Coherent manipulation of an Andreev spin qubit

Research output: Contribution to journalJournal articlepeer-review

Standard

Coherent manipulation of an Andreev spin qubit. / Hays, M.; Fatemi, V.; Bouman, D.; Cerrillo, J.; Diamond, S.; Serniak, K.; Connolly, T.; Krogstrup, P.; Nygard, J.; Yeyati, A. Levy; Geresdi, A.; Devoret, M. H.

In: Science, Vol. 373, No. 6553, 23.07.2021, p. 430-433.

Research output: Contribution to journalJournal articlepeer-review

Harvard

Hays, M, Fatemi, V, Bouman, D, Cerrillo, J, Diamond, S, Serniak, K, Connolly, T, Krogstrup, P, Nygard, J, Yeyati, AL, Geresdi, A & Devoret, MH 2021, 'Coherent manipulation of an Andreev spin qubit', Science, vol. 373, no. 6553, pp. 430-433. https://doi.org/10.1126/science.abf0345

APA

Hays, M., Fatemi, V., Bouman, D., Cerrillo, J., Diamond, S., Serniak, K., Connolly, T., Krogstrup, P., Nygard, J., Yeyati, A. L., Geresdi, A., & Devoret, M. H. (2021). Coherent manipulation of an Andreev spin qubit. Science, 373(6553), 430-433. https://doi.org/10.1126/science.abf0345

Vancouver

Hays M, Fatemi V, Bouman D, Cerrillo J, Diamond S, Serniak K et al. Coherent manipulation of an Andreev spin qubit. Science. 2021 Jul 23;373(6553):430-433. https://doi.org/10.1126/science.abf0345

Author

Hays, M. ; Fatemi, V. ; Bouman, D. ; Cerrillo, J. ; Diamond, S. ; Serniak, K. ; Connolly, T. ; Krogstrup, P. ; Nygard, J. ; Yeyati, A. Levy ; Geresdi, A. ; Devoret, M. H. / Coherent manipulation of an Andreev spin qubit. In: Science. 2021 ; Vol. 373, No. 6553. pp. 430-433.

Bibtex

@article{3d80efbb1a2245b6894489990a538bd1,
title = "Coherent manipulation of an Andreev spin qubit",
abstract = "Two promising architectures for solid-state quantum information processing are based on electron spins electrostatically confined in semiconductor quantum dots and the collective electrodynamic modes of superconducting circuits. Superconducting electrodynamic qubits involve macroscopic numbers of electrons and offer the advantage of larger coupling, whereas semiconductor spin qubits involve individual electrons trapped inmicroscopic volumes but aremore difficult to link. We combined beneficial aspects of both platforms in the Andreev spin qubit: the spin degree of freedom of an electronic quasiparticle trapped in the supercurrent-carrying Andreev levels of a Josephson semiconductor nanowire. We performed coherent spin manipulation by combining single-shot circuit-quantum-electrodynamics readout and spin-flipping Raman transitions and found a spin-flip time T-S = 17microseconds and a spin coherence time T-2E = 52 nanoseconds. These results herald a regime of supercurrent-mediated coherent spin-photon coupling at the single-quantum level.",
keywords = "QUANTUM, PHOTON, STATES",
author = "M. Hays and V. Fatemi and D. Bouman and J. Cerrillo and S. Diamond and K. Serniak and T. Connolly and P. Krogstrup and J. Nygard and Yeyati, {A. Levy} and A. Geresdi and Devoret, {M. H.}",
year = "2021",
month = jul,
day = "23",
doi = "10.1126/science.abf0345",
language = "English",
volume = "373",
pages = "430--433",
journal = "Science",
issn = "0036-8075",
publisher = "American Association for the Advancement of Science",
number = "6553",

}

RIS

TY - JOUR

T1 - Coherent manipulation of an Andreev spin qubit

AU - Hays, M.

AU - Fatemi, V.

AU - Bouman, D.

AU - Cerrillo, J.

AU - Diamond, S.

AU - Serniak, K.

AU - Connolly, T.

AU - Krogstrup, P.

AU - Nygard, J.

AU - Yeyati, A. Levy

AU - Geresdi, A.

AU - Devoret, M. H.

PY - 2021/7/23

Y1 - 2021/7/23

N2 - Two promising architectures for solid-state quantum information processing are based on electron spins electrostatically confined in semiconductor quantum dots and the collective electrodynamic modes of superconducting circuits. Superconducting electrodynamic qubits involve macroscopic numbers of electrons and offer the advantage of larger coupling, whereas semiconductor spin qubits involve individual electrons trapped inmicroscopic volumes but aremore difficult to link. We combined beneficial aspects of both platforms in the Andreev spin qubit: the spin degree of freedom of an electronic quasiparticle trapped in the supercurrent-carrying Andreev levels of a Josephson semiconductor nanowire. We performed coherent spin manipulation by combining single-shot circuit-quantum-electrodynamics readout and spin-flipping Raman transitions and found a spin-flip time T-S = 17microseconds and a spin coherence time T-2E = 52 nanoseconds. These results herald a regime of supercurrent-mediated coherent spin-photon coupling at the single-quantum level.

AB - Two promising architectures for solid-state quantum information processing are based on electron spins electrostatically confined in semiconductor quantum dots and the collective electrodynamic modes of superconducting circuits. Superconducting electrodynamic qubits involve macroscopic numbers of electrons and offer the advantage of larger coupling, whereas semiconductor spin qubits involve individual electrons trapped inmicroscopic volumes but aremore difficult to link. We combined beneficial aspects of both platforms in the Andreev spin qubit: the spin degree of freedom of an electronic quasiparticle trapped in the supercurrent-carrying Andreev levels of a Josephson semiconductor nanowire. We performed coherent spin manipulation by combining single-shot circuit-quantum-electrodynamics readout and spin-flipping Raman transitions and found a spin-flip time T-S = 17microseconds and a spin coherence time T-2E = 52 nanoseconds. These results herald a regime of supercurrent-mediated coherent spin-photon coupling at the single-quantum level.

KW - QUANTUM

KW - PHOTON

KW - STATES

U2 - 10.1126/science.abf0345

DO - 10.1126/science.abf0345

M3 - Journal article

C2 - 34437115

VL - 373

SP - 430

EP - 433

JO - Science

JF - Science

SN - 0036-8075

IS - 6553

ER -

ID: 276157839