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Abstract

Taking advantage of atomic transition frequencies, atomic clocks provide an un-
matched time reference with accuracies better than 10−17. These high accuracy clocks
are essential in modern research and technology. By locking a laser to a certain atomic
transition, the laser frequency can be very accurately stabilized, essentially constructing
a clock. In order to properly lock this clock laser frequency to the atomic transition,
great precision of the clock laser frequency is demanded.

In the construction of a 25Mg clock in the Ultra Cold Atoms group of the Niels Bohr
Institute at the University of Copenhagen, the clock laser is stabilized using multiple
Pound-Drever-Hall schemes. This thesis will be concerned with one of these Pound-
Drever-Hall schemes. We are concerned with having a large laser capture range, pro-
viding a lock that removes mainly low frequency noise.

The properties of the Pound-Drever-Hall scheme are investigated, and the noise of
the laser characterized. We find that our lock provides a factor of 10 improvement on
the laser linewidth, readying the laser for further noise-reduction. We examine the laser
power spectral density and identify possible sources of noise.

Resumé

Med en precision bedre end 10−17 giver atom-ure en enestående god tidsreference
ved at udnytte atomare transitionsfrekvenser. Disse højpræcisionsure er essentielle i
såvel moderne videnskab som teknologi. Ved at fastlåse en laser til en specifik atomar
overgang, kan laserfrekvensen stabiliseres med stor nøjagtighed. Med andre ord kan
man konstruere et ur. For at låse frekvensen af clock-laseren til den atomare overgang
er det nødvendigt med stor nøjagtighed af clock-laser frekvensen.

I konstruktionen af et 25Mg ur i Ultra Cold Atoms gruppen på Niels Bohr In-
stitutet ved Københavns Universitet, er clock-laseren stabiliseret ved hjælp af flere
Pound-Drever-Hall systemer. Dette projekt omhandler konstruktionen af et af disse
Pound-Drever-Hall systemer. Vi ønsker at have et stort frekvensinterval indenfor hvil-
ket, det er muligt at låse laseren, og vi opnår derfor en lås, der hovedsageligt fjerner
lavfrekvent støj.

Egenskaberne ved Pound-Drever-Hall systemet undersøges, og støjen karakteriseres.
Vi finder at vores lås resulterer i en forbedring af clock-laserens liniebredde med en
faktor 10, og derved forbereder laseren til en yderligere støjreduktion. Vi undersøger
desuden clock-laserens effektmæssige spektral densitet (power spectral density) for at
identificere mulige støjkilder

II



List of Figures
1 Concept of an atomic clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Simplified view of the Pound-Drever-Hall setup . . . . . . . . . . . . . . . . . 4
3 Real and imaginary part of the reflection coefficient F (ω). . . . . . . . . . . . 5
4 Plot of the sine and cosine terms of Pre. . . . . . . . . . . . . . . . . . . . . . 7
5 Conceptual model of the power spectral density. . . . . . . . . . . . . . . . . 8
6 Setup of laser system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7 Example of measured data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8 Calibration curve for the frequency axis. . . . . . . . . . . . . . . . . . . . . . 16
9 Example of fitted error-signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10 Example of Lorentz-fit to resonance peak. . . . . . . . . . . . . . . . . . . . . 18
11 Cavity linewidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
12 Free spectral range of cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
13 Slope of the error-signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
14 Power spectral density of noise for Ω = 78MHz. . . . . . . . . . . . . . . . . . 23
15 Power density spectrum of noise for Ω = 98MHz. . . . . . . . . . . . . . . . . 25
16 Background noise: Square waves . . . . . . . . . . . . . . . . . . . . . . . . . 26
17 Noise from a similar source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

III



Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
Resumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

1 Introduction 1

2 Theoretical considerations 3
2.1 Pound-Drever-Hall error-signals . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Motivation for the PDH technique . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Obtaining the error-signal . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 The behaviour of the error-signal . . . . . . . . . . . . . . . . . . . . . 6

2.2 Noise analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Laser lineshape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Setup 11
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Results 14
4.1 Pound-Drever-Hall stabilization of the laser . . . . . . . . . . . . . . . . . . . 14

4.1.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.3 Cavity FWHM from error-signal . . . . . . . . . . . . . . . . . . . . . 17
4.1.4 Cavity FWHM from cavity-signal . . . . . . . . . . . . . . . . . . . . . 18
4.1.5 Free Spectral Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.6 Cavity finesse and length . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Linewidth of the stabilized laser . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.1 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 Power spectral density for Ω = 78MHz . . . . . . . . . . . . . . . . . . 22
4.2.4 Power spectral density for Ω = 98MHz . . . . . . . . . . . . . . . . . . 24
4.2.5 Analysing the spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.6 Laser linewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Discussion & Outlook 28

6 Conclusion 29

7 References 30

A Noise spectrum from similar source. 31

IV



1 INTRODUCTION

1 Introduction

Precise clocks are essential for fundamental science. With a well known frequency standard,
one is able to conduct measurements on other physical quantities with very high precision.
Length, for instance, can be measured to a high degree of accuracy by measuring the time it
takes an electromagnetic pulse to travel the distance of interest. This is possible because the
speed of light, c, is defined to be exactly 299 792 458m/s. Other units that can be measured
using a frequency standard include weight, using a watt-balance [1], and even voltage through
the Josephson effect [2]. It is not only fundamental science that is dependent on precise time
measurement, but also everyday life technology such as the Global Positioning System (GPS)
depends critically on precise time measurement.

To build a clock you need an oscillator and a method of counting oscillations. This has
been done by various means through history - from simple mechanical pendulums to atomic
clocks. In the middle of the 20th century the first Cs clock was developed, with an accuracy
of ∼ 10−10, and since 1967 the second has been defined as exactly 9 192 631 770 periods of
the light originating from the transition between the two hyperfine levels of the ground state
133Cs atom [3].

Scientific research has continued to increase the accuracy of atomic clocks, and today
many different types of clocks exist, exploiting the properties of a wide range of atoms.
Atomic clocks provide some of the most precise measurements in physics, with accuracies
better than 10−17 [4].

Photo-
detector

Atomic cloud

Clock Laser
Laser

feedback

Frequency 
reference

ν (t)

Figure 1: Red lines indicate laser light, whereas the dashed line indicates an electrical feedback
signal. The laser shines light onto a sample of atoms. The detector collects the atoms’
response to the laser light and a feedback signal is supplied to the laser adjusting the frequency
to resonance. The locked laser provides the frequency reference.

The concept of an atomic clock is displayed in figure 1. The laser shines light onto a sample
of atoms. The atoms’ response to the laser light is collected by the photo-detector, and a
feedback signal is supplied to the laser. If the laser is slightly out of resonance with the
atomic transition, the laser is adjusted by the feedback signal. When locked properly to the
atomic transition, the laser frequency will provide a frequency reference corresponding to
the given atomic transition.

In the laser laboratory at the Niels Bohr Institute (NBI) of the University of Copenhagen,
the forbidden singlet 1S0↔3P0 triplet transition of 25Mg is investigated as a candidate for
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1 INTRODUCTION

an atomic clock transition. The laser used for probing the 25Mg atoms needs to have a very
small linewidth as this will yield a better stability of the system.

Narrowing the laser linewidth is the goal of this thesis, and it will be done by applying
a Pound-Drever-Hall (PDH) stabilization scheme to the laser. This thesis is organized as
follows:

Section 2 gives an overview of the relevant theory. The theoretical considerations of the
PDH scheme are presented followed by the essentials of noise analysis.

Section 3 reviews the essentials of the experimental PDH setup, we have built, and outlines
our considerations regarding the setup.

Section 4 presents the experimental results for the efficiency of the PDH stabilization. The
PDH setup and the noise spectrum of the laser are characterized.

Section 5 discusses the results and offers an outlook for future improvements to the setup.

Section 6 concludes the thesis.
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2 THEORETICAL CONSIDERATIONS

2 Theoretical considerations
In this section, we present an overview of the theory behind our project. We introduce a
technique known as the Pound-Drever-Hall scheme that enables us to stabilize the frequency
of our laser to an optical resonator [5]. Some of the advantages of this technique are discussed,
and an explanation of the considerations behind the method is given. Subsequently, we
outline the essentials of noise analysis, explaining the main noise characteristics and give a
method of obtaining a value of the laser linewidth.

2.1 Pound-Drever-Hall error-signals
The Pound-Drever-Hall locking scheme is employed to minimize the frequency fluctuations
of our laser, and will allow us to reduce the linewidth of the laser dramatically.

The total setup contains two PDH-systems. The PDH-system we have built is based on
a low-finesse (∼ 100) cavity and will serve as a pre-stabilization in order to successfully use
the second PDH-system containing a very high-finesse (∼ 86 000) cavity [6]. The finesse is
a measure of the reflectivity of the mirrors and proportional to the photon lifetime in the
cavity. This second high-finesse PDH-system is too sensitive to operate with large noise
fluctuations making the pre-stabilization necessary.

2.1.1 Motivation for the PDH technique

The essence of the PDH technique is to lock a laser to an optical resonator. This is done by
generating a signal, referred to as the error-signal, containing information about the detuning
of the laser from the cavity resonance.

The PDH setup is conceptually displayed in figure 2 and consists of the main elements:
a Fabry-Perot cavity (FP), a polarizing beam splitter (BS), a λ/4–plate, an electro-optic
modulator (EOM) and the electronics, displayed in a blue box in figure 2. The electronics
manipulate the reflected light from the Fabry-Perto cavity, and produce the error-signal
providing feedback to the laser.

If we monitor a fraction of the laser beam with a photo diode after passing it through a
Fabry-Perot cavity, we will see a Lorentzian intensity profile in the frequency domain (this
part of the beam is not shown on figure 2). In the Fabry-Perot cavity, we make sure only one
mode resonates, and we will subsequently refer to this as the cavity-signal. Any deviation of
the laser frequency from cavity resonance will lower the intensity of the cavity-signal. This
cavity-signal will be symmetric with respect to the resonance frequency and does not allow
us to distinguish between a positive or negative detuning from resonance.

The PDH technique solves this problem by monitoring the reflected signal from the cavity.
The reflected signal will be a mixture of the immediately reflected signal and the leaking
cavity-field, providing a sensitive phase-dependency close to resonance. In the following we
will show how the error-signal can be obtained from the reflected signal, and how we use it
to correct the laser frequency.

The error-signal of the PDH-scheme also has the advantage of only being sensitive to
power fluctuations caused by frequency fluctuations - not to power fluctuations of the laser
itself.
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Laser
feedback

EOM
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λ/4
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Main 
laser
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LP  (2Ω)

LP (DC)

Error-signal

Figure 2: A simplified view of the PDH setup. Red lines indicate laser light and dashed
lines indicate electrical signals. The phasemodulated light from the EOM resonates in the
Fabry-Perot cavity (FP). A mix of leaking and reflected signals from the cavity is directed
towards a photodiode (PD) by use of a polarising beam splitter (PBS), and manipulated to
produce our feedback signal. The electrical components shown here are a frequency generator
Ω, two low-pass filters (LP) and a mixer (DBM).

2.1.2 Obtaining the error-signal

The reflected cavity-signal
We consider a symmetric cavity of length L with no losses and mirror amplitude reflection
coefficient r. We write the incident wave as Ein = E0e

iωt−k·x, where the phase factor is
choosen to be equal to unity at the surface of the cavity entrance-mirror.

The reflected beam Ere off the Fabry-Perot cavity, is the sum of the immediately re-
flected field from the mirror surface rEin and the leaking cavity field, which consists of field
components having completed a different number of roundtrips in the cavity:

Ere = rEin − Ein
(
t2r · e−iω 2L

c + t2r3 · e−iω2 2L
c + t2r5 · e−iω3 2L

c + ...
)
.︸ ︷︷ ︸

Leaking cavity field

(2.1)

Whereas the frequency of the reflected and leaking fields in eq.(2.1) will always be the same,
their phase-difference will depend strongly on the value of the frequency and/or on the length
of the cavity.

When the beam is exactly resonant with the cavity, a π phase-shift will occur between
the leaking field and the immediately reflected field, thus cancelling the reflected beam. If
the beam is not perfectly resonant with the cavity, the reflected beam will no longer cancel.

The expresion in eq.(2.1) is a geometric series, which can be summed up. For the sym-
metric cavity with no losses, we obtain the reflection coefficient:

F (ω) =

(
Ere
Ein

)
=
r
(
exp

(
i ω
FSR

)
− 1
)

1− r2 exp
(
i ω
FSR

) , (2.2)

where FSR = c/2L is the free spectral range of the cavity, and the constant c is the speed of
light. The real and imaginary part of the reflection coefficient is plotted in figure 3. Notice
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that the imaginary part of the reflection coefficient provides us with the information about
which way to correct the laser, since the value depends on the sign of the detuning from
resonance.
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Figure 3: Real and imaginary part of the reflection coefficient F (ω). The imaginary part
provides us with feedback information used to discriminate between the directions of the
detuning from resonance.

Modulation of incident beam
Our incident beam passes through an electro-optic modulator (EOM) generating side-bands
on the carrier frequency by modulating the phase of the light, see figure 2. Sidebands are fre-
quency components added to the carrier frequency at an interval of the modulation frequency
Ω apart.

An EOM is based on a crystal with the property, that the refractive index is a function
of the local electric field. When the crystal is exposed to a local electric field of frequency Ω,
the light passing through the crystal will be phase modulated. The modulation will result
in first-order side-bands at ±Ω. Neglecting all other side-bands (of very small amplitude),
we get the phase-modulation [7]:

Ein = E0e
i(ωt+β sin(Ωt)) (2.3)

= E0

∞∑
n=−∞

Jn(β)ei(ω+nΩ)t (2.4)

≈ E0

(
J0(β)eiωt + J1(β)ei(ω+Ω)t − J1(β)ei(ω−Ω)t

)
. (2.5)

Here we have expanded the expression using Bessel-functions and neglected the higher order
terms, while using the relation J−1(β) = −J1(β). Our incident light field can be described as
three separate beams with frequencies ω and ω ± Ω; and amplitudes J0(β) and J1(β). The
coefficient β is known as the modulation depth, describing the intensity relation between
carrier and side-band frequencies.

The total reflected beam expressed in terms of the reflection coefficient becomes:

Ere = E0

[
F (ω)J0(β)eiωt + F (ω + Ω)J1(β)ei(ω+Ω)t − F (ω − Ω)J1(β)ei(ω−Ω)t

]
. (2.6)
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What we measure, however, is the power incident on a photodiode. Since the reflected power
Pre ∝ |Ere|2 the expression becomes:

Pre ∝|Ere|2 (2.7)

=Pc|F (ω)|2 + Ps
(
|F (ω + Ω)|2 + |F (ω − Ω)|2

)
+ 2
√
PcPs{Re (F (ω)F ∗(ω + Ω)− F (ω)F ∗(ω − Ω)) cos(Ωt)

+ Im (F (ω)F ∗(ω + Ω)− F (ω)F ∗(ω − Ω)) sin(Ωt)}
+ (2Ω terms).

Here Pc and Ps is the carrier and side-band power respectively.

Isolating the sin(Ω) term
In eq.(2.7) we are interested in the sine-term oscillating with Ω as it contains information
about the imaginary part of F (ω). This part can be isolated by using a low-pass filter to sup-
press terms oscillating with frequencies of 2Ω or higher, and then applying a doubly-balanced
mixer (DBM) to select the sine-term, see figure 2.

The mixer multiplies two input-signals. From the trigonometric identities, we have the
general relation:

sin(ω1t) sin(ω2t) =
1

2
cos[(ω1 − ω2)t]− 1

2
cos[(ω1 + ω2)t] (2.8)

sin(ω1t) cos(ω2t) =
1

2
sin[(ω1 − ω2)t] +

1

2
sin[(ω1 + ω2)t] (2.9)

By multiplying the reflected signal of frequency ω2 with a reference signal of frequency ω1, the
mixer generates signals corresponding to both the sum and the difference of the frequencies
of the two input-signals.

If we apply another low-pass filter after the mixer and choose ω1 = ω2 = Ω only the
1
2 cos[(ω1−ω2)t] term in eq.(2.8) will survive, since the low-pass filter will extinguish cos(2Ωt)
and sin(2Ωt). We are, in other words, able to select the sine-term in eq.(2.7) by mixing the
signal from eq.(2.7) with sin(Ωt).

2.1.3 The behaviour of the error-signal

We do not know the reflectivity r of the mirrors in eq.(2.2), so we make a first order approx-
imation of the reflection coefficient F (ω). If we write ν = ν0 + ∆ν, we can take advantage
of the fact that the ratio between the frequency offset and the resonance frequency ∆ν/ν0 is
small compared to the free spectral range. We can approximate the exponentials in eq.(2.2)
as:

exp

(
−2πiν

FSR

)
≈ 1− 2πi∆ν

FSR
. (2.10)

This approximation gives us an expression for the reflection coefficient F (ν) dependent on
the FWHM (Full Width at Half Maximum) of the cavity resonance signal δν, rather than
the free spectral range and the mirror reflectivity [8, p.272].

F (ν) = −∆ν(∆ν + iδν/2)

(δν/2)2 + ∆ν2
. (2.11)

Having isolated the terms in eq.(2.7) oscillating with Ω and using eq.(2.11) we can write
the reflected power as:

Pre = b+ a[A(∆ν) cos(Ωt) +D(∆ν) sin(Ωt)], (2.12)

6
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(a) Plot of cosine-dependency A(∆ν).
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Figure 4: Plot of the sine D(∆ν) and cosine A(∆ν) terms of Pre. The sine term (b) is
interesting since it is linear around resonance, and provides us with a sign discriminating
between detuning to the right and left of resonance. Ideally this is the signal we want to lock
our laser with. The first-order sideband to sideband span (later referred to as the span of the
side-bands) of this signal is simply the frequency interval 2Ω.

where A and D are functions of ∆ν,

D(∆ν) =
−4Ω2(δν/2)∆ν

[
(δν/2)2 −∆ν2 + Ω2

]
[∆ν2 + (δν/2)2] [(∆ν + Ω)2 + (δν/2)2] [(∆ν − Ω)2 + (δν/2)2]

, (2.13)

A(∆ν) =
4Ω(δν/2)2∆ν

[
(δν/2)2 + ∆ν2 + Ω2

]
[∆ν2 + (δν/2)2] [(∆ν + Ω)2 + (δν/2)2] [(∆ν − Ω)2 + (δν/2)2]

. (2.14)

We can investigate the behavior of our signal according to figure 4a and 4b. The ideal
shape of our error-signal has only the sine-component of eq.(2.12), see figure 4b, as the curve
D(∆ν) will provide information of the frequency offset close to resonance. However, a signal
of this pure type is not necessary and we will see later that, in our case, we have a small
contribution from the cosine component.

The sine-component is linear close to resonance, which is desirable since the deviation
from zero is used as feedback to the laser.

2.2 Noise analysis
It is possible to extract information about the linewidth of our laser and how efficient the
feedback lock is by analysing the noise spectrum of the error-signal presented in section 2.1,
eq.(2.12).

Correlations between measured data can be expressed by the autocorrelation function.
The autocorrelation function for the electric field is:

RE(τ) = 〈E(t+ τ)E∗(t)〉 (2.15)

where E(t + τ) is the electric field at the instant t + τ . For totally uncorrelated fields the
time average in eq.(2.15) cancels for all possible values of τ and therefore RE(τ) = 0.

7
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Using the Wiener-Khintchine theorem [8, p.57], one can determine the power spectral den-
sity function SE(ν) from the autocorrelation function RE(τ). The power spectral density
describes the power carried by the wave per unit frequency. Intuitively it gives a picture of
the frequency components of the wave.

The power spectral density function and the autocorrelation function constitute a Fourier
transform pair:

SE(ν) =

∫ ∞
−∞

exp(−i2πντ)RE(τ)dτ . (2.16)

If we in eq.(2.16) assume an electric field with frequency fluctuations but negligible amplitude
fluctuations and a real amplitude, we arrive at the power spectral density [8, p.65]:

SE(ν − ν0) =E2
0

∫ ∞
−∞

exp[−i2π(ν − ν0)τ ] exp

(
−
∫ ∞

0

Sν(f)

f2
[1− cos 2πτ ]df

)
dτ, (2.17)

where Sν(f) is the power spectral density of frequency fluctuations, and f is the correspond-
ing Fourier frequency.

ƒ

S  (ƒ)

1/ƒ noise

white noise

δ function

ƒc

ν

Figure 5: Conceptual model of the power spectral density showing the corner frequency fc
between the 1/f and white noise regimes. Because of energy-conservation, the power spectral
density must go to zero at high frequencies.

Figure 5 shows a conceptual model of the power spectral density Sν . Three characteristic
areas are shown, indicating the typical behaviour of the noise. The δ-function near zero shows
up when the signal fluctuations have a non-vanishing mean, corresponding to a DC-offset of
the signal. The 1/f -dependency typically stems from technical noise, such as electrical carrier
fluctuations [9, 10]. The power spectral density becomes independent of the frequency in
the white noise regime, and must finally go to zero at high frequencies, for reasons of energy
conservation.

Generally the power spectral density can be reasonably well modelled [8, p.58] by a
superposition of five independent noise contributions, of which three have been mentioned

8
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above. They each obey a power law, with integers −2 ≤ α ≤ 2:

Sν(f) = ν2
0

2∑
α=−2

hαf
α, (2.18)

where ν0 corresponds to the centre laser frequency, and hα is a coefficient giving the weighting
of the particular noise type. We have that α = −2 corresponds to a random walk of frequency
noise often caused by the surrounding environment, such as changes in temperature and
vibrations. Flicker frequency noise observed in active devices (such as our diode laser)
follows the α = −1 behaviour, and the α = 0 behaviour is white frequency noise. The
positive values for α are flicker phase noise and white phase noise corresponding to α = 1
and α = 2 respectively.

2.2.1 Laser lineshape

The lineshape of the laser in general has a Voigt profile [11]. The Voigt profile is a convolution
between the Lorentzian and Gaussian distribution, and thus the profile of the laser can be
approximated as either Lorentzian or Gaussian, depending on the power spectral density
profile.

From the ratio Sν(fc)/fc one can determine how to best approximate the lineshape [8,
p.67]:

Sν(fc)/fc � 1 → Lorentzian (2.19)
Sν(fc)/fc � 1 → Gaussian. (2.20)

Here, fc is the corner frequency above which the white noise dominates, see figure 5. The
Lorentzian lineshape generally originates from spontaneous emission in the laser diode,
whereas statistical fluctuations of charge-carriers in the laser causes a Gaussian lineshape.
This Gaussian can be thought of as the result of the Lorentzian fluctuating about a central
frequency [11].

Lorentzian power spectral distribution
If we interpret our signal as having only white frequency noise S0

ν , and thus concentrate on
Fourier frequencies above the corner frequency fc of figure 5, the scenario of eq.(2.19) be-
comes a very good approximation. This scenario is relevant for very short timescales, where
the fequencies below fc are no longer of interest. Performing the integration in eq.(2.17)
leads to:

SE(ν − ν0) = 2E2
0

γ/2

(γ/2)2 + 4π2(ν − ν0)2
, (2.21)

where γ = 2π(πS0
ν). The power spectral density of the electric field given in eq.(2.21) is a

Lorentzian distribution with full width half maximum:

∆νFWHM = πS0
ν . (2.22)

So by determining the value of the white noise floor S0
ν , one can estimate the Lorentzian

linewidth of the laser.

Gaussian power spectral distribution
For signals with a more prominent 1/f -part of the noise spectrum, the linewidth can no
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longer be represented by a Lorentzian. Here, eq.(2.20) will be the proper approximation.
The linewidth for the Gaussian lineshape can be computed as the mean frequency excursion:

∆νrms =

√∫ fc

1/T

Sν(f)df, (2.23)

where T is the measurement time defining the lowest measurable Fourier frequency in the
spectrum. If the power spectral density has been measured we can estimate the linewidth
by numerical integration of the obtained curve up to the corner frequency fc.

In section 4.2.6 we compute both these linewidths, as our power spectral density does
not belong to either of the extremes in eq.(2.19) and (2.20). But first we will take a look at
the experimental setup.

10
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3 Setup

A large part of our project has consisted in building the actual PDH-system. This system is
used to lock the laser to a cavity-resonance, and thus eliminate some of the coarse noise of the
laser frequency. Our system intentionally uses a low-finesse cavity, which will give us a large
capture range for the locking of the laser frequency compared to a high-finesse cavity. Hereby
we greatly increase the ease with which we can lock our laser to the high-finesse PDH-system.
In figure 6 an overview of our low-finesse PDH setup is shown. In the following sections we
detail the essentials of the system and discuss some of the considerations we made in the
process of setting up the system.

Fabry-Perot
Interferometer

FP

Laser 
feedback

Amp

LP �lter
11 MHz

LP �lter
140 MHz

Mod. freq.
Ω = 78 MHz

DBM

φ

Error-signal

Cavity-signal
FP 

cavity

Pinhole 
(Ø = 150 μm)

PD#2

PD#1

PBS

Optical
isolator

EOM

λ/2

λ/4

From
main laser

Figure 6: Setup of laser system. Red lines indicate laser light, and dashed lines indicate
electrical signals. The reflected light from our Fabry-Perot Cavity (FP) is directed towards a
separate photodiode (PD#2) via a polarizing beam splitter (PBS), and here manipulated into
the error-signal we seek. EOM is the Electro-Optic Modulator, λ/2 and λ/4 are retarder-
plates controlling the polarization of the beam, and enabling us to separate the reflected
cavity-signal.

3.1 Overview

From the main laser a small fraction of the light is split off and directed towards our setup.
The light is oscillating in a single mode, at a wavelength of 914 nm. Firstly, the light passes
through an optical isolator, a pinhole and a λ/2-plate ensuring that we minimize the optical
feedback, and have control over the shape and polarization of our beam. We then modulate
the phase, by passing the light through an EOM, generating side-bands at a frequency-offset
of ±Ω, where Ω is the modulation frequency. In order to isolate the carrier and first order
side-band frequencies, we choose Ω = 78MHz. The light is then sent to a cavity with the
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front mirror mounted on a piezo crystal. The piezo allows us to change the length of the
cavity and thus scan over an interval of resonance-frequencies.

The reflected signal is directed onto the second photodiode (PD#2) by means of a po-
larizing beam splitter (PBS) followed by a λ/4-plate. The linearly polarized light incident
on the EOM is converted to circularly polarized light by the λ/4-plate. Upon reflection
the light travelling back from the Fabry-Perot cavity is converted to the orthogonally linear
polarization mode with respect to the incoming light. This makes it possible for the PBS to
divert the reflected part of the light without inflicting the incoming light.

The reflected light will have a profile Ere as described in section 2.1 when incident on
the photodiode (PD#2). Passing the electrical output signal through a low-pass filter with a
cut-off frequency of 140MHz, we remove the part of the signal stemming from higher-order
side-bands. After amplifying this signal, we mix it with our modulation signal to obtain
components oscillating with the sum and the difference of the two frequencies. Via another
low-pass filter (at 11MHz) we isolate the difference signal, obtaining the error-signal we
can use as a locking-signal. A feedback loop finally regulates the main laser current, and
consequently its frequency.

3.2 Considerations

In the overview above, the essential parts of the PDH-scheme are mentioned and their func-
tions explained. While these are essential to the system, they do not constitute the complete
setup. A number of considerations has to be made in order to obtain the optimal form of
the laser-beam.

Beam shape
It is important that the beam has the optimal shape, that is, it needs to be Gaussian and
adapted correctly to our Fabry-Perot interferometer, i.e., have the right beam waist, and
a curvature matching the curvature of the mirrors. Pinhole and lenses are implemented in
order to improve and control the Gaussian shape of our beam.

The first lens focuses the beam at the pinhole, and by choosing a pinhole slightly smaller
than the beam waist, we ensure that our beam is nice and Gaussian without losing too much
power.

The following three lenses are all implemented in order to regulate the position of the
beam-waist as well as the Rayleigh-range, ensuring that we can properly couple light into
our Fabry-Perot cavity. To keep the signal to noise ratio as high as possible and for power
reasons, the reflected beam is also focused onto the photodiode (PD#2) with a lens.

Beam trajectory
Mirrors are needed for several practical reasons; they are used to navigate the laser beam and
reduce the physical size of the setup, but also to allow a correct incidence on the photodiodes,
the pinhole and, most important of all, on the cavity.

While elements like the PBS, EOM, retarder-plates and lenses are not very sensitive with
respect to the beam trajectory, our pinhole and cavity are very much so. Here the two
mirrors are essential as they allow us to steer both the direction and the origin of the beam,
in terms of incidence on the second mirror.

Cavity length
As mentioned above, the front cavity-mirror is mounted with a piezo, allowing us to scan
over several resonance frequencies by modulating the length of the cavity. This greatly im-
proves the ease of adjusting mirrors and lenses to obtain the correct resonant mode. It also
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provides us with an easy method of producing plots of the error-signal as well as the signal
of resonance in the cavity, recorded with PD#1, see figure 7. When locking the laser signal
we do not scan the length of the cavity, but use the piezo to adjust our cavity length to any
desired resonance frequency.

Modulation frequency Ω
The EOM generating side-bands is set to a specific frequency Ω chosen to optimize our setup.
It is important that this frequency is not too low, in order to properly be able to discriminate
between the carrier signal and the side-bands, thus arriving at the correct error-signal.

Most of our measurements have been made with a modulation frequency of Ω = 78MHz,
giving side-bands just on the shoulders of the carrier Lorentz-shape. Throughout we have
used the same phase-relation between modulation signal and reflected signal, adjusted by a
delay line rather than an actual phase-modifying component as in figure 6. This provides a
robust error-signal with the characteristic shape of figure 4b.

Later on, measurements were made with a modulation frequency of Ω = 98MHz, in order
to more efficiently extinguish the higher order side-bands with our first low-pass filter. This
provided no disadvantages with respect to the error-signal shape, and could well have been
implemented earlier on, had we wished to do so.

Optical isolator
Finally, an optical isolator is introduced in the beginning of our system in order to minimize
the optical feedback generated by reflections interfering with the main laser. Every element
in our setup will cause reflections, and if the incidence of the laser beam is normal to the
surface of the element, reflections will follow the exact same path back. If they reach the
main laser, their interaction with it will cause a very noisy laser signal in our whole system.
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4 Results
In this section we will present some of the results obtained from analysing our data. The first
section will concentrate on characterizing our cavity and providing experimental confirmation
of some of the above theory.

Our system enables us to stabilize the input laser by locking it to the resonance frequency
of the cavity. Characterizing the efficiency of this lock will constitute the second part of this
section (4.2), providing us with a characterization of the signal noise as well as the laser
linewidth.

4.1 Pound-Drever-Hall stabilization of the laser
4.1.1 Measurements

As seen from the setup in figure 6, we have two measurement points in our system (shown
as small yellow graphs). One is positioned after the mixing system following the photodiode
that receives the reflected signal (PD#2), as described in section 3. This measurement point
provides us with the error-signal we use for locking the laser-frequency.

The other measurement point is positioned at the photodiode (PD#1) directly after our
cavity and provides us with a resonance-signal (later referred to as the cavity signal). This
signal is simply used to align the system properly and to characterize our cavity.

We wish to scan the frequency domain, and rather than trying to change the laser fre-
quency directly, we make use of the piezo-mounted mirror on the cavity front. With this
piezo, we can scan over a length-interval of the cavity. Changing the length of the cavity L
changes the resonance frequency ν0 and will provide us with a picture corresponding very
neatly to a scan over frequencies,

ν0 =
c

2L

To first order
=⇒ δL

L
=
δν

ν0
. (4.1)

The scan-signal is a triangle-wave modulation at approximately 60Hz, enabling us to have
one or two full error-signals in one scan cycle.

Our raw data is measured in time versus voltage, as seen on figure 7. Since we applied
a triangle-wave to the piezo crystal, see figure 7c„ the time is directly proportional to the
voltage, and thus the cavity length.

4.1.2 Calibration

As explained in section 2.1 our EOM modulation frequency Ω generating side-bands on the
laser frequency results in a characteristic span of the first-order side-bands, see figure 4b.
The offset from carrier-frequency to first-order side-bands is Ω in the frequency domain,
hence we know that the frequency-difference in the error-signal between the two side-bands
is 2Ω = 156MHz.

This knowledge provides us with a conversion factor between time and frequency, where
the time is proportional to a given voltage of the piezo, or length of the cavity.

Non-linearity of frequency scan
When measuring the span of the side-bands of our error-signal, as displayed in figure 4b,
we see that the span varies with time t. In order to distinguish between this span and our
known value 2Ω, we label the measured span of the side-bands 2∆, where [∆] = s. We obtain
values for 2∆ in the range 0.584ms to 0.808ms by fitting to the error-signals, see section
4.1.3. A scan-period lasts for approximately 8ms.
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Figure 7: Plot of measured cavity-signal, error-signal and scan-signal from oscilloscope. With
reference to figure 6, figure 7a) is obtained by measurement with PD#1, and figure 7b)
with PD#2. The scan-signal in figure 7c) is obtained by connecting the frequency-generator
directly to the oscilloscope. The signal of figure 7c) is applied to the piezo thereby changing
the cavity length and thus scanning over resonance frequencies. This gives rise to the signals
in figure 7a) and 7b) showing us the cavity resonances and the corresponding error-signals,
respectively. Notice the difference in the span of the side-bands of the error-signal depending
on time, which is proportional to the scan-signal voltage.

If the frequency scaled linearly with time then the measured span of the side-bands would
be constant: 2∆ = constant · 2Ω, because all the datasets are modulated with the same fre-
quency Ω = 78MHz. Since this is not the case, it seems that the conversion between time
and frequency is non-linear.
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Calibrating the frequency axis
From each measured span of the side-bands in the error-signals, we can compute a stepsize
s = Ω/∆ relating an interval of scanning-time to an interval of frequency. Due to the non-
linearity this stepsize will be dependent on where in the scan-period we are, and thus seen
as time-dependent.

In figure 8 the calibration stepsize s as a function of time t is plotted together with a fit
to s. We have used a power-function for the fit, since a plot of ∆ versus time t on a double
logarithmic plot exhibits a linear trend.
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Figure 8: Calibration curve for the frequency axis, showing 95% confidence limits of the fitted
curve. The datapoints are obtained by noting the span of the side-bands ∆ as a function of
time, and thus piezo voltage, see scan-signal in figure 7b. The calibration stepsize is ∆/Ω.
The fitted values of the coefficients are: a = 0.77MHz/msn+1, n = 0.17, b = 1.26ms.

The fitted stepsize function s(t) in figure 8 allows us to deconvolute the time-axis of our
datasets and convert the time-axis to frequency. We cannot determine an absolute zero-
point for the frequency axis, but the frequency intervals will have the right size, which is all
we are concerned with.

Origin of the non-linearity
A first guess as to the origin of the non-linearity of the scan could be the piezo crystal used
to scan the cavity. When a piezo crystal is exposed to high voltage it can change length
in a way which is not entirely linearly dependent on the voltage. This can be due to the
structure of the piezo crystal itself or, for instance, due to the glue used between the piezo
and the cavity-mirror.
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4.1.3 Cavity FWHM from error-signal

The error-signal is generated from the light reflected off the cavity as described in section
2.1. The error-signal controls the feedback loop, used to stabilize our laser, but in order to
analyse it properly we split some of the signal off to an oscilloscope. What we observe on
the oscilloscope is a voltage-readout as a function of time. We modulate the piezo, and thus
the length of the cavity, and make use of the conversion given in eq.(4.1).
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Figure 9: Example of fitted error-signal. The small fit-interval minimizes distortion errors
due to the non-linearity of the frequency-axis. The error-signal is not the pure sine-term of
eq.(2.7) we see in figure 4b, but also contains a small part of the cosine-component A(∆ν),
see figure 4a. The fit yields a FWHM of 10.2MHz with a fit uncertainty of ∼ 100 kHz.

Fitting to the error-signal
We wish to fit eq.(2.12) to our error-signals, in order to determine the characteristic FWHM
of the cavity resonance, see figure 9. To do this we use only a small portion of the dataset,
zooming in on a single error-signal. We do this for several reasons:

Firstly, some of our datasets have multiple visible error-signals, but only one or two that
is fully visible, making them a candidate for fitting. Other datasets will include error-signals
from the second half of the scan-period. These error-signals are mirrored, and will once again
result in poor fitting. Both of these instances is represented by the error-signal to the far
left on figure 7b.

Secondly, our time-axis does not scale linearly with frequency, and consequently a smaller
fit-interval results in less distortion. The fitted values of the span of the side-bands in the
error-signals are used to produce the calibration curve in figure 8.

In section 2.1.3 we concluded that the pure sine-component D(∆ν) of eq.(2.12) would be
the ideal error-signal, see figure 4. We also mentioned that it was no necessity. The signals
we have obtained are all similar to figure 9 with respect to the sine vs cosine-dependency on
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the phase θ. Here, we are not dealing with a perfect sine-component but rather a mixture
of the sine and cosine components. This results in the peaks close to resonance becoming
smaller than the other peaks. For a very accurate lock, the linear part of the error-signal
near resonance needs to be as steep as possible. Having a pure sine-component ensures this.
In our case, however, the efforts needed to adjust the phase θ to yield only a sine component,
do not match the benefits of a better accuracy.

A few datasets were discarded due to severe voltage fluctuations and distorted propor-
tions. The voltage fluctuations these error-signals exhibited, could be caused by acoustic
noise, whereas laser-drift could distort the proportions of the error-function, ruining the
symmetry of the error-signal with respect to the carrier-frequency.

4.1.4 Cavity FWHM from cavity-signal

The part of the laser-light that propagates through our cavity will have increased intensity
around cavity resonance. This results in a signal with resonance peaks, an interval of the
free spectral range (FSR) apart. In section 4.1.2 we found that there is a non-linearity of the
time-axis, making it insufficient to simply measure this interval directly. By characterizing
the non-linearity though, we are able to find the FSR, and this will be done i section 4.1.5.
In this section we will investigate the resonance peaks themselves, and obtain a value of their
FWHM from fitting a Lorentzian curve to the data, see figure 10.
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Figure 10: Example of a Lorentz-fit to a resonance peak. The side-bands added to the laser
signal by the EOM are not visible as they are outside the frequency range. The fit yields
FWHM = 9.2MHz with a fit uncertainty of ∼ 100 kHz.

In figure 10, we only see the resonant carrier-frequency of our laser signal, as the side-
bands expected at approximately 680MHz and 436MHz are out of range. Furthermore the
intensity of the side-bands are too low for the oscilloscope to resolve them at this gain setting.

One of the fit parameters of a Lorentzian is the FWHM, and we readily obtain values for
each dataset. Similar to the treatment of the error-signal, we only fit to a small interval in
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the vicinity of the resonance peak. Each resonance peak has a corresponding error-signal,
see figure 7, and the stepsize s calculated from this error-signal is used to transform the
time-axis to frequency units.

The FWHM obtained from the cavity-signal can be seen in figure 11 plotted together
with the FWHM obtained from the error-signal. The green errorbars are the fit-uncertainties
from the fit to the error-signal. The blue errorbars results from the fit-uncertainties to the
cavity-signal and from the propagated uncertainties of the stepsizes. The weighted mean
and standard deviation of the weighted mean are also displayed on the figure.

The weightings used are from the fitting uncertainties. We obtain a weighted mean:

FWHM = (9.7± 0.1)MHz. (4.2)

The linewidth of the laser does not contribute significantly to our measurements of the cavity
FWHM. For the measured FWHM we have:

δFWHM =
√
δν2
cavity + δν2

laser. (4.3)

But the contribution of the laser is very small, since δνcavity ∼ 1MHz and δνlaser ∼ 10 kHz.
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Figure 11: FWHM obtained from both error- and cavity-signal. This is the linewidth of our
cavity. Error-bars display fit uncertainties, whereas the light blue area visualizes the standard
deviation of the mean (SDOM).

4.1.5 Free Spectral Range

The calibrated frequency axis allows us to determine the free spectral range (FSR) by simply
calculating the distance in frequency between the centre of two error-signals in a dataset. If
the centre of the first error-signal is denoted t1 and the centre of the second error-signal is
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denoted t2 we have:

FSR =

∫ t2

t1

s(t) dt, (4.4)

where s(t) is the fitted step-size function shown in figure 8. The interpretation of eq.(4.4)
is as follows: Each infinitesimal time-step is multiplied by the step-size in that particular
point. We sum them all up to obtain the interval in units of frequency.

Using eq.(4.4) we get the FSR values displayed in figure 12. We have 3 datasets each
containing 2 error-signals, and thus 3 values of the FSR. The error propagated from fit-
uncertainties to the error-signal and in the fit to s(t) turns out to be much smaller than the
standard deviation (SD) of the three calculated FSR values, and they are all within the data
points. We therefore use the SD of the three FSR values to calculate the standard deviation
of the mean (SDOM). Our result becomes:

FSR = (1201± 6)MHz. (4.5)

If we used the propagated uncertainties instead, figure 12 could indicate a systematic error.
Temperature fluctuations could cause a drift of the FSR, but since the datasets are recorded
within 30 minutes and the expansion of the cavity Zerodur to first order gives rise to a
frequency change of less than 1 kHz for a temperature change of 0.1K, this explanation does
not seem reasonable.
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Figure 12: Free spectral range (FSR) values of our cavity. By utilizing the calibration for
the non-linearity of our frequency-scan found in section 4.1.2, we obtain a value of the free
spectral.
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4.1.6 Cavity finesse and length

We have now obtained values of our cavity FWHM at resonance and the cavity FSR. This
allows us to calculate the finesse F as well as the length L of the cavity. We are dealing
with a low-finesse cavity, as this was an essential part of the idea of using our PDH-setup to
pre-stabilize the laser. We also have a measure for the length of the cavity obtained from
mirror-specifications and simple measurement with callipers.

The cavity finesse and length are calculated from the above values as follows:

F =
FSR

FWHM
, (4.6)

L =
c

2

1

FSR
. (4.7)

Using the weighted mean of our FWHM-value in figure 11, we obtain the finesse:

F = 124± 2.

The measured length of our cavity is found by calculating the distance between the two
coated mirror-surfaces. This has been done by taking into account the length of the glass rod
separating them, the (neutral) piezo length and the curvatures of the mirrors. We arrive at a
length Lmeasured = (124.7±0.1)mm which we compare to our data Ldata = (124.8±0.6)mm
and obtain:

Ldata − Lmeasured = (1.1± 0.7)mm.

The difference observed here could be explained by glue on the mirror surfaces and the piezo.

4.2 Linewidth of the stabilized laser
Ideally our laser would be oscillating at only one frequency (∼ 328THz). However, in reality
this will not be the case, and many factors can contribute to noise in the frequency. Noise
is basically any unwanted oscillations of the laser frequency in time, and can result from
thermal, acoustic or electromagnetic disturbances of the system.

We use a Fast-Fourier-Transform spectrum analyser (FFT) to record a noise spectrum.
An FFT has an implemented algorithm that allows it to calculate a spectrum corresponding
closely to the Fourier-transform of the signal, in a very short time. Using this apparatus,
we can construct a Fourier-spectrum with detailed information about the distribution of
frequencies in our voltage signals. The signal generally has the characteristic shape shown
in figure 5, with a 1/f dependency followed by a white noise floor. The frequencies of
interest here are extremely low compared to our laser frequency. We modulate our signal at
78MHz in order to obtain the error-signal described in section 4.1 and even this modulation
frequency is too far out in the white noise regime to be visible in our spectra.

When analysing a signal the different frequencies that appear in our Fourier-spectrum are
denoted Fourier-frequencies. They are the sinusoidal components that constitute the total
signal, and not to be confused with what we denote as the frequency of the laser.

The Fourier-frequencies which we will look at in the following are all in the range of a
few Hz to ∼ 10 kHz. This range will only just allow us to see the level of the white frequency
noise but is chosen out of technical considerations. We demand a certain resolution of the
FFT in order to resolve the details in the obtained spectra, and this limits the range of
frequencies to a maximum of ∼ 10 kHz. But since the information we are interested in is
contained within the interval of Hz to ∼ 10 kHz it is not a problem.
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By utilizing what we have presented in section 2.2.1 we will determine the linewidth of
the laser in this section. This is done with and without employing our feedback loop, thus
providing us with an estimate of the efficiency of our lock. Furthermore, the Fourier-spectra
will allow us to characterize the noise, pointing us in the direction of any sources of noise
that it might be possible to eliminate.

4.2.1 Measurements

The error-signal is coupled to the FFT to obtain our noise spectrum. From the setup in figure
6 it is seen that if we measure the error-signal, it is not just the noise of the laser frequency
we measure. We will be measuring all of the effects from the the electrical components added
to the laser noise.

We are interested in obtaining the power spectral density (PSD) of our signal. By mea-
suring at this point, any noise added by the electrical components will constitute a part of
the feedback signal. This enables us to compare the noise of the total signal with the noise
of the electrical components alone. Measuring with no light incident on the photodiode
(PD#2) will provide us with an estimate of the noise from the electrical components alone.
A similar measurement, but this time with the laser light, though tuned far off resonance,
incident on the photodiode, will provide us with an estimate of shot-noise effects. The FFT
measures in units [V2/Hz] which constitutes a measure of power per frequency interval, since
power is proportional to the square of the electric field.

The bandwidth of the FFT determines the frequency bin size, and thus the smallest
frequency that can be resolved by the FFT. With the resolution of figures 14 and 15 our
FFT bandwidth was 30.6Hz.

4.2.2 Calibration

As we are interested in the PSD of frequency fluctuations and would like to be able to obtain
a measure of the laser linewidth, we wish to have the PSD in units of [Hz2/Hz]. Having these
units we will effectively get the value of the white noise floor in [Hz]. As the FFT measures
in units of [V2/Hz], we use information from the error-signal to obtain a conversion factor
C.

Close to resonance the error-signal is approximately linear, as displayed in figure 13. The
slope of the error-signal, provides the conversion factor C with units of [V/Hz], and thus
allows us to calibrate the PSD by multiplying our data points of units [V2/Hz] with 1/C2.

4.2.3 Power spectral density for Ω = 78MHz

In figure 14 the PSD of our laser modulated with 78MHz is displayed for four different
scenarios.

The green curve represents the noise of the free-running laser. We tune the cavity man-
ually to resonance with the laser, so that the drift of the laser frequency will not distort the
spectrum. In this situation we expect to find the largest amount of noise in our system.

The light blue curve is the electrical noise of the system, when the photo diode (PD#2)
is blocked with a piece of paper. We are effectively measuring the background noise of the
electrical components, providing us with a minimum level for the noise, and a minimum level
for how well we can lock the laser frequency.
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Figure 13: Plot of the error-signal and the cavity-signal for Ω = 78MHz. The slope C of the
error-signal is used for calibration of the noise spectrum. Here the side-bands at ±78MHz
with respect to resonance frequency are visible on the cavity resonance-signal.
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Figure 14: Power spectral density of noise for Ω = 78MHz. FFT Bandwidth: 30.6Hz.
Horizontal lines indicate white noise floors used for the calculation of Lorentzian linewidth.
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The red curve is the noise when the laser is far from resonance with the cavity, and is
barely visible in figure 14. There will be no error-signal here, and so this is done solely to
estimate whether the statistical fluctuations of photons, the shot noise, have an influence on
our spectrum. If the shot-noise from the photodiode were larger than the background noise
of the system, the red curve would contain more noise than the light blue. This, however, is
not the case. The level of the shot-noise is less than the background noise, and both the red
and light blue curve represent the background noise of the system.

The dark blue curve is the noise of our system when the laser is locked. Here, the laser
frequency is on resonance with the cavity, and the error-signal now provides a feedback
locking measure. As expected, this situation contains less noise than in the case of the free-
running laser, but the background noise seems to exceed the dark blue curve in the frequency
interval of 10 − 600Hz. This is unphysical because, as explained above, we know that the
noise level of the locked laser will not be able to pass under the noise level of the background.
When operating, the feedback lock receiving the error-signal tries to correct any unwanted
drift of the signal. Basically any noise in the signal is interpreted as a drift away from the
error-signal-resonance at zero voltage. Now if the laser did not have any noise, no correction
would be needed. However, the error signal will still be a superposition of the background
noise of the electrical components and the error-signal. This signal will demand a feedback
signal to the laser though no correction is needed, and thus noise will be written onto the
laser signal.

Figure 14 shows the locked-laser signal noise as being less than the background noise for
low frequencies. This evidently means that the noise written onto the laser frequency in the
above described process cancels out some of the inherent background noise of the system. It
is important to notice that the laser is not less noisy than the background, it merely looks
as though this is the case due to the noise written onto the laser frequency. While this is
our suspicion, we have not attempted to correct for it in our calculations. This omission is
due to the problem of properly evaluating the true noise.

In section 4.2.5 we will look closer at the background signal, attempting to analyse the
origin of the noise rather than just the level.

4.2.4 Power spectral density for Ω = 98MHz

In an effort to remove some of the noise we observed with the modulation frequency of
Ω = 78MHz, we did yet another measurement of the noise with a modulation frequency of
Ω = 98MHz. The modulation frequency is the frequency that determines how far away from
the carrier signal our side-bands are positioned. In the setup (section 3) we implemented
a low-pass filter with a cut-off frequency of 140MHz immediately after the photodiode,
PD#2 in figure 6, in order to cut away any higher-order side-bands. If this low-pass filter
does not sufficiently cut off the frequencies, the higher order side-bands will cause unwanted
disturbances - noise in our signal. Changing the modulation frequency to Ω = 98MHz did
not seem to neither worsen nor improve our error-signal, and the spectrum in figure 15 was
recorded.

The considerations in the previous section also apply to the PSD of the laser modulated
with Ω = 98MHz. The general level of the locked laser signal does not appear to have
changed much, and certainly not to have fallen, so we must conclude that Ω = 98MHz does
not provide us with a better locking signal than Ω = 78MHz.
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Figure 15: Power density spectrum of noise for Ω = 98MHz. FFT Bandwidth: 30.6Hz.
Horizontal lines indicate white noise floor used for the calculation of Lorentzian linewidth.

4.2.5 Analysing the spectra

The characteristic Fourier frequencies become interesting when trying to identify the sources
of noise.

In Danish power sockets 50Hz is the frequency of the AC-voltage, and thus a readily
identifiable source for 50Hz noise. Both figure 14 and 15 above show peaks at 50Hz as well
as at harmonic frequencies. The most plausible explanation of these peaks then, is that we
have not guarded ourselves well enough in the setup to avoid AC disturbances.

In the case of Ω = 78MHz, see figure 14, we notice peaks of the locked laser and back-
ground noise at 50Hz, 150Hz, 250Hz etc. In the case of Ω = 98MHz however, we see all
the harmonics of 50Hz, at 100Hz, 150Hz, 200Hz, 250Hz etc. The spectra for Ω = 78MHz
and Ω = 98MHz respectively were measured on different days allowing for circumstances to
change. That we see only the odd harmonics of 50Hz for Ω = 78MHz could provide us with
a hint to the origin of the source. Having only the odd harmonics corresponds to a square
modulation around zero, see figure 16a, and having all harmonics corresponds to a square
wave with minimum at zero, see figure 16b. This could indicate that the different distribu-
tion of harmonics come from the same source: a square-wave with an oscillating offset. Such
a signal could stem from a grounding problem in the setup.

The background noise seems to have fallen slightly in the case of Ω = 98MHz. Temper-
ature changes or other effects, due to different measuring dates, seem insufficient to explain
the factor of 2.5 we see between background and white noise. A plausible cause is effects of
the DBM (mixer) as well as the low-pass filter with a cut-off frequency of 140MHz. A low-
pass filter such as ours could readily extinguish notacibly more of the 98MHz modulation
signal than the 78MHz signal.

Finally, we see a significant bump in all laser spectra at Fourier-frequencies of 1− 3 kHz.
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Figure 16: Square-waves generated by odd harmonics (a) and all harmonics (b). These might
result in the difference of harmonics seen in figure 14 and 15.

This could stem from acoustic noise. It has to be an effect in the laser light as we do not
see the bump in the background spectra. A colleague in the laboratory operating a different
laser, but with the same piezo-system implemented in his setup observed a similar bump
in his noise-spectra, see figure 17 in appendix A. We conclude that this effect either is a
problem with mechanical noise in the piezo-mirror ensemble, or something that affects the
whole building (the lab is placed at the fourth floor).

4.2.6 Laser linewidth

In section 2.2.1 we saw that the lineshape of the laser can be calculated from the power
spectral density in two different ways, assuming either a Lorentzian or Gaussian lineshape,
depending on the ratio Sν(fc)/fc being much larger or smaller than one respectively.

However, the relation Sν(fc)/fc does not behave in this way in any of our datasets, and
we cannot claim one method to be much better than the other. Rather we will obtain a
value from both approximations and compare these two methods in the following.

Results
The results for the Lorentzian approximation is obtained by fitting a constant to the white
noise floor, thereby determining S0

ν . The linewidth is then δν = πS0
ν .

The results for the Gaussian approximation is obtained by integrating the datapoints
numerically:

δν =

√
∆f

∑
i

Sν(fi) for 1/T < fi < fc, (4.8)

where ∆f = fi+1 − fi = 8Hz is the frequency interval between successive datapoints and
Sν(fi) is the power spectral density value of the datapoint. Since the FFT has a bandwidth
of 30.6Hz we use 1/T = 30.6Hz.

For the laser modulated with 78MHz, we obtain the linewidth δν:

Lorentzian Gaussian∗ Sν(fc)/fc

Locked 41 kHz ± 2 kHz 63 kHz ≈ 3

Free-running 488 kHz ± 23 kHz 1.34MHz ≈ 21
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For the laser modulated with 98MHz, we obtain the linewidth δν:

Lorentzian Gaussian∗ Sν(fc)/fc

Locked 50 kHz ± 3 kHz 61 kHz ≈ 3

Free-running 629 kHz ± 23 kHz 1.49MHz ≈ 25

∗ Uncertainties not applicable.

The uncertainties in the linewidth using the Lorentzian lineshape approximation is obtained
from the fluctuations of the white noise. The uncertainty is calculated as the standard de-
viation of Sν from the fitted white noise floor when we only look at frequencies above the
corner frequency.

We have not been able to estimate the uncertainty when the Gaussian lineshape approx-
imation is used. Several complications occur. Firstly, noise is written onto the laser and
so the curve of the locked laser in figures 14 and 15 does not give a reliable value of the
power spectral density Sν for low Fourier-frequencies. When integrating the curve numeri-
cally, this is suspected to yield an error, resulting in the linewidth estimation becoming too
small. Secondly, the determination of the corner frequency fc is not straightforward. Since
we integrate from 1/T to fc, the value of fc affects the value of the integral.

Furthermore there is an uncertainty associated with each datapoint of Sν , and this un-
certainty is accumulated when we integrate numerically.

The values of δν obtained by the Gaussian approximation do not differ significantly from
the Lorentzian approximation values, and the Gaussian uncertainties are expected to be
σδνGauss ' σδνLorentz . However, since we only have the Lorentzian uncertainties, the values
obtained by this approximation seem more reliable.
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5 Discussion & Outlook
After stabilizing the laser linewidth by means of the PDH-scheme, we have now obtained a
laser linewidth of ∼ 50 kHz, which is an improvement of a factor of 10 compared to the free-
running linewidth. We did this using the error-signal obtained from a cavity with linewidth
∼ 9.6MHz. The further implementation of our setup into the larger-scale experiment will
use a cavity of linewidth 8.4 kHz [6]. The factor of ten improvement to the linewidth we have
obtained in the above, greatly increases the stability with which we will be able to lock the
laser to this next cavity.

When considering improvements on this system we must remember the objective. The
objective here was not to have the most precise stabilization possible, but rather to do a pre-
stabilization of the laser prior to a further stabilization using a high-finesse cavity. Factors
like the finesse of our cavity then, which intuitively could provide much better stabilization
if improved, are not of interest for improvements of this particular setup.

The low finesse of our cavity (∼ 124), and thus large linewidth is essential in ensuring
that the laser signal does not jump out of resonance with the high-finesse cavity, disabling
the lock. Ensuring that the signal does not have any unnecessary noise after this locking,
however, is just as essential. In section 4.2.5 we comment on some of the noise of the power
spectral densities in figures 14 and 15. All spectra here seem to exhibit noise at harmonics
of 50Hz as well as in the 1−3 kHz regime. It seems possible that both of these noise sources
could be eliminated thus reducing the noise level further. A colleague in the laboratory
is currently working on investigating the piezo control system possibly giving rise to the
1− 3 kHz noise.

Since we have now successfully pre-stabilised the laser the next step will be to couple
our PDH-system to the high-finesse PDH-system. The two outputs obtained from these
locks cannot simply be plugged into the laser simultaneously. Doing so will result in the two
signals ’competing’ against each other, and neither of the locks working satisfactory. Rather
the signals have to be split up, each controlling their own part of the spectrum.

As our setup is low-finesse and has a large capture-range, it’s locking signal will only be
used in order to correct for slow variations of frequency. The high-finesse cavity will thus
provide an error-signal correcting faster fluctuations. Discrimination of this type can be
implemented by using low/high-pass filters and having the two systems correct the laser by
different means. Most likely the slow corrections will be controlling a piezo, whereas the fast
corrections will control the laser current.

Before implementing the laser as the clock laser in the grand scheme, further investigation
of the full PDH-scheme could be interesting. Characterizing the laser noise and linewidth
using the PDH-systems each at a time, and finally comparing to the total setup in which
they work simultaneously, would be of great interest. This would provide a measure of the
effects of implementing this low-finesse system, and, hopefully, give us an indication of the
advantages this leads to. We have not conducted these further investigations in this thesis
because of the limited time-frame.

28



6 CONCLUSION

6 Conclusion
In the above sections we have described how we have successfully pre-stabilized our laser
using the Pound-Drever-Hall technique. We successfully built a PDH-scheme, and generated
the error-signal of interest.

Taking advantage of the properties of this signal we have locked the laser frequency, using
a feedback signal to the laser current, thus adjusting the frequency. The linewidth of our
laser has been reduced by a factor of 10 to a level where the tighter locking to a high-finesse
cavity seems much more promising.

While going through the process, we have characterised our Fabry-Perot cavity as well as
the residual noise in the locked laser. Using a cavity with a finesse of ∼ 124 we have obtained
a laser linewidth of ∼ 50 kHz, a first step on the way to reaching a suitable linewidth for
experiments with the singlet 1S0↔3P0 triplet transition of the 25Mg atom.
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A NOISE SPECTRUM FROM SIMILAR SOURCE.

A Noise spectrum from similar source.
Figure 17 shows the power spectral density (PSD) of a laser similar to ours. The spectra
was obtained by our colleague Philip G. Westergaard working in the same laboratory as us.
We see a significant bump in the noise around 1 − 3 kHz, just as we have seen in our own
spectra (section 4.2) indicating that the noise stems from an inherent noise in the laboratory
or from the use of similar equipment (most likely the piezo-systems, which are identical).

10
1

10
2

10
3

10
4

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Low frequency (Gaussian) linewidth
Locked: 56820.1 Hz
Free-running: 794219 Hz

Frequency (Hz)

PS
D

 (H
z2 /H

z)

Calibrated PSD of the laser noise for the lattice laser

 

 

High frequency (Lorentzian) linewidth
Locked: 235036 Hz
Free-running: 553345 Hz

Locked
Free-running
Far from resonance
No light

Figure 17: Power spectral density of different laser in the laboratory (courtesy of Philip G.
Westergaard). We here see the same noise around 1− 3 kHz as we did in our own spectra of
section 4.2.
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