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Abstract

Superconducting quantum computing is a rapidly advancing field with the potential to

solve complex problems that are beyond the capabilities of classical computers. This

thesis provides a comprehensive introduction to superconducting circuits, with a focus

on their physical properties and numerical simulations. The study begins with an ex-

ploration of a circuit consisting of an inductor and a capacitor (LC circuit), which is

formally equivalent to a quantum harmonic oscillator (QHO). In the quantum regime,

the LC circuit exhibits discrete harmonic energy levels. A system can be used as a

qubit when a computational subspace with only two energy states can be defined. This

two-level system is achieved by introducing anharmonicity into the circuit, a task made

possible by the Josephson junction, a nonlinear element. As a result, qubits can be con-

structed from circuits consisting of a Josephson junction and a capacitor (JC circuits).

The numerical framework for simulating quantum systems is discussed, with a focus on

implementing operators as discrete matrices. Simulations demonstrate the importance of

the cutoff parameter in ensuring accurate eigenenergies and wavefunctions in numerical

simulations. The relationship between wavefunction delocalization and qubit sensitivity

to charge noise across different EJ/EC regimes is also examined. In the small energy

ratio regime, the wavefunction is highly localized, while in the large energy ratio regime,

it becomes increasingly delocalized, reflecting reduced sensitivity to charge noise. As

EJ increases, the potential profile of the JC circuit transitions toward a harmonic po-

tential, gradually resembling the behavior of the LC circuit, an thus the anharmonicity

decreases. Finally, the flux-tunable transmon, constructed using a SQUID (two Joseph-

son junctions in parallel), is investigated. This design enables the ability to control the

qubit ”in situ” by adjusting the external flux, emphasizing its advantages in quantum

computation.
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I. Introduction

Quantum Computing: A New Frontier

Quantum computing is a rapidly growing and exciting field. Some of its applications

include cryptography [4] and computational speedup [12]. Unlike a classical computer,

which stores information in bits. A quantum computer stores information in quantum

bits (qubits). These qubits are governed by the laws of quantum mechanics, allowing

phenomena like superposition and entanglement. [8]

Superconducting Quantum Computers

Superconducting material give rise to complex and exotic physics, only certain aspects

are relevant for quantum computation. A superconductor is a material that, below

its critical temperature TC , allows dissipationless current flow. In the superconducting

regime, the electrons in the metal form pairs known as Cooper pairs. These Cooper pairs

share a common superconducting phase, denoted ϕ. The behavior of the superconductor

can be described using the Ginzburg-Landau wavefunction:

ψGL(r) = |ψ(r)|eiϕ(r) (1)

One of the properties of superconductors is flux quantization, stating that the flux

through a superconducting loop must be quantized,
∑

Φ = kΦ0. Where Φ0 = h/2e

is the unit of quantization and k is an integer.

Superconducting qubits are created from lumped element circuits and are macroscopic

in size, as they are fabricated lithographically onto wafers. These systems lie in be-

tween microscopic particles, governed by quantum mechanics, and macroscopic objects,

described by classical mechanics. They are referred to as mesoscopic systems. Essen-

tially, this means that we have a macroscopic system that, when cooled down, exhibits

behavior partially governed by quantum physics. [1, 13, 11]

Scope and Objectives of Thesis

This thesis serves as an introduction to superconducting circuits and their numerical

implementation. In Section II, we explore the superconducting LC circuit with its har-

monic potential, before moving on to discussing the anharmonic potential in JC circuits,

introduced in Section III. Section IV. discusses the numerical framework used to simulate

quantum systems. These simulation are presented in Section V. The thesis is rounded

off in Section VI, where further applications and perspectives are discussed.
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II. Superconducting LC-circuits

Classical Hamiltonian Description of the LC Circuit

Figure 1: Lumped-element model

of a circuit consisting of a

capacitor and an inductor

The LC circuit is an electrical circuit consisting of an

inductor and a capacitor (see Fig. 1 for the lumped-

element model). The Hamiltonian of the LC circuit

is derived using Lagrangian-to-Hamiltonian transforma-

tion, which is thoroughly described in [5]. The first step

is to decide on which of the generalized coordinates, Φ

(flux) or Q (charge), should represent the circuit ele-

ments in the Hamiltonian, i.e. picking a basis. For this

derivation, the flux basis is chosen. See Appendix B

for a derivation in the charge basis. The flux is a time

integral of the voltage in the circuit.

Φ(t) =

∫ t

−∞
V (t′)dt′ (2)

The Lagrangian is constructed from the kinetic and the potential energy. It can be

useful to think of the generalized coordinates as one being momentum-like and one

being position-like. Thus the electric energy in the capacitor and the magnetic energy

in the inductor, can simply be thought of as the kinetic and the potential energy. The

basis choice determines which of the general coordinates are position-like or momentum-

like. For this derivation, since the flux is picked to represent the circuit elements, flux

is analogous to the position coordinate and charge serves as the conjugate momentum.

The electric energy stored in the capacitor thus represents the kinetic energy, while the

magnetic energy in the inductor represents the potential energy. The instantaneous and

time dependent energy in each element is:

E(t) =

∫ t

−∞
V (t′)I(t′)dt′ (3)

By combining Eq. 2 and Eq. 3, along with the constitutive relations I = C dV
dt for a

capacitor and V = LdI
dt for an inductor, we can derive expressions for the kinetic and

potential energy.

TC =
C

2
Φ̇2 and UL =

1

2L
Φ2 (4)

See the complete derivation of the energy terms in Appendix A.
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The Lagrangian is defined as the difference between the kinetic energy and the potential

energy.

L = TC − UL =
C

2
Φ̇2 − 1

2L
Φ2 (5)

The transition from Lagrangian to Hamiltonian requires a change in the variables from

(x, ẋ, t) to (x, p, t). The procedure of switching variables in this matter is done using a

Legendre transformation. The canonical momentum is the following.

Q =
∂L
∂Φ̇

(6)

The Hamiltonian is obtained through the Legendre transformation.

H = QΦ̇− L =
Q2

2C
+

Φ2

2L
=

1

2
LI2 +

1

2
CV 2 (7)

At this point, it’s worthwhile to take a moment to reflect on our result. When the mass

and resonant frequency are expressed using the capicatance and inductance, m = C and

ω = 1/
√
LC, and we recall that the charge is position-like and the flux is momentum-

like, we obtain the Hamiltonian for the harmonic oscillator, H = p2/(2m) +mω2x2/2.

[9]

Quantizing the LC Circuit

The Hamiltonian we derived is purely classical and the generalized coordinates flux and

charge satisfies the Poission brackets, confirming their canonical nature.

{Φ, Q} =
∂Φ

∂Φ

∂Q

∂Q
− ∂Q

∂Φ

∂Φ

∂Q
= 1 (8)

In quantum mechanics, canonical quantization promotes classical coordinates to opera-

tors that satisfy commutation relations derived from their Poisson brackets. Thus:

Φ → Φ̂ and Q→ Q̂ (9)

The commutation relation between the operators is:

[Φ̂, Q̂] = Φ̂Q̂− Q̂Φ̂ = iℏ (10)

This result should be recognizable as [x̂, p̂] = iℏ (see Appendix C).

In superconducting circuits, so-called reduced variables are often defined, as they sim-

plify the mathematical description by transforming physical quantities into dimensionless

forms. These variables include the reduced flux, ϕ ≡ 2πΦ/Φ0, and the reduced charge,
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n = Q/2e. Here, Φ0, is the superconducting magnetic flux quantum and can be found

using Φ0 = h/2e, the constant represents the smallest ”packet” of magnetic flux that

can exist in a superconducting loop. The reduced flux, ϕ, is the superconducting phase

introduced in the context of Ginzburg-Landau theory. It is 2π-periodic and it relates to

the magnetic flux in the superconducting circuit. The reduced charge, n, is a measure

for the amount of Cooper pairs existing in the circuit, as total charge, Q, is divided by

the charge of two electrons (2e). Both of the reduced variables are only valid within

the superconducting regime. The quantum mechanical Hamiltonian for the LC circuit

expressed with reduced variables is therefore:

H = 4EC n̂
2 +

1

2
ELϕ̂

2 (11)

Where the charging energy is EC = e2/(2C) and the inductive energy is EL = (Φ0/(2π))
2/L.

The charging energy, EC , describes the cost of adding a Cooper pair to the capacitor,

while the inductive energy, EL, characterizes energy stored in the magnetic field of the

inductor. Together, they determine the harmonic dynamics of the circuit. [9]

Analysis of the LC circuit

By quantizing the classical Hamiltonian of the LC circuit, we arrive at a system that

is formally equivalent to the quantum harmonic oscillator (QHO). This similarity to

the QHO allows the use of its established solutions. These involve solving the time-

independent Schrödinger equation.

− ℏ2

2m

d2ψ

dx2
+ V ψ = Eψ (12)

Using the potential of a QHO, V (x) = 1
2mω

2x2 and p = −iℏ d
dx the Hamiltonian is

obtained.

1

2m
[p̂2 + (mωx̂)2]ψ = Eψ ⇒ Ĥ =

1

2m
[p̂2 + (mωx̂)2] (13)

Now, an algebraic method to solve this eigenvalue equation is to define the ladder oper-

ators, the creation, â+, and annihilation operator, â−
1.

â± =
1√

2ℏmω
(∓ip̂+mωx̂) (14)

The product of the two operators are:

â±â∓ =
1

2ℏmω
(∓ip̂+mωx̂)(±ip̂+mωx̂) =

1

2ℏmω
(p̂2 + (mωx̂))± i

2ℏ
[x̂, p̂] (15)

1The ladder operators are also known as the raising and lowering operator and they’re also denoted

by â† and â respectively.
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Using the canonical commutation relation between the operators x̂ and p̂. We can express

the Hamiltonian using ladder operators.

â±â∓ =
1

2ℏmω
(p̂+ (mωx̂)2)∓ 1

2
(16)

=
1

ℏω
Ĥ ∓ 1

2
(17)

⇒ Ĥ = ℏω(â±â∓ ± 1

2
) (18)

Representing the Hamiltonian using ladder operators is known as the second quantiza-

tion formalism. 2

Any quantum mechanical system has a lower bound to its quantized energy levels known

as the ground state energy. This means that when an annihilation operator is applied

to the ground state energy, the result is just zero, â−ψ0 = 0. This fact can be used to

derive the ground state energy of the QHO, ψ0 = (mω
πℏ )

1
4 e−

mω
πℏ x2

(see Appendix D for a

full derivation). The ground state energy can thus be found using Eq. 13, E0 = 1
2ℏω.

Successive states, |n⟩, are obtained by applying (â+)
n, which leads to equally spaced

energy levels.

En = (n+
1

2
)ℏω (19)

[3]

III. Superconducting Qubits

A system can be used as a qubit when we are able to define a computational subspace

consisting of only two energy states. Transitions between these two states, referred

to as quantum gates, form the building blocks of quantum operations, while a specific

sequence of gates constitutes an algorithm. Many gate operations depend on the fre-

quency selectivity, thus a harmonic energy spectrum does not make a good qubit, as

it is very difficult to confine the dynamics to just two levels, meaning leakage of the

qubit subspace is a permanent threat. Therefore we can mimic a two level system by

creating a system with anharmonic energy level spacing. We can calculate the qubit

frequency ω01 = 1
ℏ(E1 − E0), and then we will drive all of the transitions with that

specific frequency. The anharmonicity of the quantum system is defined as:

α = ℏ(ω12 − ω01) = E2 − E1 − (E1 − E2) (20)

[9, 11]

2Second quantization is also called the occupation number representation. This name might be a

little more intuitive as the number operator is defined as: n̂ = â+â−.
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Josephson Junction

Thus the key to making a qubit, is a circuit element that introduces anharmonincity in

the energy-level spacing. This can be achieved by utilizing the nonlinearity of the so-

called Josephson junction. There are different types of Josephson junctions, in this thesis

I will always refer to the SIS-junction. The junction is made up of two superconducting

islands with a small insulating gap in between, the gap between the superconducting

islands is so small that it gives rise to quantum tunneling, this is a quantum mechanical

phenomenon where particles pass through a potential energy barrier, which is classically

forbidden.

The Josephson Junction is governed by the following constitutive relations:

I = IC sin(ϕ) and V =
ℏ
2e

dϕ

dt
(21)

Here, ϕ represents the phase difference ϕ2−ϕ1, where ϕ1 and ϕ2 are the superconducting
phases on the first and second superconducting islands, and IC is the critical current.

When I < IC , the current through the junction is dissipationless, i.e., a supercurrent,

which is known as the dc Josephson effect. It is important to note that when the

phase difference, ϕ, is constant, the voltage drop across the junction is zero, yet there

is still a current due to the dissipationless supercurrent. It is the sine dependence of

the current that is responsible for the anharmonic energy level spacing. [9, 3, 11, 1]

Figure 2: Lumped-element model

of a circuit consisting of a

capacitor and an Josephson

Junction

Cooper Pair Box

The Cooper pair box (CPB) is a qubit design consist-

ing of two circuit elements: a capacitor and a Josephson

junction. This design is also known as the JC circuit.

The Hamiltonian is derived using the constitutive rela-

tions for the Josephson junction (Eq. 21).

Ĥ = 4EC n̂
2 − EJ cos(ϕ̂) (22)

Here, n̂ represents the Cooper pair number difference

between the two superconducting islands, and ϕ̂ is the

phase difference across the Josephson junction. The

charging energy is given by EC = e2/(2CΣ), where CΣ = CS + CJ is the total ca-

pacitance, including the shunt capacitance (CS) and the Josephson capacitance (CJ).

The Josephson energy is EJ = ICΦ0/(2π), where IC is the critical current and Φ0 is the
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magnetic flux quantum.

In a superconducting circuit, charge pollution from other parts of the circuit can af-

fect the system. To account for this, an environmental offset charge is introduced in the

Hamiltonian.

Ĥ = 4EC(n̂+ noffset)
2 − EJ cos(ϕ̂) (23)

Here, noffset represents the offset charge. This parameter is continuous because the in-

fluence of a pollution charge decreases with its distance from the system.

For a CPB, EC ≈ EJ . These energies can be adjusted during the qubit’s topologi-

cal design and fabrication process. The ratio between the Josephson energy and the

charging energy determines key characteristics of the qubit, such as charge dispersion

and anharmonicity. The charge dispersion is a description of the variation of energy

levels with respect to the enviromental offset charge. Thus the charge dispersion also

determines the charge sensitivity of the CPB. The CPB has a rather large charge dis-

persion meaning the qubit frequency will change in response to charge fluctuations. An

approach to avoid this problem is to eliminate the linear noise sensitivity by operating

the qubit at optimal working points, for the CPB this point is at Φ0
2 . This approach is

known as sweet spot operation.

These results are found from the analytical solution of the Hamiltonian for the JC

circuit (Eq. 22). This Hamiltonian, when expressed in the phase basis, takes the form of

Mathieu’s differential equation and can therefore be solved using the so-called Mathieu

functions. The process of solving this Hamiltonian analytically is beyond the scope of

this thesis.[7, 10, 9]

The Transmon Qubit

Increasing the EJ/EC ratio results in an exponential reduction in the charge dispersion

while the anharmonicity only decreases algebraically with the slow power law. The gain

in charge-noise insensitivity, achieved by increasing the EJ/EC ratio, is thus paid for by

the loss in anharmonicity. This principle was utilized by a new qubit design, called the

transmon qubit, that came out in 2007. The transmon qubit consists of the same circuit

elements as the CPB, and thus has the same Hamiltonian. It is designed to operate in

a regime of a significally raised EJ/EC ratio. This is known as the transmon regime.

EJ/EC ≥ 50 (24)
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In this regime, the charge dispersion vanishes for the lowest energy levels, resulting in

a constant qubit frequency given by ω01 ≈
√
8EJEC/ℏ. This frequency is known as

the Josephson plasma frequency. The Josephson plasma frequency and the transmon

frequency in the limit (EJ/EC)
−1 ≪ 1, can be determined considering perturbation

theory. Perturbation theory is a systematic procedure for obtaining approximate solu-

tions to the perturbed problem by building on the known exact solutions to the un-

perturbed case. Expanding the potential of the transmon for small ϕ: −EJ cos(ϕ̂) ≈
−EJ + EJ ϕ̂

2/2 − EJ ϕ̂
4/24 + O(ϕ̂6). The leading term is quadratic and therefore the

Hamiltonian can be described as a QHO with a quartic perturbation. Using ladder

operators, the operators n̂ and ϕ̂ are expressed as:

n̂ =
−i
2

(
EJ

2EC

)1/4

(â− − â+) and ϕ̂ =

(
2EC

EJ

)1/4

(â− + â+) (25)

Thus the Hamiltonian of the perturbed QHO in second quantization becomes:

Ĥ =
√

8ECEJ(â+â− + 1/2)− EJ − EC

12
(â− + â+)

4 (26)

We discard the constant term −EJ , yielding a Hamiltonian of the form: Ĥ = Ĥ0+λĤ ′,

where Ĥ0 represents the unperturbed QHO, and Ĥ ′ is the small quartic perturbation.

The perturbation parameter λ = EC
12 is small compared to

√
8ECEJ , justifying the

treatment of the Hamiltonian as perturbed. From this, the Josephson plasma frequency

can be extracted. Notice that noffset can be eliminated by a gauge transformation. The

first-order correction to the eigenenergies due to the perturbation is given by:

E
(1)
j = −EC

12
⟨j0|(â− + â+|j0)4⟩ = −EC

12
(6j2 + 6j + 3) (27)

where j0 denotes the jth unperturbed state of the QHO. Combining this result with Eq.

20. The anharmonicity in the (EJ/EC)
−1 ≪ 1 limit is found to be: α = −EC . [7, 3]

Figure 3: Lumped-element model of a circuit

consisting of a capacitor and a SQUID

loop

Flux Tunable Transmon

Both the charging energy and the Josephson

energy are determined by the topological de-

sign of the qubit. For quantum operations

it can be useful to use qubits, which you can

tune, while the experiment is in progress.

Such a qubit can be constructed using a su-

perconducting quantum interference device
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(SQUID). A SQUID can be constructed by placing two Josephson junctions in parallel

within the circuit. A flux tunable transmon is therefore a circuit consisting of a capacitor

and a SQUID loop (see Fig. 3). The Hamiltonian is given by:

Ĥ = 4EC(n̂+ noffset)
2 − EJL cos(ϕ̂L)− EJR cos(ϕ̂R) (28)

Here, EJL and EJR are the Josephson energies for the right and left junction, respec-

tively, while ϕL and ϕR denote the phase differences across each junction.

Considering a symmetric loop where the Josephson energies for each junction are equal,

EJL = EJR = EJ . We can apply an external magnetic field through the SQUID loop,

this will result in an external flux. The flux will distribute itself equally in the symmetric

circuit. Resultning in the following Hamiltonian:

Ĥ = 4EC(n̂+ noffset)
2 − EJ cos(ϕ̂L +

ϕext
2

)− EJ cos(ϕ̂R +
ϕext
2

) (29)

Where ϕext = 2πΦext/Φo. Φext is the external flux in units of the magnetic flux quantum.

Due to the flux quantization condition. The total flux in the system must obey:

ϕL − ϕR + ϕext = 2πk (30)

Combining Eq. 29 and Eq. 30, and using the fact that the absolute values of the phase

differences across the junctions must be equal in the symmetric circuit, ϕL = −ϕR = ϕ,

along with the trigonometric identity 2 cos(A) cos(B) = cos(A + B) + cos(A − B), we

obtain the following Hamiltonian for the flux-tunable transmon:

Ĥ = 4EC(n̂+ noffset)
2 − 2EJ cos(

ϕext
2

) cos(ϕ̂) (31)

Notice that when you define the effective Josephson energy as E′
J = 2EJ cos(ϕext/2),

you obtain the Hamiltonian for a JC qubit (Eq. 28), where the effective Josephson

energy becomes a free parameter. [11, 9]

IV. Numerical Implementation

While it is possible to solve the Hamiltonian for the CPB/transmon and the flux-tunable

transmon analytically, it is often simpler and more practical to approach the problem

numerically. This section introduces the methods and considerations involved in the

numerical implementation.
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The initial step of numerical treatment is the choice of basis for representing the quan-

tum states and operators. The flux and charge bases, which are related by a Fourier-like

transformation, act as the foundational structure for building the Hamiltonian.

|ϕ⟩ =
∞∑

n=−∞
einϕ |n⟩ and |n⟩ = 1

2π

∫ 2π

0
dϕe−inϕ |ϕ⟩ (32)

Once the basis choice is made, the flux and charge operator that appear in the Hamil-

tonian can be expressed as numerical matrices and implemented on the computer. [11]

Operator Representation in the Flux Basis

The reduced variables, n̂ and ϕ̂, are quantum conjugate variables, satisfying the canonical

commutation relation [ϕ̂, n̂] = i. From this, we identify the charge operator as n̂ = −i ∂
∂ϕ̂

.

Consequently, the Hamiltonian for the JC circuit (Eq. 23), can now be expressed simply

in terms of the phase variable ϕ (noffset is eliminated by a gauge transformation).

Ĥ = −4EC
∂2

∂ϕ̂2
− EJ cos(ϕ̂) (33)

To numerically implement the Hamiltonian (Eq. 33), we discretize the phase variable ϕ

on a finite grid, enabling us to represent the operators in matrix form.

The finite difference approximation, derived from Taylor expansion, is used to discretize

the capacitance energy term.

f ′′(x) =
f(x+∆x)− 2f(x) + f(x−∆x)

∆x2
(34)

The second derivative can, when discretized with central difference approximation, be

represented as a tridiagonal matrix. With the diagonal elements being -2 and the off-

diagonal elements being 1.

∂2

∂ϕ̂2
→ 1

2


−2 1 0 · · · 0

1 −2 1 · · · 0

0 1 −2
...

...
. . .

. . .
...

0 0 · · · 1 −2

 (35)
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The inductive energy term does not involve derivatives. In the flux basis, the reduced

flux operator, ϕ̂, is diagonal. Consequently, functions of ϕ̂, such as cos(ϕ̂), are also

diagonal in this basis. The diagonal elements of the potential matrix are simply the

values of cos(ϕk) at the discretized points ϕk, with k = 0, 1, . . . , N − 1.

cos(ϕ̂) →


cos(ϕ0) 0 · · · 0

0 cos(ϕ1) · · · 0
...

...
. . .

...

0 0 · · · cos(ϕN−1)

 . (36)

[8, 6]

Operator Representation in the Charge Basis

The charge basis is the eigenbasis of the reduced charge operator, because of this its

matrix representation is diagonal. To truncate the Hilbert space to a finite size a cutoff

parameter, ncutoff, is introduced.

n̂→


−ncutoff + noffset 0 · · · 0 0

0 −ncutoff + noffset + 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · ncutoff + noffset − 1 0

0 0 · · · 0 ncutoff + noffset


(37)

To express the inductive term operator as a matrix in the charge basis, it is useful to

refer back to the basis definition (Eq. 32). The objective is to represent cos(ϕ̂) in the

charge basis. To achieve this, we apply the operators e±iϕ̂ to the state |n⟩.

e±iϕ̂ |n⟩ = 1

2π

∫ 2π

0
dϕe−inϕe±iϕ̂ |ϕ⟩ (38)

When expanding the operator for small ϕ we obtain the following approximation: e±iϕ̂ ≈
±(1 + iϕ̂ − 1

2 ϕ̂
2 − i

6 ϕ̂
3 + . . . ). Now, consider the eigenvalue equation in the exponent.

By solving this and compressing the function back to its exponential form, we find:

e±iϕ̂ =
1

2π

∫ 2π

0
dϕe−inϕ(±1± iϕ̂) |ϕ⟩ (39)

=
1

2π

∫ 2π

0
dϕe−inϕ(±1± iϕ) |ϕ⟩ (40)

=
1

2π

∫ 2π

0
dϕe−iϕ(n∓1))|ϕ⟩ (41)

11



This shows that e±iϕ̂ takes the state from |n⟩ to |n∓ 1⟩. Therefore, the operator can be

expressed in Dirac notation as:

eiϕ̂ =
∑
n

|n⟩ ⟨n+ 1| and e−iϕ̂ =
∑
n

|n⟩ ⟨n− 1| (42)

The cosine function can be written in terms of exponential operators as cos(ϕ̂) =
1
2

(
eiϕ̂ + e−iϕ̂

)
. Using Eq. 42, we can construct the matrix representation for the oper-

ator cos(ϕ̂):

cos(ϕ̂) → 1

2


0 1 0 · · · 0

1 0 1 · · · 0

0 1 0 · · · 0
...
...

...
. . .

...

0 0 · · · 1 0

 . (43)

Notice that the cos(ϕ̂) operator is not limited by any ncutoff. In the numerical imple-

mentation, the operator matrices must have the same dimensions. [2, 11]

Computational Framework with QuTip

Now that we have the matrix representation of the operators in the different bases, the

building blocks for the numerical implementation are in place. For the simulations, I will

use QuTip, an open-source software for simulating the dynamics of quantum systems.

Essentially, I will use QuTip as an eigenvalue solver.

V. Simulations

The Cutoff Parameter

Numerical accuracy is an essential consideration when using simulations to forecast mea-

surements. Error analysis in numerical simulations is a complex field, and while a thor-

ough exploration lies beyond the scope of this thesis, this section outlines the approach

used to construct the simulations herein. Specifically, we focus on the role of the cutoff

parameter, which determines the dimensions of the Hilbert space. N is the cutoff param-

eter in the flux basis and ncutoff is the cutoff parameter in the charge basis. Choosing an

appropriate value for the cutoff parameter requires balancing two factors: (1) ensuring

that the simulation achieves sufficient accuracy for its intended purpose, and (2) avoid-

ing excessive computational operations. In the context of the transmon qubit, selecting

a cutoff parameter that is too small leads to inaccurate results: eigenenergies become

12
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Figure 4: Both simulations are performed in the transmon regime, EJ/EC = 50, with EC = 0.2GHz.

(a) The first five eigenenergies as a function of ncutoff, demonstrating how truncating the charge

basis too severely leads to significant deviations in the computed eigenenergies. (b) The ground

state overlaps ⟨n|0⟩ in the charge basis, showing the real part of the overlaps Re(⟨n|0⟩) as a

function of charge states n for different cutoff parameter values ncutoff. The results illustrate the

importance of a sufficiently large Hilbert space to accurately capture both the eigenenergies and

the ground state wavefunction in the charge basis.

too large, and wave functions are excessively narrow, as illustrated in Fig. 4. To gain

an intuitive understanding for these effects, it is useful to consider the QHO. Recall that

the potential energy of a QHO is V (x) = 1
2mω

2x2. The angular frequency, ω, deter-

mines how quickly the potential grows as x moves away from x = 0. When the angular

frequency is large, the potential becomes steeper, meaning it grows more rapidly with x.

This results in the width of the potential becoming narrow. When the angular frequency

is small the potential grows more slowly with x, i.e. the width of the potential is larger.

The ground state of the QHO is a Gaussian distribution, ψ0 = (mω
πℏ )

1
4 e−

mω
πℏ x2

. The

width of the ground state is inversely proportional to
√
ω. Like the potential, the larger

the angular frequency, the narrower the ground state. It is not surprising that the width

of the potential and the width of the ground state correspond, as the wavefunction is

constrained by the potential it is bound to.

The ground state energy of the QHO is proportional to the angular frequency, E0 =
1
2ℏω.

It can thus be concluded for the case of the QHO that a wider potential results in lower

ground state energies.

This picture can be used to understand why the eigenenergies of the transmon initially

decrease as the cutoff parameter increases in Fig. 7a. Expanding the potential of the

13



transmon for small ϕ, we see that the leading terms is quadratic, and thus the potential

of the transmon behaves like the potential of the QHO. Therefore, when compressing the

wavefunction, by picking too small of a cutoff parameter, the potential becomes steeper

and the eigenenergies larger.
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Figure 5: Both simulations are conducted in the transmon regime with EJ/EC = 50 and EC = 0.2 GHz.

(a) State fidelity between the ground state of a transmon with a large cutoff value (ncutoff = 10)

and the ground states calculated for smaller cutoff values. As ncutoff increases, the fidelity

approaches 1, signifying perfect overlap with the target ground state. (b) Log of the fidelity

error, which exhibits a nearly linear trend, indicating that the fidelity grows approximately

exponentially with ncutoff until it converges to 1, signifying a perfect overlap.

A technique to determine an appropriate cutoff value is to consider the state fidelity.

The state fidelity is a measure of how closely a quantum state produced by a system

matches a desired target state. It quantifies the overlap between the two states, with

a fidelity of 1 indicating perfect overlap and 0 indicating no overlap at all. The state

fidelity of a pure state |ψ⟩ and a target state |ϕ⟩ is given by:

F(|ψ⟩, |ϕ⟩) = |⟨ψ|ϕ⟩|2 (44)

Fig. 5 presents a simulation of the state fidelity as a function of the cutoff parameter for

the transmon example. This simulation is meant to demonstrate that the state fidelity

increases almost exponentially, until it reaches 1, where it remains constant. Compu-

tational efficiency was not a consideration for this simulation. However, when working

with large systems, state fidelity can serve as an effective measure for determining the

cutoff parameter. By calculating the target state once, which may require significant

computational power, you create a reference state for comparison.

14



Charge Noise Sensitivity

As previously discussed, the energy ratio EJ/EC plays a significant role in the properties

of qubits constructed from JC circuits. The transmon is particularly notable because,

unlike the CPB, it is unaffected by charge noise.

Fig. 6 illustrates how the width of the wavefunction in the charge basis increases as

the EJ/EC ratio increases, meaning the wavefunction becoming increasingly delocal-

ized. Thus, the probability of having a larger difference in Cooper pairs between the

two islands increases with the energy ratio. This suggests that a widely spread wave

function is less sensitive to charge noise from the surroundings. In contrast, for a CPB,

even a small enviromental charge offset can significantly affect the system.
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Figure 6: Ground state overlaps ⟨n|0⟩ in the charge basis for three qubits constructed from JC circuits,

characterized by different EJ/EC-ratios. All systems have EC = 0.2 GHz, with different values

of EJ . (a) The CPB regime, EJ = EC , shows a strongly localized wavefunction in the charge

basis. (b) The extreme transmon regime, EJ = 100EC , exhibits a delocalized wavefunction

indicative of reduced sensitivity to charge noise. The cutoff parameter is set to ncutoff = 10 for

all cases.

Anharmonicity

Increasing the EJ/EC ratio comes at the cost of reducing the qubit’s anharmonicity. This

relationship is visualized in Fig. 8a. For small values of EJ/EC , the system exhibits

significant anharmonicity, characteristic of the CPB regime. As EJ/EC increases, the

anharmonicity decreases, reflecting the transition to the transmon regime. For large

energy ratios, the anharmonicity asymptotically approaches −EC . [7]
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Figure 7: Charge dispersion of the first three eigenenergies E0, E1, and E2 as a function of offset

charge noffset. a) For a CPB with EC = 0.2 GHz and EJ = EC , the eigenenergies exhibit a

strong charge noise sensitivity. b) For a transmon with EC = 0.2 GHz and EJ = 50EC , the

eigenenergies are nearly independent of fluctiations in noffset, illustrating the charge insensitivity

of the transmon regime. Both simulations use ncutoff = 10.

Comparing the Potential of JC and LC Circuits
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Figure 8: (a) Anharmonicity α as a function of the energy ratio EJ/EC in the charge basis. The

absolute value of the anharmonicity decreases until it asymptotically approaches −EC . The

simulation uses a cutoff value of ncutoff = 10, with EC = 0.2 GHz. (b) Potential energy profiles

for the LC and JC circuits in the flux basis. The potentials are shifted such that their minimum

values are set to 0 for comparison. For all cases, EC = 0.2 GHz and EL = 75EC . As EJ increases,

the anharmonic potential of the JC circuit gradually approaches the harmonic potential of the

LC circuit. The plotted potentials correspond to EJ values of 25EC , 50EC , 75EC , and 80EC ,

illustrating how the JC circuit potential becomes increasingly harmonic with larger EJ .

A helpful way to understand why the size of the anharmonicity decreases as a function
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Figure 9: Qubit frequency as a function of the reduced external flux ϕe for a flux-tunable transmon.

The calculations are performed for EJ = 50EC , with EC = 0.2 GHz and ncutoff = 10.

of the energy ratio is by, once again, recall the QHO, which has equidistant energy-level

spacing, i.e an anharmonicity which equals zero. Comparing the potential of a QHO with

that of the JC circuit for different EJ/EC ratios. As the ratio increases, the potential of

the JC circuit increasingly resembles a quadratic potential, similar to that of the QHO.

(see Fig. 8b). Since the anharmonicity is governed by the potential, it is intuitive that

the anharmonicity of the JC circuit decreases as the potential becomes more harmonic.

At sufficiently high EJ/EC ratios, where EJ essentially sets the amplitude of the cosine

potential, the potential of the transmon becomes exceedingly narrow. In this regime,

the anharmonicity approaches −EC , and the first few energy levels become strongly

localized within the potential well, forming bound states.

Flux-Tunable Transmon

The anharmonicity of the JC circuit, as explored in the previous section, depends

strongly on the ratio EJ/EC , with larger EJ values causing the potential to become

more harmonic. In the flux-tunable transmon, the effective Josephson energy, E′
J =

−EJ cos(ϕext/2), can be controlled by adjusting the external flux ϕext. This allows ac-

cess to the qubit during an experiment and enables operations such as bringing two

qubits into resonance, a feature that is useful for certain qubit operations. By tuning

the external flux, the amplitude of the cosine potential is modified, effectively adjusting

the anharmonicity of the system. Fig. 9 presents the qubit frequency of a flux-tunable

transmon as a function of the external flux, showing complete destructive interference

at Φext =
1
2Φ0.
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VI. Conclusion and Outlook

Conclusion

The primary goal of this thesis was to provide a comprehensive introduction to su-

perconducting circuits, starting with the quantum harmonic oscillator (QHO), which

played a significant role throughout the thesis. A substantial part of this work was ded-

icated to exploring the influence of the EJ/EC ratio on qubit properties. By conducting

simulations, I gained valuable insights into the physical properties of superconducting

circuits, particularly the relationship between charge sensitivity and anharmonicity. The

simulations confirmed the theoretical expectations, such as the importance of the cut-

off parameter in ensuring accurate eigenenergies and ground state wavefunctions. For

instance, truncating the charge basis too severely can lead to significant deviations in

the calculated eigenenergies. Additionally, simulating wavefunctions in different EJ/EC

regimes showed how the delocalization of the wavefunction is connected to the qubit’s

sensitivity to charge noise. In the CPB regime, the wavefunction is strongly localized,

while in the transmon regime, the wavefunction becomes increasingly delocalized, re-

flecting reduced sensitivity to charge noise. The anharmonicity of the JC qubit was also

examined, and the simulations confirmed the expected trend, where the absolute value

of the anharmonicity decreases as the EJ/EC ratio increases, approaching −EC as EJ

becomes large. The potential profiles of the LC and JC circuits further illustrated how

the anharmonic potential of the JC circuit gradually approaches the harmonic potential

of the LC circuit as EJ increases. Lastly, the flux-tunable transmon was investigated,

demonstrating the ability to control the qubit by adjusting the external flux, emphasizing

its advantages for qubit control in quantum computation.

Outlook

Looking ahead, an area of interest I would love to explore further is the topological

design and fabrication process of qubits. This includes understanding how EJ and

EC arise from the physical layout of the qubit, as well as delving into the intricate

fabrication techniques involved. While this thesis has focused on the physical properties

of superconducting qubits, exploring qubit manipulation and decoherence would be a

natural next step in my research journey.
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Appendices

A: Full Derivation of the Hamiltonian for the LC Circuit in the Flux

Basis

In this derivation, the circuit elements are described in the flux basis. The flux, Φ(t), is

defined as a time integral of the voltage:

Φ(t) =

∫ t

−∞
V (t′)dt′ ⇒ V = Φ̇

Consequently, the flux is position-like, while the charge is momentum-like. The instan-

taneous, time dependent energy of the circuit elements is expressed as:

E(t) =

∫ t

−∞
V (t′)I(t′)dt′

The current can be rewritten in terms of capacitance:

I = C
dV

dt
= CΦ̈

The kinetic energy corresponding to the capacitor is then:

TC =

∫ t

−∞
CΦ̇Φ̈dt′

Using d
dt(

1
2 Φ̇

2) = Φ̇Φ̈ and applying the Fundamental Thereom of Calculus, we obtain:

TC =
C

2
Φ̇2

Similarly, the current can be expressed using the inductance:

V = L
dI

dt
= Φ̇ ⇒ I =

Φ

L

The potential energy, corresponding to the inductor, is calculated analogously:

UL =

∫ t

−∞

1

L
ΦΦ̇ =

1

2L
Φ2



The Lagrangian of the system is given by:

L =
C

2
Φ̇2 − 1

2L
Φ2

The canonical momentum is defined as:

Q =
∂L
∂Φ̇

= CΦ̇

The Hamiltonian is obtained via the Legendre transformation:

H = QΦ̇− L =
Q2

2C
+

Φ2

2L

In terms of voltage and current, this is equivalent to

H =
1

2
CV 2 +

1

2
LI2

B: Full Derivation of the Hamiltonian for LC Circuit in the Charge

Basis

As mentioned the Hamiltonian can also be derived using the charge as the generalized

coordinate to describe the circuit elements. In this basis, the charge, Q, is position-like,

and the flux Φ, is momentum-like. Consequently, the magnetic energy of the inductor

becomes the kinetic energy, while the electric energy of the capacitor represents the

potential energy. The charge is defined as the time integral of the current

Q(t) =

∫ t

−∞
I(t′)dt′ ⇒ I = Q̇

The voltage, in terms of inductance, is expressed as:

V = L
dI

dt
⇒ V = LQ̈

The kinetic energy, corresponding to the inductor, is:

TL =

∫ t

−∞
LQ̈Q̇dt′

Using 1
2

d
dt(Q̇

2) = Q̈Q̇ as well as the Fundamental Thereom of Calculus, we obtain:



TL =
L

2
Q̇2

The relationship between the voltage and the capacitance is given by:

I = C
dV

dt
= Q̇⇒ V =

Q

C

The potential energy across the capacitor is therefore:

UC =

∫ t

−∞

Q

C
Q̇dt′

Similar to the kinetic energy calculation, applying the product rule and the Fundamental

Theorem of Calculus yields:

UC =
1

2C
Q2

The Lagrangian is defined as the difference between the kinetic energy and the potential

energy:

L = TL − UC =
L

2
Q̇2 − 1

2C
Q2

The canonical momentum is:

Φ =
dL
dQ̇

= LQ̇

The Hamiltonian is obtained through the Legendre transformation:

H = ΦQ̇− L =
1

2L
Φ2 +

1

2C
Q2

In terms of voltage and current, this is equivalent to

H =
1

2
LI2 +

1

2
CV 2



C: The Canonical Commutation Relation Between x̂ and p̂

Using p̂ = −iℏ d
dx as well as a test function, f(x).

[x̂, p̂]f(x) = (x(−iℏ) d
dx

(f(x))− (−iℏ) d
dx

(xf(x)))

= −iℏ(x d
dx

(f(x))− x
d

dx
(f(x))− f(x))

= iℏf(x)

⇒ [x̂, p̂] = iℏ

D: Deriving the Ground State and the Ground State Energy of the QHO

â− = 0

⇒ 1√
2ℏmω

(iℏ
d

dx
+mωx)ψ0 = 0

⇒dψ0

dx
= −mω

ℏ
xψ0

Using seperation of variables:

∫
dψ0

ψ0
= −−mω

ℏ

∫
xdx⇒ lnψ0 = −mω

2ℏ
x2 + constant

⇒ ψ0 = Ae
−mω
2ℏ x2

To normalize: ∫ ∞

−∞
|ψ0(x)|2dx = 1∫ ∞

−∞
A2e−

mω
ℏ x2

dx = 1

A2

√
πℏ
mω

= 1

⇒ A =
(mω
πℏ

)1/4

Thus, the normalized ground state wavefunction is:

ψ0(x) =
(mω
πℏ

)1/4
e−

mω
2ℏ x2

The Hamiltonian of the QHO can be expressed as:



Ĥ = ℏω
(
â+â− +

1

2

)
The number operator â+â− has eigenvalues n = 0, 1, 2, . . ., corresponding to the quantum

number for the energy levels of the harmonic oscillator.

The ground state energy corresponds to the lowest eigenvalue of the number operator,

which is n = 0. Thus, the ground state energy is:

E0 =
1

2
ℏω
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