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Abstract and Resume

Abstract

In this thesis we investigate possible phonon-magnon coupling in a magnetically frustrated multi-
ferroic crystal; YMnO3. This is done using inelastic neutron scattering on two triple-axis spectro-
meters; RITA2 and EIGER, stationed at the neutron source SINQ, PSI, Switzerland. Resent
research has showed anomalous shifts in thermal conductivity (κ), magnetic susceptibility (χ)
and heat capacity (C), as the YMnO3 crystal undergoes an antiferromagnetic phase transition at
its magnetic phase transition temperature, TN . This behaviour can be understood as critical spin
scattering of phonons in the phase transition region [3]. Our experiments show an avoided crossing
of the phonon and magnon branch in our crystal, aswell as a shift in phonon width around the
avoided crossing point, and around the magnetic phase transition.

Resume

I denne rapport har vi undersøgt hypotesen om phonon-magnon kobling i det magnetisk frustreret
multiferroiske materiale; YMnO3. Dette har vi gjort ved at anvende uelastisk neutron spredning på
to triple-akse spektrometre; RITA2 og EIGER, lokaliseret ved neutronkilden SINQ, PSI, Schweiz.
Den seneste forskning har vist kraftige ændringer i specifik varmeledningsevne (κ), magnetisk
susceptibilitet (χ) og varmekapacitet (C), når YMnO3 gennemgår en antiferromagnetisk overgang
ved dens magnetiske faseovergangstemperatur, TN . Denne opførsel kan forstås som kritisk spin
spredning af phononerne ved den kritiske faseovergang [3]. Vores eksperiment viser at phonon-
og magnongrenene undgår at krydse hinanden, samt en ændring i phonon bredden omkring dette
krydspunkt, og omkring den magnetiske faseovergang.
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1 Introduction

1.1 Motivation

Since the discovery of superconductivity, there has been considerations about its coupling to
magnetism. This means that there have been reflections on whether ferroelectricity and ferromag-
netism, which we will discuss later, are coupled or not. If there is such coupling, an exploitation
of these electric-magnetic dynamics could bring a technological advance in creating/investigating
superconducting materials, aswell as advance computer bit technology[2].

1.2 Magnetism and Ferroic properties

To describe magnetism in a material, we consider electron orbits and spins as magnetic dipole
moments. We identify these magnetic moments as magnetic spins. Given a system with no external
field applied above at high temperatures, the sum of the magnetic spins will equal zero over
a statistical average of the magnetic spin vectors. We say that the system possesses complete
rotational symmetry. However, if the system is cooled below the magnetic transition temperature,
often refered to as the critical temperature, the magnetic spins will align themselves in some order
[1]. This yields a broken symmetry of the system and therefore magnetic polarization, even when
there is no external fields applied to the system. In the case where all magnetic spins point in the
same direction, we call the system ferromagnetic, and the case where nearest-neighbour magnetic
spin point in opposite direction, the system is called antiferromagnetic [[1],p92].

1.3 Multiferroiticity

A ferroic property describes changes in the physcial properties of a material as it undergoes a
phase transition around a critical temperature. An example of this is the ferromagnet which
shows a spontaneous magnetization below the critical temperature. As mentioned previously,
ferroic properties are closely related to the symmetry of a given system. When the symmetry is
broken we are able to define an order parameter, which displays the magnitude of the ferroic order.
We can classify the known ferroic properties by considering symmetry under space-time inversion
[2], and will be discussed later in Section 2.2. A table of the ferroic properties under space-time
inversions are listed in Tabel 2.1.

1.4 Our experiment

We have investigated a rare-earth manganite, YMnO3, which exhibits an exciting coupling between
its structural and magnetic symmetries. It has been discovered that the manganite-ions in this
crystal change their relative position in the crystal with up to 3% of the lattice constant, which
is an enormous strain, below the magnetic phase transition temperature, TN ∼ 70K [3]. Research
also shows anomalous behaviour of this crystals heatcapacity from around the magnetic phase
transition temperature, TN , to even (∼ 200K) [4]. This leads to a hypothesis of a second interesting
behaviour; temperature dependent coupling between spinwaves (magnons) and lattice vibrations
(phonons) [4]. In this thesis we wish to examine this hypothesis using inelastic neutron scattering.

2 Magnetism and Multiferroicity

In this section we will describe the essential theory of magnetism and ferroic properties. In this
context, we will discuss magnetic frustration and multiferroicity.

2.1 Magnetism

In the following subsections we will begin to describe general magnetism theory, starting with a
brief summary of quantum mechanics.

1
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In general, magnetic polarization and magnetization in matter arises from dipole moments at the
nucleus, the moment from the electron orbits around the nuclei (L), and a moment from the
electron spin (S). It is convenient to define the quantum number J = L + S, which simplifies
quantum mechanical calculations. In solids, nucleis and electrons are closely packed. This leads to
interactions between the electrons which can induce different magnetic orders.
From quantum mechanics we know that in a simple case of two electrons, a and b, at positions
r1 and r2, with corresponding states ψa(r1) and ψb(r2), they must have their joint wavefunction
Ψ = ψa(r1)ψb(r2) to be overall antisymmetric. We can write the overall wavefunction as a sum
of a spatial part and a spin part. In the case of a symmetric spatial part, the spin part must be
antisymmetric, and is called the Singlet state. In the opposite case where we have a antisymmetric
spatial part, but symmetric spin part, the state is called the Triplet state [[1],p75]. We write the
states as

ΨS =
1√
2

[ψa(r1)ψb(r2) + ψa(r2)ψb(r1)]χS (2.1)

ΨT =
1√
2

[ψa(r1)ψb(r2) − ψa(r2)ψb(r1)]χT , (2.2)

where χS and χT are the spin functions [[1],p14].
These states will have different energy levels, which we will denote ES and ET . By considering
the difference between these energies we can define a quantity, J, entitled the exchange constant
defined by

J ≡ ES − ET

2
, (Not to be confused with J) (2.3)

The energies can be understood as spin interactions under the Heisenberg model, ĤH

ĤH = −2JS1 · S2 (2.4)

Nature strives for the lowest possible energy, so by considering the sign of J we are able to
determine whether the singlet or triplet state is favoured. If J > 0 ⇒ ES > ET , and the triplet
state is favoured. If J < 0 ⇒ ES < ET , and the singlet state is favoured[[1],p75].

2.1.1 Ferromagnetism

If J > 0 for all pairs of spins in our material, we will have a ferromagnetic material. A ferromagnet
is a material which can induce a spontaneous magnetization, even without an applied magnetic
field, below a certain temperature. One will find all the magnetic moments to be aligned along a
single unique direction in the material [[1],p87]. We describe our spin system under the Heisenberg
model as the spin-dependent part of our hamiltonian − ∑

ij JijSi · Sj , where Jij is the exchange
constant between the ith and jth spin. Considering a ferromagnetic material placed in a magnetic
field B, the Hamiltonian expands to

Ĥ = −
∑

ij

JijSi · Sj + gµB

∑

j

Sj · B , (2.5)

where we recognize the last term as the Zeeman term.
To solve this Hamiltonian, it is necessary to do an approximation. We assume that all magnetic
spins within the material feel the same magnetic field. This is commonly known as the mean field
approximation. Under this approximation the Hamiltonian for our spin system can be written as

Ĥ = gµB

∑

i

Si · (B + Bmf) , (2.6)

2
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where Bmf is the mean field

Bmf =
2
gµB

∑

ij

Jij〈Sj〉 = λM . (2.7)

〈Sj〉 is the mean of the jth spin, and λ is a constant.
We notice from equation 2.6 that even if B = 0, the mean field Bmf, which can be interpretered
as a molecular field which interacts equally with all magnetic spins in the material, will render
the hamiltonian nonzero. This leads to the ferromagnetic property; below a critical temperature
(TC), the magnetic spins will polarize and therefore magnetize the material. This spontaneous
magnetization is the characteristic of ferromagnetism, where the magnetization of the ferromagnet
can be used as an order parameter for the system [[1],p87].

2.1.2 Antiferromagnetism

If the coupling constant is negative for all pairs of spin in the material, J < 0, the magnetic spins
align themselves antiparallel with respect to nearest-neighbour moments. This is called antiferro-
magnetism. We can evaluate an antiferromagnetic environment as being the sum of two sublattices;
one sublattice containing all the ’up’s (+), and one sublattice containing all the ’down’s(−)[[1],p92],
see Figure 2.1.

Figur 2.1: Breaking an antiferromagnet lattice into two sublattices.

We assume that the molecular field on one sublattice to be proportional to the magnetization of
the other sublattice, and there are no external fields applied, and we are then able to describe the
antiferromagnet under the Weiss model [[1],p92].

B+ = −|λ|M− , B− = −|λ|M+ ,

where λ is a constant which illustrates the strength of the molecular field. Since we have en equal
number of magnetic spins pointing up and down the magnitude of the magnetization of the two
sublattices are equal, hence we are able to write

|M+| = |M−| = M (2.8)

While the net magnetization of an antiferromagnet is zero, due to the fact that the magnetization
of the two sublattices are of equal magnitude and opposite direction, the difference (M+ − M−)
of the magnetizations will be non-zero (for T < TN ). This difference can be used as an order
parameter for antiferromagnets [[1],p93].
As in ferromagnetism, the magnetic spin order will disappear above some critical temperature.
The critical temperature for an antiferromagnet is called the Néel Temperature, TN , and can be
found experimentally which we will see later in Section 7

3
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2.1.3 Magnetic Frustration

As we know from quantum mechanics, it is not always possible to find a unique ground state. This
also applies for magnetic spins in a lattice. The lattice geometry can degenerate the energy levels
of the system such that there will be an array of low energy states. There will be a large degree
of ’non-energy minimization’ shared across the low energy states, whereas the system will have a
high level of ground state degeneracy. The system is said to be geometrically frustrated [[1],p165].
We consider an antiferromagnetic alignment of two different lattices under the Ising model (the
spins may only be up (↑) or down (↓)). The lattice in Figure 2.2 is able to align all of its magnetic
spins antiferromagnetically, and therefore the energy between nearest-neighbor interactions are
minimized. Looking at Figure 2.3. The two magnetic spins at the bottom of the figure have
aligned themselves antiferromagnetically, and their interaction energy is minimized. Now, as we
try place the 3rd magnetic spin, we are not able to satisfy antiferromagnetic alignment for the
whole system. Two of the magnetic spins will be aligned parallel, and the other antiparallel. There
will be no energy difference in the system from having two ’downs’ and one ’up’, or having one
’down’ and two ’ups’. The energy ground state is degenerate and we can therefore classify our
system as frustrated[[1],p.165].

Figur 2.2: Antiferromagnetic
alignment on a square latti-
ce.

Figur 2.3: Antiferromagne-
tic alignment on a triangular
lattice. The system is frustra-
ted.

Note that due to the high degeneracy of energy levels in a frustrated magnet the system is
metastable and will therefore have a time-dependent relaxation towards equilibrium [[1],p166].
In order to classify how frustrated a magnet is, we calculate the frustration index, which is defined
as [3]

f =
|θCW |
TN

(2.9)

, where θCW is the Curie-Weiss temperature (We have a spontaneous magnetization at and below
this temperature [5]).

2.2 Multiferroics

Earlier we discussed the ferroic property, ferromagnetism. We saw that this ferroic property can be
described using order parameters. Order parameters can be used to describe the mutual magne-
tization, polarization, and/or strain of the ferroic material. By considering space-time symmetry
under inversion, the four ferroic properties of matter can be categorized as in Table 2.1:

Space invariant Space variant
Time invariant Ferroelastic Ferroelectric
Time variant Ferromagnetic Ferrotoroidic

Tabel 2.1: Multiferroic properties and their symmetries under space-time inversion.

A material which possess two, or more, of these ferroic properties is said to be a multiferroic [2].

4
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Furthermore, research in multiferroics has expanded to include antiferroic symmetries, such as
antiferromagnetism.
The ferromagnetic and ferroelectric properties have been a hot topic in research the latter years.
Eerenstein et al. [2] write that they couple, through the magnetoelectric coupling. This magnetoe-
lectric coupling may appear directly between the two order parameters or indirectly via strain.[2].
It has been suggested it would be possbile to create 4-state memory with magnetoelectric coupling,
or even be able to write data using electric signals and read it magnetically [2]. To understand
magnetoelectric coupling we will consider the three parameters, electric polarization (P), the
magnetization (M), and strain (ε). We assume that we have a ferro-electric/magnetic multiferroic
material. According to Table 2.1, the material will have a spatial invariant, time variant order
parameter (ferromagnetism), and a spatial variant, time invariant order parameter (ferroelectrici-
ty). In total the multiferroic material which carries both the ferroelectric and ferromagnetic order
parameters, will have its symmetries compromised, and neither possess spatial nor time symmetry
[2]. This asymmetry is visualized in Figure 2.4

Figur 2.4: Space-time inversion symmetry in ferroics and multiferroics. a) We see the time asymmetry of ferromagne-
tism. b) The spatial asymmetry of ferroelectricity. c) The multiferroic with both ferroelectricity and ferromagnetism
possess no symmetry under the space-time inversion. Picture taken from Eerenstein et al. [2].

We draw the following relations:

• (a) Ferromagnet. The local magnetic moment (m), induced by a charge moving in a loop
varies in time. As we make a time reversal, the charge will move in the opposite direction,
thus the induced magnetic moment will point in the opposite direction.

• (b) Ferroelectric. The local dipole moment (p) is shown as a positive pointcharge. The charge
will not change under time reversal, but as we make a spatial inversion (mirror the system
around its symmetry-axis) the charge is displaced, thus variant under spatial inversion.

• (c) Multiferroic. A multiferroic that is both ferromagnetic and ferroelectric does not posses
symmetry under space-time inversion.

According to Eerenstein et al. [2], we are able to exemplify our magnetoelectric coupling as the
following. Theoretically we can describe the magnetoelectric coupling using Landau theory; Taylor
expansion of the order parameters. We write the free energy F in terms of the electric field
E(T ), and the magnetic field H(T ) [2]. For simplicity we assume a material non-ferroic, infinite,
homogeneous, and stress-free. We can then write the free energy (F ) as the following

−F (E,H) =
1
2
ǫ0ǫijEiEj +

1
2
µ0µijHiHj + αijEiHj +

βijk

2
EiHjHk +

γijk

2
HiEjEk + . . . (2.10)

The first two terms shows the systems electric/magnetic response to an electric/magnetic field.
The third term shows the linear magnetoelectric coupling with coupling constant αij(T ), and the

5
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last terms represent higher-order magnetoelectric couplings.
We can obtain the electric polarization of our magnetoelectric system by differentiating eq(2.10)
with respect to Ei, and setting Ei = 0. To obtain the magnetization, we can evaluate similarly
with Hi. This yields the two expressions below

Pi = αijHj +
βijk

2
HjHk + . . . , µ0Mi = αjiEj +

γijk

2
EjEk . . . (2.11)

Recall that this computation was done for non-ferroic materials, but will look somewhat alike
for a ferroic material, but with a more complicated parametrization [2]. Eq(2.11) shows explicit
that the magnetoelectric coupling motivates for a connection between the electric polarization of
a material and the magnetic fields, and the magnetization of the material and the electric fields
[2].

3 Phonons and Magnons

In this section we will describe lattice and spin excitations and their dispersion relations.
Lattice vibrations, phonons, are oscillations in the relative position of the ions on a lattice [5].
We can describe the ion displacements with respect to the lattice planes (s) in equilibrium with
a single coordinate (us). Assuming that the elastic response of the crystal is a linear function of
the displacements we can write the force as a form of Hooke’s law [5].

F = C ((us+1 − us) + (us−1 − us)) , (3.1)

where C is the force constant between nearest-neighbour planes.
Treating our problem as a classical harmonic oscillator, we can derive the dispersion relation of
the (phonons) as the following

ω2 =
2C
M

· (1 − cos(ka) , (3.2)

where C is the force constant, M is the mass of the vibrating ions, k is the wave vector, and a is
the lattice constant. The lattice vibration dispersion relation is shown in Figure 3.1.
Spin waves, magnons, are oscillations in the relative orientation of spins on a lattice [5]. The
oscillations can be described as spin precessions with a constant angle. Considering the spins as
classical vectors and their nearest-neighbour interactions under the Heisenberg model, eq(2.4), we
are able to make a classical derivation of the magnon dispersion relation [5].

~ω = 4J · S (1 − cos(ka)) , (3.3)

where J is the exchange constant, S is the spin, k is the wavenumber, and a is the lattice constant.
The spin wave dispersion relation is shown in Figure 3.1.

4 Neutron Scattering

Neutron scattering is a widely used experimental technique to determine structural and physcial
dynamics of materials down to the atomic scale. In the following we will go through essentiel
theory behind neutron scattering and instrumentations.

4.1 The Neutron

Neutrons interact with nuclei through the strong nuclear force, and with magnetic spins through
the electromagnetic force. The neutron is an eletrically neutral, spin s = 1/2, particle with mass

mn = 1.675 · 10−27kg (4.1)

6
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Figur 3.1: (right) Dispersion relation for phonons in the 1st Brillouin zone. (left) Dispersion relation for magnons in
a ferromagnet. Pictures taken from Kittel [5].

The neutron has an average lifetime of τ = 886s, before it decays into a proton, electron, and an
anti-neutrino. Neutron decay can be neglected in neutron scattering, since the lifetime is much
longer than the time spend on the actual experiment.
A neutron posses a magnetic moment, which is coupled antiparallel to its spin in the order of

µ = γµN , (4.2)

where γ = −1.913 is the neutron gyromagnetic ratio, and µN is the nuclear magneton given by
µN = e~/mp = 5.051 · 10−27J/T.
Thus we are dealing with physics on the atomic scale, and thus we must account for quantum
mechanical effects. The first thing to consider is the particle-wave duality. Neutrons displays
shifting particle-wave properties throughout a neutron scattering experiment. As the neutrons are
created in a source, they are considered as particles. Then, at the sample where the neutrons are
scattered, the neutrons behave as interfering waves, and again considered as particles when they
are detected.
When dealing with particle-wave duality, we consider the wavelength, λ, of a particle moving with
constant velocity, v, as

λ =
2π~
mv

(4.3)

When doing neutron scattering the wave nature of the neutrons are often refered to as the wave
vector, which is defined as

k =
mnv

~
(4.4)

The velocity of the neutrons are usually small (compared the speed of light) so we consider the
neutrons as being non-relativistic, and we can then write the neutron kinetic energy as

E =
~

2k2

2mn

(4.5)

By tradition, wavelenghts are measured in Å(10−10)m, wavenumber is measured in Å−1, velocity
is measured in m/s, and energy is measured in eV or meV.

4.2 Scattering

In this section we will go through the most central equations of scattering. First we will have a
quick walkthrough of the scattering cross section. Many of the quantities used in this walkthrough
will be discussed in the following subsections

7
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4.2.1 Scattering cross section

The scattering cross section (σ), is somewhat proportional to [12]

∂2σ

∂ǫ∂Ω
∝

∑

j

eiqrj , (4.6)

where ǫ is the neutron energy after scattering, Ω is the solid angle, q is the scattering vector and
rj is the jth positionvector in the lattice.
In an infinite lattice we will have an infinite amount of rj , we know from Euler mathematics that
an exponential function of this form is an periodic function with values on the unit circle. The
sum of infinite random points on the unit cirlce will equal zero. If the sum equals zero, we have
no scattering cross section, and we will not see anything when measuring. But if we define our
scattering vector as q = 2π

rj
, the sum will be nonzero, since e2πi = 1. We notice that q is given

by 2π divided by a charaterisctic lattice vector, which we recognize as a reciprocal lattice vector
for a square lattice. It is therefore convenient to work in reciprocal space when doing neutron
scattering.

4.2.2 Scattering (continued)

The foremost important vector in scattering is the scattering vector, q (see Figure 4.2), defined as

q = ki − kf , (4.7)

where ki denotes the incoming wave vector, and kf denotes the outgoing wavevector, see Figure
4.2.
A central equation when doing elastic scattering (|ki| = |kf |) is the famous Braggs law for diffra-
ction

nλ = 2d · sin(2θ) (4.8)

, where d is the lattice spacing, n is an integer, and θ is the scattering angle.
This equation shows that it is necessary to know the wavelength of the incoming neutrons. The
determination of the neutron wavelength can be done by two methods which selects a particular
energy spectra of neutrons. The most efficient of these is to use a monochromator, which is a crystal
that only reflects neutrons of certain wavelengths using Bragg reflection. The monochromator
reflects a series of wavelength of integer n, where n = 1 usually is the desired neutron wavelength
for the experiment, and the higher order wavelengths are undesired. We are able to extinguish the
amount of higher order wavelengths using filters and/or neutron guide geometry.
Some scattering processes can absorb or transfer energy to the scattering system. This type of
scattering is refered to as inelastic neutron scattering. In this case |ki| 6= |kf |, due to the energy
transfer to the scattering system. We define the energy difference as

~ω = Ei − Ef =
~

2(k2
i − k2

f )

2mn

(4.9)

Now that we have introduced neutron theory we will move on the the instruments used during
neutron scattering.

4.3 Triple-Axis Spectrometer (TAS)

In this thesis we have made inelastic neutron scattering in order to examine the YMnO3 crystal.
As shown in eq(4.9), it is necessary to determine both ki, and kf , in order to calculate the energy
difference from the inelastic collisions. When using a triple-axis spectrometer (TAS), Figure 4.1,
these quantities can be selected, and held constant, using neutron monochromators and Bragg
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Figur 4.1: Sketch of a typical triple-axis spectrometer (TAS). The three scattering
angle; 2θm, 2θ, 2θa and the sample rotation Ω is shown. Figure taken from neutron
scattering notes [12].

Figur 4.2: Wave vector q.

reflections eq(4.8).
Note that the name triple-axis spectrometer, is due to the fact that the neutrons are scattered
three times before they reach the detector. The three scattering objects are:

• A monochromator, which selects ki from the incoming beam by the Bragg scattering
angle 2θM eq(4.8).

• The sample, which scatters the monochromatic beam by 2θ.

• An analyser, which determines kf likewise as for the monochromator. It scatters with an
angle 2θA determined by Braggs law eq(4.8).

Additionally we have three devices to count, filter, or focus the beam:

• A collimator is an object with typically ∼ 1m long, thin parallel neutron-absorbing planes,
which reduces the divergence of the incoming neutrons.

• A monitor, which lies perpendicular to the incident beam. This device count an amount
of neutrons pr. perpendicular unit area, also known as Flux (Ψ).

• A filter, which suppresses undesired higher-order wavelengths.

By adjusting these angles and the sample rotation, Ω, we can obtain a wide extent of scattering
vectors q, and energy transfer ~ω which satisfies the scattering condition eq(4.7). When doing
TAS experiments an experimental series consist of scans along a certain axis in the (q, ~ω)-space,
often refered to as constant-q scans or constant-energy scans, depending on which variable is fixed
throughout the scan.
Notice that the different scattering angles and/or instrument parameters on a triple-axis spectro-
meter is named as A1 - A6. This is common neutron scattering jargon identifying the instrument
parameters, and will be used throughout the thesis. The A’s are listed below

• A1 - Denotes the rotation of the monochromator.

• A2 - Denotes the scattering angle on the monochromator (2θM ).

• A3 - Denotes the sample rotation (Ω).
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• A4 - Denotes the scattering angle on the sample (2θ).

• A5 - Denotes the rotation of the analyzer.

• A6 - Denotes the scattering angle on the analyzer (2θA)

Additionally it is common to fix either Ei or Ef in order to simplify the data analysis of the
measurements.

5 Instruments and Sample

In this section we will discuss the two triple-axis spectrometers used for our experiments and their
differences. Our YMnO3 sample will also be presented.
Two instruments where used in order to complete this project. This is due to a difference in
spectrometer scan range, and neutron source energy. When doing neutron scattering the following
neutron sources are used

Energy Interval λ interval Source Name

(0.05 - 14)[meV] (2.4 - 40)[Å] cold
(14 - 200)[meV] (0.6 - 2.4)[Å] thermal

Tabel 5.1: Table of common energies, and name for neutron sources. Values taken from neutron course notes [12].

The two triple-axis spectrometer that we used are both located at the Paul-Scherrer Institute
(PSI), Switzerland. Both are located at the SINQ continuous spallation source, with a neutron
flux of ∼ 3 · 1013[n/cm2s][17].

Figur 5.1: Picture of SINQ neutron source at PSI, Switzerland. The two instruments, EIGER and RITA, are marked
with a red ring. Picture taken from PSI powerpoint presentation [17]

5.1 EIGER

EIGER is a triple-axis spectrometer located at the SINQ neutron spallation source at PSI, Switzer-
land. The spectrometer is placed at a thermal neutron source, see Table 5.1 for neutron parameters.
As we see in Figure 5.1, EIGER is located close the neutron source. This results in a high neutron
flux for the incident neutron beam, in addition to a large energy range due to the use of thermal
neutrons.
The instrument setup is, as following the beam progression: First, the thermal neutrons scatters
on the monochromator on the (h k l) = (0 0 4) Bragg reflection. The monochromator is a pyroly-
tic (PG) crystal consisting of 9 × 15 square tubes, which are 2 × 2[mm2] wide. Then the beam is
focused through a collimator and send through slit1 (see Table 5.2). Next the beam is scattered on
our sample, send through slit2 (see Table 5.2), and a 37[mm] PG filter. Here the beam is scattered
on the (h k l) = (0 0 4) Bragg reflection on the analyser. Also a PG crystal. Last the beam goes
through slit3 (see Table 5.2), and is observed in the detector.
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Tabel 5.2: Slit openings on EIGER.

Units = [mm] Slit 1 Slit 2 Slit 3

Horizontal 25 25 20
Vertical 60 30 60

5.2 RITA2

The RITA2 instrument is a multi-analyzer TAS at the SINQ spallation neutron source at PSI,
Switzerland, see Figure 5.1. The instrument is placed at a cold neutron source, see Table 5.1 for
neutron parameters.
RITA2 has, in contrast to other triple-axis spectrometers, nine PG analyzer blades after the samp-
le. This design yields a greater efficiency of the incident neutron beam, since the instrument will
look at nine points in q-space simultaneously.
The instrument setup is, as following the beam progression: As the neutrons leave the source
they are guided to a monochromator consisting of five pyrolytic graphite (PG) crystals. Then, the
neutrons pass through a 80’ collimator. The sample can be placed in a cryostat, which can cool
down to 1.6K. After the sample, an optional Be-filter is placed to remove undesired higher-order
wavelengths.
With RITA2’s nine analyzer blades, we are scanning nine points in the (q, ~ω)-space simultaneous-
ly when we sample our data. Since the blades are not perfectly identical, there will be a variance
in neutron intensity over the blades as we scan. Therefore we need to normalize the blades with
respect to each other to be able to evaluate the collected data equally. This is done by marking
an area around for each analyzer blade on an intensity plot, Figure C.1. Each blade intensity is
then divided by the intensity of the middle blade, the 5th blade, thus making the 5th blade our
reference blade, see Table 5.3.
The normalization of intensity on the nine RITA2 blades yields the following factors on the nine
blades

Tabel 5.3: Normalization values of RITA2’s nine blades.

Blade nr. 1 2 3 4 5 6 7 8 9

0.686 1.036 0.879 0.992 1.000 0.830 0.810 0.710 0.664

When doing our data analysis on the RITA2 data, we must account for the relative positions of
the nine analyzer blade aswell. This means that we need to make a projection of the scans done
in q-space onto one of the (h k l)-axes in order to visualize our data.

5.3 The YMnO3 Crystal

Now we will discuss the YMnO3 crystal used for experiments, describing its lattice parameters and
physical properties. The rare-earth manganite YMnO3 is a highly-frustrated multiferroic sytem,
which exhibits a strong coupling between the magnetic moments, and the ion positions on the
lattice. We therefore also have a coupling between the magnetic excitations and the phonon modes
[3]. Below the antiferroelectric transition temperature, YMnO3 crystallizes in a hexagonal struc-
ture arranging its Mn3++-ions, which are coupled antiferromagnetically, in triangular networks
in c = 0, and c = 1/2 layers. These layers form ABAB stacking along the c-axis, see Figure 5.2,
where the Mn3++-ions bindings to the Y- and O-ions results in large separation of the manganite
ions [10].
The crystal has lattice constants a = b = 6.140Åand c = 11.393Å[10]. With angles α = β = 90◦

and γ = 120◦. The thermal conductivity of YMnO3 has been shown to be slightly suppressed in
the region of the magnetic phase transition temperature, TN , and even further (∼ 200K), due to
critical fluctuations of spins in the frustrated system. There has been observed anomalous changes
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Figur 5.2: Red = Y, light blue = O, dark blue = Mn. (right) Unit cell of YMnO3 hexagonal structure arrows shows
dispalcement then below TN . (left) Mn-ion displacements below TN . Picture taken from Lee et al. [3].

in the magnetic susceptibility (χ), and heat capacity (C), for the YMnO3 crystal aswell, shown
in Figure 5.3 taken from Sharma et al.[4].

Figur 5.3: Thermal conductivity (κ), magnetic susceptibility (χ) and heat capacities (C) anomalies around TN .
Plots taken from Sharma et al.[4].

Sharma et al. also found a second transition in χ around 40K, which is assumed to be caused
by spin reorientation of the Mn3++-ions[4]. Evidently, a large Mn3++-ion displacement has been
observed around TN for YMnO3 by Lee et al. [3]. The shift in ion position of the manganite-ions
have been recorded to lay around 3.3% off relative to the lattice constants. This shift is enormous
compared to usual strain and leads to a further coupling to the electric dipole moments [3]. The
shift in ion positions is a consequence of the the magnetic transition of the crystal. Therefore,
the displacement is a coupling between the elasticity (strain) and antiferromagnetic. The displa-
cements does also allow an antiferroelectric transition and hence we have antiferroelectric and
antiferromagnetic coupling [3].

12



Anders Bakke Bachelor Thesis 2013

5.3.1 Sample

Our crystal is a 21.0mm long, with a diameter of 1.0cm, cylindrical YMnO3 crystal. It has a mass
of 5250mg. The initial alignment of the sample has been done using a X-Ray Laue camera. The
sample is attached to a aluminium handle (no glue) . A picture of the sample is shown in Figure
5.4, where the black dot marks the (1 0 0) axis.

Figur 5.4: Picture of our sample. The black dot indicates the (1 0 0) axis.

6 Measurements

To study the phonon excitations in our crystal, we have used the EIGER TAS and scanned around
the Bragg peak q(h k l) = (0 3 0). On the RITA2 TAS, we have studied the magnetic excitations
around the magnetic Bragg peak q(h k l) = (0 − 1 0). Recall from Section 4 that we scan in
(q, ~ω)-space, so I will use terms as ’Energy scans’ and ’q scans’, which refers to which parameter
is variated throughout the measurement.

6.1 EIGER data

On EIGER we measured longitudinal phonons. To measure a longitudinal phonon we must ensure
that our q-vector and the phonon is parallel to eachother [12], therefore we need to make transverse
scans. Our crystal is a hexagonal environment and we must find the perpendicular (transverse)
direction to our axes. Consider the triangle on Figure 6.1.

Figur 6.1: Drawing of trigonometric problem to make transverse scans. The red area indicates where we made our
transverse phonon scans.
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The ĥ and k̂ denotes the h- and k-axes in our hexagonal lattice. We have derived the h
2

side by
calculating sin(30◦) = h

x
→ x = h

2
. The vector h− h

2
is perpendicular to the k-axis. We have now

found the transverse direction and can thus define

qtrans =
(

h k − h

2
0
)

(6.1)

Which will be the transverse direction at the wanted k value in our lattice.
We made energy scans along the transverse direction around q(h k l) = (0 3 0), see the red line at
Figure 6.1, in order to map the phonon at T = 100K and both phonon and magnon at T = 40K.
Two of the raw data profiles are shown in Figure 6.2 and Figure 6.3 (the rest in Appendix A), the
color maps are showed on Figure 6.4 and Figure 6.5.
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Figur 6.2: Phonon-Magnon peaks at 40K and
100K, q ≈ (0.3 2.85 0).
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Figur 6.3: Phonon-Magnon Map at 40K and
100K, q ≈ (0.45 2.775 0).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

10

15

20

Transverse phonon map 40K  ~1min/point

q-trans[r.l.u]

h̄
ω

[m
eV

]

Figur 6.4: Phonon-Magnon Map at 40 K, q ≈
(0 3 0).
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Figur 6.5: Phonon-Magnon Map at 100 K, q ≈
(0 3 0).

Dotted black lines are sinusoidal guidelines with integer periods. Dashed white lines indicates where we scanned in
Figures in Appendix B.

Additionally we made a serie of energy scans around q(h k l) = (0.35 2.825 0) → |q| = 0.3 (shown
with a dashed white line in Figure 6.4 and Figure 6.5), at different temperatures. This was done
in order to get a correlation between the phonon and magnon branches. These scans are shown in
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Appendix B and evaluated under the discussion section.
We made a series of constant-q temperature scans around the q(h k l) = (0.35 2.825 0) longitudinal
phonon. The raw phonon peak profiles is a shown are Figure 6.6.
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Figur 6.6: Phonon profiles at different temperatures around |q| = 0.3. The small blue horizontal bar is an estimate
of the instrument resolution

The instrument resolution is estimated as the mean of the instrument resolution at the three
different temperatures. When we are calculating the uncertainty of the widths of our peaks, the
uncertainties are added quadrature as the following

(σobs)
2 = (σres)2 + (σmea)2 , (6.2)

where σobs is the observed peak width, σres is the resolution contribution, and σmea is the un-
certainty what we measure (in this case phonons). Thus the contribution from the instrument
resolution is small and squared, we neglect any instrument resolution part in our data analysis.

6.2 RITA data

We made a serie elastic-q scans along l around q(h k l) = (0 − 1 0) at different temperatures
in order to investigate the magnetic phase transition. We aim to determine TN and the critical
exponent (2β). This will be evaluated under the discussion section and is shown in Figure 7.7.
An serie of (qh, qk) scans were made to map the q(h k l) = (0 −1 0) magnetic peak at five different
temperatures. Two of these maps are shown in Figure 6.7 (the other maps can be found on Figure
D.1 and D.2), notice that the magnetic peak has some anomalies on the edges. To check if these
anomalies was a special case for the (0 − 1 0) peak, we made a map of the q(h k l) = (0.5 − 1 0)
peak aswell, which shows same shape, see Figure D.2(right).
We also made energy scans of the q(h k l) = (0 − 1 0) magnon at T = 40K which revealed a
splitting of the spinwave excitations around this peak, see Figure 6.8
On Figure 6.8 we a splitting of the magnon branch around h[r.l.u] = −1.1. We made three scans
along h[r.l.u] = −1.1, the dashed line in Figure 6.8, at T = 18K, T = 40K and T = 60K to find
the temperature dependency of the spinwave. The profiles of the magnon peaks at these three
temperatures is shown on Figure 6.9

7 Discussion

Our goal is to investigate suspected phonon-magnon coupling and to get a wider understanding
of multiferroic behaviour. In order to investigate these subjects we must examine the magnetic
order and behaviour of our YMnO3 crystal and put it in perspective to our theory.
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Figur 6.7: Bragg peaks at q = (0 − 1 0).
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Figur 6.9: Raw magnon peaks at h[r.l.u] = −1.1223
on Figure 6.8.

7.1 Phonon-magnon coupling

We consider the two colormaps in Figure 6.4 and Figure 6.5. We notice the avoided crossing of the
phonon-magnon branches around q[r.l.u] = 0.7. If phonons and magnons had no coupling, they
would cross each other without being affected by one another. But as they close in on each other,
the magnon branch seems to ’bounce off’ while the phonon branch is bend down. This suggests for
interactions between phonons and magnons in the solid. Also, there seems to be a slightly higher
scattering intensity between the phonon-magnon branches, than above the magnon branch. This
intensity shift could be sign of magnetoelectric coupling interactions, but we need further data and
analysis to conclude anything. We made a number of gauss fits along each scan column to estimate
the widths (σ) of the phonon and magnon excitations as the extend in q-space. In Figure 7.1 and
Figure 7.3 we see a sudden shift in σ from qtrans ≈ 0.6, for both the magnon and phonon, which
is around the avoid crossing point. According to Lee et al. this shift can be understood as critical
spin scattering of phonons [3]. This behaviour strongly indicate coupling between the phonon and
magnon modes. Additionally we see that the shift of the phonon width has disappeared at high
temperatures, see Figure 7.2.
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Figur 7.1: Width of phonon mode
in Figure 6.4.
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Figur 7.2: Width of phonon mode
in Figure 6.5.
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Figur 7.3: Width of magnon mode
in Figure 6.4.

To process the relation of phonon-magnon widths we split up in each scan row of Figure 6.4 and
6.5 (the vertical rows), and fitted with a suiting number of gauss fits. By means of this, there
have been accounted noise between the two branches. The first points in the phonon and magnon
widths have been removed since that peak was to offset in our data to have a welldefined gauss
fit, or because the magnon has not appeared yet.
As we described in the theory section, magnetic order, and therefore also magnetic excitations, is
temperature dependent. Thus we assumed phonon-magnon coupling to be temperature dependent
aswell, and made a series of transverse scans around the q(h k l) = (0 3 0) phonon from 17.6K to
99.2K. The scan serie can be seen in AppendixA.
We plotted the widths, and integrated intensity, as a function of temperature and found the
following results
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Figur 7.4: Temperature dependence of width for
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The blue points in both Figures shows the same interval just below TN .

In figure 7.4, the slope of the lower fit is fixed to the slope of the upper in order to find the shift
in phonon width, ∆σ. From Heisenberg, we know that ∆E∆t ≥ ~. Recall from eq(6.2) that we
neglect any instrumental resolution uncertainties, thus ∆E depends on the width of the phonon
mode (σ). We are then able to derive ∆σ ≥ ~

∆τ
→ τ ∝ σ−1. We find ∆σ = 0.07meV which

corresponds to ∆τ = 13.9ns.
In Figure 7.5 we have fitted the intensity as

I ∝ (nB + 1) , (7.1)

where nB is the Bose-Einstein factor.
We see a deviation in the integrated intensities around TN . Together with Figure 7.5, this shows
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that the phonon mode is suppressed just around the magnetic phase transition. As we discussed
earlier the shift can be understood as critical spin scattering of phonons [3]. And we have now
seen that this critical spin scattering has a large effect on the phonon mode.

7.2 Magnetic Order

We scanned k around the q(h k l) = (0 −1 0) magnetic peak while slowly heating the crystal from
2K to 80K, to obtain the phase transition of our crystal. According to Le et all. [3], the magnetic
phase transition is expected to be around TN = 75K.
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Figur 7.6: Rawdata of peaks ued to find TN in Figure
7.7.
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Figur 7.7: Magnetic Transition for YMnO3. Raw da-
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A double gauss fit, with same center, was made for each scan. The amplitude from these fits have
then been plotted as a function of temperature as seen in Figure 7.7. The selected data from 56K
to 72K is fitted to the power law

I ∝
(

TN − T

TN

)2β

This yields TN = (72.09 ± 0.02)K, and 2β = (0.401 ± 0.003)[AU].
Our experimental TN value lies differs with ∼ 3% from Lee et al.’s value. This difference can be
explained by Lee et al.’s losely determination of TN . Looking at Roessli et al. [8], which have
determined TN = 72.1 ± 0.05K, using the same experimental approach as we do. Roessle et al. [8]
and our TN are consistent but our critical exponent β is twice as big as Roessli et al.’s. This is
due to different power law fits of the data.
We calculate the frustration index, eq(2.9), using the Curie-Weiss temperature θCW = −500[3] of
our crystal to be

f =
| − 500[K]|

72.09
= 6.93 , (7.2)

which is a rather large value of frustration. This large geometric frustration supports the previous
discussion of critical spin fluctuations in our system.
We observe a deviation of our data relative to our powerlaw fit as we reach TN . This can partly be
explained as magnetic critical scattering, which is a broadening of the magnetic scattering cross-
section as the magnetic phase transition temperature is reached from above[7]. From our study of
the magnetic peaks in our crystal, Figure 6.7, we where able to see the magnetic broadening by
doing a lorentz-gauss fit of the peaks.
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Figur 7.8: Widths of bragg peaks from Figure 6.7

Here we see a clear broadening of the fits as we are at a temperature around TN hence we can
determine that magnetic critical scattering effects will be observed in data around the magnetic
phase transition temperature.
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Figur 7.9: Width of magnon branch in Figure 6.8.

We evaluated the widths of the spinwave branch in the region h[r.l.u] = [−1.25; −1.10] in Figure
6.8. The peaks have been projected on the k-axis using qk = (k + h

2
)k̂. We did this operation

since the k-axis is approximately perpendicular to the observed branch. Comparing Figure 7.9
with Figure 7.3, the magnon width does not display any spontaneous shifts. This supports the
assumption of phonon-magnon coupling since the magnon seems to behave differently whether
there is a phonon present or not.
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8 Conclusion

We see a clear interaction between the phonon and magnon branch, as they avoided crossing
eachother on our colorplot, Figure 6.4, along with minor intensity signals between the branches.
Additionally, we see a shift in both the magnon and phonon width around this avoid crossing
point, Figure 7.1, Figure 7.3, which disappears when the phonons and magnons are alone, Figure
6.5 and Figure 7.9. This strongly motivates for a coupling between the phonon and magnon in
our crystal, but I suggest further investigation of the area between the branches as well as for the
avoided crossing point, before we have enough foundation to state that there exist phonon-magnon
coupling. But we see strong evidence of phonon-magnon coupling.
We have measured a change in phonon width around the magnetic phase transition, up to ∆σ =
0.07meV, see Figure 7.4, which could be documentation of phonon scattering due the critical spin
fluctuations. This change lies just around TN which supports the claim of phonon scattering due
to magnetic excitations.

8.1 Outlook

Further investigation of the avoid crossing of the phonon and magnon branch would be very
interesting, in order to understand what really happens at this point. This could be done using
the instrument FLEXX, stationed at HZB, Berlin, since it is able to make scans over the avoid
crossing point. Additionally, we can use polarized neutrons on FLEXX, which can distinguish
between magnetic and nonmagnetic excitations. This would grant a better overview of what is
happening at the avoid crossing point. Also, evaluation of the small intensity signals between
the phonon-magnon branches could be fascinating, since this might be magnetoelectric coupling
effects emerging from the two branches.
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A EIGER - Energy scans of phonon-magnon branch
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The black fit follows the green (40K) data, the lightblue fit follows the blue (100K) data.
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B EIGER - Temperature scans at q = (0.35 2.825 0)
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Figur B.1: Constant q = (0.3 2.825 0), temperature variation, longitudinal phonon, transverse scans.
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C RITA2 Bladenormalization
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Figur C.1: Intensity plot showing RITA2’s nine analyzer blades. (left) Intensity plot in 2D. (right) Intensity plot in
2D.

D RITA2 - Magnetic Peak at q = (0 − 1 0)
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Figur D.1: Bragg peaks at q = (0 − 1 0).
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Figur D.2: Bragg peaks at q = (0 − 1 0).
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Figur D.3: Widths of bragg peaks from Figure D.1
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Figur D.4: Widths of bragg peaks from Figure D.2.
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