IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data
Research output: Contribution to journal › Journal article › Research › peer-review
Standard
IceCube high-energy starting event sample : Description and flux characterization with 7.5 years of data. / Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Alves, A. A.; Amin, N. M.; Andeen, K.; Anderson, T.; Ansseau, I; Anton, G.; Arguelles, C.; Axani, S.; Bai, X.; Balagopal, A.; Barbano, A.; Barwick, S. W.; Bastian, B.; Basu, Alakananda; Baum, Oliver; Baur, S.; Bay, R.; Beatty, J. J.; Becker, K-H; Tjus, J. Becker; Bellenghi, C.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Boeser, S.; Botner, O.; Boettcher, J.; Bourbeau, E.; Bourbeau, J.; Bradascio, F.; Braun, J.; Bron, S.; Brostean-Kaiser, J.; Burgman, A.; Busse, R. S.; Koskinen, D. J.; Rameez, M.; Stuttard, T.; Icecube Collaboration.
In: Physical Review D, Vol. 104, No. 2, 022002, 08.07.2021.Research output: Contribution to journal › Journal article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex
}
RIS
TY - JOUR
T1 - IceCube high-energy starting event sample
T2 - Description and flux characterization with 7.5 years of data
AU - Abbasi, R.
AU - Ackermann, M.
AU - Adams, J.
AU - Aguilar, J. A.
AU - Ahlers, M.
AU - Ahrens, M.
AU - Alispach, C.
AU - Alves, A. A.
AU - Amin, N. M.
AU - Andeen, K.
AU - Anderson, T.
AU - Ansseau, I
AU - Anton, G.
AU - Arguelles, C.
AU - Axani, S.
AU - Bai, X.
AU - Balagopal, A.
AU - Barbano, A.
AU - Barwick, S. W.
AU - Bastian, B.
AU - Basu, Alakananda
AU - Baum, Oliver
AU - Baur, S.
AU - Bay, R.
AU - Beatty, J. J.
AU - Becker, K-H
AU - Tjus, J. Becker
AU - Bellenghi, C.
AU - BenZvi, S.
AU - Berley, D.
AU - Bernardini, E.
AU - Besson, D. Z.
AU - Binder, G.
AU - Bindig, D.
AU - Blaufuss, E.
AU - Blot, S.
AU - Boeser, S.
AU - Botner, O.
AU - Boettcher, J.
AU - Bourbeau, E.
AU - Bourbeau, J.
AU - Bradascio, F.
AU - Braun, J.
AU - Bron, S.
AU - Brostean-Kaiser, J.
AU - Burgman, A.
AU - Busse, R. S.
AU - Koskinen, D. J.
AU - Rameez, M.
AU - Stuttard, T.
AU - Icecube Collaboration
PY - 2021/7/8
Y1 - 2021/7/8
N2 - The IceCube Neutrino Observatory has established the existence of a high-energy all-sky neutrino flux of astrophysical origin. This discovery was made using events interacting within a fiducial region of the detector surrounded by an active veto and with reconstructed energy above 60 TeV, commonly known as the high-energy starting event sample (HESE). We revisit the analysis of the HESE sample with an additional 4.5 years of data, newer glacial ice models, and improved systematics treatment. This paper describes the sample in detail, reports on the latest astrophysical neutrino flux measurements, and presents a source search for astrophysical neutrinos. We give the compatibility of these observations with specific isotropic flux models proposed in the literature as well as generic power-law-like scenarios. Assuming v(e): v(mu): v(tau) = 1:1:1, and an equal flux of neutrinos and antineutrinos, we find that the astrophysical neutrino spectrum is compatible with an unbroken power law, with a preferred spectral index of 2.87(-0.19)(+0.20) for the 68% confidence interval.
AB - The IceCube Neutrino Observatory has established the existence of a high-energy all-sky neutrino flux of astrophysical origin. This discovery was made using events interacting within a fiducial region of the detector surrounded by an active veto and with reconstructed energy above 60 TeV, commonly known as the high-energy starting event sample (HESE). We revisit the analysis of the HESE sample with an additional 4.5 years of data, newer glacial ice models, and improved systematics treatment. This paper describes the sample in detail, reports on the latest astrophysical neutrino flux measurements, and presents a source search for astrophysical neutrinos. We give the compatibility of these observations with specific isotropic flux models proposed in the literature as well as generic power-law-like scenarios. Assuming v(e): v(mu): v(tau) = 1:1:1, and an equal flux of neutrinos and antineutrinos, we find that the astrophysical neutrino spectrum is compatible with an unbroken power law, with a preferred spectral index of 2.87(-0.19)(+0.20) for the 68% confidence interval.
KW - NEUTRINO EMISSION
KW - MONTE-CARLO
KW - SEARCH
KW - LIMITS
KW - ASTROPHYSICS
KW - PERFORMANCE
KW - SCATTERING
KW - SPECTRUM
U2 - 10.1103/PhysRevD.104.022002
DO - 10.1103/PhysRevD.104.022002
M3 - Journal article
VL - 104
JO - Physical Review D
JF - Physical Review D
SN - 2470-0010
IS - 2
M1 - 022002
ER -
ID: 276327524