Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv

Research output: Contribution to journalJournal articlepeer-review

Standard

Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv. / Ackley, K.; Amati, L.; Barbieri, C.; Bauer, F. E.; Benetti, S.; Bernardini, M. G.; Bhirombhakdi, K.; Botticella, M. T.; Branchesi, M.; Brocato, E.; Bruun, S. H.; Bulla, M.; Campana, S.; Cappellaro, E.; Castro-Tirado, A. J.; Chambers, K. C.; Chaty, S.; Chen, T-W; Ciolfi, R.; Coleiro, A.; Copperwheat, C. M.; Covino, S.; Cutter, R.; D'Ammando, F.; D'Avanzo, P.; De Cesare, G.; D'Elia, Valerio; Della Valle, M.; Denneau, L.; De Pasquale, M.; Dhillon, V. S.; Dyer, M. J.; Elias-Rosa, N.; Evans, P. A.; Eyles-Ferris, R. A. J.; Fiore, A.; Fraser, M.; Fruchter, A. S.; Fynbo, J. P. U.; Galbany, L.; Gall, C.; Galloway, D. K.; Getman, F.; Ghirlanda, G.; Gillanders, J. H.; Gomboc, A.; Gompertz, B. P.; Gonzalez-Fernandez, C.; Gonzalez-Gaitan, S.; Grado, A.; Greco, G.; Gromadzki, M.; Groot, P. J.; Gutierrez, C. P.; Heikkila, T.; Heintz, K. E.; Hjorth, J.; Hu, Y-D; Huber, M. E.; Inserra, C.; Izzo, L.; Japelj, J.; Jerkstrand, A.; Jin, Z. P.; Jonker, P. G.; Kankare, E.; Kann, D. A.; Kennedy, M.; Kim, S.; Klose, S.; Kool, E. C.; Kotak, R.; Kuncarayakti, H.; Lamb, G. P.; Leloudas, G.; Levan, A. J.; Longo, F.; Lowe, T. B.; Lyman, J. D.; Magnier, E.; Maguire, K.; Maiorano, E.; Mandel, I.; Mapelli, M.; Mattila, S.; McBrien, O. R.; Melandri, A.; Michalowski, M. J.; Milvang-Jensen, B.; Moran, S.; Nicastro, L.; Nicholl, M.; Guelbenzu, A. Nicuesa; Nuttal, L.; Oates, S. R.; O'Brien, P. T.; Onori, F.; Palazzi, E.; Patricelli, B.; Perego, A.; Torres, M. A. P.; Perley, D. A.; Pian, E.; Pignata, G.; Piranomonte, S.; Poshyachinda, S.; Possenti, A.; Pumo, M. L.; Quirola-Vasquez, J.; Ragosta, F.; Ramsay, G.; Rau, A.; Rest, A.; Reynolds, T. M.; Rosetti, S. S.; Rossi, A.; Rosswog, S.; Sabha, N. B.; Carracedo, A. Sagues; Salafia, O. S.; Salmon, L.; Salvaterra, R.; Savaglio, S.; Sbordone, L.; Schady, P.; Schipani, P.; Schultz, A. S. B.; Schweyer, T.; Smartt, S. J.; Smith, K. W.; Smith, M.; Sollerman, J.; Srivastav, S.; Stanway, E. R.; Starling, R. L. C.; Steeghs, D.; Stratta, G.; Stubbs, C. W.; Tanvir, N. R.; Testa, Giuseppe; Thrane, E.; Tonry, J. L.; Turatto, M.; Ulaczyk, K.; van der Horst, A. J.; Vergani, S. D.; Walton, N. A.; Watson, D.; Wiersema, K.; Wiik, K.; Wyrzykowski, L.; Yang, S.; Yi, S-X; Young, D. R.

In: Astronomy & Astrophysics, Vol. 643, A113, 10.11.2020.

Research output: Contribution to journalJournal articlepeer-review

Harvard

Ackley, K, Amati, L, Barbieri, C, Bauer, FE, Benetti, S, Bernardini, MG, Bhirombhakdi, K, Botticella, MT, Branchesi, M, Brocato, E, Bruun, SH, Bulla, M, Campana, S, Cappellaro, E, Castro-Tirado, AJ, Chambers, KC, Chaty, S, Chen, T-W, Ciolfi, R, Coleiro, A, Copperwheat, CM, Covino, S, Cutter, R, D'Ammando, F, D'Avanzo, P, De Cesare, G, D'Elia, V, Della Valle, M, Denneau, L, De Pasquale, M, Dhillon, VS, Dyer, MJ, Elias-Rosa, N, Evans, PA, Eyles-Ferris, RAJ, Fiore, A, Fraser, M, Fruchter, AS, Fynbo, JPU, Galbany, L, Gall, C, Galloway, DK, Getman, F, Ghirlanda, G, Gillanders, JH, Gomboc, A, Gompertz, BP, Gonzalez-Fernandez, C, Gonzalez-Gaitan, S, Grado, A, Greco, G, Gromadzki, M, Groot, PJ, Gutierrez, CP, Heikkila, T, Heintz, KE, Hjorth, J, Hu, Y-D, Huber, ME, Inserra, C, Izzo, L, Japelj, J, Jerkstrand, A, Jin, ZP, Jonker, PG, Kankare, E, Kann, DA, Kennedy, M, Kim, S, Klose, S, Kool, EC, Kotak, R, Kuncarayakti, H, Lamb, GP, Leloudas, G, Levan, AJ, Longo, F, Lowe, TB, Lyman, JD, Magnier, E, Maguire, K, Maiorano, E, Mandel, I, Mapelli, M, Mattila, S, McBrien, OR, Melandri, A, Michalowski, MJ, Milvang-Jensen, B, Moran, S, Nicastro, L, Nicholl, M, Guelbenzu, AN, Nuttal, L, Oates, SR, O'Brien, PT, Onori, F, Palazzi, E, Patricelli, B, Perego, A, Torres, MAP, Perley, DA, Pian, E, Pignata, G, Piranomonte, S, Poshyachinda, S, Possenti, A, Pumo, ML, Quirola-Vasquez, J, Ragosta, F, Ramsay, G, Rau, A, Rest, A, Reynolds, TM, Rosetti, SS, Rossi, A, Rosswog, S, Sabha, NB, Carracedo, AS, Salafia, OS, Salmon, L, Salvaterra, R, Savaglio, S, Sbordone, L, Schady, P, Schipani, P, Schultz, ASB, Schweyer, T, Smartt, SJ, Smith, KW, Smith, M, Sollerman, J, Srivastav, S, Stanway, ER, Starling, RLC, Steeghs, D, Stratta, G, Stubbs, CW, Tanvir, NR, Testa, G, Thrane, E, Tonry, JL, Turatto, M, Ulaczyk, K, van der Horst, AJ, Vergani, SD, Walton, NA, Watson, D, Wiersema, K, Wiik, K, Wyrzykowski, L, Yang, S, Yi, S-X & Young, DR 2020, 'Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv', Astronomy & Astrophysics, vol. 643, A113. https://doi.org/10.1051/0004-6361/202037669

APA

Ackley, K., Amati, L., Barbieri, C., Bauer, F. E., Benetti, S., Bernardini, M. G., Bhirombhakdi, K., Botticella, M. T., Branchesi, M., Brocato, E., Bruun, S. H., Bulla, M., Campana, S., Cappellaro, E., Castro-Tirado, A. J., Chambers, K. C., Chaty, S., Chen, T-W., Ciolfi, R., ... Young, D. R. (2020). Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv. Astronomy & Astrophysics, 643, [A113]. https://doi.org/10.1051/0004-6361/202037669

Vancouver

Ackley K, Amati L, Barbieri C, Bauer FE, Benetti S, Bernardini MG et al. Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv. Astronomy & Astrophysics. 2020 Nov 10;643. A113. https://doi.org/10.1051/0004-6361/202037669

Author

Ackley, K. ; Amati, L. ; Barbieri, C. ; Bauer, F. E. ; Benetti, S. ; Bernardini, M. G. ; Bhirombhakdi, K. ; Botticella, M. T. ; Branchesi, M. ; Brocato, E. ; Bruun, S. H. ; Bulla, M. ; Campana, S. ; Cappellaro, E. ; Castro-Tirado, A. J. ; Chambers, K. C. ; Chaty, S. ; Chen, T-W ; Ciolfi, R. ; Coleiro, A. ; Copperwheat, C. M. ; Covino, S. ; Cutter, R. ; D'Ammando, F. ; D'Avanzo, P. ; De Cesare, G. ; D'Elia, Valerio ; Della Valle, M. ; Denneau, L. ; De Pasquale, M. ; Dhillon, V. S. ; Dyer, M. J. ; Elias-Rosa, N. ; Evans, P. A. ; Eyles-Ferris, R. A. J. ; Fiore, A. ; Fraser, M. ; Fruchter, A. S. ; Fynbo, J. P. U. ; Galbany, L. ; Gall, C. ; Galloway, D. K. ; Getman, F. ; Ghirlanda, G. ; Gillanders, J. H. ; Gomboc, A. ; Gompertz, B. P. ; Gonzalez-Fernandez, C. ; Gonzalez-Gaitan, S. ; Grado, A. ; Greco, G. ; Gromadzki, M. ; Groot, P. J. ; Gutierrez, C. P. ; Heikkila, T. ; Heintz, K. E. ; Hjorth, J. ; Hu, Y-D ; Huber, M. E. ; Inserra, C. ; Izzo, L. ; Japelj, J. ; Jerkstrand, A. ; Jin, Z. P. ; Jonker, P. G. ; Kankare, E. ; Kann, D. A. ; Kennedy, M. ; Kim, S. ; Klose, S. ; Kool, E. C. ; Kotak, R. ; Kuncarayakti, H. ; Lamb, G. P. ; Leloudas, G. ; Levan, A. J. ; Longo, F. ; Lowe, T. B. ; Lyman, J. D. ; Magnier, E. ; Maguire, K. ; Maiorano, E. ; Mandel, I. ; Mapelli, M. ; Mattila, S. ; McBrien, O. R. ; Melandri, A. ; Michalowski, M. J. ; Milvang-Jensen, B. ; Moran, S. ; Nicastro, L. ; Nicholl, M. ; Guelbenzu, A. Nicuesa ; Nuttal, L. ; Oates, S. R. ; O'Brien, P. T. ; Onori, F. ; Palazzi, E. ; Patricelli, B. ; Perego, A. ; Torres, M. A. P. ; Perley, D. A. ; Pian, E. ; Pignata, G. ; Piranomonte, S. ; Poshyachinda, S. ; Possenti, A. ; Pumo, M. L. ; Quirola-Vasquez, J. ; Ragosta, F. ; Ramsay, G. ; Rau, A. ; Rest, A. ; Reynolds, T. M. ; Rosetti, S. S. ; Rossi, A. ; Rosswog, S. ; Sabha, N. B. ; Carracedo, A. Sagues ; Salafia, O. S. ; Salmon, L. ; Salvaterra, R. ; Savaglio, S. ; Sbordone, L. ; Schady, P. ; Schipani, P. ; Schultz, A. S. B. ; Schweyer, T. ; Smartt, S. J. ; Smith, K. W. ; Smith, M. ; Sollerman, J. ; Srivastav, S. ; Stanway, E. R. ; Starling, R. L. C. ; Steeghs, D. ; Stratta, G. ; Stubbs, C. W. ; Tanvir, N. R. ; Testa, Giuseppe ; Thrane, E. ; Tonry, J. L. ; Turatto, M. ; Ulaczyk, K. ; van der Horst, A. J. ; Vergani, S. D. ; Walton, N. A. ; Watson, D. ; Wiersema, K. ; Wiik, K. ; Wyrzykowski, L. ; Yang, S. ; Yi, S-X ; Young, D. R. / Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv. In: Astronomy & Astrophysics. 2020 ; Vol. 643.

Bibtex

@article{67e0b8696b0b492ca7a611d6932e42c2,
title = "Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv",
abstract = "Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.",
keywords = "gravitational waves, stars: neutron, supernovae: general, GAMMA-RAY BURST, GRAVITATIONAL-WAVE SOURCE, R-PROCESS NUCLEOSYNTHESIS, ELECTROMAGNETIC COUNTERPARTS, HAWK-I, MASS, EJECTA, EVOLUTION, GW170817, KILONOVA",
author = "K. Ackley and L. Amati and C. Barbieri and Bauer, {F. E.} and S. Benetti and Bernardini, {M. G.} and K. Bhirombhakdi and Botticella, {M. T.} and M. Branchesi and E. Brocato and Bruun, {S. H.} and M. Bulla and S. Campana and E. Cappellaro and Castro-Tirado, {A. J.} and Chambers, {K. C.} and S. Chaty and T-W Chen and R. Ciolfi and A. Coleiro and Copperwheat, {C. M.} and S. Covino and R. Cutter and F. D'Ammando and P. D'Avanzo and {De Cesare}, G. and Valerio D'Elia and {Della Valle}, M. and L. Denneau and {De Pasquale}, M. and Dhillon, {V. S.} and Dyer, {M. J.} and N. Elias-Rosa and Evans, {P. A.} and Eyles-Ferris, {R. A. J.} and A. Fiore and M. Fraser and Fruchter, {A. S.} and Fynbo, {J. P. U.} and L. Galbany and C. Gall and Galloway, {D. K.} and F. Getman and G. Ghirlanda and Gillanders, {J. H.} and A. Gomboc and Gompertz, {B. P.} and C. Gonzalez-Fernandez and S. Gonzalez-Gaitan and A. Grado and G. Greco and M. Gromadzki and Groot, {P. J.} and Gutierrez, {C. P.} and T. Heikkila and Heintz, {K. E.} and J. Hjorth and Y-D Hu and Huber, {M. E.} and C. Inserra and L. Izzo and J. Japelj and A. Jerkstrand and Jin, {Z. P.} and Jonker, {P. G.} and E. Kankare and Kann, {D. A.} and M. Kennedy and S. Kim and S. Klose and Kool, {E. C.} and R. Kotak and H. Kuncarayakti and Lamb, {G. P.} and G. Leloudas and Levan, {A. J.} and F. Longo and Lowe, {T. B.} and Lyman, {J. D.} and E. Magnier and K. Maguire and E. Maiorano and I. Mandel and M. Mapelli and S. Mattila and McBrien, {O. R.} and A. Melandri and Michalowski, {M. J.} and B. Milvang-Jensen and S. Moran and L. Nicastro and M. Nicholl and Guelbenzu, {A. Nicuesa} and L. Nuttal and Oates, {S. R.} and O'Brien, {P. T.} and F. Onori and E. Palazzi and B. Patricelli and A. Perego and Torres, {M. A. P.} and Perley, {D. A.} and E. Pian and G. Pignata and S. Piranomonte and S. Poshyachinda and A. Possenti and Pumo, {M. L.} and J. Quirola-Vasquez and F. Ragosta and G. Ramsay and A. Rau and A. Rest and Reynolds, {T. M.} and Rosetti, {S. S.} and A. Rossi and S. Rosswog and Sabha, {N. B.} and Carracedo, {A. Sagues} and Salafia, {O. S.} and L. Salmon and R. Salvaterra and S. Savaglio and L. Sbordone and P. Schady and P. Schipani and Schultz, {A. S. B.} and T. Schweyer and Smartt, {S. J.} and Smith, {K. W.} and M. Smith and J. Sollerman and S. Srivastav and Stanway, {E. R.} and Starling, {R. L. C.} and D. Steeghs and G. Stratta and Stubbs, {C. W.} and Tanvir, {N. R.} and Giuseppe Testa and E. Thrane and Tonry, {J. L.} and M. Turatto and K. Ulaczyk and {van der Horst}, {A. J.} and Vergani, {S. D.} and Walton, {N. A.} and D. Watson and K. Wiersema and K. Wiik and L. Wyrzykowski and S. Yang and S-X Yi and Young, {D. R.}",
year = "2020",
month = nov,
day = "10",
doi = "10.1051/0004-6361/202037669",
language = "English",
volume = "643",
journal = "Astronomy & Astrophysics",
issn = "0004-6361",
publisher = "E D P Sciences",

}

RIS

TY - JOUR

T1 - Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv

AU - Ackley, K.

AU - Amati, L.

AU - Barbieri, C.

AU - Bauer, F. E.

AU - Benetti, S.

AU - Bernardini, M. G.

AU - Bhirombhakdi, K.

AU - Botticella, M. T.

AU - Branchesi, M.

AU - Brocato, E.

AU - Bruun, S. H.

AU - Bulla, M.

AU - Campana, S.

AU - Cappellaro, E.

AU - Castro-Tirado, A. J.

AU - Chambers, K. C.

AU - Chaty, S.

AU - Chen, T-W

AU - Ciolfi, R.

AU - Coleiro, A.

AU - Copperwheat, C. M.

AU - Covino, S.

AU - Cutter, R.

AU - D'Ammando, F.

AU - D'Avanzo, P.

AU - De Cesare, G.

AU - D'Elia, Valerio

AU - Della Valle, M.

AU - Denneau, L.

AU - De Pasquale, M.

AU - Dhillon, V. S.

AU - Dyer, M. J.

AU - Elias-Rosa, N.

AU - Evans, P. A.

AU - Eyles-Ferris, R. A. J.

AU - Fiore, A.

AU - Fraser, M.

AU - Fruchter, A. S.

AU - Fynbo, J. P. U.

AU - Galbany, L.

AU - Gall, C.

AU - Galloway, D. K.

AU - Getman, F.

AU - Ghirlanda, G.

AU - Gillanders, J. H.

AU - Gomboc, A.

AU - Gompertz, B. P.

AU - Gonzalez-Fernandez, C.

AU - Gonzalez-Gaitan, S.

AU - Grado, A.

AU - Greco, G.

AU - Gromadzki, M.

AU - Groot, P. J.

AU - Gutierrez, C. P.

AU - Heikkila, T.

AU - Heintz, K. E.

AU - Hjorth, J.

AU - Hu, Y-D

AU - Huber, M. E.

AU - Inserra, C.

AU - Izzo, L.

AU - Japelj, J.

AU - Jerkstrand, A.

AU - Jin, Z. P.

AU - Jonker, P. G.

AU - Kankare, E.

AU - Kann, D. A.

AU - Kennedy, M.

AU - Kim, S.

AU - Klose, S.

AU - Kool, E. C.

AU - Kotak, R.

AU - Kuncarayakti, H.

AU - Lamb, G. P.

AU - Leloudas, G.

AU - Levan, A. J.

AU - Longo, F.

AU - Lowe, T. B.

AU - Lyman, J. D.

AU - Magnier, E.

AU - Maguire, K.

AU - Maiorano, E.

AU - Mandel, I.

AU - Mapelli, M.

AU - Mattila, S.

AU - McBrien, O. R.

AU - Melandri, A.

AU - Michalowski, M. J.

AU - Milvang-Jensen, B.

AU - Moran, S.

AU - Nicastro, L.

AU - Nicholl, M.

AU - Guelbenzu, A. Nicuesa

AU - Nuttal, L.

AU - Oates, S. R.

AU - O'Brien, P. T.

AU - Onori, F.

AU - Palazzi, E.

AU - Patricelli, B.

AU - Perego, A.

AU - Torres, M. A. P.

AU - Perley, D. A.

AU - Pian, E.

AU - Pignata, G.

AU - Piranomonte, S.

AU - Poshyachinda, S.

AU - Possenti, A.

AU - Pumo, M. L.

AU - Quirola-Vasquez, J.

AU - Ragosta, F.

AU - Ramsay, G.

AU - Rau, A.

AU - Rest, A.

AU - Reynolds, T. M.

AU - Rosetti, S. S.

AU - Rossi, A.

AU - Rosswog, S.

AU - Sabha, N. B.

AU - Carracedo, A. Sagues

AU - Salafia, O. S.

AU - Salmon, L.

AU - Salvaterra, R.

AU - Savaglio, S.

AU - Sbordone, L.

AU - Schady, P.

AU - Schipani, P.

AU - Schultz, A. S. B.

AU - Schweyer, T.

AU - Smartt, S. J.

AU - Smith, K. W.

AU - Smith, M.

AU - Sollerman, J.

AU - Srivastav, S.

AU - Stanway, E. R.

AU - Starling, R. L. C.

AU - Steeghs, D.

AU - Stratta, G.

AU - Stubbs, C. W.

AU - Tanvir, N. R.

AU - Testa, Giuseppe

AU - Thrane, E.

AU - Tonry, J. L.

AU - Turatto, M.

AU - Ulaczyk, K.

AU - van der Horst, A. J.

AU - Vergani, S. D.

AU - Walton, N. A.

AU - Watson, D.

AU - Wiersema, K.

AU - Wiik, K.

AU - Wyrzykowski, L.

AU - Yang, S.

AU - Yi, S-X

AU - Young, D. R.

PY - 2020/11/10

Y1 - 2020/11/10

N2 - Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.

AB - Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.

KW - gravitational waves

KW - stars: neutron

KW - supernovae: general

KW - GAMMA-RAY BURST

KW - GRAVITATIONAL-WAVE SOURCE

KW - R-PROCESS NUCLEOSYNTHESIS

KW - ELECTROMAGNETIC COUNTERPARTS

KW - HAWK-I

KW - MASS

KW - EJECTA

KW - EVOLUTION

KW - GW170817

KW - KILONOVA

U2 - 10.1051/0004-6361/202037669

DO - 10.1051/0004-6361/202037669

M3 - Journal article

VL - 643

JO - Astronomy & Astrophysics

JF - Astronomy & Astrophysics

SN - 0004-6361

M1 - A113

ER -

ID: 253237892