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1 Synopsis in danish

Dette projekt omhandler en kvanteprik i forbindelse med en ferromagnetisk
leder. Specifikt undersøges spinflip-hastigheder og energiniveauer op til anden
orden i koblingen mellem de to komponenter.

Kvanteprikken har et enkelt spin-udartet energiniveau. Hvis begge spintil-
stande i niveauet er besat, frastøder de to elektroner hinanden med et potentia-
le U. Dette er den eneste elektron–elektron interaktion medtaget i modellen for
systemet. Kvanteprikkens energiniveauer kan styres ved hjælp af et eksternt
magnetfelt samt en gate-elektrode.

Lederen antages at have en spinafhængig ladningstæthed. Kombineret med
gate-elektroden muliggør dette at styre spin-besætningen på kvanteprikken
ved hjælp af udelukkende elektrostatiske midler, uden styring af det ekster-
ne magnetfelt.

Størstedelen af projektet udarbejdes under fladbåndstilnærmelsen. Her an-
tages koblingen (tilstandstætheden kombineret med transmissionskoefficien-
terne kvadreret) at være konstant — men spinafhængig — i et helt bånd i et
metal. Båndet antages at være halvt fyldt og i termisk ligevægt.

Første ordens korrektionen til energien findes ved hjælp af pertubations-
teori til at være nul. Anden ordens korrektionen til energien findes indenfor
fladbåndstilnærmelsen for temperature på det absolutte nulpunkt. For et fuld-
stændigt kompenseret magnetfelt findes også et eksakt udtryk for energifor-
skellen imellem spin-op- og spin-nedtilstandene på kvanteprikken.

Udledningen af udtrykket for energiforskellen involverer indsættelsen af
en infinitisimal imaginær størrelse. Det teoretiske grundlag for denne størrel-
se understøttes i efterfølgende kapitler, og imaginærdelen af energikorrektio-
nen vises at være forbundet med en levetid. Dog forhindrer tilstedeværelsen af
Coulomb-frastødning på kvanteprikken, at denne sammenhæng understøttes
komplet.

Hastigheder for overgange væk fra de enkeltbesatte tilstande på kvante-
prikken findes til første orden i koblingen ved hjælp af Fermis gyldne regel.

Til anden orden findes hastigheder for spinflip ved hjælp af en generaliseret
udgave af Fermis gyldne regel inden for fladbåndstilnærmelsen. Denne udled-
ning når ikke frem til en præcis løsning, men en tilnærmelse som er gælden-
de hvis energiniveauerne på kvanteprikken ligger langt fra Fermi-overfladen
i forhold til den termiske energi. Udledningen kræver at en endelig imaginær
størrelse introduceres i T-matricen i den generaliserede gyldne regel. Denne
størrelses oprindelse diskuteres kun overfladisk.

Undervejs diskuteres selvenergien for et lignende system, hvor den eneste
ændring i forhold til det tidligere diskuterede system er at U er sat til nul, da
dette muliggør at finde selvenergien eksakt.

2 Introduction

The electron — being a spin-1/2 particle — has a spin-part that can be described
using only two basis states. This makes the spin of the electron one of the
conceptually simplest systems in quantum mechanics,[1] and has made it an
obvious candidate for the materialisation of the qubit, since its inception.[2]
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The quantum dot provides an ideal platform for exploring this idea, since
its large size (compared to atoms and molecules) allows for incorporation in
integrated circuits,1 while maintaining well defined energy levels. However,
controlling the spin polarization of a single set of states in a quantum dot, with-
out resorting to varying an externally applied magnetic field, has only lately
been achieved.[5]

In this project, spin flip rates and energy levels are investigated up to second
order in the coupling Hamiltonian. Predominantly within the context of the flat
band approximation.

3 The System

A simple two component system is investigated in this project, composed of a
metallic lead and a gated quantum dot. The system is located in an external
magnetic field. The lead is assumed to have a spin dependant density of states.
This could be caused by ferromagnetism, but the exact origin is not the focus
of this project, only the effect of the density of states on the quantum dot.

The quantum dot — assumed to be in weak electrical contact with the
lead — only has two states, of opposite spin but with identical spatial parts.
The relative eigenenergies of the two states can be tuned by the external mag-
netic field.

3.1 The Hamiltonian of the system

The system described above is similar to the system used in [6], the main differ-
ence being that only one lead is considered, and the Hamiltonians are written
with energies relative to the chemical potential (i.e. ξ instead of ε) as in [7].

We seperate the Hamiltonian in three parts — H`, Hd and H`d — corre-
sponding to the lead, the quantum dot and the coupling, respectively, and
write these partial Hamiltonians in the basis of eigenstates of H` + Hd , i.e. with
a definite number of electrons in the states of the lead and on the quantum dot.

The lead is approximated by a non-interacting Hamiltonian:

H` = ∑
kσ

ξ`
kσc†

kσckσ (1)

Note the potential spin-dependence both in the dispersion relation (ξ`
kσ) and

implicitly in the sum through a spin-dependant density of states.
The quantum dot is either occupied by nothing, one spin-up electron, one

spin-down electron or both. If the dot is doubly occupied, an extra energy (U)
from electrostatic repulsion is included (this term could also include contribu-
tions from electron spin-spin interactions). Lastly, we have the magnetic field
B, contributed to both by the external magnetic field and by the local mag-
netic field, caused by the adjacent ferromagnetic domain. We align the spin
basis along the magnetic field, i.e. spin up is parallel to magnetic field and spin

1The quantum dot can be in the form of a deposited object,[3] or can be formed as part of the
etching process.[4]
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down is anti-parallel. The quantum dot Hamiltonian becomes

Hd = ξd ∑
σ

d†
σdσ + Ud†

↑d↑d
†
↓d↓ − B

gSµB
2

(
d†
↑d↑ − d†

↓d↓
)

, (2)

where the d’s are creation and annihilation operators operating on the states
of the dot, B is the magnitude of B, gs is the electron g-factor and µB is the
Bohr magneton. The gate voltage enters ξd through the chemical potential. We
combine the term containing the magnetic contribution to the energy with ξd

yielding

ξd
σ = ξd − B

gSµB
2

(
δσ↑ − δσ↓

)
, (3)

such that Hd can be written as

Hd = ∑
σ

ξd
σ d†

σdσ + Ud†
↑d↑d

†
↓d↓. (4)

Finally a tunneling Hamiltonian couples the quantum dot to the lead:

H`d = ∑
kσ

Tkσd†
σckσ + ∑

kσ

T∗kσc†
kσdσ. (5)

4 Notation

This section briefly introduces the notation to be used throughout the rest of
the thesis.

A complete state is denoted by

|· · · 〉d |· · · 〉` (6)

where |· · · 〉d refers to the quantum dot part and |· · · 〉` refers to the lead part.
The quantum dot part lives in such a small Fock space, that it becomes practical
to write out all the Fock states; these are written as

|0〉d , |↑〉d , |↓〉d and |↑↓〉d . (7)

|ς〉d denotes an arbitrary state from the above set, i.e. ς represents an arbi-
trary member of {0, ↑, ↓, ↑↓}. Similarly |σ〉d denotes an arbitrary state in {|↑〉d ,
|↓〉d }. If σ and σ are used together, they refer to opposite spin.

Throughout the thesis, energy is measured in frequencies, similar to setting
h̄ to 1.

5 Energy Levels

We attempt to find the energy levels of the complete Hamiltonian H = H` +
Hd + H`d by standard perturbation theory[1] starting from the eigenstates of
H0 = H` + Hd . However, a lot of degeneracy or near-degeneracy in H0 makes
straightforward perturbation theory difficult. Most obviously, by nature of the
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direct sum, all degeneracy in the lead taken alone is carried over into the com-
posite states. I.e. for all sets of lead states (A) that were degenerate with respect
to H` there will be a degenerate subspaces of the form

{|ς〉d |a〉` : |a〉` ∈ A} (8)

for each ς in {0, ↑, ↓, ↑↓}. However this does not pose a problem, since these
subspaces are diagonal in H`d , as can easily be seen by looking at the possible
matrix elements. We have

〈a|` 〈ς|d H`d |ς〉d |b〉` = ∑
kσ

Tkσ

This is zero︷ ︸︸ ︷
〈ς|d d†

σ |ς〉d 〈a|` ckσ |b〉`

+ ∑
kσ

T∗kσ 〈a|` c†
kσ |b〉` 〈ς|d dσ |ς〉d︸ ︷︷ ︸

So is this

(9)

which is zero (incidentally, all the elements of the main diagonal are zero too).
The problematic degeneracy occurs when one electron has been moved

from the lead to the quantum dot or vice versa, while maintaining the total en-
ergy. E.g. the following two expressions (and the two expression with the states
interchanged) represent off-diagonal elements between degenerate states (pro-
vided that |a〉` is empty in the kσ-state):

〈a|` 〈σ|d H`d |0〉d c†
kσ |a〉` = Tkσ (10)

where the states are degenerate if ξ`
kσ equals ξd

σ , and

〈a|` 〈↑↓|d H`d |σ〉d c†
kσ |a〉` = Tkσ (11)

where the states are degenerate if ξ`
kσ equals ξd

σ + U.
Since we do not know in general what the Tkσ’s are, there is no easy way

to move on from here. We ignore this potential disaster for now and continue
using non-degenerate perturbation theory.

The first order corrections to the energy of all states are zero, as has in fact
already been covered by equation (9). We now turn to the second order correc-
tion of an arbitrary Fock state |σ〉d |a〉` with σ in {↑, ↓}, given as

E(2)
aσ = ∑

bς

|〈b|` 〈ς|d H`d |σ〉d |a〉`|
2

E(0)
aσ − E(0)

bς

, (12)

where the sum runs over all Fock states excluding the one indexed by a and σ,
and E(0)

bς is the eigenenergy of |ς〉d |b〉` with respect to H0.
Inserting the expression for H`d dramatically reduces the amount of states

to be summed over, as the numerator is only non-zero for states that can be

5



reached from |σ〉d |a〉` by moving a single electron. We have

E(2)
aσ = ∑

k

∣∣〈a|` c†
kσ 〈σ|d dσ Tkσd†

σckσ |σ〉d |a〉`
∣∣2

ξ`
kσ − ξd

σ −U

+ ∑
k

∣∣〈a|` ckσ 〈σ|d d†
σ T∗kσc†

kσdσ |σ〉d |a〉`
∣∣2

−ξ`
kσ + ξd

σ

= ∑
k

|Tkσ|2
∣∣〈a|` 〈σ|d c†

kσckσ(1− d†
σdσ) |σ〉d |a〉`

∣∣2
ξ`

kσ − ξd
σ −U

+ ∑
k

|Tkσ|2
∣∣〈a|` 〈σ|d (1− c†

kσckσ)d†
σdσ |σ〉d |a〉`

∣∣2
−ξ`

kσ + ξd
σ

. (13)

The quantum dot occupation number operators d†
σdσ and d†

σdσ above evaluates
to 0 and |σ〉d respectively, when operating on |σ〉d . Furthermore, since the
states in the numerator are Fock states, they have exactly zero or one electron
in each state by definition. Therefore, each inner product in the numerator
must either yield 0 or 1, and we may as well drop the |· · · |2. The expression
above can thus be simplified to

E(2)
aσ = ∑

k

|Tkσ|2 〈a|` 〈σ|d c†
kσckσ |σ〉d |a〉`

ξ`
kσ − ξd

σ −U

+ ∑
k

|Tkσ|2 〈a|` 〈σ|d (1− c†
kσckσ) |σ〉d |a〉`

−ξ`
kσ + ξd

σ

. (14)

Finally, since the occupation numbers of the lead states are independent of the
quantum dot parts, we can save some ink by writing

E(2)
aσ = ∑

k

|Tkσ|2 〈a|` c†
kσckσ |a〉`

ξ`
kσ − ξd

σ −U
+ ∑

k

|Tkσ|2 〈a|` (1− c†
kσckσ) |a〉`

−ξ`
kσ + ξd

σ

. (15)

More interesting than the energy-correction to a specific combination of
lead and quantum dot states (which is immaterial, since we cannot know the
state of the lead exactly) is the thermal average of the possible |a〉` states, with
only the quantum dot part known. We approximate this using the thermal av-
erage with respect to H0, using a definition similar to the normal definition[7].
However, the sums here runs over only the eigenstates of H0 that have a quan-
tum dot part of exactly |σ〉d .2 I.e.

E(2)
σ ≡ ∑a e−βE(0)

aσ E(2)
aσ

∑a e−βE(0)
aσ

= ∑a e−β(E`
a+ξd

σ )E(2)
aσ

∑a e−β(E`
a+ξd

σ )
= ∑a e−βE`

a E(2)
aσ

∑a e−βE`
a

, (16)

where β equals 1/kBT and E`
a is the energy of |a〉` with respect to H`.

2 This would have been problematic if the thermal average was with respect to the full Hamil-
tonian, since states with a known quantum dot part are not eigenvalues of H and hence have
ill-defined energies.[7]
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We move the sum over a into the sum over k, obtaining

E(2)
σ = ∑

k

|Tkσ|2
∑a e−βE`

a 〈a|`c†
kσckσ |a〉`

∑a e−βE`
a

ξ`
kσ − ξd

σ −U
+ ∑

k

|Tkσ|2
∑a e−βE`

a 〈a|`(1−c†
kσckσ)|a〉`

∑a e−βE`
a

−ξ`
kσ + ξd

σ

= ∑
k

|Tkσ|2 nF(ξ`
kσ)

ξ`
kσ − ξd

σ −U
+ ∑

k

|Tkσ|2
(

1− nF(ξ`
kσ)
)

−ξ`
kσ + ξd

σ

, (17)

where nF is the Fermi-Dirac distribution (see section A.1 for a derivation of the
Fermi-Dirac distribution from the sums above).

5.1 Flat band

In the hopes of discovering some of the qualitative features of equation (17) we
turn to a particularly simple combination of ξ`

kσ and density of states: The flat
band[6].

The relation between the wave vector k and ξ`
kσ can in general be aniso-

tropic and non-bijective,[8] making it generally impossible to deduce Tkσ from
ξ`

kσ alone. But assuming that we can at least approximate this function (for
example if both depends on the length of k in a simple way[7]), it becomes
possible to convert the sums in (17) to simple integrals given by3

E(2)
σ =

∫
ξ
Dσ(ξ)

|Tσ(ξ)|2 nF(ξ)
ξ − ξd

σ −U
dξ +

∫
ξ
Dσ(ξ)

|Tσ(ξ)|2 (1− nF(ξ))
−ξ + ξd

σ

dξ, (18)

where Dσ(ξ) represents the density of states and Tσ(ξ) is Tkσ as a function of
ξ`

kσ. Defining the coupling[6]

Γσ(ξ) ≡ πDσ(ξ) |Tσ(ξ)|2 , (19)

this can be written as

E(2)
σ = 1

π

∫
ξ

Γσ(ξ)
nF(ξ)

ξ − ξd
σ −U

dξ + 1
π

∫
ξ

Γσ(ξ)
1− nF(ξ)
−ξ + ξd

σ

dξ. (20)

If the metal constituting the lead has an odd valence (i.e. it is not a semi-
metal), the conduction band will be approximately half-full.[8] This informa-
tion is encoded in the density of states being 0 for ξ outside an interval [−D, D].
Inside the interval, the coupling is approximated by a (spin-dependant) con-
stant.[7]

Γσ(ξ) =

{
Γσ if |ξ| < D
0 otherwise.

(21)

With these approximations, the integrals in (20) can be written as

E(2)
σ = 1

π

∫ D

−D
Γσ

nF(ξ)
ξ − ξd

σ −U
dξ + 1

π

∫ D

−D
Γσ

1− nF(ξ)
−ξ + ξd

σ

dξ. (22)

3 see [7] for a similar calculation in the context of the Anderson model for magnetic impurities
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5.1.1 At absolute zero

At absolute zero, the Fermi-Dirac distribution functions in (22) becomes step-
functions, completely cutting of the upper part of the first integral and the
lower part of the second. I.e.

E(2)
σ = 1

π

∫ 0

−D

Γσ

ξ − ξd
σ −U

dξ + 1
π

∫ D

0

Γσ

−ξ + ξd
σ

dξ. (23)

If we avoid the poles by only looking at situations where ξd
σ + U > 0 and

ξd
σ < 0, the integrals become proper integrals4 with the solution

E(2)
σ =

Γσ

π
log

(
ξd

σ + U
D + ξd

σ + U

)
+

Γσ

π
log
(
−ξd

σ

D− ξd
σ

)
. (24)

When the half-width of the band (D) is large compared to
∣∣ξd

σ

∣∣, ∣∣ξd
σ

∣∣ and U,
which it is in at least one experimental realization,5 this expression is well ap-
proximated by

E(2)
σ =

Γσ

π
log

(
ξd

σ + U
D

)
+

Γσ

π
log
(
−ξd

σ

D

)
. (25)

Written in this form, it is clear that the difference between the energy correction
of |↑〉d and |↓〉d can be expressed without D. The difference is given as

∆E(2) ≡ E(2)
↑ − E(2)

↓ =
Γ↑
π

log

(
−ξd
↑

ξd
↑ + U

)
−

Γ↓
π

log

(
−ξd
↓

ξd
↓ + U

)
. (26)

See figure 1 for a visualization of ∆E(2). We see from this figure that the effect
of the gate voltage on the spin population is most pronounced when ξd

↑ equals
ξd
↓ . This requires that the external magnetic field cancels the local magnetic

field, which can only happen if the two are aligned.
In this case

∆E(2) =
∆Γ
π

log
(
−ξd

ξd + U

)
(27)

where ∆Γ equals Γ↑ − Γ↓ and ξd = ξd
↑ = ξd

↓ . This expression is given in [6].

The sign of ∆E(2), and thus the spin of the most favourable state, is decided by
the ratio

−ξd

ξd + U
. (28)

If ∆Γ is positive, and the above ratio is below one, the favourable state on the
quantum dot is the spin up state. This is caused by increased hybridization

4Technically, the integrands still have singularities at the poles, even if they fall where the dis-
tributions yield zero. But these singularities are removable when the temperature is zero.

5Compare the width of the diamonds in figure 1 in [5] with the band structure of nickel[9].
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Vg

B

0

Figure 1: This figure shows the energy difference between |↑〉d and |↓〉d for the flat band, found
by second order perturbation theory at 0 ◦K (see section 5.1).
The x and y parameters are the gate voltage and the magnetic field respectively. In contrast to
the rest of the thesis, the spin-basis here is fixed, and the magnetic field is varied in relation to it,
allowing the effect of reversing the magnetic field to be displayed in one plot. The magnetic field
is parallel or anti-parallel to spin up, with the component plotted along the y-axis as B.
Darker shading represents higher absolute energy difference. Arrows represent the spin of the
lowest energy state in each region. In effect, the arrows reflect the sign of the energy difference.
ξd
↑ equals ξd

↓ in the vertical center of the plot.
In the main graphic Γ↑ is slightly smaller than Γ↓, whereas they are the same in the small
embedded graphic (corresponding to a lead that is not ferromagnetic).

as the singly-occupied quantum dot state approaches the empty lead-states
above the Fermi level. The virtual process corresponding to this hybridization
is fluctuations off and then onto the quantum dot, with an intermittent empty
quantum dot.

When the ratio is higher than one, in which case ξd + U is closest to the
Fermi level, the spin down state is favoured. As this allows spin up lead-states
to hybridize onto the quantum dots empty spin up state. The virtual process
in this case, corresponds to spin up electrons in the lead, fluctuating between
the spin up state on the quantum dot and the lead. In this case, the quantum
dot is intermittently doubly occupied. Both situations are shown in figure 2.

The transition point lies at

ξd = −U
2

, (29)

which corresponds to the Fermi level being positioned halfway between the
singly-occupied and doubly-occupied energy levels.

5.1.2 At finite temperatures

Using lessons learned from the zero temperature case, we now take another
stab at (22), this time without resorting to setting T equals zero.

Since the energy correction diverges for D much greater than the three
characteristic energies of the quantum dot (ξd

↑ , ξd
↓ and U), we again choose

to look at only the difference between the energy corrections of the two single
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Figure 2: This figure depicts the virtual processes which leads to the perturbed energy levels.
∆Γ is positive in both A) and B), signifying a majority of spin up states on the lead.
For

∣∣ξd
∣∣ <

∣∣ξd + U
∣∣, the larger coupling of the spin up state on the quantum dot with empty

lead states near the Fermi level, causes this level to be lower in energy than the corresponding
spin down state. This is depicted in A).
In B), the gate potential has been tuned such that

∣∣ξd
∣∣ >

∣∣ξd + U
∣∣. In this case the spin down

state is favoured, as this leaves the spin up state of the dot available for hybridization with the
spin up electrons in the lead.
This figure is an adaptation of a figure in [5].

particle quantum dot states. At finite temperatures this reads as

∆E(2) = 1
π

∫ D

−D

(
Γ↓

nF(ξ)
ξ − ξd

↓ −U
+ Γ↑

1− nF(ξ)
−ξ + ξd

↑

−Γ↑
nF(ξ)

ξ − ξd
↑ −U

− Γ↓
1− nF(ξ)
−ξ + ξd

↓

)
dξ. (30)

Similar to (27), we employ the restriction ξd
↑ = ξd

↓ and express ∆E(2) using the
coupling difference (∆Γ) as

∆E(2) = −∆Γ
π

∫ D

−D

(
nF(ξ)

ξ − ξd −U
+

1− nF(ξ)
ξ − ξd

)
dξ

= −∆Γ
π

∫ D

−D

(
1

eβξ + 1
1

ξ − ξd −U
+

1
e−βξ + 1

1
ξ − ξd

)
dξ. (31)

Using the substitution z = βξ, the integral simplifies to

∆E(2) = −∆Γ
π

∫ βD

−βD

(
1

ez + 1
1

z− a
+

1
e−z + 1

1
z− b

)
dz, (32)

where a = β(ξd + U) and b = βξd . Our strategy is to solve this integral for
βD → ∞ using contour integration.

10



Figure 3: On the left, the contour used to calculate ∆E(2) for finite temperatures is shown. Black
dots indicate the poles of the integrand.
The right figure is a plot of |1/(ez+1)| illustrating how the Fermi-Dirac distribution function
behaves at the point where A crosses the real line. If R is large, A looks like a straight line, going
through this region. If we furthermore require that R is an integer multiple of 2π, the Fermi-Dirac
distribution function will behave exactly like it does on the real axis.

The poles: The integrand has two poles on the real axis at a and b that de-
serves special attention, as they make the integral undefined. We decide to
consider only the Cauchy principal value of the integral; i.e. we exclude an
equally-sized small region from the domain of integration on either side of
each pole.

In the closing paragraph of this section, we discuss a different method for
assigning a definite value to the integral, involving adding a small imaginary
value iη to each of the guilty denominators. In section 6, the physical justifica-
tion and relative merits of each of the methods are discussed.

In addition to the poles at a and b, the Fermi-Dirac distribution functions
also have a series of poles. These are distributed along the imaginary axis
whenever ez equals -1, occuring at

z = 2πni + πi for all n ∈ Z. (33)

The contour: We construct the contour as follows (se figure 3): The contour
coincides with the real line from −R to R, except from a small region around
each pole. This part we call L. The regions excluded from L are all z-values
satisfying

|z− a| < ε or |z− b| < ε, (34)

for some small value ε. The holes inL are connected by two pieces — named Ca
and Cb — going above the poles. The exact shapes of Ca and Cb are irrelevant, as
we are going to find their contribution through the fractional residue theorem,
not direct integration.

Next, the contour arcs through the complex plane, closing the contour. The
arc (A) is parametrized by the function

z = eiθ R, (35)
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with θ running from 0 to π. The imaginary axis is thus crossed at the point iR.
We let

R = 2πN with N ∈N and N � 1, (36)

such that the step of the Fermi-Dirac distribution function is crossed in an ap-
proximately straight line, at one of its periodic repeats (i.e. it will behave as it
does on the real axis, see figure 3).

The calculation: We call the integrand of (32) f (z), i.e.

f (z) =
1

ez + 1
1

z− a
+

1
e−z + 1

1
z− b

, (37)

and let βD equal R. The Cauchy principal value of the integral in (32) can now
be written as

P.V.
∫ βD

−βD
f (z)dz =

∫
L

f (z)

= −
(∫
A

+
∫
Ca

+
∫
Cb

)
f (z) + 2πi ∑

n
Res[ f (z), zn] (38)

using the residue theorem[10], where the sum runs over all poles of f (z) inside
the contour.

In the A-integral we have

dz = ieiθ Rdθ, (39)

such that∫
A

f (z) = i
∫ π

0

(
1

eeiθ R + 1
eiθ R

eiθ R− a
+

1
e−eiθ R + 1

eiθ R
eiθ R− b

)
dθ. (40)

Since R is large, the Fermi-Dirac distributions become step functions and the
ratios become 1, and we have∫

A
f (z) = i

∫ π

π/2
dθ + i

∫ π/2

0
dθ = πi. (41)

The sum in (38) runs over all the z-values in (33) with a positive imaginary
part. I.e.

2πi ∑
n

Res[ f (z), zn] = 2πi
N

∑
n=0

lim
z→zn

(
z− zn

ez + 1
1

z− a
+

z− zn

e−z + 1
1

z− b

)

= 2πi
N

∑
n=0

(
1

zn − a
lim

z→zn

z− zn

ez + 1
+

1
zn − b

lim
z→zn

z− zn

e−z + 1

)
(42)

where zn = (2n + 1)πi. By l’Hôpital’s rule we have

lim
z→zn

z− zn

ez + 1
= lim

z→zn

1
ez = −1, (43)
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and by similar argument

lim
z→zn

z− zn

e−z + 1
= 1. (44)

We now have

2πi ∑
n

Res[ f (z), zn] = −2πi
N

∑
n=0

(
1

(2n + 1)πi− a
− 1

(2n + 1)πi− b

)
, (45)

or by rearrangement

2πi ∑
n

Res[ f (z), zn] = −
N

∑
n=0

(
1

n + a′
− 1

n + b′

)
, (46)

where

a′ =
1
2

+
ia
2π

and b′ =
1
2

+
ib
2π

. (47)

This series is convergent; indeed for N → ∞

N

∑
n=0

(
1

n + a′
− 1

n + b′

)
= ψ(b′)− ψ(a′), (48)

where ψ(z) is the digamma function.[11]

As noted above, the value of the integrals∫
Ca

f (z) and
∫
Cb

f (z) (49)

are found using the fractional residue theorem. We have

lim
ε→0

∫
Ca

f (z) = φi Res[ f (z), a] (50)

and similarly for b, where φ is the signed angle by which the contour circles the
pole (e.g. φ = 2π would represent one entire counterclockwise circulation).[10]

In our case φ = −π for both Ca and Cb, thus

lim
ε→0

∫
Ca

f (z) = −πi lim
z→a

(
1

ez + 1
z− a
z− a

+
1

e−z + 1
z− a
z− b

)
= −π

1
ea + 1

i (51)

and

lim
ε→0

∫
Cb

f (z) = −π
1

e−b + 1
i. (52)

All the terms in (38) have now been uncovered. The L-integral can be ex-
pressed as∫

L
f (z) = −

(
πi− π

1
ea + 1

i− π
1

e−b + 1
i + ψ(b′)− ψ(a′)

)
, (53)
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which looks like it might have an imaginary part, but since f (z) is real every-
where on L, this cannot be. Evidently

Im
(
ψ(b′)− ψ(a′)

)
= π

(
1

ea + 1
+

1
e−b + 1

− 1
)

, (54)

with a′ and b′ as in (47). This can be affirmed by plotting the function.
The difference between the corrections to the energies of the quantum-dot-

states at finite temperatures can now be written out in full. We call this ∆E(2)
P.V.

signifying that the integral in (31) was made definite by choosing to interpret
it as a Cauchy principal value integral. We have

∆E(2)
P.V. =

∆Γ
π

Re
(

ψ

(
1
2

+
iβξd

2π

)
− ψ

(
1
2

+
iβ(ξd + U)

2π

))
, (55)

which is given in [6] as well.

2nd method — moving the poles: An alternative method for making the in-
tegral in (32) defined, is by moving each of the poles slightly below the real
axis. This corresponds to adding iη to each of the denominators in (32), where
η is some infinitesimal number.

It would no longer be necessary for L to leave the real axis, so Ca and Cb
could be dropped. The rest of the calculation stays the same, asA is unchanged
and the same number of poles are enclosed. The difference in the corrections
to the energy — which we shall call ∆E(2)

η in this case — becomes

∆E(2)
η = ∆E(2)

P.V. + i∆Γ
(

1
eβ(ξd +U) + 1

+
1

e−βξd + 1

)
. (56)

6 Self Energy

All the terms in the complete Hamiltonian of the modelled system are quadratic
in fermionic creation and annihilation operators. The sole exception being the
term

Ud†
↑d↑d

†
↓d↓ (57)

of H`d , which is quartic. The presence of this term makes it in general impos-
sible to find exact Green’s functions for the system.[7]

Setting U = 0, equivalent to turning of all interactions between electrons in
the system, leads to a model for which the associated Green’s functions in prin-
ciple can be found explicitly, and for which the concept of self energy naturally
emerges. The system reduces to a model treated in [7] under the heading “Sin-
gle level coupled to continuum”. The arguments are presented in the following
section.

6.1 Quantum dot self energy

The model described in section 3.1 is altered by setting U to zero as described
above. This makes the ↑-state and the ↓-state of the quantum dot independent
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of each other, and makes the calculations applied to this two-level system al-
most identical to the one-level system described in [7]. This subsection follows
the derivation in [7] closely.

The diagonal retarded Green’s function for propagation in quantum dot
states is defined as

GR
dd (σ, t) = −iθ(t)

〈{
dσ(t), d†

σ

}〉
, (58)

where 〈· · · 〉 represents thermal averaging over all states, θ(t) is the Heavi-
side step function and { · , · } represents the anti-commutator. This function is
found using the equation of motion technique.

The Green’s function is differentiated with respect to time to yield

d
dt GR

dd (σ, t) = −iδ(t)− iθ(t)
〈{

d
dt

(
dσ(t)

)
, d†

σ

}〉
, (59)

where we used that dσ(t) = dσ for t = 0, and that anti-commuting same state
fermionic creation and annihilation operators yields one. The time dependance
of dσ(t) is given in the Heisenberg picture as

d
dt

(
dσ(t)

)
= i[H, dσ](t), (60)

where [
H, dσ

]
= −ξd

σ dσ −∑
k

Tkσckσ. (61)

Here we used that[
d†

σ′ckσ′ , dσ

]
= d†

σ′

{
ckσ′ , dσ

}
−
{

d†
σ′ , dσ

}
ckσ′ = −δσσ′ckσ. (62)

Multiplying both sides of (59) by i yields

i d
dt GR

dd (σ, t) = δ(t) + ξd
σ GR

dd (σ, t) + ∑
k

TkσGR
`d (kσ, t), (63)

where

GR
`d (kσ, t) ≡ −iθ(t)

〈{
ckσ(t), d†

σ

}〉
. (64)

Repeating the process for GR
`d (kσ, t) produces

i d
dt GR

`d (kσ, t) = ξ`
kσGR

`d (kσ, t) + T∗kσGR
dd (σ, t). (65)

Here we used that [
H, ckσ

]
= −ξ`

kσckσ − T∗kσdσ. (66)

To turn these expressions into an algebraic equation, we perform a Fourier
transform. However, a slightly modified version of the standard time to fre-
quency Fourier Transform is used; this is defined by

f (ω) =
∫ ∞

−∞
dt f (t)ei(ω+iη)t, (67)
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where η is an infinitesimal positive value. The introduction of iη into the nor-
mal definition of the Fourier transform is physically motivated. Since ηt van-
ishes for all reasonable values of t, the Fourier transform as defined above is
identical to the standard Fourier transform, as long as a finite t′ exists, such
that

f (t) = 0 for all t > t′. (68)

The Green’s functions above are related to the correlation between adding an
electron to the quantum dot σ-state or the lead kσ-state at time 0, and later
finding an electron in the σ-state of the quantum dot at time t. Thus any kind
of relaxation will satisfy the above requirement.[7, 12]

The Fourier transform of the two expressions above are

(ω + iη)GR
dd (σ, ω) = 1 + ξd

σ GR
dd (σ, ω) + ∑

k
TkσGR

`d (kσ, ω)

and (ω + iη)GR
`d (kσ, ω) = ξ`

kσGR
`d (kσ, ω) + T∗kσGR

dd (σ, ω). (69)

Here we used that∫ ∞

−∞
dt
(

d
dt f (t)

)
ei(ω+iη)t = −i(ω + iη) f (ω) (70)

(through integration by parts) and∫ ∞

−∞
dt δ(t)ei(ω+iη)t = 1. (71)

The equations in (69) are algebraic equations with the solution

GR
dd (σ, ω) =

1
ω + iη − ξd

σ − ΣR
d (σ, ω)

(72)

where

ΣR
d (σ, ω) ≡∑

k

|Tkσ|2

ω + iη − ξ`
kσ

(73)

is the self energy of the quantum dot states. This should be compared with the
term

∑
k

|Tkσ|2

−ξ`
kσ + ξd

σ

(74)

of (17), which contributes to the second order correction to the energy of the
quantum dot σ-state. Inserting ξd

σ — the base energy of the state — makes the
comparison more obvious. In the following sections, we extend this line of
calculations to recover self-energies corresponding to the remaining terms in
(17), and explain the similarity.
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6.2 Self energy of lead states

We now turn to the lead states. We define the diagonal Green’s function for
propagation in the lead as

GR
``(kσ, t) ≡ −iθ(t)

〈{
ckσ(t), c†

kσ

}〉
. (75)

Differentiation yields

i d
dt GR

``(kσ, t) = δ(t) + ξ`
kσGR

``(kσ, t) + T∗kσGR
d `(kσ, t) (76)

where we reused (66). GR
d `(kσ, t) is defined by

GR
d `(kσ, t) ≡ −iθ(t)

〈{
dσ(t), c†

kσ

}〉
. (77)

Differentiating this function will give rise to non-diagonal Green’s function
between lead states. These are not zero, as they could be connected through
further coupling to the quantum dot, and back. However, here we choose to
neglect these Green’s functions, as their inclusion in the GR

``-function would
make H`d enter at fourth order, whereas the energy corrections in section 5 —
to which we seek to compare these self-energies — only include second order
processes. With this in mind, we obtain

i
d
dt

GR
d `(kσ, t) = ξd

σ GR
d `(kσ, t) + TkσGR

``(kσ, t), (78)

using [
H, dσ

]
= −ξd

σ dσ −∑
k′

Tk′σck′σ (79)

but neglecting all non-diagonal entries in the sum (entries where k′ 6= k).
Performing the Fourier transforms as before and solving the algebraic equa-

tions which emerges, leads to

GR
``(kσ, ω) =

1
ω + iη − ξ`

kσ − ΣR
` (kσ, ω)

(80)

where

ΣR
` (kσ, ω) ≡ |Tkσ|2

ω + iη − ξd
σ

. (81)

This gives the self energy of a single lead state. To compare this to (17), we
need to sum over the occupied states of the lead, when in thermal equilibrium.
We obtain

∑
kσ

|Tkσ|2 nF(ξkσ)
ξkσ + iη − ξd

σ

(82)

which corresponds to the last two terms of (17), provided that U is zero. If
U is not zero, we cannot directly associate the second order correction found
through standard perturbation theory with any self energy, however the gen-
eralization is obvious.

If we permit ourselves to view (17) as an expression involving self-energies,
we can reintroduce the term iη, justifying the two mathematical methods em-
ployed in 5.1.2. Moving the poles gives the self energy, and taking the Cauchy
principal value simply isolates the real part.
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6.3 The imaginary part of the self energy

In general the imaginary part of a self energy is proportional to reciprocal of
the lifetime of particles in the state.[7, 12]

This also holds for the difference in the energy correction between the quan-
tum dot states found in (5.1.2). I.e. the difference in transition rates found in
the following section, reflects the difference in lifetime found from the imagi-
nary part of the expression obtained in (5.1.2) for ∆E(2)

η , up to second order in
Tkσ.

7 Transition Rates

The transition rates going from a singly occupied dot with a definite spin, to
one of the other available states, can be calculated to first order in H`d using
Fermi’s golden rule, and to higher orders using a generalized version.

The generalized Fermi’s golden rule[7] can be written as

R f i = 2π |〈 f | T |i〉|2 δ(E f − Ei) (83)

where

T = V + V
1

Ei − H0 + iη
T. (84)

Here R f i is the transition rate from the initial state |i〉 to the final state | f 〉 (nor-
mally denoted Γ f i), H0 is the unperturbed Hamiltonian which Ei and E f are
given in relation to and V is the perturbation.

In this section we pursue this formula up to second order for |i〉 being a
state of the form |σ〉d |a〉` with thermal averaging over |a〉` states. For each
order, we sum over all possible final states.

7.1 First order

To first order in H`d , the transition rate from state |i〉 to | f 〉 reads

R(1)
f i = 2π

∣∣∣∣∣〈 f |
(

∑
kσ

Tkσd†
σckσ + ∑

kσ

T∗kσc†
kσdσ

)
|i〉
∣∣∣∣∣
2

δ(E f − Ei). (85)

If |i〉 is of the form |a〉d |σ〉`, then only final states that can be written as

c†
kσ |a〉d |0〉` or ckσ |a〉d |↑↓〉` (86)

will yield non-zero inner products. For each case we have

R(1)
k 0, aσ = 2π |Tkσ|2

∣∣∣〈a|` (1− c†
kσckσ) |a〉`

∣∣∣2 δ(ξ`
kσ − ξd

σ ) (87)

R(1)
k ↑↓, aσ = 2π |Tkσ|2

∣∣∣〈a|` c†
kσckσ |a〉`

∣∣∣2 δ(ξd
σ + U − ξ`

kσ). (88)
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Again, if |a〉` is a Fock state, |· · · |2 acts as the identity function. Therefore,
taking the thermal average — similar to the calculation in section 5 — yields

R(1)
k 0, σ = 2π |Tkσ|2

(
1− nF(ξ`

kσ)
)

δ(ξ`
kσ − ξd

σ ) (89)

R(1)
k ↑↓, σ = 2π |Tkσ|2 nF(ξ`

kσ)δ(ξd
σ + U − ξ`

kσ). (90)

We now intend to sum over the possible final states. Assuming the same re-
strictions on the relation between k, ξ`

kσ and Tkσ as was used in section 5.1, the
sum can be converted to an integral. I.e.

R(1)
0, σ =

∫
ξ
Dσ(ξ)2π |Tσ(ξ)|2 (1− nF(ξ)) δ(ξ − ξd

σ )dξ (91)

R(1)
↑↓, σ =

∫
ξ
Dσ(ξ)2π |Tσ(ξ)|2 nF(ξ)δ(ξd

σ + U − ξ)dξ. (92)

Performing the integrals, the transition rates can be written as

R(1)
0, σ = 2Γσ(ξd

σ )
(

1− nF(ξd
σ )
)

(93)

R(1)
↑↓, σ = 2Γσ(ξd

σ + U)nF(ξd
σ + U) (94)

using the coupling defined earlier.
As discussed in section 6.3, this rate reflects the imaginary part of ∆E(2)

η .
To se this, we calculate the difference in rate between spin up and spin down
using the same approximations as in section 5.1.2. We have

∆R(1) = 2∆Γ
(

1
eβ(ξd +U) + 1

+
1

e−βξd + 1

)
. (95)

This is twice the magnitude of the imaginary part of ∆E(2)
η , however this rate

refers to the rate of change of probability, while the imaginary part of ∆E(2)
η

gives the reciprocal lifetime of probability amplitude.[7, 12] In other words

|e−(τ−1)t|2 = e−2(τ−1)t, (96)

explaining the factor of two.

7.2 Second order

The second-order part of the transition rate, going from the Fock-state |σ〉d |a〉`
to | f 〉 can be expressed as

R(2)
f , aσ = 2π

∣∣∣∣〈 f |H`d
1

Ei − H0 + iη
H`d |σ〉d |a〉`

∣∣∣∣2 δ(E f − Eaσ). (97)

If the sums in each of the two H`d -operators are expanded, different combi-
nations of creation and annihilation operators appear. Considering only the
quantum dot operators, sixteen combinations are possible. Of these sixteen,
four combinations involves putting two extra electrons on the quantum dot,

19



which is already occupied by one electron. These combinations yield zero.
Similarly, four combinations involves removing two electrons from the dot. Of
the remaining eight, two involves emptying the already empty σ-state, and two
involves filling the already full σ-state.

The remaining four combinations, leads to only three different classes of
final states, reached by four different virtual processes:

1. Combination: d†
σck′σc†

kσdσ.
Virtual process: An electron is moved from the σ-state of the quantum
dot to a kσ-state on the lead, then an electron is moved from a k′σ-state
on the lead to the σ-state of the dot.
Final state: ck′σc†

kσ |σ〉d |a〉`.
Note that energy conservations requires degeneracy between the kσ-lead-
state and the k′σ-lead-state.

2. Combination: d†
σck′σc†

kσdσ.
Virtual process: Intermittent empty quantum dot.
Final state: ck′σc†

kσ |σ〉d |a〉`.

3. Combination: c†
k′σdσd†

σckσ.
Virtual process: Intermittent doubly occupied quantum dot.
Final state: c†

k′σckσ |σ〉d |a〉`.

4. Combination: c†
k′σdσd†

σckσ.
Virtual process: Intermittent doubly occupied quantum dot.
Final state: c†

k′σckσ |σ〉d |a〉`.
Again, this process requires degeneracy.

Here we look only at combinations number 2 and 3, which flip the spin of
the quantum dot. For these combinations, the classes of final states overlap
completely; interchanging the names of the dummy variables k and k′ reveals
that the wave vectors can be chosen such that the states are identical (except
for an opposite phase).

We denote the second-order part of the transfer rate to the state c†
kσck′σ

|σ〉d |a〉` from |σ〉d |a〉` as R(2)
k′kaσ

. We have

R(2)
k′kaσ

= 2π
∣∣∣〈a|` 〈σ|d c†

k′σckσ (· · · ) |σ〉d |a〉`
∣∣∣2 δ(E f − Eaσ)

(· · · ) =

(
Tk′σd†

σck′σT∗kσc†
kσdσ

ξd
σ − ξ`

kσ + iη
+

T∗kσc†
kσdσTk′σd†

σck′σ

ξ`
k′σ
− ξd

σ −U + iη

)
. (98)

To make the two sets of operators look alike involves the movement of two
fermionic operators past two other fermionic operators operating on different
states. This requires four changes of sign, canceling out one another. The quan-
tum dot operators can be moved to either side making the quantum dot part
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of the inner product yield one. Factoring out as much as possible, we have

R(2)
k′kaσ

= 2π |Tkσ|2
∣∣Tk′σ

∣∣2 |IP|2 |A|2 δ(ξ`
kσ + ξd

σ − ξ`
k′σ − ξd

σ )

IP = 〈a|` c†
k′σck′σckσc†

kσ |a〉` = 〈a|` c†
k′σck′σ(1− c†

kσckσ) |a〉`

A =
1

ξd
σ − ξ`

kσ + iη
+

1
ξ`

k′σ
− ξd

σ −U + iη
. (99)

Again, the inner product yields one or zero, hence |IP|2 equals IP. We perform
the thermal average over a states, yielding

R(2)
k′kσ

= 2π |Tkσ|2
∣∣Tk′σ

∣∣2 nF(ξ`
k′σ)

(
1− nF(ξ`

kσ)
)
|A|2 δ(· · · ). (100)

We now sum over different possible final states. As before, we change the
sum to integrals using

∑
k
|Tkσ|2 f (ξ`

kσ) =
1
π

∫
ξ

Γσ(ξ) f (ξ)dξ, (101)

and obtain

R(2)
σ =

2
π

∫
dξ
∫

dξ ′ Γσ(ξ)Γσ(ξ ′)nF(ξ ′) (1− nF(ξ))×

×
∣∣∣∣∣ 1
ξd

σ − ξ + iη
+

1
ξ ′ − ξd

σ −U + iη

∣∣∣∣∣
2

δ(ξ + ξd
σ − ξ ′ − ξd

σ ). (102)

The inner integral is solved by utilizing the Dirac-delta function, the argu-
ment to which is zero whenever

ξ ′ = ξ + ξd
σ − ξd

σ . (103)

Adopting this as a definition of ξ ′, we can write

R(2)
σ =

2
π

∫
dξ Γσ(ξ)Γσ(ξ ′)nF(ξ ′) (1− nF(ξ)) |· · · |2 , (104)

where A has been omitted. The remainder of this section deals with the appli-
cation of this general formula, within the flat band approximation.

7.2.1 Flat band at low temperatures

The essence of the flat band approximation lies in (21), restated here for conve-
nience:

Γσ(ξ) =

{
Γσ if |ξ| < D
0 otherwise.

(105)

With this approximation (104) becomes

R(2)
σ =

2ΓσΓσ

π

∫ D

−D
dξ nF(ξ ′) (1− nF(ξ)) |· · · |2 . (106)
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Furthermore, we assume as before that the external magnetic field is well a-
ligned, to make the singly occupied quantum dot states nearly degenerate. In
this case we have

ξ ′ ≈ ξ, (107)

and (106) becomes

R(2)
σ =

2ΓσΓσ

π

∫ D

−D
dξ

1
eβξ + 1

1
e−βξ + 1

×

×
∣∣∣∣ 1
ξd − ξ + iη

+
1

ξ − ξd −U + iη

∣∣∣∣2 . (108)

At 0 ◦K, the Fermi-Dirac distribution functions conspire to make the integrand
zero for all values of ξ. For any finite temperature however, the behaviour
around the poles makes the integral tend to infinity as η → 0. This is different
from the behaviour of the integral studied in section 5.1.2, and no mathematical
tricks will come up with a reasonable solution to this integral.

A possible resolution lies in a less abstract interpretation of the T-matrix
given in (84). Considering the fractions in (84) as propagators, interspersed
by scattering events, opens up for the possibility of a self energy. We imagine
that this self energy has an imaginary part with a magnitude of Λ, this would
correspond to a lifetime of approximately Λ−1.

With the imaginary part iΛ added to each of the denominators, we obtain
an expression which does not diverge. Since Λ is much larger than η, η can be
dropped. The integrand — which we shall call f (ξ) — now reads

1
eβξ + 1

1
e−βξ + 1

∣∣∣∣ 1
ξd − ξ + iΛ

+
1

ξ − ξd −U + iΛ

∣∣∣∣2 . (109)

If

βξd � 0 and 0� β
(

ξd + U
)

(110)

such that both the singly occupied and the doubly occupied energy-levels of
the dot are far away from the Fermi-level compared to kBT. The above expres-
sion is dominated by three contributions, well separated along the ξ-axis.

First, at the pole near ξd + U, we have for small Λ.

f (ξd + U + δ) =
1

eβ(ξd +U) + 1
1

e−β(ξd +U) + 1

∣∣∣∣ 1
δ + iΛ

∣∣∣∣2 , (111)

which is slightly smaller than

1
eβ(ξd +U)

∣∣∣∣ 1
δ + iΛ

∣∣∣∣2 . (112)

Integrating this over δ yields

1
eβ(ξd +U)

π

Λ
. (113)
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The contribution to the integral from the other pole is similarly bounded by

1
e−βξd

π

Λ
. (114)

The final contribution to the integral is attributed to the area near ξ = 0,
where the integrand is not exponentially suppressed. With the approximation
explained in (110), ξ vanishes compared to the quantum dot energy levels in
the denominators. We have for |ξ| � kbT

f (ξ) =
1

eβξ + 1
1

e−βξ + 1

∣∣∣∣ 1
ξd + iΛ

+
1

−ξd −U + iΛ

∣∣∣∣2
=

1
eβξ + 1

1
e−βξ + 1

4Λ2 + U2

((ξd )2 + Λ2) ((ξd + U)2 + Λ2)
, (115)

which for small Λ becomes

f (ξ) =
1

eβξ + 1
1

e−βξ + 1

(
U

ξd (ξd + U)

)2
. (116)

Integrating this over ξ yields

1
β

(
U

ξd (ξd + U)

)2
. (117)

To summarize; within the approximation

(kBT and Λ)�
(
|ξd | and |ξd + U|

)
, (118)

we have

R(2)
σ ≈ 2ΓσΓσ

π

(
1
β

(
U

ξd (ξd + U)

)2
+

π

Λ

(
1

eβ(ξd +U)
+

1
e−βξd

))
. (119)

We see, that for energy levels nearing the Fermi level, the spin flip rates will
increase dramatically.

Assuming that ξd and ξd + U are both on the order of ζ from the Fermi
level, the condition

Λ� βζ2

eβζ
(120)

will validate the approximation

R(2)
σ ≈ 2ΓσΓσ

π

1
β

(
U

ξd (ξd + U)

)2
. (121)

In this case R(2)
σ , will be directly proportional to the temperature.
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8 Conclusion

8.1 Issues

In spite of the apparent simplicity of the system investigated in this project, the
theory needed to resolve even basic properties of the system turned out to be
very involved. Even for the simplistic flat band model, it was necessary to per-
form a multitude of approximation in order to obtain any sort of information
regarding the energy levels at finite temperatures.

The concept of a self energy, specifically the imaginary part of the self en-
ergy — proportional to the inverse lifetime — was central to both the energy
level calculations and the calculations of transition rates.

The results of the energy level corrections in tandem with first order tran-
sition rates seemed to justify the interpretation of the energy corrections as a
form of self energy. However, this connection could not be shown explicitly
because of the quartic term

Ud†
↑d↑d

†
↓d↓ (122)

of Hd .

8.2 Results

The first order correction to the energy of the quantum dot states (E(1)
σ ) was

found to be zero in all cases.
In the context of the flat band model, the second order correction to the en-

ergy was found to be dependent on the slightly artificial parameter D for the
half-width of the band. The difference however, was found to be independent
of D, and an exact solution was recovered using contour integration. This so-
lution was later shown to have interesting analytical properties, connected to
the lifetime of the quantum dot states.

The transition rates for second order processes flipping the spin of the quan-
tum dot was approximated. This approximation was based on the introduction
of an imaginary part to the quantum dot energy levels. The approximation is
also limited to ranges of ξd and ξd + U far away from the Fermi level compared
to kBT, but these are arguably the most interesting, as these ranges insure that
the spin flip rate is low.

Appendix

A.1 Derivation of the Fermi-Dirac distribution

We return to the expression

∑a e−βE`
a 〈a|` c†

kσckσ |a〉`
∑a e−βE`

a
(123)

from (17). Here the sums run over all lead Fock states. We split the sums in
two, where the first part runs over all the states without an electron in the kσ-
state and the second part runs over the same states with the electron added
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back in.

∑b e−βE`
b 〈b|` c†

kσckσ |b〉` + ∑b e−β(E`
b+ξ`

kσ) 〈b|` ckσc†
kσckσc†

kσ |b〉`
∑b e−βE`

b + ∑b e−β(E`
b+ξ`

kσ)

= ∑b e−β(E`
b+ξ`

kσ)

∑b e−βE`
b + ∑b e−β(E`

b+ξ`
kσ)

=
e−βξ`

kσ ∑b e−βE`
b

∑b e−βE`
b + e−βξ`

kσ ∑b e−βE`
b

=
e−βξ`

kσ

1 + e−βξ`
kσ

=
1

eβξ`
kσ + 1

= nF(ξ`
kσ). (124)
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