Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing

Research output: Contribution to journalJournal articlepeer-review

  • Edward Hanna
  • Philippe Huybrechts
  • John Cappelen
  • Konrad Steffen
  • Roger C. Bales
  • Evan Burgess
  • Joseph R. McConnell
  • Steffensen, Jørgen Peder
  • Michiel Van Den Broeke
  • Leanne Wake
  • Grant Bigg
  • Mike Griffiths
  • Deniz Savas

We present a reconstruction of the Greenland Ice Sheet surface mass balance (SMB) from 1870 to 2010, based on merged Twentieth Century Reanalysis (20CR) and European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological reanalyses, and we compare our new SMB series with global and regional climate and atmospheric circulation indices during this period. We demonstrate good agreement between SMB annual series constructed from 20CR and ECMWF reanalyses for the common period of overlap and show statistically significant agreement of long-term modeled snowfall with ice-core-based accumulation data. We analyze variations in SMB for the last 140 years and highlight the periods with significantly increased runoff and decreased SMB since 1870, which have both been enhanced in the period since 1990, as well as interannual variations in SMB linked to Greenland climate fluctuations. We show very good agreement of our SMB series variations with existing, independently derived SMB series (RACMO2) variations for the past few decades of overlap but also a significant disparity of up to ∼200 km3 yr-1 in absolute SMB values due to poorly constrained modeled accumulation reflecting a lack of adequate validation data in southeast Greenland. There is no significant correlation between our SMB time series and a widely referenced time series of North Atlantic icebergs emanating from Greenland for the past century, which may reflect the complex nature of the relationship between SMB and ice dynamical changes. Finally, we discuss how our analysis sheds light on the sensitivity and response of the Greenland Ice Sheet to ongoing and future global climate change, and its contribution to global sea level rise.

Original languageEnglish
Article numberD24121
JournalJournal of Geophysical Research Atmospheres
Volume116
Issue number24
ISSN2169-8953
DOIs
Publication statusPublished - 1 Jan 2011

ID: 232014494