perform the sums, this expression turns into:

ċk(t) = G(k)Ein(t)− iωkck(t) (5.5)

with:

G(k) =
g̃

1− ei(ko−k)d
and ωk =

sin [(ko − k)d]

2(1− cos [(ko − k)d])
. (5.6)

We also introduce the Laplace transform that relates the coeffients ck in time
and frequency space:

ck(t) =

∫ ∞
−∞

e−iωtck(ω)dω ck(ω) =
1

2π

∫ ∞
0

ck(t)e
iωtdt (5.7)

Using the the Laplace transform properties for time derivatives, we can solve the
differential equation in (5.5):

− iωck(ω) = G(k)Ein(ω)− iωkCk(ω) −→ ck(ω) =
G(k)Ein(ω)

i(ωk − ω)
(5.8)

Now we have to transform back into time space:

ck(t) = G(k)

∫ ∞
−∞

e−iωt
Ein(ω)

i(ωk − ω)
(5.9)

Using Jordan’s Lemma and the Residue Theorem applied to a pole at ω = ωk−iε
(and then taking ε→ 0) we end up with our final expression for the input:

Ck(t) = −2πG(k)e−iωktEin(ωk) (5.10)
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5.2 Output relation

The process to find the output relation is very similar. Now we only have the
contributions from the atoms and not an input field. Also, our semi-infinite array
will have atoms from −∞ to N − 1. The starting point is:

ċn(t) = i
∑
m

Hmncm(t). (5.11)

To facilitate the calculation and make it as similar as possible to the previous,
we flip the axis and consider the array going from −(N − 1) to ∞. This affects our
differential equation and the definition of the Z-transform:

ċn(t) = −i
∑
m

Hmncm(t) (5.12)

ck(t) =
∞∑
n=0

eikdncn(t). (5.13)

The output field is given by:

Eout(t) =
∞∑

n=−(N−1)

g̃eikodncn(t). (5.14)

Using (5.13) this turns into:

Eout(t) =
1

2π

1

d
g̃

∞∑
n=0

∫
ei(ko−k)d(N−1)eikodne−ikdnck(t)dk

=
1

2π

1

d

∫
dkei(ko−k)d(N−1)G(k)ck(t),

(5.15)

where G(k) is the same as in (5.6).

We now have:

ċk(t) =
∞∑
n=0

eikdncn(t) =
∞∑
n=0

∞∑
m=n+1

eikod(m−n)eikdncm(t) + 1/2ck(t). (5.16)

This, after performing the sums, can be written as:

ċk(t) = −iωkck(t), (5.17)

where ωk has the same dispersion relation as before, found in (5.6).
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Once again, we use the properties of the Laplace transform to solve this differ-
ential equation.

− iωck(ω) =
1

2π
Ck(t = 0)− iωkck(ω) −→ ck(ω) = − Ck(t = 0)

i2π(ω − ωk)
(5.18)

We insert this expression into the output field:

Eout(ω) =
1

d

−1

(2π)2

∫
dkei(ko−k)d(N−1)G(k)ck(t = 0)

1

i(ω − ω(k))
. (5.19)

We perform the substitution k → ω(k) so that we can integrate over the fre-
quency:

Eout(ω) =
1

d

−1

(2π)2

∫
dωke

i(ko−k)d(N−1)

∣∣∣∣ ∂k∂ωk
∣∣∣∣G(k)ck(t = 0)

1

i(ω − ω(k))
. (5.20)

One more time, we apply Jordan’s lemma and the Residue theorem to a pole
situated now in ωk = ω+iε and then take ε→ 0. The final expression for the output
is:

Eout(ω) = −1

d

1

2π
G(k)

1

vg(ω)ck(t = 0)
ei(ko−k)d(N−1). (5.21)

Here we have introduced the group velocity vg which is defined as:

vg(ω) =
d

4 sin2 [(k − ko)d/2]
. (5.22)

5.3 Input/Output relation for a single photon

Now we have to put together the two expressions from above, (5.10) and (5.21). We
start with the simplest case, just one photon traveling to the right, entering and
leaving the waveguide.

We consider a general input state:

|Ψ〉 =

∫
dωΨ(ω)E†in(ω) |vac〉 (5.23)

Using (5.10) for t = 0 we get the state just after it enters the waveguide:

|Ψ〉 =

∫
dωΨ(ω)

−1

2πG∗(k)
c†k(ω) |vac〉 (5.24)
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Now the pulse leaves the waveguide after interacting with the N atoms. We use
the output expression in (5.21) to describe how this frequencies inside the waveguide
are translated into frequencies outside of it:

|Ψ〉 =

∫
dωΨ(ω)

−v∗g(ω)

(G∗(k))2
ei(k−ko)d(N−1)c†k(ω) |vac〉 (5.25)

We want to rewrite this as a relation of the form

|Ψ〉 =

∫
dωΨ(ω)E†in(ω) |vac〉 −→ |Ψ〉 =

∫
dωΨ(ω)f(ω)E†in(ω) |vac〉 . (5.26)

We can do so considering the function

f(ω) = ei(k(ω)−ko)N , (5.27)

since everything else inside the waveguide cancel out.

Since we are considering a perfect chiral system, there are no losses (no reflections
and no losses to other modes) and the only thing that happens to our photon is that
it gains an energy-dependent phase as it propagates through the waveguide. This is
what we see in (5.27).

5.4 Input/Output relation for the two photon case

At this point, we focus again on the semi-infinite chain approximation under which
we are calculating the transmission of the photons. In our perfectly non-chiral
system we can consider that the input and output of each photon are not affected by
the presence of the other one. This allows us to simply apply the relation calculated
above to each photon separately.

The additional component that refers to the non-linear interaction between the
photons is the result of the inelastic collision that we studied earlier. We have to
be careful with the propagation direction, one to the right and the other one to the
left (opposite sign of k).

The two-photon initial state is:

|Ψ〉 =

∫ ∫
dωdω′ΨR(ω)ΨL(ω′)ERin

†
(ω)ELin

†
(ω′) |vac〉 (5.28)

Right after entering the waveguide this becomes

|Ψ〉 =

∫ ∫
dωdω′ΨR(ω)ΨL(ω′)

−1

2πG(kR)

−1

2πG(−kL)
cRk(ω)

†
cLk(ω′)

† |vac〉 , (5.29)

39



CHAPTER 5. INPUT/OUTPUT RELATION

where we have applied (5.10) twice.

As it was discussed before, we are interested in working in a range for which
the contribution from the inelastic collision can be neglected. Either because the
probability approximates to zero or because the individual energies of the resulting
pair of photons are so different from the initial ones that they can easily be filtered
out in a hypothetical measurement device. Therefore, in this input/output relation,
we will only consider the elastic collision component. This corresponds with the
coefficient t1 in (4.17). From now on we will refer to it as t(kR(ω), kL(ω′)).

The interaction just adds a term to the previous state.

|Ψ〉 =

∫ ∫
dωdω′t(kR(ω), kL(ω′))ΨR(ω)ΨL(ω′)

−1

2πG(kR)

−1

2πG(−kL)
cRk(ω)

†
cLk(ω′)

† |vac〉 .

(5.30)

Now we apply once again the output relation (5.21) to each of the photons and
get the final expression:

|Ψ〉 =

∫ ∫
dωdω′t(kR(ω), kL(ω′))ΨR(ω)ΨL(ω′)

−vg(ω)

G2(kR)
ei(kR−ko)d(N−1)

× −vg(ω
′)

G2(−kL)
ei(−kL−ko)d(N−1)cRk(ω)

†
cLk(ω′)

† |vac〉
(5.31)

In an equivalent way to (5.26) we can write:

f(ω, ω′) = ei(kR(ω)−ko)Nei(−kL(ω′)−ko)N t(kR(ω), kL(ω′)) (5.32)
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Chapter 6

Fidelity measurements for the two
photon case

One more time, we recover the formula for the fidelity as discussed in Chapter 1.

F =
1

16
|1 + tL + tR − tRL|2 (6.1)

We now assume that the transmission of a single photon through the waveguide
is perfect. In this case we would have tL = tR = 1. The formula for the fidelity
turns into:

F =
1

16
|3− tRL|2 (6.2)

Notice that, also in the ideal case, the optimal phase introduced between the two
photons when they interact is π. The fidelity will be maximum when tLR = −1.

In the same way we calculated the coefficients tR and tL in Chapter 3, we calculate
tRL considering a Gaussian spectrum for each of the photons:

tRL =

∫ ∫
dωdω′φ∗R(ω)φR(ω)φ∗L(ω′)φL(ω′)f(ω, ω′) (6.3)

The normalized Gaussian spectrum is:

φL,R =
1√

2πσ2
e−0.5(ω−ω1)2/σ2

ei(ω−ω1)τ (6.4)

The transmission function we just calculated with the input/output relation was:

f(ω, ω′) = ei(k−ko)dNei(−k
′−ko)dN t(ω, ω′) (6.5)
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where t(ω, ω′) is the coefficient of the elastic collision between the two photons and
the dispersion relation is:

ω(k) = − cos [(k − ko)d/2]

2 sin [(k − ko)d/2]
−→ k(ω)d− kod = 2 arctan(−2/ω) (6.6)

However, we will leave the exponentials out of the calculation, since they are
related to the propagation over the distance of the waveguide, one would also find
those oscillations in the ideal case with which we are comparing our output photon.
Therefore, the transmission function is simply:

f(ω, ω′) = t(ω, ω′), (6.7)

and we can focus in the effects of the collision only.

Figures 6.1 and 6.2 show the result of numerically performing the integral in
(6.3) and introducing it into the fidelity.

Figure 6.1: Fidelity of the gate considering only the inelastic collision of two photons
against the standard deviation of the Gaussian profile of the two incident photons.
The two pulses are centered on resonance (ω1 = 0) and have the same standard
deviation.

Because of the way I defined F , the minimum value is 0.25. One can see this
looking at (6.2). At the worst possible scenario tRL = 1, the C-Phase gate introduces
no phase at all.

In Figure 6.2 we can see how we get a fidelity of over 90% for reasonable values
of σ1 and σ2. We can afford to send relatively broad pulses and still get the desired
non-linear interaction. However, we must be careful, if we reduce the width of the
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Figure 6.2: Closer look at the fidelity shown in Figure 6.1.

pulse in frequency space to achieve higher fidelities, we would be taking a very broad
pulse in the time domain. In such case, one should be careful and ensure that the
waveguide is long enough to fit in the whole pulse.
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Chapter 7

Conclusions and outlook

7.1 Conclusions

In this Master’s thesis, we have studied two key aspects in the operation of a quan-
tum C-Phase gate. The results show that the implementation of such a gate in a
setup like the one proposed is possible. The ideal behaviour of the system in all the
possible situations is that of a C-Phase gate.

For the case of propagation of a single photon, we have seen that we need to be
very close to an ideal system with βR ∼ 1 in order to mitigate the losses and achieve
a high enough fidelity. Moreover, we have observed this cavity like behaviour in
which the reflection is enhanced. This could be interesting for some applications
but is also avoidable for our implementation.

For the interaction of two photons we have observed the most relevant results.
The inelastic collision that occurs when two photons find each other inside the
waveguide was an unexpected and interesting result that could also give rise to
many interesting applications. It is in fact, a way of changing the wavelength of two
photons by simply sending both through a waveguide. However, in our case, we are
interested in avoiding it. There is a regime in which we can achieve a completely
elastic collision that introduces the desired relative phase between our two qubits.

7.2 Outlook

During the course of this project, simplicity and analytical resolution is prioritized
over a more realistic study. Of course, this has allowed us to successfully and roughly
determine that a C-Phase quantum gate can be implemented with this setup. But
moving forward we should get rid of several approximations.
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The obvious next step would be to study how the non-linear interaction occurs
in a system with partial-chirality and losses to outside of the waveguide (βR 6= 0).
This would allow us to combine the results found in Chapter 2 and 4 for the cases
of transmitting one and two photons respectively.

A second interesting thing to do would be solving the whole system for the case of
two photons, and get rid of the infinite waveguide approximation. The input/output
relation calculated in Chapter 5 will be of much more relevance in the case βR 6= 0
and it is possible then that, in a shorter array of atoms, the two effects cannot be
considered completely independent.

Finally, a generalization of the formalism, in which we can consider different
coupling rates for the propagation in each direction and different energy levels,
would give us a complete and realistic description of the system.

As for the experimental implementation, it seems far from becoming a reality
soon. It is specially difficult to have long and stable 1D arrays of quantum emitters
and it is even harder doing so controlling the exact distance between them.
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Appendix A

Matrix inversion

A.1 Approximation to first order of M−1

One can show that given a matrix M = A+ εB with ε� 1, the inverse matrix can
be approximated to first order in ε by using M−1 = A−1[1− εBA−1].

We check this is correct calculating MM−1 = 1.

MM−1 = [A+ εB]A−1[1− εBA−1] = [AA−1 + εBA−1][1− εBA−1]

= 1 + εBA−1 − εBA−1 − ε2BA−1BA−1

If we consider the term with ε2 negligible, we have that MM−1 = 1.

A.2 Inverse of a lower diagonal matrix

To calculate the previous approximation we still need to invert the matrix A, which
we know is of the form:

A =


a11 0 0 0 ...
a21 a22 0 0 ...
a31 a32 a33 0 ...
a14 a42 a43 a44 ...
...

...
...

...
. . .

 (A.1)

An inverse matrix must fulfill that AA−1 = 1. The inverse matrix of a lower
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diagonal matrix is always also lower diagonal. This means:

AA−1 =


a11 0 0 0 ...
a21 a22 0 0 ...
a31 a32 a33 0 ...
a41 a42 a43 a44 ...
...

...
...

...
. . .




l11 0 0 0 ...
l21 l22 0 0 ...
l31 l32 l33 0 ...
l41 l42 l43 l44 ...
...

...
...

...
. . .

 =


1 0 0 0 ...
0 1 0 0 ...
0 0 1 0 ...
0 0 0 1 ...
...

...
...

...
. . .


(A.2)

The elements in the diagonal will always fulfill:

aii lii = 1 −→ lii = a−1
ii (A.3)

The rest of the elements can be found using forward substitution and then we
can find a generalized expression:

a21 l11 + a22 l21 = 0 −→ l21 = −a21 l11

a22

a31 l11 + a32 l21 + a33 l31 = 0 −→ l31 = −a31 l11 + a32 l21

a33

a32 l22 + a33 l32 = 0 −→ l32 = −a32 l22

a33

a42 l22 + a43 l32 + a44 l42 = 0 −→ l42 = −a42 l22 + a43 l32

a44

a41 l11 +a42 l21 +a43 l31 +a44 l41 = 0 −→ l41 = −a41 l11 + a42 l21 + a43 l31

a44

...

The final expression for the elements below the diagonal of the inverse matrix is:

lij = −
∑i−1

m=j aimlmj

aii
(A.4)
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