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Abstract
The oceans play a large role in global climate models by distributing physical quantities like heat
around the Earth. It is therefore important that ocean models used in large-scale climate simulations
produce accurate and reliable results. Leading global ocean models like the Community Earth System
Model feature a horizontal resolution of 1◦ and use turbulent viscosity parameterization of small-
scale turbulence grounded theoretically in Prandtl’s mixing length model. In the present work, an
idealized ocean has been numerically modeled using a coarse-resolution model and a high-resolution
model with horizontal resolutions of 1◦ and 0.1◦, respectively. The coarse-resolution model uses
turbulent viscosity parameterization of small-scale turbulence. The results of these simulations have
been used to compare the general mean flow characteristics of high- and low-resolution models and
to investigate whether the assumptions behind Prandtl’s mixing length model are representative for
an ocean based on the high-resolution model. The study finds that significant mean-flow structure
found in the high-resolution model is absent in the coarse-resolution model and that the width of
the western boundary current is underestimated in the coarse-resolution model. This study further
finds that Prandtl’s mixing length model fails to predict the magnitude and structure of small-scale
turbulence based on the turbulent viscosity parameterization via the mean flow.
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1 Introduction

1.1 General purpose and structure
The present thesis aims to explore the effects of turbulence on the mean flow of discretized, numerical
ocean models with a finite spatial resolution. For this purpose, a numerical model of an idealized,
rectangular ocean has been made using the Versatile Ocean Simulation in Pure Python (VEROS). The
basin corresponds roughly to the Northern Atlantic Ocean in terms of size and meridional position.
Specifically, it will be examined how the results of a high-resolution, turbulence-resolving model (0.1◦
horizontal resolution) differ from those of a coarse-resolution model (1◦ horizontal resolution) that
uses turbulence parameterization based on the Boussinesq hypothesis and Prandtl’s mixing length
model. The data from the high-resolution model will also be used to check if the assumptions behind
Prandtl’s mixing length model are applicable to oceanography.

Knowing if this parameterization of turbulence produces reliable results is important, since coarse-
resolution ocean models are widely used in large-scale climate simulations to explain important
heat transport processes [9]. For instance, the Community Earth System Model (CESM) uses a 1◦

horizontal resolution and parametrizes turbulence based on Prandtl’s mixing length model [1].
Chapter 1 describes how the spectrum of oceanic length scales makes it virtually impossible to

build an ocean model that resolves all relevant length scales present in the ocean. Following this
is a description of the turbulence closure problem, which states that small-scale flow does indeed
influence the mean flow significantly. The Boussinesq hypothesis and Prandtl’s mixing length model,
which parameterize the turbulence via the mean flow, are then introduced. A selection of geophysical
flow phenomena are introduced as well.

Chapter 2 contains a description of the setups of the numerical models. The chapter also features
a model validation section in which it is examined whether or not the model produces reliable results
that are consistent with geophysical theory, and whether or not the model has converged numerically
during the spin-up period. This is done in order to test whether or not the results from the model
are reliable when they are used for investigating whether or not Prandtl’s mixing length model is
applicable to oceanography.

In chapter 3, the data collected after the spin-up period are presented. The results include time-
averaged representations of the flow of the numerical setups, which will be used to evaluate the
characteristic differences between the high- and coarse resolution setups. Turbulence maps, mean
flow velocity shear maps, and an analysis of the characteristic turbulent length- and velocity scales
present within the flow are presented in this section as well. This will be used to examine whether
or not Prandtl’s mixing length model is applicable to oceanic flows.

Finally, in chapter 4, the results of the present thesis will be used used to explain some of the
findings in Lévy et al (2010) [6], and the significance of the present results with respect to ocean-
and climate modelling will be discussed.

1.2 Oceanic length scales and numerical limitations
In order for a discrete, numerical ocean model to produce results that are useful in a large-scale
climate model, the model must ideally capture all relevant dynamics of the flow. This means that
the spatial grid spacing should be on the order of the smallest scale spatial fluctuations. Further, the
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time step should be shorter than the inverse of the highest-frequency, temporal fluctuations.
In a study by Stammer [10] using satellite data, a spectral analysis has shown that a contin-

uous spectrum exists in the ocean for all wavenumbers between (10km)−1 and (1000km)−1, which
corresponds to the entire investigated range of wavenumbers in that paper. However, even very
small-scale, high-frequency surface gravity waves on the scale of a few meters may impact the mean
flow by e.g. Stokes drift, which is the phenomenon that small surface gravity waves lead to a non-zero
mean transport. In a study by Bremer an Breivik [3], the authors note that one must be able to
measure the wavelength spectrum down to scales of 20m in order to properly estimate the Stokes
drift

Thus, there is an enormous range of length scales that need to be resolved in the ocean. Due to
computational limitations, it is not practically possible to build a global ocean model with a mesh
fine enough to capture all relevant length scales. The goal of the CESM is to develop a model using
a 0.1◦ horizontal resolution [1]. While this resolution would capture most oceanic waves, it fails to
capture sub-mesoscale waves, eddies, and turbulence that is indeed present in the ocean. This is the
reason why understanding turbulence parameterization is an important part of ocean modelling.

1.3 Reynolds averaging and the turbulence closure problem
While the small-scale fluctuations might be present in the ocean, the pratically relevant phenomena
are typically long-term averages such as the general heat transport [9]. Therefore, even if computing
power limits the ability to resolve all length scales, it might be possible to produce meaningful ocean
models if the small-scale fluctuations do not affect the mean flow or can be parameterized via the
mean flow. Therefore, we must examine how the mean flow is influenced by small-scale fluctuations.
To do so, we divide the physical terms of the Navier-Stokes equations into a slowly-varying mean
part denoted by capital letters and overbars and a fluctuating part denoted primes:

ui = Ui + u′i, p = P + p′, ρ = ρ+ ρ′, (1)

where ui are the velocity vector components, p is the pressure, and ρ is the density. Under the Boussi-
nesq approximation, temporal density changes are small relative to the spatial velocity gradient,

1

ρ

Dρ

Dt
� ∂ui

∂xi
, (2)

where xi are the coordinate vector components and t is time. This is usually true for oceanic flows
[5, Chap. 4], so Navier-Stokes equations simplify to

∂ui
∂t

+ uj
∂ui
∂xj

= − 1

ρ0

∂p

∂xi
+
ρ− ρ0
ρ0

gj + ν
∂2ui
∂x2j

, (3)

where ρ0 is the hydrostatic density, ν is the kinematic viscosity, and gj is the j’th component of the
field force. Note that the Navier Stokes equations are written in Einstein notation. Substituting the
division into mean- and fluctuating parts from equation 1 into equation 3 and time-averaging yields
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the Reynolds-averaged Navier-Stokes equations.

∂Ui

∂t
+ Uj

∂Ui

∂xj
= − 1

ρ0

∂P

∂xi
+
ρ− ρ0
ρ0

gi +
∂

∂xj

(
ν

[
∂Ui

∂xj
+
∂Uj

∂xi

]
− u′ju

′
i

)
, (4)

where we have used that the time-average of a fluctuating part is zero. What is remarkable about
this result is that the mean flow is governed in part by small-scale fluctuations through the mean of
an unsteady term, −u′ju′i. This term is known as Reynolds stress and is generally non-zero, which
means that in order to predict the mean flow, one must in principle solve all small-scale fluctuations.

This presents a challenge to modern fluid mechanics simulation problems because the grid spacing
imposes a lower boundary on the length scales of small-scale turbulence that can be resolved in the
model. Any sub-grid scale turbulence will therefore impact the mean flow in a way that is impossible
to predict. This challenge is known as the turbulence closure problem.

1.4 The Boussinesq hypothesis and Prandtl’s mixing length model
Many attempts have been made to model the Reynolds stress without actually having to resolve all
length scales. That is, closing the turbulence by relating the Reynolds stress to the mean flow. A
turbulence closure model that has found widespread use is the Boussinesq hypothesis, which states
this turbulence may be modeled through a turbulent viscosity, νT , and a (assumed constant) turbulent
kinetic energy, e [5, Chap. 12],

u′iu
′
j =

2

3
eδij − νT

(
∂Ui

∂xj
+
∂Uj

∂xi

)
, e =

1

2
u′2. (5)

This is a practical hypothesis since it is a simple parameterization of the turbulence based on the
mean flow through the substitution of the molecular viscosity ν with the effective viscosity ν+νT and
the addition of a constant term. It now remains to find reasonable values of the turbulent viscosity,
νT , and the turbulent kinetic energy, e. These values are generally found in an empirical manner in
which the values are tuned in order for the model to produce realistic results rather than being based
on physical principles.

Based on a dimensional analysis, Prandtl’s mixing length model assumes that the turbulent
friction can be interpreted as νT = lTuT , where lT is a characteristic turbulent length scale and uT
is a characteristic turbulent velocity scale [5, Chap. 12]. For two-dimensional, unidirectional shear
flows, this is usually expressed by evaluating the ui = u, uj = v term in equation 5.

−u′v′ = νT
dV

dx
= lTuT

dV

dx
(6)

This may be generalized to a mean flow that is not unidirectional by inserting x, y, U , and V into
equation 5 along with Prandtl’s assumption that νT = lTuT :

−u′v′ = lTuT

(
dV

dx
+
dU

dy

)
(7)

The main purpose of the present thesis is to examine whether or not the formulation of the Boussi-
nesq approximation and Prandtl’s hypothesis stated in equation 7 is valid for the numerical models
developed in the present project.
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1.5 Sverdrup’s balance
Sverdrup’s balance describes the mean flow in the interior of the ocean. This balance provides a good
estimate at the observed meridional transport in the North Atlantic Ocean [8, Chap. 1].

The velocity of this mean flow is on the order of 1cm/s and varies over a length scale of thousands
of kilometers [8, Chap. 1]. Thus, the Rossby number Ro = U/fL � 1, which means that the non-
linear acceleration term of the Navier-Stokes equation is much smaller than the Coriolis acceleration
term except in regions close to the equator [5, Chap. 11]. For flows in which several length scales
are to be resolved, it is useful to model the turbulent effect on the mean flow through a turbulent
viscosity, νT (see chapter 1.4). It has been shown numerically that in the interior of the ocean, where
mean velocity gradients are small, the horizontal turbulent viscosity, νT,H , is small, such that the
horizontal Ekman number EH =

νT,H

fL2 � 1. Thus, the horizontal turbulent viscosity may be ignored
[5, Chap. 11]. Further assuming that the flow is incompressible, that density variations are small,
and that effects of vertical turbulent viscosity are limited to the upper, mixed layer, it can be shown
that [8, Chap. 1]

βVS ≡ β

∫ 0

−D

vdz = ẑ · ∇ ×
(
τ

ρ0

)
. (8)

Here, β is the meridional gradient of the Coriolis acceleration, the vertical coordinates z = −D and
z = 0 refer to the bottom and surface of the ocean, respectively, and τ is the surface wind stress.

Equation 8 is known as Sverdrup’s balance and presents a remarkable result as it predicts the
general equator-ward flow in the interior of the ocean. Since Sverdrup’s balance is robust and
experimentally backed [8, Chap. 1], it will be used in the present thesis to validate the numerical
setup. That is, it will be checked if the present numerical models satisfy Sverdrup’s balance to first
order. If they do, it is an indication that the numerical models produce reliable results.

1.6 Gyres and western boundary currents
Sverdrup’s balance presents a problem in closed basins since it predicts a constant meridional flow
throughout the basin for a zonally constant wind forcing. At the northern and southern boundaries,
this conflicts with the boundary condition that the velocity is parallel to the boundary.

This problem has prompted the development of homogenous models, which assume that viscous
effects are limited to the mixed layer and a bottom boundary layer, such that there is no vertical
shear in the interior. In this approximation, the flow in the interior can then be represented by
a streamfunction, ψ. Assuming that the flow is geostrophically balanced, that nonlinear effects
are negligible, and that turbulence may be modeled by turbulent viscosity (see section 1.4), this
reproduces Sverdrup’s balance in the interior [8, Chap. 2].

For zonally constant wind stresses, Sverdrup’s balance implies that the streamfunction continu-
ously increases or decreases throughout the zonal extent of the basin depending on the sign of ẑ·∇×τ

in equation 8. Imposing the boundary condition stating that the flow is tangential to the boundary
at the boundary implies that the streamfunction must be constant along the boundaries. Trusting
that Sverdrup’s balance is a good description of the interior flow, this means that the value of the
streamfunction must change sharply close to the boundary, resulting in a strong boundary current.
It can be shown that this sharp change only happens at the western zonal boundary, resulting in a
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western boundary current [7].
Since β > 0 everywhere on Earth, the sign of ẑ · ∇ × τ determines the direction of the Sverdrup

transport. Thus, when wind is blowing from east to west in the part of the basin closest to the pole
and from west to east in the part closest to the equator, the general Sverdrup transport is directed
toward the equator, and the western boundary current is poleward. This circulation is known as a
subtropical gyre. When the wind is blowing from west to east near the pole and east to west near
the equator, the Sverdrup transport is poleward, and the western booundary current is equatorward.
This is known as a subpolar gyre [8, Chap. 2].

Western boundary currents such as the Gulfstream are responsible for much of Earth’s heat
transport [9]. Therefore, accurately predicting the characteristics of western boundary currents is an
important feature of ocean models used in climate models. The structural difference of the western
boundary current between high-resolution and coarse-resolution models will be investigated in the
present thesis.

When a numerical ocean model is released, the western boundary current takes some time to reach
a steady state that represents a physically realistic situation. In the present thesis, the strength of the
western boundary current will serve as a validation parameter to check if the models have converged
numerically.

1.7 Analyzing discrete ocean model results
The numerical model used in the present thesis returns spatially and temporally discrete data. The
data collected are snapshots of instantaneous values. Based on this snapshot data, time-averages
of variables can be computed. This is used to divide the flow into a time-averaged, steady part,
and an unsteady part. This is the same division as done for the Reynolds averaging of the Navier
Stokes equations (equation 1), where Ui = ui is the time-average of ui, and u′i = ui − Ui, and ui is
the snapshot velocity. This leaves u′i as the turbulent velocity. For simplicity, we now introduce the
notation ux = u; uy = v; and uz = w. At each snapshot, the horizontal volume transport, (uS, vS), is
defined as a depth integral of the horizontal velocity. For the discrete results of a numerical model,
the integral is replaced by a discrete sum,

uS =

∫ 0

−D

udz =
N∑
k=0

uk∆zk; vS =

∫ 0

−D

vdz =
N∑
k=0

uk∆zk, (9)

where k is the index of the vertical grid cell considered. A streamfunction ψ may now be defined via
the relation

uS =
∂ψ

∂y
=
ψj+1 − ψj−1

2∆y
; vS = −∂ψ

∂x
=
ψi+1 − ψi−1

2∆x
, (10)

where the continuous differentiation operator has been replaced by its discrete representation [5,
Chap. 6]. In equation 10, i and j are the indices of the discrete x- and y coordinates, respectively.
A time-averaged streamfunction Ψ = ψ can then be used to describe the mean volume transport.

The seperation into mean- and fluctuating parts allows us to use u′ and v′ to compute u′v′ at each
grid cell and time step. Time-averaging this data yields the unsteady term u′v′ from the Reynolds-
averaged Navier-Stokes equations (equation 4). This serves as a measure of the horizontal turbulence

9



in the model. In order to produce a two-dimensional image of this data, a depth integral,
(
u′v′

)
S

of
the unsteady term can be used.

(
u′v′

)
S
≡

∫ 0

−D

u′v′dz =
N∑
k=0

u′kv′k∆zk, (11)

Another measure of the horizontal turbulence is the turbulent horizontal transport, |u′
S|. This is

defined as a depth integral of the horizontal turbulent speed from the bottom to the sea surface.

|u′
S| ≡

∫ 0

−D

√
u′2 + v′2dz =

N∑
k=0

√
u′2k + v′2k ∆zk, (12)

Using equation 12, the turbulent horizontal horizontal transport can be calculated for each grid cell
at each time step. The time-average of this data, |u′

S|, and the depth-integrated turbulent term,(
u′v′

)
S
, present images of the areas in the basin where turbulence generally plays a significant role.

Using the discrete approximation to the differential operator, the mean flow shear can be calcu-
lated. Again, a discrete depth-integral of the data can be used to present a two-dimensional image
of the data.

dV

dx
=
Vi+1 − Vi−1

2∆x
;

(
dV

dx

)
S

=
N∑
k=0

dV

dx
∆zk, (13)

where i is the index of the zonal grid cell considered. dU/dy is computed in a similar manner. Using
the horizontal images of the vertically integrated data,

(
u′v′

)
S
, |u′

S|, and (dV /dx)S and (dU/dy)S,
it can be checked if Prandtl’s mixing length model predicts turbulence in areas where turbulence is
actually present. It can also be checked whether Prandtl’s assumed the linear correlation between
the non-vertically integrated data u′v′ and dU/dy + dV /dx is generally appropriate.

Assuming that any characteristic turbulent length scale is reflected in the turbulent transport,
|u′

S|, the term lT in equation 7 can be estimated based on Fourier transforms of cross sections of
|u′

S|. These Fourier transforms must be based on snapshot data rather than time-average data, since
the instantaneous, turbulent structure is smeared out in averaged data. The resulting power spectra
may then be time-averaged in order to describe the general structure of the flow. Any characteristic
wavenumber will then be the inverse of a characteristic wavelength, or length scale. A characteristic
turbulent velocity scale may be estimated as the mean horizontal turbulent speed, |uh| =

√
u′2 + v′2,

over all grid cells. If the turbulent speed is binned, it may also be estimated as the most frequent
turbulent speed. The horizontal speed is used because only horizontal turbulence is represented in
equation 7. Based on the turbulent length- and velocity scales, the turbulent viscosity νT = uT lT
can be estimated, and it can be checked whether or not any linear correlation between u′v′ and
dU/dy+ dV /dx has a slope comparable to the estimate of νT as assumed by Prandtl’s mixing length
model.
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2 Model setup

2.1 Versatile Ocean Simulator (VEROS)
In order to perform the numerical experiments described in the present thesis, the Versatile Ocean
Simulator (VEROS) has been used. VEROS is developed by the Veros Team at the Niels Bohr
Institute, University of Copenhagen and is an adaptation of python Ocean Model 2 (pyOM2) v2.1.0
developed by Institut für Meereskunde, Hamburg University. The main difference is that while
pyOM2 relies on a Fortran backend, VEROS runs in pure Python.

VEROS and pyOM2 are based on the Navier-Stokes equations simplified under the Boussinesq
approximation (equation 3) and the incompressible continuity equation ∇ · u = 0. The governing
equations of motion are evaluated in a pseudo-cartesian coordinate system in which the zonal co-
ordinate x refers to the longitude, and the meridional coordinate y refers to longitude, and the
vertical coordinate z refers to depth into the water column. The continuous equations of mo-
tion are discretized on an Arakawa C-grid. Please refer to the VEROS documentation available
at https://veros.readthedocs.io/en/latest/ for further information.

2.2 Model domain, forcings, and model setup
For the present project, a numerical model has been made based on the VEROS Navier-Stokes
equation solver. The present model is an idealized setup featuring a topographically flat seabed with
a depth of 5000m and vertical boundaries on the northern hemishphire of a globe similar to Earth.
The basin spans from 20◦N to 40◦N and features a 30◦ east-west extent. This location and basin size
corresponds roughly to the North Atlantic Ocean. The model uses free-slip, no normal flow boundary
conditions. The model uses a realistic representation of the Coriolis frequency computed for each
grid cell as

f = 2Ω sin (φ) = 2Ω sin
( π

180◦
y
)
, (14)

where y is the meridional coordinate measured in degrees. The surface heat flux into the top grid
cell measured in ◦C/s is calculated as

q = TR (TA − TS) , (15)

where TS is the sea surface temperature, TR = 8.17× 10−7s−1 is the inverse of a characteristic time
scale. TA is the atmospheric temperature,

TA = TA,0

(
1− y − y0

Ly

)
, (16)

where T0 = 15◦C, y0 = 20◦N is the meridional origin located in the south-west corner of the basin,
and Ly = 20◦ is the meridional extent of the basin.

Using this basin, four different experimental setups have been examined representing two physi-
cally different systems: a subtropical gyre and a subpolar gyre. In both cases, the zonal wind stress
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has the form of one half period of a harmonic wave, and its meridional component is zero:

τ P = Γ cos
[
π (y − y0)

Ly

]
x̂; τ T = −Γ cos

[
π (y − y0)

Ly

]
x̂, (17)

where the subscripts P and T denote the subpolar- and subtropical gyre models, respectively, and
Γ = 0.1N/m2.

For both the subpolar and the subtropical gyre, a high-resolution and a coarse-resolution model
has been configured for the purpose of this project. The high-resolution models feature a horizontal
resolution of 0.1◦ corresponding to the goal for the CESM ocean model, while the coarse-resolution
models feature 1◦ resolution corresponding to the current state of the CESM ocean model. Both
models feature 70 vertical layers. The layer thickness increases progressivly from 2.12m near the
surface to 217m near the bottom of the basin. The high-resolution models use biharmonic friction,
while the coarse-resolution models use horizontal friction to parameterize turbulence. The full settings
may be found in appendix A.3.

2.3 Model initiation and data collection
The model is released with initial conditions that do not represent a physically realistic steady state.
The fluid is initially at rest with a uniform salinity of 35g/kg and a temperature that varies linearly
from 15◦C at the surface to 0◦C at the bottom. Due to these non-physical initial conditions, the
model should run until it converges to a physically plausible steady state before experimental data is
collected. This is known as the spin-up period. During the spin-up period, instantaneous snapshot
data is collected every ten days of model time. These snapshots are used to compute window averages
of certain parameters every 180 days of model time. This data will not be used to investigate the
properties of the flow since the spin-up data represents physically unrealistic flow. Rather, the spin-
up data will be used to to check if the model has converged to a steady state during the spin-up
period.

In the present numerical models, a 20 model year spin-up period has been used. After the spin-up
period, experimental data is collected for one model year. In this period, instantaneous snapshots
are are collected every three model days. This data will be used for analyzing the flow characteristics
and examining Prandtl’s mixing length model.

3 Results

3.1 Model validation
3.1.1 Spin-up analysis

The window averages computed during the spin-up period is used in this section to determine whether
or not the numerical model has converged to a steady state. The parameter examined here is the
strength of the western boundary current, defined as the meridional volume flux between 0◦E and
5◦E for the coarse-resolution models, and between 0◦E and 0.5◦E for the coarse-resolution models.

VS,WBC =

∣∣∣∣∫ z=0

z=−D

∫ x=x0

x=0◦E

V dxdz

∣∣∣∣ (18)
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Figure 1: Development of the western boundary current strength (WBC) and the mean sea surface
temperature during the spin-up phase of the models.

where V is the 180 day window averages of v, and x0 = 5◦E and x0 = 0.5◦E for the low- and high-
resolution models, respectively. The absolute value of the integral is used in order to evaluate the
strength rather than the direction of the western boundary current. Note that the integral has been
evaluated using its discrete representation as demonstrated several times in section 1.7. In figure 1A,
the strength of boundary current is shown as a function of time for the four numerical setups.

For the low-resolution models, the strength of the western boundary current stabilizes after
roughly 8 years of integration. Note that the stable strength of the western boundary current is
practically identical for the subpolar and the subtropical gyre. For the high-resolution setups, the
western boundary current strength does not reach a constant level during the 20 year spin-up period.
The strength of the western boundary current must reflect the magnitude of the interior flow. As
shown in section 3.1.2, the high-resolution models satisfy Sverdrup’s balance. This means that the
western boundary currents must have magnitudes that closely resemble realistic physical flows. This
combined with the fact that the slope is decreasing at the end of the spin-up period in figure 1A
indicates that the strength of the western boundary current has reached a near-steady state where
it slowly and monotonously approaches its steady state value.

Figure 1B shows the mean sea surface temperature during the 20 year spin-up period. This shows
that the temperature is relatively far from reaching a steady state at the time of data collection. This
is not necessarily problematic since the relevant data for this project is not strictly temperature-
related. However, temperature changes can lead to slight density changes, which influences the flow
velocity. Thus, the flow field reported in this thesis might change slightly if the model were allowed
to reach a steady temperature.

3.1.2 Checking the general circulation

In order to check whether the model produces physically meaningful results, it is checked if the
interior flow of the models satisfy Sverdrup’s balance (equation 8). For the wind stress specified in
equation 17, this predicts a near-sinusoidal meridional transport. Using the post-spin-up data, the
time-average meridional transport VS of vS (see equation 9) has been computed for each horizontal
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Figure 2: Cross section at x = 20◦E showing the average observed meridional transport as a function
of latitude as well as the predicted transport using Sverdrup’s balance.

grid cell.
In figure 2, the predicted meridional transport and the observed meridional transport is shown for

a meridional cross section located in the interior at x = 20◦E where Sverdrup’s balance is expected
to apply. For this cross section, it appears that the observed order of the meridional transport
satisfies Sverdrup’s balance for all model setups. Note that for the high-resolution, subtropical
model, powerful fluctuations are present, which represent temporally stable turbulence. However,
the observed transport fluctuates around the predicted value.

Figure 2 only represents a cross section at a single zonal coordinate. Figures 3A-D presents
for each horizontal grid cell the difference VS,rel between the observed transport and the predicted
transport normalized by the predicted transport.

VS,rel =
VS,obs − VS,pred

VS,pred
. (19)

If the model satisfies Sverdrup’s balance, VS,rel should be close to zero in the interior of the basin.
It is clear from figures 3A and 3B, which show VS,rel for the subpolar- and subtropical coarse-resolution
models, that VS,rel is generally close to zero in the interior of the domain. For the high-resolution
subpolar gyre model in figure 3C, VS,rel is very close to zero in the center of the basin. For the high-
resolution subtrpoical gyre model in figure 3D, VS,rel is generally non-zero in the center. However, it
is not systematically positive or negative, but rather varies randomly around zero, which indicates
that this reflects stationary turbulence rather than a mismatch between the predicted and observed
meridional transport. This indicates that all models perform as intended and produce physically
meaningful output.
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Figure 3: Plot showing the difference VS,rel between the observed VS,obs and predicted VS,pred merid-
ional transport normalized by the predicted meridional transport. A) subpolar, low resolution. B)
Subtropical, low resolution. C) Subpolar, high resolution. D) Subtropical, high resolution.

3.2 General characteristics of the gyres
3.2.1 Mean, interior flow

The streamfunction computed via equation 10 presents a two-dimensional image of the basin where
the streamlines of the depth-integrated flow are parallel to the contours of the streamfunction. Thus,
the average streamfunction Ψ represents the mean volume transport. The average streamfunctions
of the four model setups are shown in figures 4A-D.

Figures 4C and 4D, which show the coarse-resolution subtropical- and subpolar gyres, respectively,
indicate that the coarse-resolution models do not predict any structural differences between the
subpolar gyre and the subtropical gyre, which is also indicated in figures 3A-B. The high-resolution
subtropical gyre predicts significant, temporally stable flow structure in the center of the domain,
which the coarse-resolution model fails to capture. However, the high-resolution subpolar gyre in
figure 4B has a very similar structure to its low-resolution counterpart except near the southern
boundary, where turbulence is dominant (see section 3.2.3).

3.2.2 Western boundary current

The extent and structure of the western boundary current is significantly different for the high- and
coarse-resolution setups. As shown in figures 3A-B, the coarse-resolution models predict only one
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Figure 4: Time-averaged stream functions Ψ for all models. ”res” is short for resolution

node of a main current from 0◦E to 5◦E and a recirculation from 5◦E to 12◦E. Here, a main current
describes a current antiparallel to Sverdrup’s balance, and a recirculation describes a current parallel
to, but significantly larger than, Sverdrup’s balance. For the high-resolution models, several nodes
of a main current and a recirculation are present, and the number of nodes changes throughout the
meridional extent of the basin. Assuming that the high-resolution models produces the best results,
the coarse-resolution models fail to predict the structure of the western boundary current.

3.2.3 Turbulence

The coarse-resolution models do not feature turbulence, since the resolution is too low and the
turbulent friction is too high. Thus, the following analysis of observed turbulence is based on data
from the high-resolution models only.

The average turbulent horizontal transport, |u′
S|, and the the depth-integral of the unsteady term

of the Reynolds averaged Navier-Stokes equations,
(
u′v′

)
S
, have been computed for each horizontal

grid cell using equations 12 and 11, respectively, based on the data collected after the spin-up period.
Figures 5A and 5B show |u′

S| for the subtropical- and subpolar high-resolution models, respectively,
and figures 5C and 5D show

(
u′v′

)
S

for the subtropical- and subpolar high-resolution models, re-
spectively. Both of these representations of turbulence predict that the subtropical gyre features
turbulence in the northern part of the western boundary current and in the eastern part of the basin,
while the subpolar gyre features turbulence near the southern boundary.
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Figure 5: Turbulent transport speed |u′
S| (A and B) and depth-integrated unsteady term

(
u′v′

)
S

(C
and D) for the high-resolution subtropical gyre (A and C) and subpolar gyre (B and D).

3.3 Characteristic length scales
Prandtl’s mixing length model solves the turbulence closure problem based on the assumption that
a turbulent viscosity is the product of characteristic turbulent length- and velocity scales of the flow.
This implies the existence of such scales.

In accordance with the procedure described in section 1.7, Fourier transforms of the horizontal
turbulent transport, |u′

S|, have been made for meridional cross sections at all discrete zonal grid
coordinates at each time step. These spectra have been normalized by scaling each spectrum with
the inverse of its maximum value. An example of such a cross section and a resulting normalized
power spectrum is shown in appendix A.2. The time-average of these power spectra of wavenumbers
is shown in figure 6A for the subpolar gyre and in figure 6C for the subtropical gyre as functions of
longitude. The same analysis has been carried out for zonal cross sections at all discrete meridional
coordinates. The resulting power spectrum of wavenumbers is shown in figures 6B for the subpolar
gyre and 6D for the subtropical gyre as functions of latitude.

All spectra in figures 6A-D show that very low frequencies corresponding to long length scales are
significant. Since in the present project we look for small-scale turbulence, these low-frequency signals
are disregarded. The subpolar gyre features a turbulent area near its southern boundary from 14◦E

to 23◦E and 20◦N to 22◦N . In this area, figure 6B shows a nonzero signal at a zonal wavenumber of
k ∼ (0.7± 0.2)◦E−1, corresponding to a characteristic length scale of (1.4± 0.4)◦N = (150± 40)km.
Such a clear signal is absent in the relevant area from 14◦E to 23◦E of figure 6A. For the subtropical
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Figure 6: Time-averaged power spectra of the turbulent transport
∣∣u′

S
∣∣ based on cross sections at the

locations indicated on the x-axes. A and B show data for the subpolar gyre, and C and D show data
for the subtropical gyre

gyre, a clear signal is absent as well for the zonal wavenumber spectrum in figure 6D. However,
figure 6A shows that in the western turbulent area from 0.4◦E to 3◦E and from 31◦N to 37◦N ,
a characteristic meridional wavenumber of l ∼ (0.8 ± 0.2)◦N−1 corresponding to a length scale of
(1.3± 0.3)◦N = (140± 30)km is present. In the eastern boundary turbulent area from 23◦E to 30◦E

and 25◦N to 35◦N , a signal is present at l ∼ (0.7 ± 0.3)◦N−1, corresponding to a length scale of
(1.4 ± 0.6)◦N = (160 ± 70)km. These length scales agree within their uncertainties, and the best
estimate at a general turbulent length scale is (150± 30)km. This shows that a characteristic length
scale is indeed present in the models, and this length is constant to first order. In this section, I have
estimated the errors using the signal width in figures 6A-D and propagated the errors [2].

Note that even though the length scales agree within uncertainties, the characteristic length scale
in the western boundary current of the subtropical gyre in figure 6C is notably shorter than that
in the interior of the gyre. This may be a reflection of the law of the wall, which states that the
turbulent velocity generally decreases near a wall [4]. If this is true and the characteristic length
scale decreases due to a decrease in turbulent velocity, this might indicate that a characteristic time
scale tT = lT/uT exists, which is constant throughout the basin.
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3.4 Characteristic velocity scale
The turbulent characteristic velocity scale has been estimated as the mean horizontal turbulent speed
and as the most frequent horizontal speed, based on measurements of the horizontal turbulent speed
|uh| (see section 1.7) at each grid cell at each time step. The data has been binned in intervals of
2.5 × 10−5m/s in order to calculate the most frequent (ie. the mode of) speed at a 2.5 × 10−5m/s

accuracy. Sorting this data by its vertical coordinate shows that the mean and mode turbulent
speed is close to zero near the bottom of the domain and increases gradually toward the sea surface.
For the subtropical gyre, the flow reaches a mean speed of (36 ± 3) × 10−3m/s and a mode of
(8.21±0.03)×10−3m/s at the sea surface in the western boundary turbulent area, and a mean speed of
(21±2)×10−3m/s and a mode of (2.92±0.03)×10−3m/s in the eastern boundary turbulent area. The
southern turbulent area of the subpolar gyre features a surface mean velocity of (9.2±0.6)×10−3m/s

and a mode of (4.74± 0.03)× 10−3m/s. For plots of the histograms and the variation of the means
of modes with depth, please refer to appendix A.1.

This analysis shows that a characteristic turbulent velocity is not well-defined for the domain
since the mean and mode both vary with depth. Any turbulent viscosity νT = ltuT should therefore
be depth-dependant, which is not the case for the coarse-resolution models presented in this report.
It is also difficult to determine a characteristic velocity at any depth, since the two estimates produce
inconsistent results. Thus, from the present analysis, it can only be concluded that the characteristic
velocity is most likely less than the highest estimate of the characteristic velocity, which in all cases
is the mean velocity.

3.5 Checking Prandtl’s mixing length model
For each grid cell, the unsteady term, u′v′, and the velocity shear, dU/dy + dV /dx, have been
calculated as described in section 1.7. Using the results from section 3.3 and 3.4, the turbulent
viscosity in each of the turbulent areas predicted by Prandtl’s mixing length model becomes νT,south =

lTuT,south ≤ (1400 ± 300)m2/s; νT,west = lTuT,west ≤ (5400 ± 1200)m2/s; and νT,east = lTuT,east ≤
(3200 ± 700)m2/s, where subscripts west and east refer to the turbulent areas of the subtropical
gyre and subscript south refers to the turbulent area of the subpolar gyre. Note that the turbulent
viscosity is less than some value because section 3.4 concluded that only an upper limit of uT could
be determined.

Figures 7A-C show scatter plots of u′v′ as a function of dU/dy + dV /dx for the three turbulent
areas. In the plots, a black line represents Prandtl’s mixing length model (equation 7) based on the
highest estimates of uT . This means that according to the mixing length model, most data points
should satisfy

−νT
(
dV

dx
+
dU

dy

)
≤ u′v′ ≤ 0. (20)

Examining figures 7A-C, this is generally not the case. However, in the turbulent areas of the
subtropical gyre (7A and 7B), Pearson’s correlation coefficient is ρwest = −0.27 and ρeast = −0.20,
which indicates that u′v′ is in fact negatively correlated with dU/dy+dV /dx. For the subpolar gyre,
ρsouth = 0.21 is positive - contrary to the prediction of the mixing length model.

Thus, the mixing length model fails to properly describe the relation between u′v′ and dU/dy +

19



Figure 7: Scatter plots of the turbulent term u′v′ as a function of the velocity shear dU/dy+ dV /dx.
The slope −νT of the black lines represents the estimate of the upper boundary on the turbulent
viscosity based on the characteristic length- and velocity scale analyses.

dV /dx on a grid-cell basis in the high-resolution models.
The depth integrated velocity shear (dU/dy + dV /dx)S has been calculated using the form of

equation 13. These results are shown in figures 8A, 8C, and 8B for the subtropical- and subpolar high-
resolution models and for the coarse-resolution subtropical model, respectively. The coarse-resolution,
subpolar results are not plotted because they are practically equal to the coarse-resolution, subtropical
results except for a change of sign (this is reflected in figure 4C-D showing the streamfunction
structure for the coarse-resolution models). The mixing length model assumes that the structure of
the velocity shear in figures 8A-C is equal to the structure of the unsteady term in figures 5C-D.
For the subtropical gyre, the coarse-resolution model predicts turbulence in a much larger area at
the western boundary than what is observed. It falsely predicts weak turbulence between 6◦E and
15◦E. This might be a reflection of the over-estimated width of the western boundary current and
its recirculation. The model fails to predict turbulence at the eastern boundary. The high-resolution
model shear predicts turbulence in a slightly larger area than observed at the western boundary, and
it does predict some turbulence in the eastern turbulent area. However, it falsely predicts turbulence
at the northern boundary as well as changes of signs of the turbulent term due to recirculation nodes
in the western boundary current.

For the subpolar gyre, only the high-resolution model shear predicts turbulence at the observed
southern turbulent area. This, however, predicts turbulence along most of the southern boundary as
well as strong turbulence in the western boundary current, where the observed turbulence is mainly
present in a small area from 14◦E to 23◦E. The coarse-resolution completely fails to predicts the
subpolar turbulent areas.

A section from 0◦E to 6◦E and 31◦N to 37◦N of the subtropical gyre has been investigated
in particular detail. This section includes the western boundary turbulence. In this section, the
meridionally averaged values of the depth-integrated turbulent term

(
u′v′

)
S
, and the meridional

average of depth-integrated velocity shear (dU/dy + dV /dy)S for both the high-resolution and the
coarse-resolution models have been computed. These results are shown in figure 8D. This plot shows
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Figure 8: A, B, and C) Velocity shear dU/dy + dV /dx as a function of coordinate for both high-
resolution models and for the coarse, subtropical model. D) Meridional averages of the velocity shear
for the coarse- and high-resolution subtropical models and of the depth-integrated unsteady term,
evaluated in the turbulent western boundary region from 31◦N to 37◦N as functions of longitude.

that the high-resolution model shear predicts correctly predicts positive shear in the area where the
turbulence is non-zero and negative. However, the shear presicts that most turbulence is present
at the boundary, where the observed turbulence is mainly present a small distance ∼ 0.4◦E away
from the boundary. The coarse-resolution model predicts that the turbulence covers a larger zonal
extent than what is observed. This is most likely do to the over-estimated western boundary current
width of the coarse-resolution model. However, the coarse-resolution model correctly predicts that
the turbulence is not significant at the boundary itself.

The present analysis thus shows that for both the high-resolution and the coarse-resolution mod-
els, Prandtl’s mixing length model does not consistently predict the presence of turbulence in the
areas where turbulence has been observed in the high-resolution model. For the high-resolution
models, the mixing length model generally overestimates the extent of turbulence, where for the
coarse-resolution models, the extent of turbulence is not consistently under- or overestimated.

4 Discussion
In the present work, a validation element for the four numerical models is to check if they have
converged to a steady state. The validation results in figure 1B show that for all four numerical
models, the sea surface temperature has not stabilized at a constant level by the end of the spin-up
period. While no parts of the present analysis concern temperature or heat, water has a volumetric
thermal expansion coefficient on the order of αV = 10−4◦C−1 at around 10◦C. The average of
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the model atmospheric temperature (equation 16) is 7.5◦C. At the end of the spin-up period, the
average sea surface temperature for all models is around 11.5◦c. Assuming that the average sea
surface temperature converges to the average atmospheric temperature, the steady state temperature
is roughly ∆T = 4◦C different from the actual temperature at the time of data collection. This
corresponds to a relative density difference on the order of αV∆T ∼ 4 × 10−4. This very slight
density difference is not expected to have impacted the flow phenomena significantly. Figure 1A
shows that while the western boundary current has fully converged for the low-resolution setups,
this is not the case for the high-resolution setups. However, figures 2A-B and 3A-D show that the
models all satisfy Sverdrup’s balance in the interior, non-turbulent areas. Since the Western boundary
current balances the mean flow governed by Sverdrup’s balance, the boundary current strength must
reflect a physically plausible steady condition. This indicates that the strength in figure 1A is levelling
off. On the basis of this spin-up analysis, the modeled flow is considered representative for realistic,
physical flow for the purpose of this present project. For a future development of this project, it
is suggested that a longer spin-up period is investigated in order to firmly conclude if the western
boundary current is in fact levelling of.

The average streamfunctions (figures 4A-D) show that the subpolar gyre is practically identical
but anti-parallel to the subtropical gyre in the coarse-resolution models. This is also reflected in
figures 3A-B showing that the structure of the deviation from the predicted meridional transport
is very similar for the two setups. The high-resolution setups reveal that the smaller-scale mean
flow differs in the two physical situations. This is embodied in the temporally stable, stationary
turbulence that is best pictured in figures 3. This figure shows that the meridional transport velocity
in the interior of the basin is inhomogenous for the subtropical gyre, while it is relatively constant
for the subpolar gyre.

Both the high- and coarse-resolution models picture the western boundary current. While the
coarse resolution model predicts a single current and recirculation, the high-resolution models predict
several nodes of currents and recirculations. Also, the recirculation extends as far as ∼ 12◦E into
the basin (see figure 3) for the coarse resolution model - always halfway into the domain. At its
widest point, the western boundary current including all nodes of currents and recirculations extends
only ∼ 5◦ into the basin for the high-resolution models. For the average heat transport, which is
usually an important parameter for ocean models used in climate simulations, overestimating the
width of the boundary current may be problematic since a narrower, faster current transports heat
at a greater speed than a wide, slow one. This means that a larger heat fraction from the southern
latitudes is deposited along the trajectory of the western boundary current than at its endpoint for a
coarse-resolution model, which leads to an error in the meridional heat distribution. Thus, there are
quantitative mean-flow differences in the overall flow between the high- and coarse-resolution models
that may have significance when used in larger climate models.

A difference between the subtropical gyre and the subpolar gyre is that the turbulence is much
more dominant and powerful for the subtropical gyre (see figures 5A-D). The main qualitative differ-
ence between these two physical systems is that the Ekman pumping is negative (downwelling) in the
interior of subtropical gyres and positive (upwelling) in the interior of subpolar gyres [8, Chap. 2].
The turbulent speed is generally lowest near the bottom of the basin (see section 3.4 and appendix
A.1). Thus, if a general upwelling is present, low turbulent speed is advected to the center of the basin
for the subpolar gyre. For the subtropical gyre, a general downwelling advects the high turbulent
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speed near the surface into the center of the basin. This might explain why the subtropical gyre is
generally more turbulent than the subpolar gyre and indicates that turbulence is generated mainly
at the sea surface. Note that the subpolar gyre model does not represent a realistic system on Earth
since the wind fields that cause a subpolar gyre are generally found at higher latitudes than what is
used as the present model domain [8, Chap. 2]. Consequently, no experimental evidence exists to
confirm this inherent turbulent difference between the two systems. Although not directly applicable
Earth’s oceans, this gives insight into general behaviour of turbulent liquids.

In order to test Prandtl’s mixing length model as stated in equation 7 for the high-resolution
setups, a search has been conducted for a characteristic length- and velocity scale. Fourier transforms
of the instantaneous turbulent transport speed has shown that a characteristic wavenumber is indeed
present in the high-resolution models, which corresponds to a characteristic length scale. The analysis
failed to find a uniquely defined turbulent velocity scale but rather provided estimates at the upper
boundary of the characteristic velocity scale for different turbulent areas.

It is noted that the characteristic length scale appears to be shorter near the western boundary
in figure 6C than in the rest of the basin. According to the law of the wall [4], the turbulent speed
decreases near a boundary. Since the length scale also decreases, this might indicate that the ratio
of the length scale to the velocity is constant, which indicates the existence of a characteristic time
scale tT = lT/uT . Finding evidence of such a characteristic turbulent time scale is beyond the scope
of the present work, but is left as an interesting task for future research.

Testing Prandtl’s mixing length model directly by plotting the unsteady term of the Reynolds-
averaged Navier Stokes equations, u′v′, against the velocity shear, dU/dx + dV /dy, did not show
the presence of linear correlation as assumed by the mixing length model. This indicates that the
effects of turbulence on the mean flow is qualitatively different from that of molecular viscosity, and
the present data thus suggests that care should be taken when using the mixing length model for
parameterizing sub-grid scale turbulence in numerical ocean models.

In a study by Lévy et al (2018) [6], it was found that increasing the horizontal resolution from
1◦ to 1/9◦ produced qualitatively different results, which is in accordance with the findings of the
present thesis. The study also found that increasing the resolution even further (first to 1/27◦ and
then to 1/54◦) produced yet different general characteristics. This indicates that the sub-grid scale
turbulence significantly influences the mean flow in a manner not accounted for by the turbulent
viscosity. This may be explained by the results of the present report that the mixing length model
is in fact not applicable to numerical ocean models.

It thus appears that the only way to build a numerical model that produces results that reflect all
turbulent length scales is to resolve all length scales. With length scales of down to 20m influencing the
mean flow via Stokes drift [3], this is technologically impossible due to computing power limitations.
Therefore, Prandtl’s mixing length model may be the only option to estimate effects of inevitable
sub-grid scale turbulence. However, according to the present data, the parameterized sub-grid scale
flow will remain inappropriately estimated.

5 Conclusion
In the present study, four numerical ocean models have been made and implemented into the Versatile
Ocean Simulator (VEROS), representing a subtropical gyre and a subpolar gyre. Both gyres have
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been modeled using a high horizontal resolution of 0.1◦ and a coarse horizontal resolution of 1◦.
A model validation analysis showed that while the models have not converged completely, they do
represent physically plausible scenarios.

The results show that the coarse-resolution models predict a western boundary current that is
much wider and more uniform than that predicted by the high-resolution models. Since the western
boundary current is responsible for much of Earth’s meridional heat transport, over-estimating its
width by using a coarse resolution may lead to poor whole Earth model simulations.

Prandtl’s mixing length model parameterizes the unsteady term of the Reynolds averaged Navier-
Stokes equations via the mean velocity shear based on a characteristic turbulent length- and velocity-
scale. This study finds that a characteristic turbulent length scale of (150±30)km is indeed present in
the high-resolution models. A unique, characteristic turbulent velocity has not been found, however.
Also, this study finds that Prandtl’s mixing length model fails to parameterize the structure of the
observed turbulence in the high-resolution models based on the mean flow of both the high- and
low-resolution models.

The linear correlation between the mean velocity shear and the unsteady term of the Reynolds
averaged Navier-Stokes equations predicted in the mixing length model has not been found in any
of the turbulent regions in the high-resolution models. This means that, according to the present
data, one has to be critical to results obtained using Prandtl’s mixing length model - at least in the
presently investigated regimes. Thus, in principle, the only way to produce reliable ocean models is
to resolve all relevant length scales.

References
[1] James W. Hurrell et al. “The Community Earth System Model A Framework for Collaborative

Research”. In: Bulletin of the American Meteorological Society 94.9 (2013), pp. 1339–1360.

[2] R. J. Barlow. “Statistics”. In: 1st ed. John Wiley and Sons, 1989.

[3] T. S. van den Bremer and Ø. Breivik. “Stokes Drift”. In: Philosophical Transactions A 376.2111
(2017).

[4] Theodor von Karman. “MECHANICAL SIMILITUDE AND TURBULENCE”. In: Nachrichten
von der Gesellschaft der Wissenschaften zu Gottingen NACA-TM No. 611 (1931).

[5] Pijush K. Kundu et al. “Fluid Mechanics”. In: 6th ed. Academic Press, 2016.

[6] M. Levy et al. “Modifications of gyre circulation by sub-mesoscale physics”. In: Ocean Modelling
34.1–2 (2010), pp. 1–15.

[7] Joseph Pedlosky. “Geophysical Fluid Dynamics”. In: 2nd ed. Springer, 1987. Chap. 5.

[8] Joseph Pedlosky. “Ocean Circulation Theory”. In: 1st ed. Springer, 1996.

[9] Conor Purcell. “A sharper view of the world’s oceans”. In: Nature 575 (2019), pp. 6–8.

[10] Detlef Stammer. “Global Characteristics of Ocean Variability Estimated from Regional TOPEX/
POSEIDON Altimeter Measurements”. In: Journal of Physical Oceanography 27 (1997), pp. 1749–
1758.

24



A Appendix

A.1
Figure 9

A.2
Figure 10
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Figure 9: Left panels: modes and means of the turbulent speed distribution as functions of depth
in the specified regions. Right panels: Histograms of the turbulent speed distribution based on
measurements from all grid points in the specified region.
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Figure 10: Example of a cross section from the subtropical gyre model of the turbulent transport
(A) and the corresponding normalized power spectrum of wavenumbers (B).

Figure 11: The settings used for the high- and coarse-resolution numerical models
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