Waveform Modelling for the Laser Interferometer Space Antenna
Research output: Working paper › Preprint › Research
Standard
Waveform Modelling for the Laser Interferometer Space Antenna. / Group, LISA Consortium Waveform Working; LISA Consortium Waveform Working Group.
2023.Research output: Working paper › Preprint › Research
Harvard
APA
Vancouver
Author
Bibtex
}
RIS
TY - UNPB
T1 - Waveform Modelling for the Laser Interferometer Space Antenna
AU - Group, LISA Consortium Waveform Working
AU - Afshordi, Niayesh
AU - Akçay, Sarp
AU - Seoane, Pau Amaro
AU - Antonelli, Andrea
AU - Aurrekoetxea, Josu C.
AU - Barack, Leor
AU - Barausse, Enrico
AU - Benkel, Robert
AU - Bernard, Laura
AU - Bernuzzi, Sebastiano
AU - Berti, Emanuele
AU - Bonetti, Matteo
AU - Bonga, Béatrice
AU - Bozzola, Gabriele
AU - Brito, Richard
AU - Buonanno, Alessandra
AU - Cárdenas-Avendaño, Alejandro
AU - Casals, Marc
AU - Chernoff, David F.
AU - Chua, Alvin J. K.
AU - Clough, Katy
AU - Colleoni, Marta
AU - Dhesi, Mekhi
AU - Druart, Adrien
AU - Durkan, Leanne
AU - Faye, Guillaume
AU - Ferguson, Deborah
AU - Field, Scott E.
AU - Gabella, William E.
AU - García-Bellido, Juan
AU - Gracia-Linares, Miguel
AU - Gerosa, Davide
AU - Green, Stephen R.
AU - Haney, Maria
AU - Hannam, Mark
AU - Heffernan, Anna
AU - Hinderer, Tanja
AU - Helfer, Thomas
AU - Hughes, Scott A.
AU - Husa, Sascha
AU - Isoyama, Soichiro
AU - Korol, Valeriya
AU - Mandel, Ilya
AU - Meent, Maarten van de
AU - Dyson, Conor
AU - Gair, Jonathan R.
AU - Lewis, Jack
AU - Redondo-Yuste, Jaime
AU - Spieksma, Thomas F. M.
AU - LISA Consortium Waveform Working Group
N1 - 239 pages, 11 figures, white paper from the LISA Consortium Waveform Working Group, invited for submission to Living Reviews in Relativity, updated with comments from community
PY - 2023
Y1 - 2023
N2 - LISA, the Laser Interferometer Space Antenna, will usher in a new era in gravitational-wave astronomy. As the first anticipated space-based gravitational-wave detector, it will expand our view to the millihertz gravitational-wave sky, where a spectacular variety of interesting new sources abound: from millions of ultra-compact binaries in our Galaxy, to mergers of massive black holes at cosmological distances; from the beginnings of inspirals that will venture into the ground-based detectors' view to the death spiral of compact objects into massive black holes, and many sources in between. Central to realising LISA's discovery potential are waveform models, the theoretical and phenomenological predictions of the pattern of gravitational waves that these sources emit. This white paper is presented on behalf of the Waveform Working Group for the LISA Consortium. It provides a review of the current state of waveform models for LISA sources, and describes the significant challenges that must yet be overcome.
AB - LISA, the Laser Interferometer Space Antenna, will usher in a new era in gravitational-wave astronomy. As the first anticipated space-based gravitational-wave detector, it will expand our view to the millihertz gravitational-wave sky, where a spectacular variety of interesting new sources abound: from millions of ultra-compact binaries in our Galaxy, to mergers of massive black holes at cosmological distances; from the beginnings of inspirals that will venture into the ground-based detectors' view to the death spiral of compact objects into massive black holes, and many sources in between. Central to realising LISA's discovery potential are waveform models, the theoretical and phenomenological predictions of the pattern of gravitational waves that these sources emit. This white paper is presented on behalf of the Waveform Working Group for the LISA Consortium. It provides a review of the current state of waveform models for LISA sources, and describes the significant challenges that must yet be overcome.
KW - gr-qc
KW - astro-ph.HE
U2 - 10.48550/arXiv.2311.01300
DO - 10.48550/arXiv.2311.01300
M3 - Preprint
BT - Waveform Modelling for the Laser Interferometer Space Antenna
ER -
ID: 382751842