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Abstract

In this thesis we will treat trapped ultra cold dipolar atomic gases, of which the study in
recent years has intensified, showing great promises in exploring quantum phenomena. One
such phenomenon is the simulation of Quantum Hall states. We will explore how trapped
rotating dipolar gases provide us with better opportunities to reach the Quantum Hall regime,
by introducing the long range repulsive dipolar interaction. The dipolar interaction lowers the
filling factor of the system, to make it possible to reach the Quantum Hall regime for 3000 atoms
under realistic conditions.
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1 Introduction

Bose-Einstein condensates (BECs) were first realized by W. Ketterle, C. E. Wieman and E. A.
Cornell in 1995, in ultra cold systems of alkali atoms, reaching temperatures on a micro-kelvin scale
[1] and even down to 170 nK [2], receiving a Nobel prize in 2001 for their work [3].

When a dilute gas of bosons, which are atoms with integer spin, is cooled down, the ground state
of the system will be occupied by a large fraction of the particles in the gas, and thus approximately
all the bosons will be in the same quantum state [4]. This gives rise to interesting quantum behavior
on mesoscopic scales, such as superfluidity and quantized vortices, which can be used to explore
di↵erent quantum phenomena.

When working with BECs, one will need to cool and trap the gas, to create an environment
suitable for the realization of the condensate. Both the cooling and trapping can be done by utilizing
lasers and exploiting how these interact with atoms, as described in chapter 4 of [4]. In the process
of trapping the condensate, the harmonic trapping potential can be made anisotropic, by increasing
the relative strength of the potential along one axis. This in turn will flatten the gas, and e↵ectively
create a 2-dimensional (2D) system [5].

Another e↵ect obtained by exploiting this interaction of lasers and atoms, is the ’stirring’ of
the sample, where the now 2D gas is rotated [6]. In the rotating frame we will see a synthetic B-
field emerging from the act of rotating the sample, which will be illuminating, especially through the
magnetic length, when describing the di↵erent states that the condensate can obtain. We stress that
the B-field is purely synthetic, and that the atoms which makes up the condensate are not charged,
but only that the dynamics of the system resembles that of a charged particle in a magnetic field.

Increasing the rotational frequency of the trap will at some point make it energetically favorable
for vortices to be created, aligning themselves in a triangular lattice.

For rapidly rotating condensates, we expect the gas to enter the Lowest Landau Level (LLL)
vortex lattice regime [7], where the single particle energy spectrum resembles that of the Landau
levels of the Quantum Hall e↵ect, being highly degenerate. At this point, the vortex lattice melts
when a su�ciently low value of the so-called filling factor, the ratio between atom (n) and vortex
(nv) densities,

⌫ =
n

nv
=

2⇡n~
B

is reached, and the condensate should enter the so-called Quantum Hall (QH) regime [8][9].
In the last few years there have been several experimental groups focusing on the study of

trapped ultra cold atomic gases with dipolar interactions [10][11][12]. The dipolar interaction makes
it di�cult to reach the condensed state, but the realization of dipolar BECs has allowed for the
study of phenomena that could not be seen before.

Creating condensates of dipolar atoms alters the properties of the gas, since it introduces long-
range dipole-dipole interactions, as opposed to only the short-ranged contact interaction. Dipolar
condensates could make it easier to reach the QH regime, because the dipole-dipole interaction should
reduce the density of the gas, and thus the filling factor. It has been shown, that for rotating 2D
gases with another long range interaction, namely Rydberg-dressing, the QH regime can be reached
more easily [9]. Since Rydberg-dressing introduces a long-range interaction, we want to investigate
if the same physics appear in dipolar BECs.

Because of the dipolar nature of the condensate, it is possible to align the magnetic moment of
the atoms, by the use of an external magnetic field. Here we wish to align all the dipoles to point
in the same direction, perpendicularly out of the 2D gas. Doing so makes the dipole interaction
entirely repulsive, and so increases the interaction energy.

In the scenario of dipole-dipole interactions we introduce a parameter g
0 that describes the

e↵ective contact interaction, taking into account the increased interaction strength from the dipolar
e↵ects in the 2D gas with aligned magnetic moments.

For weak magnetic fields, before the onset of the LLL regime, the dipole-dipole interaction should,
for strong enough interactions, spontaneously break translational invariance, as shown in [13]. We
estimate at what e↵ective interaction strength gSS the translational invariance should break, based
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on the so-called roton spectrum, and compare this to the optimal interaction strength go to enter the
QH regime. This will be done by finding the Bogoliubov-spectrum of the ultra-cold 2D condensate,
and estimating for when the roton-instability occurs.

By increasing the e↵ective interaction via the dipole-dipole interaction, we shall see that the
superfluid healing length ⇠ is decreased, and the Lindemann length lL, describing the size of the
quantum fluctuations of the vortices [9], is increased, e↵ectively suppressing the LLL regime, thus
making it easier to enter the QH regime, by lowering the rotation required to do so.

In this project we want to approximate the density profile of a rapidly rotating 2D BEC of the
dipolar Dysprosium (Dy) and Erbium (Er) atoms, with magnetic moments assumed to be aligned and
pointing perpendicularly out of the 2D condensate. This will be done by assuming a strong harmonic
trap along the z-axis, and using both a Gaussian and Thomas-Fermi ansatz with the purpose of
minimizing the Gross-Pitaevskii (GP) energy when dipole-dipole interactions are considered. To
this end we will adopt a mean-field approach using the Gross-Pitaevskii equation (GPE) to describe
the behavior of the condensate. When the distribution has been determined the density and also
the filling factor can be found, and from this the rotation required to enter the QH regime can be
determined.

2 The physics of BECs

The physics of BECs are typically described by using a mean-field approach resulting in the GPE,
which is analogous to the Schrodinger equation but for a many-particle quantum system at zero-
temperature. It is a mean-field approach, characterized by assuming that all the particle are in the
ground state, and that the many-body wave function can be expressed as the product of all the
single-particle wave functions, neglecting higher-order correlations. This amounts to replacing the
real potential between atoms with a more simple and approximate potential, namely the contact
interaction [14]. When two particles are near each other, the contact interaction can be described
by g�(r � r

0) where g = 4⇡~2a/m and a is the scattering length, measuring how much the wave
function of a particle is a↵ected by another. This is done since it is computationally unrealistic to
calculate the individual interactions of thousands of particles. In the BEC all the particles are in the
same single particle state �(r), normalized to 1, so it is assumed that the many-body wave function
can be expressed as

 (r1, ..., rN ) =
NY

i=1

�(ri) (1)

For the mean-field regime to hold, we expect the fraction of particles in the ground state to be
very large. The depletion d of the BEC, being the fraction of particles not in the ground state, scales
like d / (a/rs)3/2, where rs is the interatomic length. These atoms not in the ground state are due
to correlations at small rs that the mean-field approach discards [4]. Therefore d is a good measure
of when the mean-field approach is valid, and we expect the size of the depletion to be negligible.

Since there are N particles in the condensate, one defines the wave function of the condensate

 (r) = N
1/2
�(r) (2)

Which, as we will see, gives a convenient normalization
Z

| (r)|2 dr =

Z
N |�(r)|2 dr = N (3)

With this in place the basic GPE can be formulated

2.1 Non-rotating BEC

To describe the BEC, we assume an external potential V (r) trapping the gas, and so the Hamiltonian
describing all the particles will consist of the kinetic and potential energies of all the single particle
states and an interaction term [4], such that
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H =
NX

i=1


p
2
i

2m
+ V (ri)

�
+ g

NX

k<l

�(rk � rl) (4)

Where the momentum operator in position space is given as pi = ~
i

@
@xi

. In the last term the
sum runs over k < l as to not double-count interactions. The energy of the system is then

E[�] =

Z
dr1... drN

NY

i=1

�
⇤(ri)

 
NX

i=1


p
2
i

2m
+ V (ri)

�
+ g

NX

k<l

�(rk � rl)

!
NY

i=1

�(ri) (5)

=
NX

i

0

@
Z

dri�
⇤
i


p
2
i

2m
+ V (ri)

�
�i

NY

j 6=i

Z
drj |�(rj)|2

1

A+

Z
dr1... drN

NY

i=1

�
⇤(ri)

 
g

NX

k<l

�(rk � rl)

!
NY

i=1

�(ri)

(6)
The last term can be seen as choosing the upper triangular part of the interaction matrix ex-

cluding the diagonal, which has N(N�1)
2 terms, correlating two particles giving a |�(r)|4 term since

it takes the indices k and l, and lets k = l. The term
QN

j 6=i

R
drj |�(rj)|2 = 1 because of the nor-

malization of the single particle wave function. This results in an energy-functional of the system
given as

E[�] =
NX

i

Z
dri�

⇤
i


p
2
i

2m
+ V (ri)

�
�i · 1 +

Z
dr

N(N � 1)

2
g|�(r)|4

= N

Z
dr�⇤(r)

�~2
2m

r2
�(r) + V (r)|�(r)|2 + (N � 1)

2
g|�(r)|4 (7)

Doing an integration by parts on the first term, demanding that the single particle wave function
vanishes far away, on gets

E[�] = N

Z
dr

~2
2m

|r�(r)|2 + V (r)|�(r)|2 + (N � 1)

2
g|�(r)|4 (8)

Here the normalization from Eq. (3) comes in handy, giving

E[ ] =

Z
dr

~2
2m

|r (r)|2 + V (r)| (r)|2 + 1

2
g| (r)|4 � 1

2N
g| (r)|4 (9)

Assuming N >> 1, the last term is negligible because of the factor 1/N

E[ ] =

Z
dr

~2
2m

|r (r)|2 + V (r)| (r)|2 + 1

2
g| (r)|4 (10)

Using a variational approach, letting  
⇤ !  

⇤ + � 
⇤, where � 

⇤ is a small change in  
⇤,

imposing the demand that �E = E[ , ⇤ + � 
⇤] � E[ , ⇤] = µ�N , and throwing away all second

order variations, the energy-functional can be minimized. Here µ is the chemical potential, acting
like a Lagrange multiplier, making sure that the number of particles remains constant. Not including
the second order variations arising from | (r)|4, the variation is

�E =

Z
dr

~2
2m

(r ⇤r +r� ⇤r ) + V (r)( ⇤
 + � 

⇤
 ) +

1

2
g(( ⇤

 )2 + 2 ⇤
 � 

⇤
 )� E[ , ⇤]

=

Z
dr

~2
2m

(r� ⇤r ) + V (r)(� ⇤
 ) + g| |2 � ⇤ (11)

Integrating the first term by parts to rewrite the integrand to be linear in � ⇤
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�E =

Z
dr


�~2
2m

r2
 + V (r) + g| |2 

�
� 

⇤ (12)

The variation µ�N is found as

�N =

Z
dr ⇤

 + � 
⇤
 � | |2 =

Z
dr � ⇤

 (13)

And so, since demanding that �E = µ�N has to hold true for all arbitrary variations � ⇤, the
integrands can be equated and one obtains the GPE

�~2
2m

r2
 + V (r) + g| |2 = µ (14)

The primary di↵erence, and as we shall see di�culty, between the GPE and Schrödinger equation
is that we have a non-linear mean-field term g| |2 , due to the particle interaction. Another notable
di↵erence is that the left hand side of Eq. (14) does not equal the energy of the system, but the
energy per particle µ.

2.2 Trapping of the BEC

When working with BECs one will often use some form of trapping to contain and manipulate the gas.
Here we will describe a condensate in harmonic trap, induced by the interaction between lasers and
atoms, as in chapter 4 of [4]. This results in a harmonic trap along the z-axis that can be described
by the potential V (r) = 1

2m!
2
zz

2+V2D(x, y). The regime at interest is for weak interactions, that is
g| |2 << ~!z, and the trap will be anisotropic such that the potential is strongest along the z-axis.
This will result in the condensate becoming e↵ectively 2D, or quasi-2D, confined in the ground state
of the trap in the z-direction [5].

By plugging the potential into Eq. 10 one could go through the variational calculation once again
to obtain the equations of motion. We instead opt to use a trial-wave method, where an ansatz is
proposed with a suitable variational parameter, which will be determined by minimizing the energy
of Eq. 10. A reasonable ansatz would be a Gaussian density distribution, since this is the solution to
the harmonic potential. Assuming separability of the wave function, such that  (r) = �(z)�(x, y),
the ansatz is chosen as

�(z) =
e
�z2/2⌘2

p
⌘
p
⇡

(15)

Where ⌘ is the variational parameter. Following the method laid out in [5], by integrating out
the z-dependence in Eq. 10 and using the Euler-Lagrange equations to minimize the functional, it is
shown that ⌘ = az in the limit of weak interactions. Here az =

p
~/m!z is the length of oscillations

in the z-direction. From this, in the stationary case, the e↵ectively 2D GPE becomes

�(x, y)µ =


�~2
2m

r2
? + V (x, y) +

gp
2⇡az

|�(x, y)|2
�
�(x, y) (16)

Where r2
? is the Laplacian in the xy-plane. In our case, we also want to apply a harmonic

potential in the x- and y-direction, but with the same frequency ⌦tr, where ⌦tr << !z, such that

V (x, y) =
1

2
m⌦2

tr(x
2 + y

2) =
1

2
m⌦2

tr⇢
2
, ⇢

2 = x
2 + y

2 (17)

Now one can go about rotating the sample.
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2.3 Rotation of the BEC

When rotating the sample, the description will most easily be done in that of the rotating frame.
Therefore one applies the unitary rotation operator to the Hamiltonian describing the system. Here
it is import to consider the time-dependent GPE, since the rotation is indeed a dynamical phe-
nomenon. The rotation operator, assuming that the rotation is around the z-axis, such that the
angular momentum is only along the z-axis, is [15]

R(t) = e
�i�(t)Lz/~ = e

�i⌦rottLz/~ (18)

This is a unitary operator i.e. R†
R = 1 and so the time-dependent GPE can be transformed to

a rotated frame, as done in Appendix C, where

HRot = H � ⌦rotLz (19)

Therefore the kinetic and harmonic potential term of the 2D Hamiltonian in the rotated frame
can be expressed as

HRot =
p
2

2m
� ⌦rotLz +

1

2
m⌦2

tr⇢
2 (20)

An e↵ective vector potential A can be used to simplify above equation, and rewrite the Hamil-
tonian as to resemble that of a charged particle in a magnetic field produced by the vector potential
A = ⌦rotm(y,�x). We stress that it is only the mathematical description that has this resemblance,
and that there is not an actual magnetic field nor any charges present. From A we see that the
synthetic magnet field has the form B = 2m⌦rot. Using that Lz = (r ⇥ p)z = (xpy � ypx) the
following relation is obtained

(p+A)2

2m
=

p
2

2m
+

A
2

2m
+

2m⌦rot

2m
(ypx � xpy) (21)

=
p
2

2m
+
⌦2

rotm

2
⇢
2 � ⌦rotLz (22)

And so we see that

(p+A)2

2m
� ⌦2

rotm

2
⇢
2 =

p
2

2m
+
⌦2

rotm

2
⇢
2 � ⌦rotLz (23)

Thus the Hamiltonian in the rotating frame can be rewritten in terms of the vector potential as

HRot =
(p+A)2

2m
� ⌦2

rotm

2
⇢
2 +

1

2
m⌦2

tr⇢
2

=
(p+A)2

2m
+

1

2
m⌦2

tr(1� �
2)⇢2 (24)

We see that the first term of the Hamiltonian is that of a particle in a magnetic field produced
by A. Here � = ⌦rot/⌦tr will be an important parameter, describing the ratio of the rotational
frequency of the sample and the frequency of the harmonic trap. When ⌦rot becomes bigger than
⌦tr, the potential term becomes negative, indicating that the sample is rotating so fast as to be
ripped apart, which can be understood through the centripetal forces arising from the rotation, as
visualized in Figure 1. This also sets a hard boundary of the rotational frequencies on can reach.
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Figure 1: The e↵ects of � on a Gaussian profile. A bigger � spreds out the
distribution.

At some point, when the condensate is rotated fast enough, it will be energetically favorable for
vortices to be nucleated in the 2D condensate [8], adding a quantum of rotation for each atom, since
the superfluid nature of the condensate means that it will not rotate as a normal fluid. As we can
see from Eq. 19, adding angular momentum will lower the energy. For a rapidly rotating sample,
the areal density of vortices is proportional to the rotational frequency

nv =
m⌦rot

⇡~ =
B

2⇡~ (25)

We also observe that, when � ⇡ 1 the harmonic potential in the xy-plane disappears and we are
left with a Hamiltonian which resembles that of a particle in a magnetic field, which gives rise to the
Quantum Hall e↵ect, where the particle states are almost degenerate. In this scenario, the single
particle states are that of the lowest Landau level to a good approximation, and we are thus in the
LLL regime [7].

From (25) we see that the inter-vortex distance in the LLL vortex lattice, proportional to
p
1/nv,

scales like the so-called magnetic length lB =
p
~/B. We also note that in the the LLL vortex lattice,

the core size of the vortices also scale with lB [7].
When considering a vortex lattice, we have to introduce a modulation of the wave function to

make sure that it vanishes in the vortices but that it is still, in our case, a Gaussian or Thomas-Fermi
distribution overall, also called an envelope, as seen in Figure 2.

As shown in [9], if one introduces the vortex lattice, the modulation one has to make to the
wave function cancels the e↵ects of the vector potential A. On the other hand the modulation
enhances the contact interaction, since they find that the contribution from the modulation to
the contact interaction term is

R
dr |p(r)|4 = b ⇡ 1.1596. Here p(r) is the modulation one has

to multiply with the envelope to obtain the full vortex lattice wave function, with normalization
A

�1
R
dr |p(r)|2 = 1, where A is the area of a triangular vortex lattice unit cell 2⇡~/B in the LLL

regime. This approximation can be made if one assumes that s >> lB, where s is the radial size of
the condensate, since within a unit cell the density, harmonic potential and other interactions can
be assumed to be constant [16].

Considering all the above, the Hamiltonian describing the vortex lattice in the quasi-2D regime
can be expressed

H =
p
2

2m
+

1

2
m⌦2

tr(1� �
2)⇢2 +

gbp
2⇡az

|�(⇢)|2 (26)

8



Figure 2: Schematic density of a Gaussian envelope with three vortices, pro-
duced by the modulation p(z) =

Q
i(z�⌘i) where z = x+iy and ⌘i is the complex

coordinates of the i’th vortex [9]. We assume that there are many vortices and
that s >> lB, meaning that the radius of the condensate is much bigger than
the inter-vortex distance, and thus stress that this is only a schematic depiction.

2.4 Dipolar BECs

Now we turn to the dipole-dipole interaction which is a main component of the setup, since the goal
is to estimate if such an interaction can get the condensate closer to the QH regime. The energy
from the dipole-dipole interaction where the dipoles are polarized in the same direction is highly
anisotropic and given as [14]

Udd(r) =
Cdd

4⇡

1� 3 cos2(✓)

|r|3 (27)

Where ✓ is the angle between the direction of the polarization and a straight line connecting two
dipoles, r is the distance between two dipoles and Cdd is the strength of the interaction. This can
be reformulated as [17]

Udd(r) = �Cdd


1

3
�(r) + @nn

1

4⇡|r|

�
(28)

Where @n = n · r and so @nn = @n(@n). From Eq. (28) it is clear that the dipole-dipole
interaction has both a short-range term coming from �(r) and a long-range interaction @nn

1
|r| . The

energy from the dipole-dipole interaction adds a term to the 3D GPE energy, given as
Z

dr0 ⇤(r0)Udd(r� r
0) (r0)

= �Cdd

3
| (r)|2 � Cdd@nn

Z
dr0U3D(r� r

0)| (r0)|2 = �Cdd

3
| (r)|2 + �(r) (29)

Where U3D(r) = 1
4⇡|r| and �(r) = �Cdd@nn

R
dr0U3D(r � r

0)| (r0)|2, so before reducing to the
quasi-2D form, the GPE reads

� ~
i
@t (r) =


p
2

2m
+

1

2
m!

2
zz +

1

2
m⌦2

tr(1� �
2)⇢2 + b

✓
g � Cdd

3

◆
| (r)|2 + �(r)

�
 (r) (30)

The contact interaction from the dipoles also gets multiplied by b from the lattice modulation
since it has the the same functional form. The dipole-dipole interaction lowers the e↵ective contact
interaction in 3D, when all the dipoles are polarized along the same axis. This is because dipoles
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are attracted to each other when they are aligned head to tail and repulsed when side by side. As
we shall see, the contribution to the contact interaction from the dipole-dipole term is positive when
in the quasi-2D regime.

0 2.×10-7 4.×10-7 6.×10-7 8.×10-7 1.×10-6 1.2×10-6

1

2

3

4

(a) Linear scale

10-7 10-6 10-5

10-4

0.01

1

100

(b) Loglog scale

Figure 3: Here �U(r) (solid blue) and 2
p
2⇡r�3 (dashed red) are plotted both

for a normal (a) and a loglog (b) scale. Without trapping the BCE the dipolar
interaction energy is proportional to r

�3 as seen in Eq (27), but the interaction
energy changes due to the trapping. At large distances the 2D e↵ects should not
be visible so we expect the two potentials to look the same, and so the factor
2
p
2⇡ ensures that �U(r) and 2

p
2⇡r�3 converges at the same asymptote for

large r.

Following that of [18] one can now do as in Section 2.2 where one assumes weak interaction,
such that ⌘ = az, and that �(r) << ~!z and g̃| (r)|2 << ~!z, where g̃ is just a general contact
interaction, and finally that ⌦tr << !z. The last three constraints are made to make sure that
the condensate is in the ground state of the harmonic trap along z and thus in a quasi-2D regime,
since all energy scales are very low compared to that of the harmonic trap in the z-direction under
these aforementioned constraints. The z-dependence is then integrated out, by assuming a Gaussian
distribution along z. The first 4 terms in Eq. (30) are easily computed, since they are Gaussian
integrals, but the long-range dipole-dipole term is rather tricky, and results in an e↵ective long-range
2D dipole-dipole interaction

�2D = �Cdd

Z
d⇢0

U(⇢� ⇢0)| (⇢0)|2 (31)

Where the kernel U(⇢) for polarization along the z-axis [18] is

U(⇢) =
1

2(2⇡)3/2a3z
e
⇢2/4a2

z


�
✓
2 +

⇢2

a2z

◆
K0

✓
⇢2

4a2z

◆
+

⇢2

a2z

K1

✓
⇢2

4a2z

◆�
, (32)

HereK0 andK1 are the modified Bessel functions of the second kind, of order 0 and 1 respectively.
This potential is modified from the r

�3 potential that one sees in 3D, as shown in Figure 3. The
GP energy in the quasi-2D regime with dipole-dipole interaction is then

E[ (⇢)] =

Z
d⇢


� (⇢)⇤ ~2

2m
r2
 (⇢) +

1

2
m⌦2

tr(1� �
2)⇢2| (⇢)|2+

1

2
bg̃| (⇢)|4 + �2D| (⇢)|2

�
(33)

Here
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g̃ =
1

az

p
2⇡

✓
g +

2

3
Cdd

◆
(34)

And  (⇢) is the 2D wave function. As mentioned, the contribution to the contact interaction
from the dipole-dipole term is positive, since the dipoles now only can lay besides each other and
point in the same direction, thus only interacting repulsively.

3 Density distribution

The energy functional for the system has been determined as Eq. (33) and the density distribution,
or more precisely the envelope, of the condensate can now be estimated. This is done by picking a
suitable ansatz or trial wave function with a variational parameter, and minimizing the energy with
respect to said parameter. Here both a Gaussian and Thomas-Fermi distribution is considered. The
Gaussian since it is the solution to the harmonic potential that is assumed in the xy-plane, without
the contact interaction term, and the Thomas-Fermi since it is the solution to the GPE when the
kinetic energy is neglected, since the system is assumed to be dominated by the contact interaction.

The distribution will thus not be the exact ground state of the system, but rather a distribution
that minimizes the energy for either a Gaussian or Thomas-Fermi shape. The exact ground state
will likely be somewhere in between the two shapes.

3.1 Gaussian ansatz

The Gaussian ansatz for the envelope with variational parameter s is assumed to be of the form

 (x, y) = e
� x2+y2

2s2

r
N

⇡s2
(35)

Which is normalized to N , the number of atoms in the gas. The energy of the system is deter-
mined by Eq. (33) and the Laplacian of Eq. (35) is found since it is needed in the kinetic term. The
ansatz has no angular dependence so the Laplacian of the Gaussian envelope in polar coordinates
with radius ⇢ is

r2
 (⇢) =

1

⇢
@⇢ (⇢@⇢ (⇢)) =  (⇢)

✓
⇢
2

s4
� 2

s2

◆
(36)

The energy from the first 3 terms in Eq. (33) is obtained by integrating over all space in polar
coordinates, noting that | (⇢)|2 =  (⇢)2 and remembering a factor 2⇡ from the angular integral

2⇡

Z 1

0
d⇢ ⇢


�~2
2m

 (⇢)2
✓
⇢
2

s4
� 2

s2

◆
+

1

2
m⌦2

tr(1� �
2)⇢2 (⇢)2 +

1

2
bg̃ (⇢)4

�
(37)

=
N~2
2ms2

+
Nm⌦2

tr(1� �
2)s2

2
+

g̃bN
2

4⇡s2
(38)

Finding the energy contribution from the �2D term, we write out the energy from the term using
Eq. (31)

E�2D = h�2Di = �Cdd
N

2

⇡2s4

Z
dx

0
dy

0
dx dy e

�(x2+y2+x02+y02)/s2
U(x� x

0
, y � y

0) (39)

Shifting to the center of mass ⇢cm and relative coordinates ⇢rel as shown in Appendix A, one
gets

E�2D = �Cdd
4N2

s4

Z 1

0

Z 1

0
d⇢cm d⇢rel e

�2⇢2
cm/s2

e
�⇢2

rel/2s
2

U(⇢rel)⇢cm⇢rel (40)

The ⇢cm integral can now be done, and yields
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E�2D = �Cdd
4N2

s4

s
2

4

Z 1

0
d⇢rel e

�⇢2
rel/2s

2

U(⇢rel)⇢rel (41)

The substitution ⇢s = ⇢rel/s is done such that the expression becomes

E�2D = �Cdd
N

2

s2

Z 1

0
d⇢s e

�⇢2
s/2U(⇢s)⇢s

2 = �CddN
2

Z 1

0
d⇢s e

�⇢2
s/2U(⇢s)⇢s (42)

Where now the kernel of the long-range dipole-dipole interaction is rewritten as

U(⇢s) =
1

2(2⇡)3/2a3z
e
⇢2
ss

2/4a2
z


�
✓
2 +

⇢
2
ss

2

a2z

◆
K0

✓
⇢
2
ss

2

4a2z

◆
+
⇢
2
ss

2

a2z

K1

✓
⇢
2
ss

2

4a2z

◆�
(43)

This integral converges and when the limit s/az >> 1 is considered to leading order, the energy
becomes

E�2D ⇡ C
4a2z
s2

(44)

Where C = 1
2(2⇡)3/2a3

z
CddN

2. Therefore the energy of the Gaussian distribution to leading order

in s is

E =
N~2
2ms2

+
Nm⌦2

tr(1� �
2)s2

2
+

g̃bN
2

4⇡s2
+ C

4a2z
s2

(45)

To determine the variational parameter s, the condition that @E
@s = 0 is imposed which yields

�N~2
ms3

+Nm⌦2(1� �
2)s� g̃bN

2

2⇡s3
� C

8a2z
s3

= 0 (46)

Solving this gives an expression for the variational parameter for the Gaussian envelope

sGauss =
4

s
2⇡~2 +Nmg

0
Gauss

2⇡m2⌦2
tr(1� �2)

(47)

For which

g
0
Gauss = bg̃ +

23/2Cddp
⇡az

⇡ 0.46
g

az
+ 1.9

Cdd

az
(48)

To determine the uniform density of the 2D condensate, when assuming a Gaussian distribution,
we must consider how to determine the radius of the condensate. The Gaussian distribution has no
defined radius, as opposed to the Thomas-Fermi, so the radius must be approximated. The radius
must not be too big, such that the density becomes too small, since we then cannot assure that the
gas is til in the BEC state. The radius must also be small enough, such that assuming a uniform
density can be an appropriate estimate. We adopt the convention of a radius of 2sGauss, such that
an approximate uniform density is N/4⇡s2Gauss.

We propose that one could refine this estimate by considering di↵erent expectation values ob-
tained from the Gaussian. However, we note that

⌦
⇢
2
↵
= s

2
Gauss which we estimate is too small to

be used instead of 4s2Gauss.

3.2 Thomas-Fermi ansatz

For the Thomas-Fermi ansatz, taking the shape of an inverted parabola, the envelope in the xy-plane,
with radial polar coordinate ⇢ is chosen to be

 (⇢) =

s
2N

(2s)2⇡

✓
1� ⇢2

(2s)2

◆
, ⇢ < 2s (49)
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This distribution has a definite radius, as opposed to the Gaussian distribution, here chosen to
be 2s. The radius is chosen as 2s such that it can more readily be compared to the Gaussian ansatz.
The reason for choice of the Thomas-Fermi ansatz originates from discarding the kinetic interaction
in Eq. (14), such that the density can be expressed as

| | =

s
µ� V

g
(50)

This motivates the ansatz, as one can see by plugging in a harmonic potential. It is also evident
that there must be some radius for which the wave function is 0, determined by when µ = V since
| | must be real. If the kinetic term is negligible, it is reasonable to assume that this ansatz might
perform well when the dipole-dipole interaction is introduced. Using Eq. (33) for the energy, the
energy from the potential and contact interaction terms are

2⇡

Z 2s

0
d⇢

1

2
m⌦2

tr(1� �
2)⇢3 (⇢)2 +

1

2
bg̃ (⇢)4⇢ =

N
2
g̃b

6⇡s2
+

2

3
mNs

2⌦2
tr(1� �

2) (51)

The energy from the long-range dipole-dipole interaction is

E�2D = �Cdd

Z
d⇢ d⇢0 | (⇢)|2U(⇢� ⇢

0)| (⇢0)|2 (52)

Doing a coordinate transformation to center of mass and relative coordinates in polar coordinates,
⇢cm and ⇢rel respectively, and also scaling ⇢rel = ⇢ss, the kernel transforms as U(⇢� ⇢

0) ! U(⇢ss).
The terms from the densities are a bit more involved since it is angular dependent and yields

f(⇢cm, ✓cm, ⇢s, ✓rel) =
�8⇢2s⇢

2
cms

2 cos(2✓cm � 2✓rel) + ⇢
4
ss

4 � 32⇢2ss
4 � 126⇢2cms

2 + 16⇢4cm + 256s4

256s4
(53)

Remembering the factor s2 from the coordinate transformation the long-range interaction energy
can be expressed as

E�2D = �Cdds
2

✓
2N

4s2⇡

◆2 Z 2⇡

0
d✓cm

Z 2⇡

0
d✓rel

Z 2s

0
d⇢cm

Z 4

0
d⇢s ⇢s ⇢cmf(⇢cm, ✓cm, ⇢s, ✓rel)U(⇢ss)

(54)
Doing the integrals over ✓cm,✓rel and ⇢cm one obtains

E�2D = Cdd

✓
2N

4s2⇡

◆2 Z 4

0
d⇢s

1

6
⇡
2
s
4
⇢s(�64 + 3(�4 + ⇢

2
s)

2)U(⇢ss) (55)

This integral evaluates to quite an ugly expression, but doing a series expansion around k =
s/az ! 1 to the lowest order the integral can be approximated as 224⇡2s4

3k2 . So an approximation of
the energy from the long-range dipole-dipole interaction reads

E�2D ⇡ Cdd

✓
2N

(4s)2⇡

◆2 1

2(2⇡)3/2a3z

224⇡2
s
4

3k2
= Cdd

p
2N2 1

⇡3/2az

7

24s2
(56)

Lastly, to compute the kinetic energy, one has to take into account how the condensate looks at
the boundary, since if one was to naively compute the kinetic energy, it would have the form

Ekin = �2⇡

Z
d⇢ ⇢ (⇢)

~2
2m

r2
 (⇢) (57)

which does not converge. Therefore we take from [19] an approximate kinetic energy

Ekin =
5~2N

2(2s)2m
(58)
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We note that we only take the numerical coe�cients of the 1/s2 term, and not the full logarithmic
dependence on s from [19], and that it is the kinetic energy for a 3D system with an isotropic
trap. However, this does not meaningfully impact the calculations, since the interaction terms will
dominate, and we simply approximate the kinetic energy for completeness. Thus the full energy for
the Thomas-Fermi distribution is

ETF =
5~2N
8s2m

+
N

2
g̃b

6⇡s2
+

2

3
mNs

2⌦2
tr(1� �

2) + Cdd

p
2N2 1

⇡3/2az

7

24s2
(59)

Solving for s when minimizing the energy yields the approximation

sTF = 4

s
(15/4)⇡~2 +Nmg

0
TF

4⇡m2⌦2
tr(1� �2)

(60)

Where

g
0
TF = bg̃ +

7
p
2Cdd

4
p
⇡az

⇡ 0.46
g

az
+ 1.7

Cdd

az
(61)

We must consider that the kinetic term is indeed an approximation, and since we will compare
sTF to that of sGauss, we must make sure that the kinetic energy from the Thomas-Fermi ansatz
is larger than that of the Gaussian, since the latter optimizes the kinetic energy. We see that for
Dysprosium and Erbium the ratio of the kinetic energies EGauss,Kin/ETF,Kin is 0.54 in both cases,
so in this regard the Thomas-Fermi approximation is reasonable.

3.3 Comparison of Gaussian and Thomas-Fermi ansatz

We have treated the quasi-2D description both assuming a Gaussian and Thomas-Fermi distribution
for the density, so to determine which is better, we compare the minimized energies. For both Er and
Dy the ratio for the energy of the Thomas-Fermi and Gaussian distributions is ETF/EGauss ⇡ 0.67,
thus the Thomas-Fermi distribution gives a lower energy, and so is a better solution. These ratios
are all independent of �, so as long as � < 1 the Thomas-Fermi distribution is assumed to be the
best for our purposes. For the sake of obtaining estimates, we assume that !z = 2⇡ kHz, resulting
in az = 0.25µm, and that !x = !y << !z. The ’dipolar length’ of Dy is addDy = 131 a0 and for Er
addEr = 65.5 a0, where a0 is the Bohr radius [10]. Furthermore, the scattering length of Dy and Er
assumed to be aDy = 91 a0 [10][12] and aEr = 53.8 a0 [10] respectively. To obtain the dipole-dipole
interaction strength Cdd the relation [18]

Cdd =
add12⇡~

m
(62)

is used. From this we immediately expect that Dy will perform better at reaching the QH regime,
since the dipole-dipole interaction strength is approximately 2 times bigger than that of Er.

We then see whether Cdd or g is the dominant interaction strength in both the Gaussian and
Thomas-Fermi case. Since

g
0
TF =

1.7Cddq
~

m!z

+
0.46 gq

~
m!z

(63)

and

g
0
Gauss =

1.9Cddq
~

m!z

+
0.46 gq

~
m!z

(64)

w can find when the Cdd term is larger than the g term in each case, which is when Cdd/g > 0.24
for the Gaussian, and when Cdd/g > 0.27 for the Thomas-Fermi. Since for Dy and Er we have that
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CddDy

gDy
= 6.44 and

CddEr

gEr
= 3.65, (65)

the dipole-dipole contact interaction strength Cdd is the dominating parameter in both the Gaus-
sian and Thomas-Fermi ansatz and for each element. We further note that the interaction terms
determines the best shape, since the Gaussian has a more peaked center ”favoring” a weaker contact
interaction, and the Thomas-Fermi distribution is more spread out allowing for a stronger contact
interaction, as one can see from Figure 4.

-100 -50 10050

500000

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

Figure 4: The Gaussian and Thomas-Fermi distribution for Er, at N = 15000,
� = 0.99 and az = 0.25µm. We see that within the Thomas-Fermi radius, the
Thomas-Fermi distribution is more spread out and has a lower peak than that
of the Gaussian distribution.

4 Reaching the Quantum Hall regime

Since for both the Gaussian and Thomas-Fermi ansatz we see that g0 is lager than the bare contact
interaction g, we expect that the Quantum Hall regime will be more readily reached [9].

To describe the di↵erent phases the condensate goes through, 3 characteristic lengths are intro-
duced, and a phenomenological model is proposed, as in [9]. First, the superfluid healing length
⇠ = ~/

p
2mng0 / 1/(g0)1/4, which describes the length at which the gas recovers its superfluid

state from some edge. The magnetic length lB describing the radius of the synthetic cyclotron mo-
tion of a charged particle in a B-field. When B ! 1, lB ! 0 since the cyclotron motion of the
charges will be bent more and more, thus making the radius smaller. Lastly, the Lindemann length
lL ⇡ 1/

p
⇡n / (g0)1/4, describing the size of the quantum fluctuations that the vortices experience

[7]. Together with the Lindemann parameter ↵L ⇡ 0.4, these create a criterion for melting, in this
case the vortex lattice [20]. When the fluctuations become bigger than the inter-vortex distance, we
expect to see the vortex lattice melt.

The phases can be described by the relative sizes of the aforementioned lengths, by seeing what
happens when decreasing the magnetic length lB. Starting with the regime lL/↵L < ⇠/↵⇠ < lB,
we expect to be in a so-called superfluid BEC phase, and depending on how fast the condensate is
rotating, a vortex lattice will be present. Increasing the rotation, and thus lowering lB, we will at
some point reach the regime lL/↵L < lB < ⇠/↵⇠, where the condensate enters into the LLL vortex
lattice . Here ↵⇠ = ⇠/lB ⇡ 0.3 at the point where the condensate enters the LLL vortex lattice.
In the LLL regime it is important to note that the inter-vortex distance scales with the magnetic
length lB, thus if the relation lL/lB becomes su�ciently large, specifically when reaching ↵L, the
vortex lattice becomes unstable and melts [7][9].

When the vortex lattice melts we reach the strongly correlated QH regime where lB < lL/↵L <

⇠/↵⇠ [7], given that g
0
< go, where go is the optimal contact interaction where the QH regime is
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most easily reached.

g g
0
TF�Dy

go

0

LLL

QH

SF

SS

l B

lL

⇠

Figure 5: Schematic phase-diagram of BEC. For high lB we expect to be in a
superfluid phase (SF). Increasing lB the condensate will at some point, assuming
g
0
< go, enter the LLL regime, which can be suppressed by increasing the contact

interaction g
0. Further increasing lB will at some point result in the vortex lattice

of the LLL regime to melt, and the condensate enters the QH regime. As we
shall see, for large lB, increasing g

0 the BEC will at some point enter a supersolid
(SS) state.

An object that can characterize these di↵erent phases is the filling factor

⌫ =
n

n⌫
=

2⇡~n
B

(66)

The ratio of the density of the 2D system n and the areal density of the vortices n⌫ . From the
definitions of lL and lB we obtain that ⌫ / (lB/lL)2, meaning that, when ⌫ becomes lower than
some critical value the LLL vortex lattice melts and we enter the QH regime [7]. It is clear that
⌫ can be lowered by decreasing the density of the condensate, which we have done by considering
the dipole-dipole interaction, or by increasing the synthetic B-field. In this project we will assume
that the critical value for the onset of the QH regime is ⌫c,o = 8, however, it must be noted that
other more conservative estimates of ⌫c,o are in the range ⌫c,o < 6, making it harder to reach the
QH regime. Therefore an e↵ective Lindemann factor ↵0

l =
p

2/⌫c,0 is introduced, where ↵l ⇡ 0.4
comes from ⌫c,0 ⇡ 8 [9].

Since the density of the gas is chosen to be n = N/(4⇡s2) for both the Gaussian and the
Thomas-Fermi ansatz, it scales like 1/

p
g0. Comparing the bare contact interaction term in g

0 and
the dipole-dipole term, it can be seen how much bigger the interaction g

0 is compared to g. In the
Thomas-Fermi case for Dy and Er g

0 is a factor of xTF,Dy ⇡ 17 and xTF,Er ⇡ 14.5 bigger than g.
Thus n and therefore also ⌫ is decreased by a factor of f⌫,Dy ⇡ 4.1 and f⌫,Er ⇡ 3.8 respectively.

Since the LLL vortex lattice phase is determined by when ⇠/↵⇠ > lL/↵L, it is clear that the ratio
⇠/lL / 1/

p
g0 is decreased by a factor of either f⌫,Dy or f⌫,Er when the dipole-dipole interaction is

incorporated. This suggests that it will be easier to reach the QH regime when working with dipolar
gases, as seen in Figure 5.

We can also see that, for some optimal contact interaction go the LLL vortex lattice phase is fully
suppressed and the QH is optimally reached, specifically when ⇠/↵⇠ ⇡ lL/↵

0
L. From this relation,

an optimal value for the e↵ective contact interaction [9] can be expressed as
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go =
⇡~2

m⌫c,0↵
2
⇠

(67)

After go the QH phase will be suppressed once again, since the healing length keeps decreasing.
It would be an optimal scenario if the e↵ective contact interactions including the dipolar e↵ects
where to be greater than go, since decreasing the interaction strength is more easily done than the
opposite, and so we could reach go. However from Table 1 we see that this is not the case, and that
g
0 for both Er and Dy occur before go.

gp
2⇡az

[kHz · µm2] g
0
Gauss[kHz · µm2] g

0
TF[kHz · µm2] go[kHz · µm2] g

0
Gauss/go g

0
TF/go

Er 0.0221~ 0.411~ 0.371~ 1.67~ 0.246 0.222
Dy 0.0376~ 0.820~ 0.738~ 1.69~ 0.485 0.437

Table 1: Comparison of g0 in both the Gaussian and Thomas-Fermi case, and
the optimal go for entering the QH regime for !z = 2⇡ kHz. In all four cases
g
0 is lower than go, but we see that the g

0 in all cases are bigger then the bare
contact interaction g.

For reaching the QH regime given an e↵ective contact interaction g
0, we determine what � must

be to do so. We will assume a condensate of about N = 15000 atoms and that !z = 2⇡ kHz.
We find an expression for ⌫ to determine for what � we reach ⌫c,0. This is done by using the

density of the condensate n = N/(4⇡s2) and the expression for the filling factor Eq. (66), thus
obtaining an expression of ⌫ for the Gaussian distribution

⌫Gauss =
N

4�

s
2⇡~2(1� �2)

Nmg0 + 2⇡~2 (68)

And for the Thomas-Fermi distribution, ⌫ is almost the same, only modified by the form of sTF,
thus

⌫TF =
N

4�

s
4⇡~2(1� �2)

Nmg0 + (15/4)⇡~2 (69)

In Figure 6 we see that for di↵erent choices of � we can reach ⌫c,o for di↵erent N. The resulting
values for � at which we reach ⌫c,o for 15000 atoms, for both Er and Dy, is given in Table 2. For
both Er and Dy, � has to be close to unity to reach the QH regime, making it unrealistic to achieve
in an experimental setting. Lowering N will make it easier to reach the QH regime, so for a system
of a 3000 Dy atoms, we need � ⇡ 0.975 to do so.

Element Gaussian Thomas-Fermi
Er � = 0.994 � = 0.997
Dy � = 0.989 � = 0.995

Table 2: Approximate � for di↵erent cases such that ⌫ = ⌫c,o = 8 when
N = 15000 for !z = 2⇡ kHz.
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Figure 6: The filling factor for both Er (dashed lines) and Dy (full lines) using
the Thomas-Fermi ansatz are plotted for di↵erent values of �, and assuming that
⌫c,o = 8. For N = 15000 we see that we need a � > 0.995 for both cases to reach
⌫ = 8, when the frequency along the z-axis is !z = 2⇡ kHz.

We see that the best candidate for reaching the QH, between Er and Dy, is Dy. We note that
compared to that of Rydberg dressed gases, the reduction in rotation required to enter the QH
regime by dipolar interactions is small [9].

Since the QH regime is a strongly correlated phase, the mean-field approach is not valid in this
regime, since it discards all correlations. Therefore the GP approach can only be considered to be
valid up to the point of the vortex lattice melting, and not beyond. But, as pointed out in [9], the
GP approach is expected to be a good description of the LLL vortex lattice near the QH regime.

5 Roton instability

Very recently Norcia et al. [13] have showed that 2D ultra cold atomic dipolar gases can enter
a supersolid phase. Supersolidity is a phase where the translational invariance is broken but, as
opposed to an ordinary crystal phase, is a coherent state. We want to show that it is realistic to
make dipolar systems with g

0 ⇡ go, by using the experimental values that produce a supersolid state
and find the interaction needed to enter the supersolid state gSS . We setup a theoretical framework
as to approximate for what interactions strength g

0, for zero rotation, we can enter a supersolid
phase, and when this occurs relative to the optimal value go to enter the QH regime.

The excitation-spectrum of the condensate is approximated, to estimate when the breakdown
of the roton spectrum occurs, signaling the breakdown of translational invariance. To this end,
we cannot use the quasi-2D approximation since the roton-instability is not reached within this
approximation as shown in [21]. This is because the roton instability appears when the system
begins to experience the 3D e↵ects of the sample[14]. Essentially, for the condensate to be in the
quasi-2D regime, we expect that µ << ~!z, such that the energy per particle is low enough, as to
be contained in the ground state of the harmonic trap, but the roton gap appears beyond this limit.

Therefore another approximation is used, where we average out the e↵ects in the z-direction,
by assuming that it is a Gaussian distribution along this direction, and also assuming separability
of the density. The shape of the Gaussian should be determined by variational methods, since
the shape depends on the interactions, but we adopt a distribution nz(z) =

1
az

p
⇡
e
�z2/a2

z which is

normalized to 1, where az =
p
~/!zm. To make the calculation easier we do them in momentum

space, see Appendix B. The terms that we are interested in are the interaction energies from the
contact interaction and dipole-dipole interaction. In k-space the Gaussian reads

ñz(kz) = (2⇡)�3/2
e
� 1

4k
2
za

2
z (70)

and the 3D density distribution in k-space is
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ñ(k) = ñz(kz)ñ2D(kx, ky) (71)

The interaction energy can therefore be expressed as

E(k) = (2⇡)3/2
Z

dkx dky dkz


Ũ(k) +

1

2
g

�
ñz(kz)ñz(�kz)ñ2D(kx, ky)ñ2D(�kx,�ky) (72)

From the choice of ñz(kz) it is clear that ñz(kz) = ñz(�kz) and so to integrate out the z-
dependence we evaluate

(2⇡)3/2
Z

dkz


Ũ(k) +

1

2
g

�
ñ
2
z(kz) (73)

Resulting in the energy

E(k) =

Z
dkx dky


Ũeff (k?) +

1

8
p
2⇡5/2az

g

�
ñ2D(kx, ky)ñ2D(�kx,�ky) (74)

Where

Ũeff (k?) =
1
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And k
2
? = k

2
x + k

2
y. We have reduced the problem to being e↵ectively 2D and we see that

the dipole-dipole interaction energy is momentum dependent. From Figure 7 we see that for small
momenta (k?az < 1) the shape of the interaction h is repulsive, as we expect in the quasi-2D
regime. On the other hand, at larger momenta (k?az > 1) we see that the interaction energy
becomes negative, and thus we have an attractive interaction since the dipoles ’feel’ the 3D nature
of the condensate.

0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Figure 7: The shape of the interaction as a function of momentum. We see that
at k?az ⇡ 1 the interaction energy becomes negative, and depending on how big
g3D is, this will have an e↵ect on the excitation spectrum. Intuitively, for high
enough momentum, the dipoles start to feel the 3D nature of the condensate,
which makes the energy from the interaction negative (attractive), instead of
purely repulsive, as in the quasi-2D limit.

The goal is to determine the excitation-spectrum of the sample, and this is done by using the
Bogoliubov equations, which are obtained by linearizing the variation of the GPE in � and � ⇤,
and demanding that the solution to the equations one obtain in � and � ⇤ are periodic with time
[4]. The generic excitation spectrum obtained by this method is

!
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2
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4m2

+
n

m
U

◆
(76)
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Here U is simply a stand-in for all non-linear | |2 terms in the GPE in momentum space. In
other words, the contact and dipole-dipole interactions. In this case

U = Ũeff (k?) +
1

8
p
2⇡5/2az

g (77)

Thus the excitation spectrum with dipole-dipole interaction, assuming a Gaussian distribution
along the z-axis is
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Rewriting this in units of the frequency of the trap !z = ~
a2
zm

, by using that !2 = !2
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z
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Where we have defined the dimensionless parameter

g3D =
mn

3⇡~2az
Cdd (80)

which describes the strength of h(k?). Here the density n should be that of the 2D system that
we found to be n = N/(4⇡s2Gauss) and for � = 0, since we are looking at the non-rotating system.

For large enough values of g3D, the spectrum gives rise to local minimum as seen in Figure 8
called the roton gap, where the excitations are called rotons, which has been experimentally verified
[22]. At some large enough value of g3D, the roton gap has a minimum that takes on complex values,
as we see in Fig. 8. There is a value of g3D where the minimum of the roton energy is exactly 0,
which is the crossing point from a real minimum to a complex one, where the condensate becomes
unstable. When this point is crossed, it signals the breakdown of the translational symmetry of
the BEC, since now the bosons do not ’know’ at which momenta to condense, either at k? = 0
or at some krot > 0 where !(krot) = 0. Furthermore, if g3D is increased beyond this point, the
gap increases and a multitude of values for the momenta can be chosen in the gap, leading to wave
functions with di↵erent phases that can interfere with each other developing peak and valleys, thus
breaking translational invariance.
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Figure 8: The excitation-spectrum of Dy for di↵erent values of g3D for � = 0.
For large enough values of g3D a second local minimum, called the roton gap
appears (blue). At g3D ⇡ 3.44 the minimum of the roton gap result in ! = 0
(red). If g3D gets too large, the roton spectrum breaks down (black).

We stress that this only shows the breaking of translational invariance, and not that the con-
densate becomes supersolid, but supersolidity is expected to be an intermediate state between a
superfluid and crystal phase, as shown in [23].
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Finding g3D satisfying a minimum at k? > 0 for which !(k?) = 0 in Eq. (79), can be done
numerically, resulting in g3D ⇡ 3.44 [14]. This value has been found when neglecting g, so one could
refine the calculation by incorporation the g-term, even though it only has a small contribution.

Using Eq. (80) we can estimate what Cdd and thus g0 should be to reach the roton instability, by
solving for g3D = 3.44, and comparing it to the experimental values of go for Er and Dy. To make
the estimates we use experimental data from [13], and thus set !z = 167 2⇡Hz, !x = !y = 33 2⇡Hz
and N = 70000.

It is important to note that the trapping used in [13] is fully anisotropic, meaning that !x 6=
!y 6= !z. Taking this anisotrpy into account would in this case lower the interaction strength
needed to enter the supersolid phase gSS , since we have chosen !y = 33 2⇡Hz instead of !y in a
range 75 2⇡Hz � 120 2⇡Hz as used in [13]. In Table 3 we see gSS for both Er and Dy occurs after
go, indicating that gSS ⇡ go can be reached by modifying parameters in Eq. (80) to lower gSS .

Element gSS [kHz · µm2] go [kHz · µm2] gSS/go

Er 4.85~ 1.67~ 2.91
Dy 4.95~ 1.69~ 2.93

Table 3: Comparing the physical values of gSS for Er and Dy, with the dipole-
dipole interaction strengths required to reach the point of roton instability when
� = 0, and the optimal interaction to most easily reach the QH regime go. For
both Dy and Er we see that gSS > go.

These estimates could be further refined by adopting a non-uniform density, by simply using the
2D Thomas-Fermi density

n(⇢) =
2N

(2s)2⇡

✓
1� ⇢

2

(2s)2

◆
(81)

This will however introduce a ⇢-dependence to the excitation spectrum, leading to more complex
behavior.

6 Conclusion

We have shown that dipolar 2D ultra cold gases, in a combination with rotating traps reduce
the filling factor for Dysprosium and Erbium, and thus make it easier to enter the Quantum Hall
regime. For a Quantum Hall droplet of 3000 atoms to be reached, the ratio between the rotation
and trapping frequency � for Dysprosium must be � = 0.975, being a realistic system to realize.
However, to increase the number of atoms one would have to consider � closer to unity. We also
show the the optimal interaction point for entering the Quantum Hall regime is comparable to that
of the interaction needed to enter a supersolid state, making reaching the optimal interaction point
experimentally feasible.
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[12] F. Böttcher, J. Schmidt, M. Wenzel, J. Hertkorn, M. Guo, T. Langen, and T. Pfau. Transient
supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X, 9:011051, (2019).

[13] M. A. Norcia, C. Politi, L. Klaus, E. Poli, M. Sohmen, M.J. Mark, R. Bisset, L. Santos, and
F.Ferlaino. Two-dimensional supersolidity in a dipolar quantum gas. arXiv: 2102.05555v1,
(2021).

[14] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau. The physics of dipolar bosonic
quantum gases. Rep. Prog. Phys., 72:126401, (2006).

[15] D.J. Gri�ths and D.J. Schroeter. Introduction to Quantum Mechanics. Cambridge University
Press, 3 edition, (2018).

[16] T. Ho. Bose-einstein condensates with large number of vortices. Phys. Rev. Lett., 87:060403,
(2001).

[17] W. Bao, Y. Cai, and H. Wang. E�cient numerical methods for computing ground states and
dynamics of dipolar bose–einstein condensates. Journal of Computational Physics, 229:7874,
(2010).

[18] Y. Cai, M. Rosenkranz, Z. Lei, and W. Bao. Mean-field regime of trapped dipolar bose-einstein
condensates in one and two dimensions. Phys. Rev. A, 82:043623, (2010).

[19] F. Dalfovo, G. Pitaevskii, and S. Stringari. The condensate wave function of a trapped atomic
gas. J. Res. Natl. Inst. Stand. Technol., 101:537, (1996).

[20] J. Dietel and H. Kleinert. Lindemann parameters for solid membranes focused on carbon
nanotubes. Phys. Rev. B, 79:075412, (2009).

[21] U. R. Fischer. Stability of quasi-two-dimensional bose-einstein condensates with dominant
dipole-dipole interactions. Phys. Rev. A, 73:031602, (2006).

[22] D. Petter, G. Natale, R. M. W. van Bijnen, A. Patscheider, M. J. Mark, L. Chomaz, and
F. Ferlaino. Probing the roton excitation spectrum of a stable dipolar bose gas. Phys. Rev.
Lett., 122:183401, (2019).

[23] F. Cinti, T. Macr̀ı, W. Lechner, G. Pupillo, and T. Pohl. Defect-induced supersolidity with
soft-core bosons. Nature Communications, 5:3235, (2014).

22



7 Appendix A - Change of variables

The change of variables from eq. (39) to Eq. (40) is done as follows, starting from

h |�2D | i = �Cdd
N
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⇡2s4

Z
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0
dy

0
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0
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Shifting to the center of mass and relative coordinates, xcm = x + x
0
/2 and xrel = x � x

0 and
also for y and y

0 respectively. The argument of the exponential function can then be written as
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And since x = xcm + xrel
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0 we get
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Since the Jacobian is 1 we have
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Now we can go to polar coordinates r
2
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2
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2
cm and r

2
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rel. With no angular

dependence we have to remember a factor of (2⇡)2 so one gets

h |�2D | i = �Cdd
4N2

s4

Z 1

0

Z 1

0
drcm drrel e

�2r2cm/s2
e
�r2rel/2s

2

U(rrel)rcmrrel (86)

8 Appendix B - Fourier transformation of energy functional

To find the roton-spectrum we want to represent the energy in momentum space. In other words
we want to Fourier transform

EInt(r, r
0) =

Z
dr dr

0
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Where we have defined I(r� r
0) as a general interaction, which in this case is
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Inserting the inverse Fourier transform of n(r) and n(r0) in 3D, which is
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So the energy can be expressed as
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Changing coordinates to the center of mass and relative coordinates like in Appendix A, with
r
0 = ⇢+ ⇢

0
/2 and r = ⇢� ⇢

0
/2, one can write
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So doing the k
0 integral, the Dirac delta function dictates the we set k = �k

0, and so we get

(2⇡)3/2
Z
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From [14] it is given that when the bosons are polarized along the z-axis, the Fourier transfor-
mation of the interaction is
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Since a Gaussian distribution is assumed along the z-axis, normalized to 1 as
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In momentum space this is still a Gaussian, given as
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The densities are in general assumed to be symmetric in k-space, specifically that ñ(k) = ñ(�k),
which is evident in the above case.

9 Appendix C - Hamiltonian in rotating frame

Here we transform a Hamiltonian with rotational invariance along the z-axis to a rotating frame,
also along the z-axis. We start by acting on the GPE from the left with R, and so
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becomes
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Using that
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One obtains
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Inserting R
†(t)R(t) = 1 between @tR(t) and  
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Now rewriting  ̃ = R(t) 
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Since the Hamiltonian in the rotating frame has to satisfy HRot ̃ = �~
i @t ̃, it must hold that

HRot = R(t)HR
† � ~

i
@t(R(t))R†(t) (106)

The last term can be easily evaluated using the definition of R(t), so

HRot = R(t)HR
†(t)� ⌦rotLz (107)

R(t)HR
†(t) = H since H has no angular dependence, so the Hamiltonian in the rotating frame

is

HRot = H � ⌦rotLz (108)
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