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Abstract

In this thesis the theory of ordering due to disorder will be investigated and
reproduced as forumulated by C. L. Henley in Ref. [1]. The ground state of the two-
dimensional square lattice with nearest (J1) and next-nearest (J2) neighbour exchange
interactions will be determined. The special case of J2

|J1| >
1
2

will be treated and it will
be shown that this case leads to two antiferromagnetic sublattices, the alignment of
which is seperated by an angle φ. However this φ will not be present in the ground
state energy leading to a frustrated system degenerate in φ.

It will thereafter be shown that different effects will break this frustration under the
expansion of random spin deviations. Thermal fluctuations will break this degeneracy
at a finite temperature due to the entropy of the system. This will lead to the system
being in collinear states. Dilution of the lattice will also break the degeneracy leading
to the system being in anticollinear states. It will be shown that the spin deviations
that minimize the energy of the diluted lattice are not random, but specific values.
The diluted lattice will be investigated numerically and it will be reinforced that the
energy of a lattice with random spin deviations is higher than that of a diluted lattice
with the specific spin deviations.
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2 THE TWO-DIMENSIONAL SQUARE LATTICE

1 Introduction

The symmetry, or lack thereof, of the particles in liquid and solid materials has always
been an intriguing subject in the field of condensed matter physics. The concept of
order is mostly associated with stable states or phase transitions to neatly organized
systems (such as ferromagnetic or antiferromagnetic systems, henceforth abbreviated
by FM and AFM respectively). Disorder is generally linked to the complete opposite,
namely chaotic or cluttered states. The theory of order by disorder completely goes
against this intuition for the terms.

The theory was first formulated by J. Villain, [2] and later explored by, among others,
C. L. Henley. This thesis is based on the results of the latter. The theory shows
how a system, which is originally frustrated, will have this frustration broken by dis-
order of the system. A frustrated system is characterized by not having one unique
determinable ground state - several configurations give the same small energy for the
system, so the system is degenerate in some parameter.

Ordering due to disorder, as devised by Henley in Ref. [1] has been used to examine a
wide variety of subjects. For instance different kinds of transport of doped materials
with frustrated ground states, such as CuCr1-xMgxO2 [3], or the search for new types of
non-Abelian topological superconductors [4]. Generally the theory has proved useful
when dealing with systems with magnetically frustrated ground states.

The purpose of this thesis is to gain understanding of the theory in depth, which will
be done by considering thermal fluctuations and dilution of the lattice characterizing a
material. Dilution signifies the removal of atoms from some lattice sites, leaving them
empty. One could think that these perturbations of the system would leave the system
disordered and chaotic. In fact the exact opposite happens, as will be shown in this
thesis. The disordering of the system will lead to energies characterized by an angle φ
(a parameter depending on the structure of the spins of the lattice) and a consequence
of this is that the energy of the system will be minimized at a certain angle φ. In fact,
as we will see in section 5, thermal fluctuations will lead to the system being in some
so-called collinear states while dilution of the lattice will lead to the system being in
anticollinear states, which will be shown in section 6.

2 The two-dimensional square lattice

Crystalline materials are characterized by periodic arrays of atoms. In this thesis
the two-dimensional square lattice with an effective spin at each lattice point will be
considered, as depicted in Fig. 1. The lattice points are equally spaced in the x -
and y-direction, resulting in lattice constants ax = ay = a. These lengths are illus-
trated in Fig. 3. For simplicity the considered lattice will be constructed to have a = 1.
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3 SPIN CONFIGURATIONS OF GROUND STATES

2.1 Exchange constants

The exchange interaction between atoms located at different lattice points is charac-
terized by the exchange constant Jij between sites i and j [5]. This constant describes
the strengths of the bonds between sites at differents distances from each other. The
atoms of the lattice can interact with every other atom in the lattice, leading to many
different exchange constants, but this interaction is symmetric so that Jij = Jji. In
this thesis only nearest (J1) and next-nearest (J2) neighbour interactions will be con-
sidered, the bonds of which are illustrated in Fig. 1. The ground state of this system
will be determined in section 3.

J1

J2

Fig. 1: A two-dimensional square lattice consisting of two AFM sublattices, the spins of one are
connected by filled lines, while the spins of the other are connected by dashed lines. The exchange
constants between nearest neighbouring sites (J1) and next-nearest neighbouring sites (J2) are illus-
trated in blue. The dotted square encloses the lattice points shown in Fig. 3.

2.2 Brillouin Zones

When examining lattices it is useful to be aware of the related reciprocal lattice. The
Fourier transform of the lattice in real space yields the structure of the lattice in recip-
rocal space. The two-dimensional square lattice has the same structure in real space
as in reciprocal space except that the spacing between lattice points in the recipro-
cal lattice is 2π

a
. The First Brillouin zone is the area in reciprocal space in which all

physically distinct values for the wave vector q is contained [6]. It is made up of the
Wigner-Seitz unit cell of the reciprocal lattice.

The reciprocal lattice is periodic in q → q + 2π
a

so that every q outside of the first
Brillouin zone describes exactly the same wave as one of the q’s in the first Brillouin
zone. This means that when summing (or integrating) over q it is sufficient to sum
over every q in the first Brillouin Zone. Therefore sums (or integrals) of this form in
this thesis will be denoted by only q but it is implicit that this means q ∈ 1stBZ.

3 Spin configurations of ground states

In this thesis the two-dimensional square lattice, described by the Heisenberg Hamil-
tonian

2



3 SPIN CONFIGURATIONS OF GROUND STATES

Ĥ =
1

2

∑
ij

JijSi · Sj, (3.1)

with nearest (J1) and next-nearest (J2) neighbour couplings will be considered as seen
in Fig. 1. It is useful to determine the ground state of the given system. Both J1 and
J2 can be FM (J < 0) or AFM (J > 0). Different combinations of J1 and J2 couplings
give different ground states. To determine the ground state it is convenient to insert
the Fourier transform of the spins Si = 1√

N

∑
q eiRi·qSq to obtain an expression for

Ĥ(q) while also exploiting the fact that this system only has exchange interactions
between nearest neighbours and next-nearest neighbours, so that

Ĥ =
1

2

∑
ij

∑
q,q’

Jije
iRi·qeiRj ·q’Sq · Sq’

=
1

2

∑
Ri

∑
q,q’

Sq · Sq’e
iRi·q

[
J1
(
ei(Ri+(0,a))·q’ + ei(Ri+(0,−a))·q’ + ei(Ri+(a,0))·q’ + ei(Ri+(−a,0))·q’)

+ J2
(
ei(Ri+(a,a))·q’ + ei(Ri+(a,−a))·q’ + ei(Ri+(−a,a))·q’ + ei(Ri+(−a,−a))·q’) ]

=
∑
Ri

∑
q,q’

Sq · Sq’e
iRi·(q+q’)

[
J1
(
cos(q′xa) + cos(q′ya)

)
+ 2J2 cos(q′xa) cos(q′ya)

]
,

(3.2)
where the sum

∑
Ri

eiRi·(q+q’) is only nonzero for q = −q’, so the Heisenberg Hamil-
tonian can be rewritten to

Ĥ =
∑
q

JqSq · S−q, (3.3)

where Jq = J1 [cos(qxa) + cos(qya)]+2J2 cos(qxa) cos(qya). If the Hamiltonian is given
by 3.3 under the restriction S2

i = 1 the energy of the system can be described by [7]

E(q) = JqN, (3.4)

where N is the total number of lattice points. The spins are given by

Si = x̂ sin(q0 ·Ri) + ŷ cos(q0 ·Ri). (3.5)

So the ground state energy is given by the set of q-vectors that minimize Eq. 3.4,
namely the pair ±q0. In nature it is most common that only one q0-vector minimizes
the energy [8], but as will be seen this is not always the case. For the different combi-
nations of FM and AFM exchange couplings the ground state will now be determined.

3.1 FM J1 and FM J2 & AFM J1 and FM J2

These two cases are fairly simple and intuitively straightforward. To find the spin
configuration of the ground state Jq is minimized with respect to q. The energy of the
ground state of the first case where both J1 and J2 are FM is unsurprisingly achieved
when q0 = (0, 0) resulting in a perfect ferromagnet since the spins will be

3



3 SPIN CONFIGURATIONS OF GROUND STATES

Si = ŷ, (3.6)

that is completely unchanged over the entire lattice.

For the other case with AFM J1 and FM J2 the energy is minimized for q0 = (π, π)
and q0 = (π,−π) resulting in the spins being

Si = ŷ cos(πxi ± πyi), (3.7)

i.e. alternating in both the x- and y-direction, i.e. a perfect antiferromagnet for both
plus and minus. Thus both signs describe the same configuration.

3.2 FM J1 and AFM J2 & AFM J1 and AFM J2

The two cases with AFM J2 and corresponding J1’s have less self-evident results than
the previously discussed cases. Here the exchange couplings are conflicting and cannot
both be satisfied. By varying the exchange couplings it can be seen that a shift of the
Jq function happens at a certain J2. For small J2 both cases are dominated by the
J1 exchange (completely FM or AFM). When J2

|J1| >
1
2

the minimum of Jq shifts to

q0 = (π, 0) and q0 = (0, π) for both cases. This is illustrated in Fig. 2.

-π - π
2 0 π

2 π
-π

- π
2

0

π
2

π

qy

q
x

(a) Plot of the contours of Jq with J1 = 1 and
J2 = 0.2.

-π - π
2 0 π

2 π
-π

- π
2

0

π
2

π

qy

q
x

(b) Plot of the contours of Jq with J1 = 1 and
J2 = 2.

Fig. 2: Plots of the contours of Jq showing the shift of q0 from (π, π) and (π,−π) (Fig. (a)) to (π, 0)
and (0, π) (Fig. (b)) as J2 gets larger than 1

2J1.

Henceforth the case of J2
|J1| >

1
2

will be considered and will be assumed to be the
situation for the remainder of this thesis. In this case there is more than one vector
±q0 that minimizes the energy, namely q

(1)
0 = (π, 0) and q

(2)
0 = (0, π). In fact this

situation turns out to be a special case as described by [8]. Here 2q0 = (2π, 0) is a
reciprocal lattice vector, as is (0, 2π). Then, according to [8], the spins are given by
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4 THE HEISENBERG MODEL

Si = x̂ cos(q
(1)
0 ·Ri) sin(θ) + ŷ cos(q

(2)
0 ·Ri) cos(θ). (3.8)

By inserting the q0’s this becomes

Si = x̂ cos(πxi) sin(θ) + ŷ cos(πyi) cos(θ). (3.9)

By varying θ it is clear that these spins lead to a split of the spins into two AFM
sublattices with a free angle between them, as depicted in Fig. 1 with black dots
making up one sublattice and white dots making up the other.

Different values for the angle between the sublattices is shown in Fig. 5 and Fig. 8. It
is convenient to define a set of reference spins, for example at [0, 1] and [0, 0]. Let the
angle that these spins make with the y-axis be θa and θb respectively, as illustrated in
Fig. 3. Now let θa − θb = φ.

[0,0]

[0,1]

θa

θb

ax

ay

Fig. 3: A zoom in on four of the lattice points displayed in Fig. 1. The lenghts characterizing the
two lattice constants ax and ay are shown as well as the angles between the two reference spins at
[0,0] and [1,0] and the y-axis.

4 The Heisenberg model

The Heisenberg model can be used to describe the system introduced above. The
general form of the classical Heisenberg model is given by Eq. 3.1. This model can be
simplified by assuming that the spins Si and Sj are effectively only in two dimensions,
say x and y (and that their magnitude is equal for all i, j).The spins can then be
treated as classical vectors Si = S (cos(θi), sin(θi)), where θi and θj are the angles
between Si and Sj and the y-axis, respectively. Then Eq. 3.1 can be reduced to the
two-dimensional XY model, which is given by [9]

Ĥ =
1

2
S2
∑
ij

Jij cos(θi − θj). (4.1)

It is worth noting that, the two-dimensional XY model is oftentimes considered with re-
gards to the Mermin-Wagner theorem and the Kosterlitz-Thouless transition (vortices
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4 THE HEISENBERG MODEL

and anti-vortices) [5] . In that case only nearest neighbour interactions are considered,
so surely the circumstances of the instance with the addition of next-nearest neighbour
interactions are different, and will not be considered in this thesis.

Since an atom in the lattice only couples to its nearest and next-nearest neighbours,
θi−θj can only take on three different values for each site. All next-nearest neighbours
have θi−θj = π since they form an AFM sublattice, as determined in section 3.2. The
two nearest neighbours in the y-direction have θi − θj = θa − θb = φ, while the two in
the x -direction have θi − θj = θa − (θb + π) = φ − π. Let S2 = 1 for simplicity. The
ground state energy of the system can now be determined to be

Ĥ0 =
1

2

∑
i

(2J1 cos(φ) + 2J1 cos(φ− π) + 4J2 cos(π))

= −2NJ2

= E0,

(4.2)

where N is the number of atoms in the lattice. The ground state energy is independent
of the orientation of the two sublattices, since there is no φ-dependency in Eq. 4.2.
This leads to a degeneracy of the ground state energy in the angle φ and the ground
state is therefore frustrated.

4.1 Spin deviations

A way to excite the system is to let the angles θi fluctuate, so the two sublattices
no longer are perfectly AFM. The following derivations follow those of Ref. [1] in an
attempt to do this. The excitation can be included by letting θi → θ0i + δθi, so that

Ĥ → 1

2

∑
ij

cos
(
θ0i + δθi − θ0j − δθj

)
≈ 1

2

∑
ij

Jij

[
cos
(
θ0i − θ0j

)
− (δθi − δθj) sin

(
θ0i − θ0j

)
− 1

2
(δθi − δθj)2 cos

(
θ0i − θ0j

)]
.

(4.3)
Here the cosine has been expanded to second order in (δθi − δθj). So the addition to
the Hamiltonian due to the deviations of the spins is

δĤ ≈ Ĥ − Ĥ0

= −1

2

∑
ij

Jij

[
(δθi − δθj) sin

(
θ0i − θ0j

)
+

1

2
(δθi − δθj)2 cos

(
θ0i − θ0j

)]
,

(4.4)

where Ĥ0 is the Hamiltonian corresponding to the ground state energy from Eq. 4.2.
As demonstrated in [10] the sine term vanishes due to translational invariance of the
lattice, but it can also be seen that it disappears due to the possible values of θi − θj,
the same way that the J1 coupling terms cancels out in the ground state energy in Eq.
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5 THERMAL FLUCTUATIONS

4.2. Also the next-nearest neighbour coupling term J2 has sin(θi − θj) = sin(π) and

therefore the entire sine term vanishes. The remaining terms of δĤ are then

δĤφ =
1

4

∑
ij

Jij cos
(
θ0i − θ0j

) [
−δθ2i − δθ2j + 2δθiδθj

]
. (4.5)

One can now use the Fourier transform δθi = 1√
N

∑
q eiRi·qδθq to diagonalize this

Hamiltonian. This yields

δĤφ = −
∑
Ri

∑
q,q’

δθqδθq’e
iRi·(q+q’)

[
J1 cos(φ)

(
cos(aq′x)− cos(aq′y)

)
+ J2

(
−2 + 2 cos(aq′x) cos(aq′y)

) ]
,

(4.6)

where the sum
∑

Ri
eiRi·(q+q’) is only nonzero for q = −q’, so Eq. 4.6 can be simplified

to

δĤφ =
1

2

∑
q

Aq|δθq|2, (4.7)

where

Aq = − [2J1 cos(φ) (cos(aqx)− cos(aqy)) + 4J2 (−1 + cos(aqx) cos(aqy))] . (4.8)

Aq is depicted for two different values of φ in Fig. 4. Aq is a measure of how costly
the spin deviations are for the system for each q.

(a) Plot of Aq with J1 = 1 and J2 = 2 for φ = π
2 . (b) Plot of Aq with J1 = 1 and J2 = 2 for φ = π.

Fig. 4: Plots of Aq for different values of φ.

5 Thermal fluctuations

The system will now be considered at some finite temperature, leading to thermal
fluctuations of the system to illustrate how this effect of disorder will lead to ordering

7



5 THERMAL FLUCTUATIONS

of the frustrated system. In this case the partition function, determined by Z =

Tr
[
e−βĤ

]
, for the system is

Z = e−βE0

∑
δθq

e−
β
2

∑
q Aq|δθq|2

= e−βE0

∫ ∏
q

(dδθq) e−
β
2

∑
q Aq|δθq|2

= e−βE0

∏
q

(
2π

βAq

) 1
2

.

(5.1)

Inserting this in F = − 1
β

ln(Z) to find the Helmholtz free energy, with β = 1
Tkb

, kb
being Boltzmanns constant, which in the following will be neglected since it is of no
conceptual importance to the result. Then one obtains

F = F0 +
1

2β

∑
q

ln

(
βAq

2π

)
, (5.2)

where F0 = − 1
β

ln
(
e−βE0

)
= E0 is the ground state energy from Eq. 4.2. Subtracting

this term yields

F − E0 = −1

2
T ln(T )N +

1

2
T
∑
q

ln

(
Aq

2π

)
. (5.3)

If the lattice has periodic boundary conditions, so that site (a + Lx, b + Ly), where
Lx and Ly are the lengths of the lattice in the x - and y-direction, is exactly the
same site as (a, b) then the sum over q can be approximated by an integral, so that∑

q → A
∫

(2π)−2d2q, where A is the area of the lattice [6]. This integral can be
evaluated numerically to

1

2
T
∑
q

ln (Aq) =
TA

8π2

∫
ln(Aq) d2q

= const− TN

2
g0

(
J1 cos(φ)

2J2

)
,

(5.4)

where g0(x) = 0.220 + 0.318x2. So the free energy is then

F − E0 = −1

2
TN ln(T )− 1

2
TN ln(2π) + const− TN

2
g0

(
J1 cos(φ)

2J2

)
. (5.5)

The only variable in Eq. 5.5 is the angle between the two AFM sublattices φ.
The energy of the system in the presence of thermal fluctuations is minimized when
φ = nπ, n ∈ Z. The two sublattices will therefore select a collinear state, where the
axis of the spins is the same for all lattice sites, as illustrated in Fig. 5.

Eq. 5.5 can be rewritten in terms of the entropy as

F − E0 = −1

2
N − TS(φ), (5.6)

8



6 DILUTION

(a) A collinear state with φ = 0. (b) A collinear state with φ = π.

Fig. 5: Collinear states for the two-dimensional square lattice with two AFM sublattices, character-
ized by the angle between the alignment of the two sublattices φ = nπ, n ∈ Z.

since the entropy is given by

S = ln(Z)− β∂ ln(Z)

∂β

= −1

2

∑
q

ln

(
βAq

2π

)
+

1

2
N.

(5.7)

When the system is subject to thermal fluctuations, an effect that leads to disordering
of the lattice, the spins of the lattice will thus align themselves by these collinear
states to minimize the free energy of the system. Hence a kind of ordering by disorder
arises, leading to the name of this mechanism. The fact that the angle between the
alignment of the sublattices minimizes the energy means that this type of fluctuation
breaks the original frustration of the ground state because of the contribution of the
entropy. The energy of the system is no longer degenerate in φ, since there clearly is
a φ-dependency now, and a set of angles that minimize the energy of the system.

6 Dilution

Another type of disordering of the system is the effect of dilution. Diluting a lattice
signifies the complete removal of spins from a number of lattice sites, so that they are
empty. A diluted lattice therefore has unoccupied sites. By following Ref. [1] and Ref.
[11] it will now be shown that this effect leads to a different type of ordering, namely
the anticollinear state with φ = nπ

2
, n ∈ Z.

6.1 Site occupancy

Since not all sites are occupied the occupation parameter εi is introduced to account
for this. If site i is occupied εi = 1 and if it is empty then εi = 0. The dilution of
the lattice happens at random, so that the occupation parameters of different sites
are random and independent of each other for each configuration. This implies that
〈εiεj〉ε = 〈εi〉〈εj〉ε for i 6= j, where 〈〉ε signifies the action of averaging over configura-
tions. For a known occupied fraction p of the lattice 〈〉ε signifies averaging over every
configuration with same p. If the lattice is diluted so that it has n unoccupied sites
clearly p = N−n

N
with N being the total number of sites in the lattice.

9



6 DILUTION

The amount of ways n unoccupied sites can be arranged in a lattice of N points is
given by the binomial coefficient

(
N
n

)
. For every configuration with site i occupied

εi = 1, and εi = 0 otherwise, which means that averaging εi over configurations corre-
sponds to the amount of configurations with site i occupied (since these are the only
configurations that contribute with a nonzero value of εi) divided by the total num-
ber of configurations with n sites of the lattice empty. The amount of configurations
with site i occupied must correspond to the total amount of configurations minus the
amount of configurations with site i unoccupied. This is equivalent to placing the first
empty site out of n at site i and then calculating how many ways the other n − 1
empty sites can be placed at the remaining N − 1 sites. This leads to the equation

〈εi〉 =

(
N
n

)
−
(
N−1
n−1

)(
N
n

) =
N − n
N

= p. (6.1)

Also 〈εiεj〉ε = p2. Since εi = 1 ∨ εi = 0 then ε2i = 1 ∨ ε2i = 0, so 〈εiεi〉ε = 〈εi〉ε = p.

It is convenient to define

ηij = εiεj − p2, (6.2)

so that averaging ηij over configurations yields 〈ηij〉ε = 0. Because of the abovemen-
tioned results it follows that

〈ηijηkl〉 =


p2(1− p2) if the i− j and k − l bonds are the same bond

p3(1− p) if the i− j and k − l bonds share one site

0 if the i− j and k − l bonds share no sites

. (6.3)

6.2 Spin deviations

The introduction of εi leads to the substitution

Jij → εiεjJij, (6.4)

which can be rewritten to

Jij → p2Jij + ηijJij, (6.5)

so that the Hamiltonian from Eq. 4.1 becomes

Ĥ =
1

2

∑
ij

(
p2 + ηij

)
Jij cos (θi − θj) . (6.6)

Once again allowing spin deviations of the form θi → θ0i +δθi and expanding the cosine
function to second order in (δθi − δθj) gives

10



6 DILUTION

Ĥ =
1

2

∑
ij

(
p2 + ηij

)
Jij cos

(
θ0i + δθi − θ0j − δθj

)
≈ 1

2

∑
ij

(p2 + ηij)Jij

[
cos(θ0i − θ0j )− (δθi − δθj) sin(θ0i − θ0j )

−1

2
(δθi − δθj)2 cos(θ0i − θ0j )︸ ︷︷ ︸

(∗)

]
.

(6.7)

p2 is simply a number independent of the spin configuration. Hence if Eq. 6.7 is split
into terms multiplied by p2 and terms multiplied with ηij, the p2-terms will just simplify

as in section 4 to p2Ĥ = p2
(
δĤφ + Ĥ0

)
. When examining the terms multiplied with

ηij one can choose to disregard the last cosine term (the term in (∗)) since this term
is proportional to p2δθ2i both of which are small numbers, so this term is vanishingly
small. The remaining terms can then be expressed as

Ĥ = p2
(
Ĥ0 + δĤφ

)
+ δĤ′, (6.8)

where δĤ′ = 1
2

∑
ij ηijJij

[
cos(θ0i − θ0j )− (δθi − δθj) sin(θ0i − θ0j )

]
. Since the lattice

contains empty sites there is no longer translational invariance, so the sine term obvi-
ously does not vanish as it did in the case of thermal fluctuations. As a result of the
structure of the lattice and the arrangement of angles θ0i when a site has a next-nearest
neighbour at an empty site this will yield one less factor of −J2 than if all next-nearest
neighbours had been present. If a site has a nearest neighbour at an empty site it will
give an excess of ± cos(φ) and ± sin(φ), the sign depending on whether the empty
neighbouring site is in the x - or the y-direction. So these terms that cancelled out
before due to the structure of the sublattices no longer vanish. Because of this δĤ′
can be written as

δĤ′ = −1

2
cos(φ)H̃ − J1 sin(φ)

∑
i

δθiγi −
1

2

∑
ij

ηijJ2, (6.9)

where the J2-term is simply a constant, which in the following will be disregarded.
Here

H̃ = J1
∑
ij

ηij(−1)yi−yj , (6.10)

γi =
∑
j

ηij(−1)xi+yj . (6.11)

Both are factors accounting for the sign of the extra sine/cosine terms due to empty
neighbouring sites.

Fourier transforming the sine term of Eq. 6.9 gives

J1 sin(φ)
∑
i

δθiγi = J1 sin(φ)
∑
q

δθqγ−q. (6.12)

11



6 DILUTION

Using this and inserting δĤ′ in δĤ = Ĥ − p2δĤ0 gives

δĤ = p2δĤφ −
1

2
cos(φ)H̃ − J1 sin(φ)

∑
q

δθ−qγq. (6.13)

6.2.1 Averaging over configurations

Both factors from Eq. 6.10 and Eq. 6.11 average to zero over configurations since they
contain ηij. But 〈H̃2〉ε and 〈|γ2q|〉ε both contain

∑
ij

∑
kl〈ηijηkl〉ε, so it follows from

Eq. 6.3 that these quantities contain terms that are not zero. They are

〈H̃2〉ε = J2
1

∑
ij

∑
kl

(−1)yi−yj+yk−yl〈ηijηkl〉, (6.14)

〈|γ2q|〉ε =
∑
i

∑
k

e−iq·(rk−ri)
∑
j

∑
l

〈ηijηkl〉(−1)xi+yj+xk+yl . (6.15)

To carry out the calculations of these sums it is important to note the many different
ways to satisfy the conditions for the nonzero results in Eq. 6.3. Since both H̃ and γq
only contain J1-couplings it is only necessary to consider nearest neighbour couplings.

For the i − j and k − l bond to be exactly the same bond there are two options:
i = k ∧ j = l or i = l ∧ j = k (four of each for each occupied site i with all nearest
neighbouring sites occupied), see Fig. 6.

i jlk

Fig. 6: i − j (red) and k − l (dark green) bonds are the same bond, with i = k ∧ j = l. This is
also possible for i = l ∧ j = k. For each site i there are four possible configurations of the two bonds
that satisfy either of the cases, all of which are illustrated by the opaque red and dark green lines
encircling these.

There are four ways for them to have just one site in common; (1) i = k ∧ j 6= l, (2)
i = l ∧ j 6= k, (3) i 6= k ∧ j = l and (4) i 6= l ∧ j = k (twelve of each for each occupied
site i with all nearest neighbouring sites occupied), see Fig. 7.

In total there are 56 nonzero terms of
∑

ij

∑
kl〈ηijηkl〉ε which can be executed to give

〈H̃2〉 = 8NJ2
1p

3
[
1− 2p+ p2

]
= 8NJ2

1p
3(δp)2

≈ 8NJ2
1 (δp)2.

(6.16)

12



6 DILUTION

i jk l1

l2

l3

l4

Fig. 7: i − j (red) and k − l (dark green) bonds share one site, here i = k ∧ j 6= l, but this is also
possible for three other combinations of i, j, k and l. For each i− j bond the k − l bond have three
possible configurations that satisfies the condition, as illustrated by the dark green lines encircling
the possible bonds. This leads to a total of 12 combinations of j, k and l per i per satisfactory
combination of these.

This result was obtained under the assumptions that the lattice can still be considered
a two-dimensional square lattice, i.e. that the dilution of the lattice is small so that
p ≈ 1, while δp is the unoccupied fraction of the lattice, δp = 1− p. Eq. 6.15 yields

〈|γ2q|〉 = Np3(1− p2)2(2− cos(qxa)− cos(qya)) + 2Np4(1− p)
[
− 2 + 2 cos(qxa)

+ 2 cos(qya)− 4 cos(qxa) cos(qya) + cos(2qxa) + cos(2qya)
]

≈ 2Nδp [2 + cos(2qxa) + cos(2qya)− 4 cos(qxa) cos(qya)]

= 4Nδp (cos(qxa)− cos(qya))2 .
(6.17)

Exploiting the fact that (1− p2) = (1− p)(1 + p) ≈ 2δp.

6.2.2 Minimizing the energy

The results from section 6.2.1 will now be used to minimize the energy of the system
to determine the spin arrangement corresponding to the minimal energy state. Eq.
6.13 corresponds to an equation of the form δĤ(x) = c − bx + ax2 where x = δθq.
Minimizing this with respect to x trivially gives x = b

2a
, that is

δθq =
J1 sin(φ)γ−q

p2Aq

, (6.18)

which is inconsistent with the result in [1]. Nonetheless the following results are
consistent with the article, which could indicate that the dissimilarity is merely due
to an erratum in the article. Inserting this value for δθq in Eq. 6.13 and averaging
over configurations, all the while ignoring the H̃-term (since H̃ ∝ (δp)2, so this term
vanishes for small δp, which is what is considered here), yields

13



7 NUMERICAL DILUTION

〈δĤ〉ε = −
∑
q

(J1 sin(φ))2 〈|γq|2〉ε
2p2Aq

= −
∑
q

(J1 sin(φ))24Nδp (cos(aqx)− cos(aqy))
2

2p24J2

[
2J1
4J2

cos(φ) (cos(aqy)− cos(aqx)) + (1− cos(aqx) cos(aqy))
] ,

(6.19)
using p ≈ 1. Here the limit J1

J2
→ 0 is being considered which is merely a bit stricter

than the original constraint J2
|J1| >

1
2
.

〈δĤ(φ)〉ε ≈ −
J2
1N

2J2
δp sin(φ)2

∑
q

(cos(aqx)− cos(aqy))
2

1− cos(aqx) cos(aqy)

= −J
2
1N

2J2
δp sin(φ)2

∫
(2π)−2

(cos(aqx)− cos(aqy))
2

1− cos(aqx) cos(aqy)
d2q

= −J
2
1N

2J2
δp sin(φ)2 · 0.7268.

(6.20)

Eq. 6.20 is minimized when φ =
(
n+ 1

2

)
π, n ∈ Z, and therefore when the system is

exposed to dilution of the lattice the two AFM sublattices will select an anticollinear
state as illustrated in Fig. 8 for two different values of φ, and therefore the frustration
of the ground state will be broken.

(a) An anticollinear state with φ = π
2 . (b) An anticollinear state with φ = 3π

2 .

Fig. 8: Anticollinear states for the two-dimensional square lattice with two AFM sublattices, char-
acterized by the angle between the alignment of the two sublattices φ =

(
n+ 1

2

)
π, n ∈ Z.

7 Numerical dilution

In section 6 the theoretical results for the orientation of the two AFM sublattices were
found. This was the outcome of extensive calculations with a number of simplifications
and approximations. It would be interesting to see these results, i.e. the selection of
the anticollinear states for a diluted lattice, numerically. The purpose of this section
is to compare the results of section 6 to those of a numerically diluted lattice.

A script in MathematicaTM is set up to do this (the full script can be seen in appendix
A). The script constructs a lattice with specified angles corresponding to all possible
θ0i but takes fluctuations at each site into account. These fluctuations consist of a
random angle δθi ∈ {−π

8
, π
8
} at each lattice site, with the fluctuation being different

14



8 CONCLUSION

from site to site.

When the lattice with spin deviations is fixed, the dilution takes place. A random
selection of 99% of the lattice sites are kept in the lattice, while the rest are removed.
When the lattice is diluted the energy of the system is calculated. Then a new random
selection of lattice sites ensues, and the energy is determined again. This is done 1000
times. These energies are then averaged for some choice of exchange constants J1
and J2, and subsequently minimized with respect to φ. For a 40 × 40 lattice with
p = 0.99 and exchange constants J1 = −1 and J2 = 10 the energy for the system is
minimized at seemingly random φ. For even larger systems there is no systematical
choice for φ. This shows that the choice of random spin deviations is not a good choice
at all in terms of finding the minimal energy as predicted in 6. For the same choice of
parameters this yields the theoretical and numerical energies respectively:

〈δĤ(φ)〉ε + E0 = −32 000.00036, (7.1)

Emin = −28 538.67272. (7.2)

It can be seen that the energy from the script (Eq. 7.2) is considerably larger than the
theoretical value for the anticollinear state (Eq. 7.1). Several factors can be the cause
of this. Firstly, in section 6 it was seen that the spin deviations δθi are in fact not
random at all; the minimal energy of the system occurs when the spin deviations take
on some specific values given by Eq. 6.18. To determine the absolute minimum for
the energy, as in section 6 this needs to be taken into account. Therefore the random
spin deviations chosen here affect the system to a degree where a recurrent value of φ
to minimize the energy is not determinable.

Secondly the averaging over configurations does not contain all configurations. As was
shown, the amount of realizations for a given removal of a number of sites n is given
by the binomial coefficient

(
N
n

)
. N need not be very large before this number gets

enormous. For example; a 30× 30 lattice with 1% of the sites removed yields(
900

891

)
= 1 025 634 981 654 748 129 600 (7.3)

different configurations, which is immensely challenging to generate and average over.
To truly average over configurations the empty sites should not be selected at random,
but instead systematically so that every configuration is represented once and only
once.

Therefore this method does not find the minimum for the energy of the system as given
in section 6 but it does show that completely random spin deviations yields a larger
energy than the energy corresponding to the special δθq’s, which is in accordance with
the theory and the results from section 6.

8 Conclusion

In an attempt to understand the results of Henley [1] the derivations were reproduced
in this thesis. The two-dimensional square lattice with nearest (J1) and next-nearest
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8 CONCLUSION

(J2) neigbour exchange interactions was considered. For different combinations of FM
and AFM J1 and J2 the ground state spin configurations were determined by minimiz-
ing the exchange constant Jq. It turned out that the special case of J2

|J1| >
1
2

lead to a
frustrated ground state. These exchange constants led to a split of the lattice into two
AFM sublattices, the alignment of these seperated by an angle φ. Since the ground
state energy had no φ-dependency the ground state of the system was frustrated. It
could then be shown that different kinds of disorderings of the system would break
this frustration.

The system was expanded to contain spin deviations, and the Hamiltonian was then
diagonalized by Fourier transform of the spin fluctuations δθi. Then the system was
considered under thermal fluctuations. These fluctuations led to a contribution from
the entropy to the free energy of the system. This energy could then be minimzed to
reveal that the frustration of the ground state would be broken under the influence of
thermal fluctuations. The free energy of the system was minimized by φ = nπ, n ∈ Z,
the system therefore selecting collinear states. Thus the entropy of the system broke
the frustration of the ground state.

Subsequently the effect of dilution of the lattice was considered. The complete removal
of spins from a fraction of the lattice sites lead to the translational invariance of the
system being broken. Therefore the Hamiltonian had to be determined anew. To do
this it was necessary to discover how the occupation parameter εi behaved under the
act of averaging over spin configurations. This helped to arrive at a result for the
Hamiltonian which could be minimized with respect to φ. In the proces of arriving at
this result it could be seen that the energy was minimized for some specific values of
the Fourier transform of the spin deviations δθq. These deviations, which had earlier
been assumed to be random were in fact not random at all in the states with minimal
energy. Thus the dilution of the lattice led to the frustration of the ground state being
broken by a specific φ characterizing the minimal energy of the system. In this case φ
turned out to be φ =

(
n+ 1

2

)
π, n ∈ Z leading to a selection of anticollinear states.

In an attempt to support the results of dilution of the lattice a MathematicaTM script
was created. The purpose of the script was to numerically dilute the lattice. However
a few problems were encountered. Firstly, the spin deviations were assumed to be
random, despite the fact that it was shown earlier not to be the case in the ground
state of the diluted lattice. This meant that the resulting energy would not be the
minimal energy. This was apparent in the results since the theoretically calculated
energy was 〈δĤ(φ)〉ε + E0 = −32 000.00036 and the numerically calculated energy
was Emin = −28 538.67272. Another obstacle was averaging over spin configurations.
Since the amount of spin configurations was given by the binomial coefficient

(
N
n

)
,

which quickly blows up, it was not possible to include all configurations.

As further work with the contents of this thesis it would be obvious to continue working
with the numerical calculations. It is of great interest to see whether or not the effects
of dilution can be shown numerically when the inadequacies of the results of this thesis
are accounted for.
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A MATHEMATICATM SCRIPT TO NUMERICALLY DILUTE A LATTICE

Appendices

A MathematicaTM script to numerically dilute a

lattice

ClearAll["Global`*"]

Mx = 40;

My = Mx;(*The size of the lattice*)

p = 0.99; (*Occupied fraction of the lattice*)

Jfct[d_] := J1* KroneckerDelta[d, 1] + J2* KroneckerDeltad, 2 ;

(*Exchange interaction function*)

θ[x_, y_] := If[OddQ[x] && OddQ[y], ϕ, 0] + If[EvenQ[x] && EvenQ[y], ϕ + π, 0] +

If[OddQ[x] && EvenQ[y], π, 0] // N;(*Angle θ as a function of the coordinates of the site*)

δθ = TableRandomReal-
π

8
,

π

8
, {x, Mx}, {y, My} // N;

(*Random spin deviations*)

Ham[J1_, J2_, ϕ_] =

Flatten

Table
1

2
Jfct (i - k)2

+ (j - l)2
*

Cos[θ[i, j] - θ[k, l]] - (Part[δθ, i, j] - Part[δθ, k, l])* Sin[θ[i, j] - θ[k, l]] -

1

2
(Part[δθ, i, j] - Part[δθ, k, l])2

* Cos[θ[i, j] - θ[k, l]], {i, Mx}, {j, My},

{k, Mx}, {l, My};

(*The Hamiltonian*)

Etot[J1_, J2_, ϕ_] = TableTotalRandomSampleHam[J1, J2, ϕ], Roundp*(Mx* My)2
, 1000;

(*The total energy of 1000 spin configurations*)

J1 = -1;

J2 = 10;(*Exchange constants*)

Avg[ϕ_] = Mean[Etot[J1, J2, ϕ]];(*Averaging the energy*)

Minimum = Minimize[Avg[ϕ], ϕ](*Minimizing the averaged energy. This yields the numerical energy*)

Int =
1

(2 π)2
* NIntegrate

(Cos[qx] - Cos[qy])2

1 - Cos[qx]* Cos[qy]
, {qx, -π, π}, {qy, -π, π};

(*Integral used in the theoretical energy*)

dH[J1_, J2_, ϕ_, dp_, N_] := -2* N* J2 -
J12

2* J2
* dp* Int* Sin[ϕ]2;

(*Theoretical energy plus E0*)

NumberFormdHJ1, J2,
π

2
, (1 - p), Mx* My, 20

(*The theoretical energy for the same parameters as the numerical energy*)
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