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Abstract

Stable and precise frequency standards are important in many areas of sci-
ence. A molecular clock using iodine has potential to become cost-e�cient,
compact and simple and could be used in e.g. spacecraft, where these qualities
are essential. In this thesis, a Teensy 3.6 microcontroller has been set up and
programmed to act as a PID controller. The microcontroller has successfully
locked an optical cavity to a narrow linewidth laser. Saturated Absorption Spec-
troscopy was performed on an iodine cell placed in the cavity. A small Lamb
dip was observed, which proves the controller’s usability. The Allan deviation
and Fourier transform of the in-loop measurement of the system performance,
revealed a large resonance, which must significantly limit the quality of the
servo system. In future work on the project, the e↵ect of the resonance could
be reduced to significantly improve system stability.

Resumé

Stabile og præcise frekvens standarder er vigtige i mange omr̊ader af viden-
skaben. Et molekylært jod-ur har potentiale til at blive billigt, kompakt og
simpelt, og kunne bruges i for eksempel rumfartøjer, hvor netop disse egen-
skaber er vigtige. I dette projekt er en Teensy 3.6 microcontroller sat op og
programmeret til at fungere som en PID controller. Microcontrolleren har suc-
cesfuldt l̊ast en optisk kavitet til en laser med smal linjebredde. Satureret
absorptions spektroskopi blev benyttet p̊a en jodcelle inde i kaviteten. Et lille
Lamb dip blev observeret, hvilket beviser controllerens brugbarhed i projektet.
P̊a Allan afvigelsen og Fourier-transformationen af en lukket løkke måling af
systemet, kan man se en stor resonans, hvilket betydeligt må begrænse servo
systemets kvalitet. I fremtidigt arbejde p̊a projektet kan resonansens indflydelse
begrænses for at forbedre systemets stabilitet.
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1 Introduction

Mankind has been using frequency references since the first apes looked to the
Sun to determine the day and night cycle. As they evolved, time measurement
evolved with them. From directly measuring natural phenomena, like sundials,
to the man-made frequency standards like the pendulum clock, mankind was
on the hunt for the best way to define and measure time. For centuries we
improved our methods of measuring frequencies, until 1955 where Louis Essen
produced an atomic clock from a transition in Caesium-133, which was the most
accurate frequency standard the world had seen [2]. This atomic clock was used
to define the second. Since then, atomic clocks and quantum metrology have
been focused on creating the best frequency reference possible. However, it
is not simple to define what certifies the best clock. Some atomic clocks (e.g.
strontium and yttrium clocks) can become extremely precise and accurate, while
the experimental set-up is quite complex and requires a lot of work to function.
Other clocks (e.g. acetylene and iodine), do not require the same amount of
upkeep but they can not become as precise. When designing an atomic clock,
trade-o↵s between di↵erent qualities are always made, these being: Precision,
accuracy, stability, maintenance, compactness and cost. Iodine is especially
good when it comes to compactness, maintenance and cost. When comparing
these qualities to how good precision, accuracy and stability it can achieve, it
blows the competition out of the water. This is in large due to iodine being a
gas at room temperature. This allows us to just fill a glass tube with iodine
gas, which means we do not need a vacuum, a magneto optical trap, a Zeeman
slower etc. for our set-up to function.

To achieve the relatively good precision, accuracy and stability with the
iodine set-up, we want to lock a lasers frequency to a hyperfine transition in
iodine.

To optimize the laser’s interaction with the iodine, an optical cavity is used.
However optical cavities only allow very specific frequencies to enter, so it is
necessary to control the cavity length to allow the laser light to enter.

In this thesis, we will focus on locking the optical cavity length to the laser
wavelength. To lock the cavity we are using a Teensy microcontroller to run a
digital PID control loop. Once the cavity is locked we will calculate the stability
of the cavity using Allan deviation, and test if the lock is good enough to find
these hyperfine transitions.
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2 Theory

2.1 The Optical Cavity

Figure 1: A close up of two cavity mirrors M1

and M2 a distance L apart, and with (r1, r2) and
(t1, t2) as their respective reflection and trans-
mission coe�cients. A resonant electrical field
E0 interrogating the cavity shows the field be-
ing reflected, transmitted and built up. Note
that this cavity is not aligned, to easily display
the light-mirror interactions. When the cavity
is aligned all the lines would be place on top of
each other. [1].

The basic principle of an optical cavity
is trapping light at a specific frequency
between two highly reflective mirrors
causing it to build a large electromag-
netic (EM) field.

To assemble an optical cavity one
aligns two highly reflective mirrors,
M1 and M2 with reflective and trans-
mission coe�cients (t1, t2 < r1, r2),
facing each other a distance L apart
(see fig 1). Light inside the cavity
will reflect o↵ the mirrors, which flips
the phase of the light. If the phases
do not align throughout the cavity
the light will destructively interfere.
Since the light is reflected multiple
times, this destructive interference re-
duces the occurrence of non resonant
frequencies to practically zero. The
waves that constructively interfere must be those with a wavelength being a
multiple integer of the cavity length, since their phases overlap upon reflec-
tion, i.e. standing waves. The frequency di↵erence between two such stand-
ing waves is called the Free Spectral Range (FSR) and can be calculated:
�k = 2⇡/L ) FSR = c/2L [3] where �k is the di↵erence in wave vector
of the two waves and c is the speed of light. In this thesis we use an optical
cavity with a length of L = 30 cm giving us an FSR of roughly:

FSR =
c

2L
⇡ (3 · 108 m/s)

2 · (0.3 m)
= 500 MHz (1)

The allowed frequencies have a shape of a Lorentzian in frequency space and
the FWHM of this resonance curve is called the optical linewidth of the cavity:

�⌫ =
(1� r

2)

⇡r

c

2L
(2)

The ratio between the FSR and the optical linewidth is called the finesse of the
cavity (F). The finesse is used to determine how well the cavity is aligned, and
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the amount of loss in the cavity.

F =
FSR

�⌫

=
⇡r

(1� r

2)
(3)

To study the reflection and transmission from the optical cavity, when interro-
gated by a laser beam at resonance, we approximate the beam as an infinite
plane wave: Ē(t, r̄) = E0 exp(i(!t � k̄r̄)). When aligned with the cavity, the
beam will interact with M1 with transmission and reflection coe�cients r1 and
t1. The transmitted beam is then reflected and transmitted in M2 (with coe�-
cients r2 and t2). The beam is reflected between the two mirrors transmitting a
bit of power each time it interacts with a mirror. The full interaction has been
illustrated in fig. 1.

In this thesis we will be using an optical cavity with two identical mirrors
where r = r1 = r2 and therefore t = t1 = t2 Following the idea in fig. 1 we can
then write the total reflected field (left side of M1) as:

E

R

= E0r � E0t
2
re

�i!2L/c � E0t
2
r

3
e

�i!4L/c � E0t
2
r

5
e

�i!6L/c
... (4)

A more rigorous derivation for mirrors with di↵erent reflectivity can be found
in: [1]. Rewriting the expression leads to:

E

R

= E0r � E0t
2
re

�i!2L/c
⇣
1 + r

2
e

�i!2L/c � r

4
e

�i!4L/c
...

⌘
(5)

where we realize that we can use the geometrical sum:
1P
n=0

q

n = 1
1�q

with q =

r

2 exp(�i!2L
c

) and then arrive at:

E

R

= E0r � E0r

✓
t

2 exp(�i!2L/c)

1� r

2 exp(�i!2L/c)

◆
(6)

Extending the first term of the right side with 1 in terms of: 1�r

2 exp(�i!2L/c):

E

R

= E0r

✓
1� (r2 + t

2) exp(�i!2L/c)

1� r

2 exp(�i!2L/c)

◆
(7)

Using that 1 = r

2 + t

2 allows us to calculate the reflection coe�cient r0, the
ratio of light reflected from the cavity.

r0(!) =
E

R

E0
= r

✓
1� exp(�i!2L/c)

1� r

2 exp(�i!2L/c)

◆
(8)

Likewise we can calculate the transmission coe�cient. The derivation is some-
what similar. Realizing we can write the terms of transmission as a geometrical
sum, and calculating the ratio between the incoming and transmitted light we
find:

t0(!) =
E

T

E0
=

t

2 exp(�i!L/c)

1� r

2 exp(�i!2L/c)
(9)
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Figure 2: A linear cavity with an inter-cavity iodine cell. The iodine cell introduces loss (Lc)
in the shape of both its glass windows reflecting light out of the cavity, and the iodine gas
absorbing and spontaneously emitting the light. All light propagating though the cavity is
introduced with a transmission coe�cient(tc) on each side of the cavity. Lc and tc are defined
such that 1 = L

2
c + t

2
c for each of the cells surfaces.

In our set-up we will be working with an iodine cell inside the cavity. A cell
is a glass tube of a pure pressurized substance, in this case iodine. However
introducing two new surfaces and a gas into the cavity introduces new reflections
and losses. In our case the cell’s windows are Brewster angled, meaning the
surfaces are angled such that maximum transmission is obtained. This also
means that all reflections are pointed out of the cavity leading to loss. Another
loss factor is the iodine gas. The laser we use is (at times) on resonance with
the iodine atoms causing us to lose some light due to absorption immediately
followed by spontaneous emission. Spontaneous emission happens in random
directions and with random phase, so we can note this e↵ect as loss from the
cell. We combine these two loss factors to a single loss coe�cient of the cavity
surfaces L

c

. We also define the transmission coe�cient tc such that 1 = L

2
c

+ t

2
c

for each surface (see fig. 2). We can now look at the cavity transmission and
reflection again:

E

Rc

= E0r � E0t
4
c

t

2
re

�i!2L/c
⇣
1 + r

2
t

4
c

e

�i!2L/c � r

4
t

8
c

e

�i!4L/c
...

⌘
(10)

And once again using the geometric sum we obtain:

r

C

(!) =
E

Rc

E0
= r

✓
1� t

4
c

exp(�i!2L/c)

1� r

2
t

4
c

exp(�i!2L/c)

◆
(11)

Following this example we obtain the transmission coe�cient with a cell as well:

t

C

(!) =
E

T

c

E0
=

t

2
t

2
c

exp(�i!L/c)

1� r

2
t

4
c

exp(�i!2L/c)
(12)

In addition to the the change in reflection and transmission coe�cients, we also
see a change in the cavity linewidth and finesse. The introduction of the iodine
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gas e↵ectively changes the reflection coe�cient (r) in eq. 2 and 3. The change
is proportional to the pressure of the iodine gas. The pressure can be indirectly
controlled by the temperature of the cell. Reducing the temperature of the
cell condenses more of the gas, reducing the pressure. Reducing the pressure
reduces loss due to absorption, which increases the finesse, and reduces the
linewidth.

Throughout this section we have used straight lines to depict the cavity
mirrors and laser light, which is a good approximation in many cases. However,
in reality laser light propagates as a Gaussian beam due to di↵raction. To
account for this property most optical cavities use curved mirrors to match the
beam’s wave front. In addition to matching the wave front one also has to
consider matching the mode of the beam. If the laser beam is diverging while
entering the cavity the wave front will not match the curvature of the mirror.
For a Gaussian beam the waist is defined as the point in space where the light
is most focused. In a cavity such as ours, it is very important to have the waist
placed in the middle of the cavity to match the mode best.

2.2 PID Control theory

In the previous section, we saw that the cavity only allows light to enter, if the
length of the cavity is an integer multiple of the wavelength of the laser light.
Controlling a mirror to always be a set distance from another on a scale of less
than a nanometer is impossible to do by hand, so we are using a piezo-electric
crystal. Piezo-electric crystals expand when a voltage is applied, and the change
in their length is small enough to allow us to adjust the length of the cavity on
the nanometer scale. However, we still need to know what voltages to apply.
Using a photodetector (PD) and the cavity we can scope out how much voltage
equals an FSR. But we need to be able to control the piezo so that when it is
disturbed in one direction, it will be pushed right back into place.

Imagine we have some electrical error signal that shows how far we are from
resonance with the cavity. We then want to feed the piezo a control signal that
is Proportional to this error signal, so if the error signal is large we will apply a
large voltage to the piezo to move the mirror back into place. The mathematical
expression would be: P (t) = k

P

Err(t) where P is the proportional control signal
sent to the piezo, k

p

is the proportional constant, and Err(t) is the error signal.
Using only this technique one would soon realize that the error signal will

oscillate around the set-point. This is due to the proportional control over-
shooting the set-point. In our case if the piezo is moving towards the set point,
it can not instantly terminate its velocity at the set point. This makes the piezo
overshoot - making the control and error signal oscillate around the set value.

To overcome these unwanted oscillations we could look at what the previous
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values of the error signal were and add that to the signal. We do this by adding
an Integral term I(t) to the proportional term: I(t) = k

I

R
⌧

0 Err(t)d⌧ that is
slowly going towards the right value. This also allows us to follow any changes
to the o↵set of the control signal which is important to counteract drift.

However, this is not always good enough, if we want our mirror to be locked
in place. If we were able to look at how fast the error signal is moving in a given
direction, we would be able to counteract big disturbances better. Therefore
we add a Di↵erential term to our calculations of the control signal: D(t) =
k

D

d

dt

Err(t).
These three components together constitute PID control and the complete

control signal becomes:

S(t) = P (t) + I(t) +D(t) = k

P

Err(t) + k

I

Z
⌧

0
Err(t)d⌧ + k

D

d

dt

Err(t) (13)

2.2.1 Analog or digital PID

A PID controller can be either analog or digital.
Analog controllers produce continuous signals and are mainly limited by the

operational amplifiers (OP-AMP) needed to build them. They are however
prone to drift on a day to day basis, and if the lock disengages, it has to be
manually re-engaged. The drift means that many analog systems must be tuned
every day which can be quite time consuming.

Digital PID control is mainly limited by the clock frequency of the processor
and the speed and resolution at which analog signals can be converted to digital
(and vice versa). What makes the digital controller desirable is the amount it
can be customised to a specific system. A digital servo system can automatically
re-engage, optimize PID constants, function as an oscilloscope and much more.
Some of these functionalities are time-saving and some of them can improve
the servo system. Of course, every extra utility occupies the processor, so
depending on the hardware of the microcontroller, there might be a limitation
to how much functionality can be added, without making the corner frequency
lower than the required one.

2.3 Pound-Drever-Hall Locking Technique

To use the PID control mentioned in the previous section we will have to gen-
erate an error signal. Unfortunately we cannot simply look at the amplitude
of either the reflection or the transmission of the cavity, although these will
depend on how close the laser is to a cavity resonance (see eq. 8 and 9). It
is possible, but it requires somewhat advanced techniques because two cavity
length deviations of the same size will produce the same error, even if they have
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di↵erent signs. Thus we want a simple way to know which way to change our
cavity length. There is such a technique, and it is named Pound-Drever-Hall
(PDH) after the scientists who developed it. In the technique, light is first
phase modulated to add sidebands to it. It then interacts with the cavity and
is picked up by a photodetector. After that, it is demodulated at sideband
frequency, and the DC part is filtered out and sent into the servo system. Each
step will be explained in detail below.

First the light is sent through an Electro Optic Modulator (EOM). An EOM
consists of a crystal and something that can generate an electrical field across
it. Our crystal is lithium niobate (LiNbO3) and due to Pockels E↵ect the
birefringence of the crystal will depend linearly on the electrical field. If we send
a sinusoidal field of frequency !

m

into the EOM, light propagating through the
crystal will periodically speed-up and down. This is the same as saying that we
periodically change the phase of the light, creating a phase modulation.

The e↵ect of phase modulating light can be explained by representing the
light as a phasor:

E = E0 · ei(!t+✓) (14)

where E0 is the amplitude, ! is the frequency, t is time and ✓ is the phase.
Let us make a coordinate system that rotates with the same frequency as this
phasor. The phasor will then just be a still-standing line in this coordinate
system and its angle will given by ✓. Modulating the phase is analogous to
rotating the line back and forth with the modulation frequency of the EOM
(see figure 3). Mathematically this means that a sine is added to the exponent
in the previous equation:

E = E0 · ei(!t+�sin(!t)) (15)

We have left out the original phase since we could just choose it to be zero.
The new phasor in equation 15 can now be described as a superposition of

di↵erent frequencies. As it turns out we need an infinite series of frequency
components to completely describe the phasor, but we only need a couple of
terms to make a good description. The first term is called the carrier and the
next two are called the first order sidebands. Mathematically these three terms
are described as:

E = E0(J0(�)e
i!t + J1(�)e

i(!+!m)t � J1(�)e
i(!�!m)t) (16)

where E0 is the amplitude of the unmodulated light, J0 is the zero’th order
Bessel function, J1 is the first order Bessel function, !

m

is the modulation fre-
quency and � is the same as in the previous equation and named the modulation
depth. The carrier is just the field we had before modulation. The sidebands
have di↵erent frequencies from the carrier so they rotate in the coordinate sys-
tem mentioned earlier. Since one of them has a slightly higher frequency than
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Figure 3: Before modulating the light, it is simply described as a phasor standing still as it
has constant phase and the coordinate system rotates at the same frequency. We call this the
carrier. When modulating, the phase changes sinusoidally between two values so the phasor
rotates back and forth. In the figure ✓0 is the constant phase of the carrier and �✓ is the total
deviation in phase in the modulated carrier.

the carrier and the other has a slightly lower, they rotate opposite ways. The
situation has been drawn in figure 4. In the phasor representation it is easy
to see that the sum of the carrier and the first sidebands are (to first order)
equal to the modulated, rotating phasor, and so one can see visually how phase
modulation is connected to frequency modulation. One can also see the error
of the first order approximation: It changes amplitude.

Next the light is sent into the cavity and we look at the reflected part of it.
As described in section 2.1 the reflected light’s amplitude will be the original
amplitude E0 times a reflection coe�cient r

C

that depends on the frequency of
the light (see eq. 11). This means that each part of the modulated light will
be multiplied by this reflection coe�cient after having been reflected o↵ the
cavity:

E

r

= E0( rC(!) J0(�) e
i!t+r

C

(!+!

m

) J1(�) e
i!+!mt�r

C

(!�!

m

) J1(�) e
i!�!mt)

(17)
Now, the entity measured by the photo detector is not the electrical field but
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Figure 4: The phase-modulated phasor is now described by the sum of the carrier and two
smaller vectors called sidebands that have slightly di↵erent frequencies than the original light.
Since their frequencies do not match that of the coordinate system the sidebands rotate. The
sum rotates back and forth and is almost equal to the modulated phasor of the last figure for
small modulation frequencies. In the figure SB is short for sideband, and the grey sum and
sidebands are at a later time than the black ones.

the power, so we use that P / |E|2:
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(18)

where P

c

/ |E0 J0(�)|2 and similarly P

s

/ |E0 J1(�)|2. The terms left out are
the ones that depend on 2!

m

, and they have been left out because they do not
matter for the technique. Really, the only terms that do matter are the ones
multiplied by a sinusoidal with frequency !

m

, since these will allow us to make
our discriminant when they are demodulated. To extract the desired terms the
signal is multiplied by an oscillation of frequency !

m

to use the trigonometric
identity:

cos x cos y =
1

2
(cos(x� y) + cos(x+ y)) (19)

which for x = y becomes

cos x cos x =
1

2
(1 + cos(2x)) (20)
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One can show that at high modulation frequencies (compared to the cav-
ity’s optical response time) the imaginary terms will be dominant, and at
low frequencies the real one will dominate. This just means that the phase
of the oscillation we multiply with should be adjusted in phase. Once it
has been adjusted the desired terms now exist in the signal as a DC signal:
r

C

(!) r⇤
C

(! + !

m

)� r

⇤
C

(!) r
C

(!� !

m

), which can be filtered out by a low-pass
filter. This is then sent to the servo system to be used as an error signal. A
PDH signal with high modulation frequency is shown in figure 5.

Figure 5: Pound-Drever-Hall signal with a high modulation frequency that is roughly 4 % of
an FSR and a finesse of 500. ✏ is the imaginary term in equation 18. Figure is taken from [10]
.

One can show that the optimal modulation depth is � = 1.08 since this makes
the slope the steepest (which means that even a small deviation in frequency
gives us a large error signal to act on) [10]. Furthermore higher finesse and
higher intensity give a steeper slope.

2.4 Allan Deviation

When a frequency standard has been made, its stability must be tested, so
that it can be compared to other frequency standards. To do so, one looks at
either the phase deviation �(t) or the frequency deviation �⌫(t). For compar-
ison between frequency standards of di↵erent frequencies, these quantities are
normalised by dividing them with the nominal frequency:

x(t) =
�(t)

2⇡⌫0
(21)

y(t) =
�⌫(t)

⌫0
=

dx(t)

dt

(22)
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where ⌫0 is the nominal frequency. For many types of measurements the stan-
dard deviation can be used to describe how much the data points vary by
looking at each data points’ deviation from the mean of all the data. This is
problematic to do with measurements of frequency standards, since the mean
is not always constant, and so the standard deviation is not always convergent.
The Allan deviation instead compares adjacent sets of points so that one can
see how much the data changes over a specific amount of time.

The standard deviation of a sample can be estimated by the formula:

s =

vuut 1

K � 1

KX

i=1

(y
i

� 1

K

KX

u=1

y

u

)2 (23)

where K is the amount of data points and y

i

and y

u

are data points. Now to
get to the estimate for the Allan deviation instead, let us set K = 2, so that we
get:

s2 =
1

2� 1

2X

i=1

(y
i

� 1

2

2X

u=1

y

u

)2 =
1

2
(y2 � y1)

2 (24)

This means that instead of comparing all values to the mean we simply compare
each point to their neighbour. To get a good estimate we do this for all points:

�

2
y

=
1

2(M � 1)

M�1X

i=1

(y
i+1 � y

i

) (25)

where M is the amount of data points, which for the Allan deviation will typi-
cally be frequency deviation measurements and �

2
y

is the Allan deviation. Now
all these data points are measured over a time interval, so each point is basically
an average taken over that measurement time, which we call ⌧ . If one changes
the measurement time, one changes how large intervals of the measured entity
the Allan deviation is comparing, which will naturally change the value of the
Allan deviation. What is usually done, is to let the measurement time ⌧ change
from a small value to a large one to depict the Allan deviations dependency on
it. Instead of actually changing the sample time one can simply take one series
of measurements and then take increasingly larger averages of groups of data
points, so that one e↵ectively gets an increasing ⌧ .

To get the most of one’s data, and thus get higher statistical confidence,
one can calculate the Allan deviation of averaged data with di↵erent o↵sets,
so that you start comparing e.g. points 1, 2 and 3 to points 4, 5 and 6 and
then compare points 2, 3, 4 to points 5, 6 and 7 and so on. This is called the
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overlapping Allan deviation and is given by (see [6]):

�

2
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2m2(M � 2m+ 1)
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(26)

Now if you have to do two nested sums for each ⌧ this calculation will get quite
tedious. Luckily if we use the phase deviation instead of the frequency deviation
we lose a sum (see [6]):

�

2
y

=
1

(N � 2m)⌧ 2

N�2mX

i=1

(x
i+m

� 2x
i+m

+ x

i

)2 (27)

where we’ve defined N = M + 1, because if we use frequency data to find the
phase data we’ll get an extra point, since we’re integrating.

Figure 6: a) Measurements with measurement time ⌧0. b) Averages over three data points
which gives an e↵ective measurement time of ⌧ = 3⌧0. c) Overlapping averages that allows
higher statistical confidence of the Allan deviation. Figure from [1] page 52.

Again it should be noted that the formulas we have written up so far concern
how one would estimate the Allan deviation from a set of data. The true Allan
deviation is given by the expectation value of this squared di↵erence (see [1]):

�

2
y

=
1

2
h(y2 � y1)

2i (28)

The good thing about knowing this, is that now we can calculate how we would
expect a specific frequency modulation to influence the Allan deviation. For
example the very likely case of a harmonic modulation:

y(t) =
�⌫

⌫0
sin(2⇡f

m

t) (29)

Which gives the following Allan deviation (see [7]):

�

y

(t) =
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⌫0
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m

⌧)

⇡f

m

⌧

(30)
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More specifically this can be done by following the procedure used in [7], where
the modulation is described in the frequency domain. This is nice in case of
more complicated modulations, because they might be simple in the frequency
domain but quite hard to describe in the time domain. Now the last thing
we really need to know about the Allan deviation is how to find the error of
our estimate. The next section follows [11] page 13-15. The phase deviation
y is in many cases distributed according to a Gaussian distribution. Since the
Allan variance is the square of the di↵erence between two y’s it is distributed
according to a �

2 distribution. To be more specific it is distributed according
to:

�

2 =
df · �2

ys

�

2
yt

(31)

where df is degrees of freedom, �2
ys

is the Allan variance estimated from the
sample and �

2
yt

is the true Allan variance. Now to get a minimum and maximum
value of the true Allan (at a given confidence interval) we can simply look at
the distribution of the �

2:

p(�2) =
(�2)(

df
2 �1)

2 df �
⇣
df

2

⌘
e

��2

2 (32)

where � is the gamma function. The noteworthy thing about this distribution
is that it only depends on degrees of freedom, so given those, we can choose an
interval and find the minimal and maximal �2 value. When we’ve done that we
can use formula 31 to determine a minimal and maximal Allan variance. The
degrees of freedom are somewhat complicated for the case of the overlapping
Allan deviation, since the overlapping estimates are naturally correlated to each
other. Besides from that the di↵erent noise types correlate the data in di↵er-
ent ways. Fortunately the degrees of freedom for overlapping Allan deviation
estimates have been approximated for di↵erent noise types, see the table in [6]
p. 40. This means that one has to know which type of noise is in the system
to compute the error of the Allan deviation.

2.5 Saturated Absorption Spectroscopy

Eventually, when the cavity is locked to the laser, and the project can move on to
locking the laser to an iodine transition, something called Saturated Absorption
Spectroscopy (SAS) will be utilized. In short, the technique allows us to get
around the Doppler broadening of the transitions by making a little peak at
each hyperfine transition with a Doppler-free linewidth. If this peak is detected
while scanning the iodine transition with the cavity lock engaged, the digital
controller is good enough for the project.
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Doppler broadening happens because the molecules inside the cell in the
cavity have a velocity component in the direction of the light propagation. This
shifts the observed frequency of the light for the molecules so it can be absorbed
even when it’s not at the molecules’ rest resonance frequency. When the light
interacts with the molecules while going one way through the cell, it will see a
Doppler shift of one sign, but when it goes back, it will see the opposite. This
means that it will only interact with these shifted molecules while going in one
direction. The molecules that have a velocity perpendicular to the propagation
of the light will, however, not be Doppler shifted. This means that the light will
interact with them while going both ways. If the light is exactly on resonance
it will only be able to excite the molecules with a perpendicular velocity, and
since these are interacted with twice as much, the transition is saturated twice
as much, which means that a transition peak with Doppler-free linewidth will
appear. The peak is broadened by various e↵ects, which is why it’s not exactly
the natural linewidth.

3 Experimental Set-up

Lowpass

Teensy

Osciloscope

++

+++

514 nm 
Laser

Isolator

EOM Glas
Plate

Piezo

Lens
PD

PD

OP-AMP

DC

Mixer

Function Gen.
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+

+

Figure 7: A simplified illustration of the experimental set-up. Phase modulated light is incident
on an optical cavity. Transmission and PDH signal is fed to the Teensy, which controls the
length of the cavity though a piezo.

The experimental set-up (fig 7) consists of a narrow linewidth green laser
passed though an optical isolator and an EOM. It is then incident on the optical
cavity with an inter-cavity iodine cell. The reflection is guided to a PhotoDe-
tector (PD). The detector signal is then amplified, AC-coupled and fed into a
mixer. The mixer is connected to the same frequency generator as the EOM,
allowing us to produce/adjust the PDH signal and relative phase and amplitude
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between the EOM and mixer. The PDH signal is then fed though a low-pass
filter into a summing amplifier giving it a positive o↵set. The now always posi-
tive error signal is fed into the Teensy microcontroller which produces a control
signal. The control signal is amplified and fed into the piezo mounted on a cav-
ity mirror closing the loop. The cavity transmission is detected on a PD and
sent to the Teensy directly. This signal is used to check if the cavity is really
on resonance while running the PID code by checking that the transmission
is above a certain threshold. This is necessary because the noise outside the
PDH error signal has the same value as the error signal itself when exactly on
resonance.

4 Methods

4.1 Setting up the Cavity

We first focused on mode matching the cavity. To help us we used the programs
”Gaussian Beam” and ”reZonator” to simulate our laser beam. ReZonator
simulates the cavity to find the waist, based on the radius of curvature (ROC)
of the cavity mirrors and wavelength of the laser. For a � = 514.67 nm beam
and ROC = 9 m mirrors, the waist is 434,5 µm. By requiring Gaussian Beam
to produce this exact waist at the center of the cavity, it produced guidelines
for a reasonable arrangements of lenses of various focal length to achieve mode
match.

We also found the linewidth and finesse of the cavity before and after placing
the iodine cell inside the cavity. This yielded a linewidth of ⇠1.3 MHz and a
finesse of ⇠400 without the iodine cell, and a linewidth of ⇠5.5 MHz and a
finesse of ⇠90 with the iodine cell.

4.2 Producing the Pound-Drever-Hall signal

When producing the PDH signal we align the cavity such that the transmis-
sion of the carrier frequency is as big as possible. Experimentally we varied
the modulation frequency from 1-25 MHz. As a tendency we saw that higher
modulation frequencies produced a steeper PDH slope, so we set the modula-
tion frequency to 25 MHz, which was the largest we could produce. The iodine
cell was then cooled to increase the finesse of the cavity, which made the slope
of the PDH signal steeper in accordance with what we mentioned in section
2.3. We also made sure that the laser frequency was not on resonance with the
iodine, which would increase loss in the cavity and reduce the finesse. Then
we maximized the amplitude of the PDH signal by adjusting the phase of the
signal into the mixer. This procedure ensures that we have a steep PDH signal,
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which will be optimal for locking the cavity. Of course the PDH signal can not
always be optimized (for example because we have to be on resonance with the
iodine, when we in the future lock the laser to a hyperfine transition), but it
was done at this point of the experiment to examine the PDH signal properly
and optimize the servo system more easily.

4.3 Locking the cavity

We use a Teensy 3.6 microcontroller to lock the cavity to the laser. We have
programmed the Teensy to work as a digital PID circuit, as described in section
2.2. A di↵erence to an analogue circuit is that the Teensy cannot take negative
voltages and it has an input and output range of 0 - 3.3 V. We therefore o↵set the
signal by 1.65 V so it oscillates around the middle of the range. The PDH signal
is also amplified, such that the amplitude of the signal matches the Teensy’s
operating range, which optimizes the resolution of the error signal. The cavity
transmission signal - used to determine if the Teensy is on resonance - is fed
directly into the Teensy. Once the Teensy is initialized, it is programmed to
send a ramp signal to the piezo, linearly changing the cavity length to find the
length that matches the laser wavelength. While scanning it finds the o↵set of
the PDH signal by taking averages of the signal. The o↵set is then set as the
setpoint for the error signal, since it should correspond to the middle of the
PDH slope, i.e. resonance.

The Teensy is given a value of the expected height of the transmission peak,
and when the signal from the transmission rises above a certain percentage of
this, it initiates the PID lock.

Since the Teensy is running digital PID control code, we are limited by how
fast and precisely the Teensy is capable of reading, processing and producing
signals. We tested the Teensy by itself, by having it run a simple P-lock on a
chirp signal, and found that it had a corner frequency of ⇠35 kHz. The fastest
PID-lock we were able to make work with the entire servo system, was only
able to control disturbances up to 20 kHz (see section 5.2.2), which might be
because of the piezo’s frequency response. The PD we use has a bandwidth
of 50 kHz, and is therefore the maximum speed we would be able to regulate.
The low-pass filter right after the mixer has been chosen to be 50 kHz for this
reason. The low-pass filter cuts out some of the noise from the mixer.

4.4 Searching for Lamb Dips

Once the cavity has been locked, and the lock has been optimized, we can
begin to look for Lamb dips. We do this by linearly scanning the laser frequency
(�⌫ ⇡ 50 MHz), while the servo system makes the cavity stay on resonance with
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the laser. We set the laser’s center frequency on resonance with the iodine, but
this reduces the finesse, which changes the PDH signal, which changes what the
optimal PID constants are, and therefore makes the servo system work poorly
or disengage entirely. So every time one changes the laser’s center frequency
while on resonance with the iodine one has to readjust the PID constants. The
lock can also disengage, if the frequency modulation becomes too large, which
is why we only modulate the frequency 50 MHz. Through trial and error we
found that the optimal constants approximately scaled with a common factor,
so we implemented a scaling factor to the PID constant to make the work easier.
There is a way to get around manually changing the scaling factor each time
the center frequency is changed, and it is described in section 6. Once the
lock has been re-engaged we are e↵ectively scanning out a small section of the
transition. We also change the laser intensity to di↵erent values because high
intensity broadens the Lamb dips, so they may not be visible at all intensities.
This also changes the scale of the PID constants, by increasing the amplitude
of the PDH signal.

If a Lamb dip is found, it would be useful to estimate its optical linewidth.
To do so the laser frequency is modulated in the same way as when the Lamp
dip is measured, but with the servo system deactivated so the PDH signal will
be measured instead of the error signal. The laser modulation frequency has to
be turned up ten times, since the cavity is no longer locked and is thus subject
to a lot of noise. The modulation frequency (not amplitude!) used to create
sidebands for the PDH signal is turned down until the sidebands are both within
scanning range. Then the known distance in frequency between the sidebands
can be used to convert the Lamb dip’s width in time to a width in frequency.

5 Results & Discussion

5.1 The Pound-Drever-Hall signal

Looking at the PDH signal and transmission in fig. 8, we see that the PDH
signal looks much like predicted in section 2.3. The dashed lines in the figure
indicates points of interest in the plot. The green line at -25 MHz indicates
where one of our side bands is placed. It is easy to see on the PDH plot but
completely invisible on the transmission. This is simply because the modulation
depth � is small. The x-axis of the plot was originally in seconds, but using that
the frequency di↵erence between the two side bands is 50 MHz we converted
the x-axis into frequency, making the side bands lie exactly at ±25 MHz.

The cyan line is placed at the center of the transmission peak. Notice that
this is not the center of the PDH signal. We do not currently have a good
explanation for why this is. It is not a big problem since, we are simply able to
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Figure 8: The Pound-Drever-Hall signal(red) and transmission(blue).The green dashed line
marks one of the two sidebands, the x-axis has been converted from time to frequency using the
di↵erence between the sidebands as reference. The cyan line is the middle of the transmission
peak. It is not at the center of the PDH slope. This is not of no concern since we can adjust
our set-point in the Teensy. The o↵set from zero comes after the mixer and is dependent of the
phase and amplitude relation between the EOM and mixer.

digitally adjust the PID set-point, until we maximise the cavity transmission.
However, if the maximal transmission and middle of the PDH slope are too far
apart, e.g. such that the resonance is a the bottom of the PDH slope, the lock
would be more unstable since the e↵ective locking range is reduced, or even
worse the lock might disengage entirely .

The PDH signal has an o↵set of ⇠1.25 mV, which would move the center of
the slope a bit to the right. This o↵set appears right after the mixer. Before
reaching the Teensy the o↵set is added to the o↵set we ourselves apply to the
PDH signal. So it is of little concern, since the Teensy already compensates
for an o↵set. But, we have seen the o↵set scale with the phase and amplitude
of the demodulation signal, and we have also seen it drift significantly within
minutes. This is a problem that can be solved by programming the Teensy to
vary the set point to optimize the transmission signal.



Locking an Optical Cavity, bachelor thesis of Adam S. Knorr & Ida L. Stoustrup 19

5.2 Cavity & lock stability

5.2.1 Allan deviation

Figure 9: The Allan deviation of our system in log-log scale, showing a massive oscillation
around ⌧ = 10�4 s. We can also see something that might be the servo bump around ⌧ = 6·10�5

s. At high ⌧ the Allan deviation rises because of long-term e↵ects like rise in temperature. The
Allan deviation is in MHz, because a cavity length deviation is analog to a frequency deviation.
The errors are plotted but are so small that they cannot be seen.

The Allan deviation calculated from the in-loop measurement of the cavity
length deviation has been plotted in figure 9. In the figure there is a bump
around ⌧ = 6 ·10�5 s, which could very well be the servo bump. There is a large
dampened oscillation appearing around ⌧ = 10�4 s. According to our theory
about Allan deviation (see section 2.4) this could be due to the length of the
cavity being harmonically modulated (because this is completely analog to the
frequency modulations mentioned in that section). To find the frequency of the
modulation and see if it follows equation 30 we looked closer at the oscillation
and attempted to compare it with the model (see fig 10).

The data was fitted with the theoretical model in equation 30 and afterwards
a few insignificant coe�cients were changed to make it fit the first oscillation,
since it makes it easier to see the problem with the model: That it dampens
the oscillation too slowly. That the model doesn’t quite fit is actually not so
surprising, since it holds true only for a modulation with a single frequency,
that is, a modulation described as a delta function in the frequency domain.
Practically this means that the model will only hold as long as the width of
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Figure 10: The theoretical model in equation 30 (orange) compared to the data (blue). The
data clearly dampens much faster, so the model is not completely accurate. a

⌧ (where a is some
constant) has been added to the model because there are many other frequencies present that
all follow the model, that is, they all lose influence as a

⌧ . Their oscillations are just too small
to be seen.

the modulation in the frequency domain is very narrow compared to the range
of frequencies present in the error signal. It could also be that our time axis
is wrong. In our calculation of the Allan deviation we assume that the sample
time is equal to the measurement time, that is, we assume that there is no
dead time between each measurement point. If there should be a dead time,
the measurement time would be lower than our estimate (which is simply the
sample time), and the time axis would ”shrink”. This would e↵ectively squeeze
the data further together, but as we can see on the figure this would make
the model even worse. So unless our measurement time has somehow been
estimated too low (rather than too high) this is not an explanation. One could
find the correct model with the procedure mentioned in section 2.4, but we
didn’t have the time. The frequency of the harmonic modulation was estimated
by Matlab’s fitting algorithm to be 5860± 3 Hz.

5.2.2 Fourier transform and piezo resonances

The error signal was Fourier transformed (see figure 11) to examine the mod-
ulation mentioned in the previous subsection and see if the system generally
behaves as expected. From around 20 kHz, the amplitude of the modulations
starts rising at roughly 27 dB/decade. This is probably just the lock getting
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Figure 11: A Fourier transform of the error signal. Around 20 kHz the roll-o↵ of the servo
system starts and it is of roughly 27 dB/decade.

weaker and the disturbances getting stronger as a result, which means the cor-
ner frequency of the servo system is around 20 kHz. At around 57 kHz the
signal suddenly disappears. This is due to our photo detector not being able
to measure higher frequencies than 50 kHz and the 50 kHz low-pass filter, and
this means that the range that contributes to the measured Allan deviation is
approximately from 0 to 57 kHz.

A rough estimate puts the FWHM of the modulation at ⇠ 180 Hz and the
FWTM (full-width-at-tenth-maximum) at ⇠ 570 Hz. However, as can be seen
on figure 12 there are other peaks next to the big one and together they span
several kHz (from around 5 kHz to around 8 kHz). So overall it makes sense
that the Allan deviation did not completely follow the expected model, since
the big peak spans ⇠ 1% of the whole range and the smaller peaks close to it
span ⇠ 5% of the whole range. The middle of the top of the peak is located at
⇠ 5860 Hz, which matches the frequency found in the last subsection.
We believe that the peak is due to a mechanical resonance of either the piezo,
or the system of mirror and post it is attached too, or most likely a combination
of the two. The influence of the post could be tested by removing it. If the
piezo was dismantled from the mirror and post one could furthermore measure
its intrinsic frequency, and it would possibly be a simpler resonance peak, since
the system would be much less complicated. One would also know for certain
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whether the piezo was producing the peak or not, and the knowledge of the
piezo’s intrinsic resonance could allow one to design a future set-up in a better
way. It would have been optimal to design the system so that the resonance
had been well over the range that the lock was assumed to work in, and in
future systems this should be implemented to improve system stability. The
problem with the peak is, that the gain in the region around 6 kHz is much
higher than we would like it to be, and that the phase just around the peak
of the resonance might be the opposite of what we want, so that the lock will
amplify the disturbances instead of attenuating them. Piezos make a 180 degree
phase shift around resonance, so if we assume that our lock has perfect phase
before it we would in fact start amplifying all frequencies after the resonance.
This is not visible in our Fourier transform however, and it is probably because
the phase is not perfect before. If the phase was 90º before resonance it would
be 180º at the very top of the resonance and then at -90º afterwards, which is
e↵ectively the same as 90º.

If one imagines the system without the resonance, one could imagine building
an optimal lock that would attenuate the noise as much as possible in the largest
range of frequencies possible. If we applied this lock to our system, the gain
would be unreasonably high at resonance, so our lock would oscillate the system
violently and thus bring the cavity length outside of the scope of the PDH slope.
In other words, the lock would be incredibly unstable and probably not function
at all. The reason that our lock works is that there are two ways to modify
the ”perfect lock” so that it functions despite of the resonance. One can either
turn down the overall gain so that even at resonance it doesn’t become so high
that the system starts oscillating and becomes unstable. Or one can set the
corner frequency so low that the gain is small enough at resonance. It is clear
from our Fourier transform that the lock is active until around 20 kHz, so the
solution that we have found (randomly through trial and error while optimizing
the PID constants) must be the first one. This makes sense as it’s probably not
possible to make a functioning lock that has a corner frequency at a couple of
kHz. This means that if the e↵ect of the resonance was cancelled it would be
possible to turn the gain up, and thus attenuate the noise in the system much
more.

5.3 Lamb Dip

On figure 13 a presumed Lamp dip is plotted. The signal to noise ratio is very
low, so just from looking at the figure it can not be concluded, confidently, that
this is indeed a Lamp dip. However, when taking this data it seemed clear to us
that it indeed is a Lamb dip. This is partly because we could change the laser
frequency, and see that the peak moved with it. This would suggest that the
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Figure 12: The Fourier transform of the error signal now with the x-axis going from 0 to 20 kHz.
Here the width and height of the peak around 6 kHz can be seen clearly, and it is obvious that
it would stand out in the Allan deviation, since it is much higher in amplitude than anything
else in the servo system’s range.

peak is positioned at a specific frequency. Furthermore we saw several other
peaks like this one with similar behaviour. Unfortunately, it was not possible
to scan wide enough to see two Lamb dips in the same data set, which would
have enabled us to see if the frequency di↵erence was as expected. This is,
as mentioned earlier, due to the absorption changing our error signal and thus
changing the optimal PID constants. A solution to this will be discussed in
section 6. If there had been more time while performing this measurement, the
intensity and temperature could have been optimized more, which may have
made the Lamb dips more clear. System specification from this measurement
can be found in the appendix, section 9.3.

With the set-up at the measurement it was not possible to determine the
frequency at which the Lamp dip was located. It was however possible to esti-
mate the width of the Lamp dip to 1.46± 0.02 MHz by following the procedure
mentioned in section 4.4. The linewidth is consistent with what the Lamb dips
in the transition should be and what has been found before [5].
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Figure 13: Plot of the found Lamb dip. The fit is a combination of a Gaussian and a linear fit.
By making a similar scan of the PDH signal, we were able to calculate the FWHM of the Lamb
dip as 1.46 ± 0.02 MHz. Unfortunately we do not know its position in the transition well, so
we can not compare to one of the 21 transitions. [5]

6 Future Prospects

This experiment is due to see a lot of work in the future for it to become a
frequency reference. This thesis has focused on locking the cavity itself and
only paid little attention to the Lamb dip, however at the end of the day the
Lamb dips are what we want to optimize and lock our laser to. To improve the
signal to noise ratio of the Lamb dips, the cavity should be rebuild into a large
waist cavity, which would increase the amount of iodine molecules we interact
with, making the lamb dips taller and narrower. To lock the laser to a Lamb
dip, a method called NICE-OHMS can be used to give the Lamb a PDH like
profile, allowing one lock the laser to the top of the Lamb dip using control
theory. Once the cavity is locked to the laser, and the laser is locked to the
hyper-fine transition, the laser frequency can be beat against another (more
precise) frequency reference (like strontium) to determine how good an atomic
reference it has become.

What can be done right now to improve this set-up is listed below.

6.1 Attenuating the Resonance

Now that we know the piezo-mirror has a resonance spike in our e↵ective range,
we need a way to deal with it. As stated in sec. 5.2.2 one way to do it might be
to simply mount the piezo on a shorter post. Otherwise a notch/band-stop filter
could be implemented. Notch filters reduce the gain of a specific bandwidth,
and at the center frequency of the band it flips the phase. This is the exact
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opposite of what a resonance does to the system gain and phase. There are two
ways to implement such a filter; digitally or analogously. There are advantages
and disadvantages for each choice:

An analog notch filter is somewhat easier to build and configure (see more
here: [8]). Making a single analog notch filter would attenuate the first (and
most significant) resonance. If there is a need for improvement beyond this (i.e.
attenuating more resonances), the analog method becomes undesirable since it
would be bothersome to make a filter for every resonance.

A digital notch filter would be easily be able to attenuate many resonances,
since one could simply repeat the code. The problem with this solution is that
it may slow down the microcontroller excessively. One could simply implement
it in the microcontroller code and see if the corner frequency changed. If the
Teensy was upgraded (see next section) this would be a smaller issue.

6.2 Upgrading the Teensy

In section 4.3 we mentioned that the current resolution of the Teensy’s output
is around 13-bit. If it turns out that a higher resolution is needed, a new DAC
could be bought and connected to the Teensy. It would be important to find
one that doesn’t operate so slowly that it brings down the corner frequency
of the servo system. The current resolution of the ADC’s is 16-bit, so if the
resolution needs to be higher than that, they would need to be exchanged too.
If a larger frequency range should be required for the lock, the ADC’s of the
teensy could be exchanged for faster ones, since they seem to be a bottle neck.
We have tried changing the resolution of them, and found that it greatly influ-
ences the corner frequency.

6.3 Automatic PID adjustment

As mentioned in section 4.4 it is bothersome to scan the resonance with the laser
frequency, since the optimal PID constants change when doing so. Therefore it
would be helpful to implement a method that would automatically change the
PID constants. A possibility is to add a sine to the Teensy’s output which is
far away from any piezo resonance in frequency and small in amplitude. One
could then measure how much error signal this sine generates by looking at
the Teensy’s input. This gives us a relative measure of how much frequency
deviation a certain amount of error signal signifies. Thus it tells us how and
how much we should change the PID constants. This feature would allow wider
scans of the iodine resonances and it would save time. It can be done very
simply and probably without making the system significantly slower.
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7 Conclusion

The cavity was successfully locked to the laser by setting up and programming
a Teensy 3.6 microcontroller. We found that in the current set-up of the servo
system there is a huge resonance around 6 kHz. This limits the quality of the
lock, and it is highly recommendable to either implement a notch filter or to
alter the physical set-up of the piezo in future work on the project. Despite of
this resonance it was possible to find a Lamb dip, which proves that the digital
controller we have made is usable in the project.
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9 Appendix

9.1 Transmission and finesse
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Figure 14: Transmission data used to approximate the Finesse and linewidth of the cavity.
Data is taken when o↵ resonance with the iodine, to have a high finesse.

9.2 Teensy Resolution

The Teensy’s output is produced by a 12-bit Digital to Analogue Converter
(DAC). 12-bit resolution means that it can produce 212 = 4096 di↵erent discrete
voltages between 0 and 3.3 V. This is enough to produce a lock, but it’s not
one good enough to find Lamb dip. So to e↵ectively increase the resolution we
used both of the Teensy’s DACs.

We attenuated the output one of the DACs by 1/43.5. This reduces its
e↵ective range but increases its resolution. By summing the output of two
DACs we are able to coarsely set the correct voltage with one DAC and then
use the other one to finely adjust the last bit. The resolution of this double
DAC is theoretically log2(43.5) ' 5 bit ! 5 + 12 = 17 bit. But in reality the
digital to analogue converters of the Teensy are not perfect. The Teensy does
not always output exactly the same voltage for a given bit-value, there is some
uncertainty, meaning that in reality the lock is not quite 17-bit quality. How
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Figure 15: Bit Noise and error graph of the Digital-Analog Converter(DAC) taken from:
https://www.pjrc.com/teensy/K66P144M180SF5V2.pdf On the x-axis are the 4095 di↵erent
bit values one can have the Teensy output since it has a 12-bit DAC. On the y-axis is the error
on that bit value. So at e.g. digital code = 2000 the Teensy will actually set the bit value
to what equates to 1998 instead. The ”noise” on this is by eye about 1/4 the an entire bit
value. If one were to improve the DAC by using two DACs (as we do) to an e↵ective 13-bit
DAC, the noise would go to half a bit value and further upgrading this DAC to 14-bit would
mean the noise is an entire bit value. Once the noise extends an entire bit value the corrections
the second DAC makes are drowned in noise. Therefore this 12-bit DAC can not be improved
beyond 13-bit.

far o↵ the Teensy is from the real value is plotted in fig. 15 in the appendix.
From the figure we can by eye read o↵ the ”uncertainty/noise” of the o↵set
which is approximately 1/4 of a bit-value with 12-bit resolution. If one were to
improve the DAC to 13-bit, there would be double as many bit-values as in the
12-bit DAC. This would mean that equivalently the uncertainty is doubled in
size. On the 13-bit DAC the uncertainty would then be 1/2 a bit-value. Further
improving the DAC to 14-bit would mean that the uncertainty is 1 entire bit-
value. Now the uncertainty is as large as the precision of the correction. This is
simply not noticeable, it is drowned in noise. Therefore the actual improvement
of the DAC is about 1 bit.

To clarify: By theoretically improving the Teensy to 17-bit, it actually im-
proves to 13-bit, but it does not degrade the lock that we are trying to improve
it beyond 13-bit, some of the improvement is just drowned in noise. Once the
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lock is engaged it can be optimized by digitally changing set-point and PID con-
stants to reduce the amplitude of the error signal. Once the lock is optimized,
we take data of the error signal to be used to calculate the Allan deviation. It
should be noted that this of course is a closed loop measurement, meaning that
if e.g. the piezo drifted but our electronics drifted at approximately the same
speed, we would not be able to see the length drift in our closed loop system.
The transmission is an out of loop measurement because it is directly a↵ected
by the length of the cavity and not by internal drift in the locking system, so
we could have used it to calculate the Allan deviation. However we did not do
this.

9.3 Lamb Dip, system specifications

�

laser

1029.344 nm
Output Power 25.2 mW (24.5 mW actual)
Power pre cavity 0.66 µW
T

iodine

-10.2 �
Piezo Amp 45.8 V
P 30,000
I 4,000
D 10,000
Scale 100%
Laser Step freq 13 Hz
Laser Step Amp 50 mV

pp

Laser Step DC 2.120 V
Osc. Scale V 1 mV
Osc. Scale s 5 ms
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