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Resumé

Dette projekt har til formål at diskutere mulige anvendelser af Majorana-fermioner i kvan-
tecomputere. Efter indledningsvist at beskrive de vigtigste principper bag kvanteinforma-
tion og -computere, udleder vi den ikke-abelske statistik af Majorana-fermioner realiseret
ved vortices i p-bølgesuperledere. Undervejs undersøger vi de effekter, som fører til denne
statistisk, herunder fluxkvantisering og Aharonov-Bohm-effekten.

Efter udledningen undersøger vi en konkret model, hvori det er muligt at udføre visse
logiske operationer på kvantebits i form af Majorana-fermioner koblet til kvantedots. Med
baggrund i vores indledende afsnit om kvanteinformation, diskuterer vi styrker og svaghe-
der ved modellen. Svaghederne inspirerer et par idéer til forbedringer, som vi redegør for
vores overvejelser omkring.

Vi takker vores vejleder Karsten Flensberg og Morten Kjærgaard for al deres hjælp. Vi vil
også sige tak til Anine, Esbilon og Lisa for rettelser og kage.

Endeligt en stor tak til vores rusvejledere for at give os en god start på fysikstudiet og
for at introducere os til kvantefysik på den eneste rigtige måde.

Abstract

The topic of this bachelor’s thesis is the application of Majorana fermions in quantum
computers. We initially discuss important concepts of quantum information and quantum
computation and later derive the non-abelian statistics of Majoranas realized as vortices
in p-wave superconductors. We consider in details the effects leading to these statistics,
including flux quantization and the Aharonov-Bohm effect.

We also consider a model for physical implementation of quantum bits using Majoranas
coupled to quantum dots, which allows the construction of certain quantum gates. Based
on our discussion of quantum information theory, we identify the weaknesses of the model,
and examine in detail the possibility of improving it.

Monika Kovacic - 15/1-90 Bjarke Mønsted - 22/3-87
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1 Introduction
The advantage of quantum computers over their classical counterparts stems in part from their
ability to use bits in quantum mechanical superposition states, rather than just zero or one, in
calculations. Unfortunately, many proposed realizations of these quantum bits, or qubits, are
extremely vulnerable to decoherence, which destroys the superposition state.

Recently, this has motivated intense research into topological quantum computers - a term
that covers models for quantum computing which are inherently protected against decoherence.
In their realizations of qubits, these models use a type of quasiparticles known as anyons, which
are characterized by their properties during interchanges. Whereas bosons and fermions pick
up a phase factor of 1 and −1 from interchanges, these quasiparticles can pick up any phase –
hence the name. This can lead to a property called non-abelian statistics, meaning that inter-
changes between different particles do not generally commute. Calculations are then performed
by operations that interchange the anyons on a two-dimensional surface.

Such operations, known as braiding, can then be visualized as worldlines with two spatial
and one temporal dimension. Since only the topology of the wordlines defines the calculations,
and because slight perturbations do not affect this topology, the topological models of quantum
computers are intrinsically fault-tolerant.

One kind of such anyons is Majorana fermions, or simply Majoranas, which is our main
point of interest in this thesis. In the following, we give a brief overview of the structure of the
thesis.

1.1 Overview
First, we will give a short introduction to quantum information and computation, which will
introduce qubits and quantum gates and compare these with classical bits and gates. We also
introduce the Bloch sphere representation of a single qubit, which will serve as a handy visual-
ization of single-qubit states throughout the thesis. Following this, we give a brief introduction
to the properties of Majorana fermions, which allows an in-depth discussion of their statistics.

Next, we investigate the rather exotic physical effects of realizing Majorana fermions as
excitations in p-wave superconductors caused by a strong magnetic flux. We show that this
magnetic flux must be quantized, and calculate the effects of the Aharonov-Bohm phase caused
by the flux, which enables us to find expressions for the effects of braiding (cyclical interchanges)
of Majoranas.

Using these expressions, we may finally derive ’braiding operators’ that describe these in-
terchanges. These operators will prove the non-abelian statistics of Majorana fermions, making
them a strong candidate for topological quantum computing.

Having derived the non-abelian statistics of Majoranas, we consider a recently proposed
model that implements Majoranas as qubits, and use charge controlled quantum dots to act as
gates by causing single electrons to tunnel to or from the Majorana systems.

After describing this model, we discuss possible alterations to it and their consequences.



2 Quantum Computing
In the following, we will introduce the concepts of quantum bits, or qubits, and give examples
of two types of quantum gates, which can act on the bits to perform various logical operations
[1]. The realization of these gates is a natural goal for experimental quantum computing. For
comparison, we will start off with a brief introduction to classical bits and gates.

2.1 Classical Bits and Gates
A classical bit can assume the logical values, or truth values, 0 and 1, and may be acted on by
single-bit gates such as the NOT-gate, which ’flips’ the value of the bit such that 0 → 1 and
1→ 0. Writing the set of possible bit values in curly brackets, we may then write

{0, 1} NOT−−−→ {1, 0}. (2.1)

Multi-bit gates, on the other hand, act on multiple bits. An example is the AND-gate, which
performs the transformations

{00, 01, 10, 11} AND−−−→ {0, 0, 0, 1}. (2.2)

With this in mind, let us then look into the quantum analog.

2.2 Single Qubits
In quantum information theory, a qubit is defined as a vector in a two-dimensional complex
vector space. Labelling a qubit state with |ψ〉, we may write

|ψ〉 = α|0〉+ β|1〉, (2.3)

where α and β are complex numbers and |0〉 and |1〉 correspond to the classical logical values
of 0 and 1. We immediately notice that whereas classical bits only have two possible values,
qubits can take any value given by the superposition in eq.(2.3) when not measured (although
normalization puts some restrictions on the coefficients, which we will investigate later). The
orthonormal basis spanned by the truth values of the bit, |0〉 and |1〉, is called the computational
basis.

We also note that the probabilities of measuring 0 and 1, are |α|2 and |β|2, respectively, so
conservation of probability requires that

|α|2 + |β|2 = 1 (2.4)

at all times, which demands that all operators acting on |ψ〉 be unitary:

Û Û† = Û†Û = 1. (2.5)

As unitary operators can change the state of a qubit into another, we can use unitary operators
to construct quantum gates, to which we will dedicate sections 2.3 and 2.5. However, we will
first introduce the Bloch sphere representation of qubits.

2.2.1 Bloch Sphere Representation

In most situations in physics, an intuitive way of visualizing the problem at hand is valuable.
In this section, we arrive at a visual interpretation of single qubit states known as the Bloch
sphere representation, which is also commonly used to describe spin.

Writing the complex coefficients in eq. (2.3) in polar coordinates, the expression becomes

|ψ〉 = zeiϕα |0〉+ qeiϕβ |1〉. (2.6)

2



2.2 Single Qubits

We may multiply this state by a global phase factor eiγ , since measurable quantities, such as
the expectation value of an operator Â, depend only on the squared moduli of the coefficents
of the state:1

〈Â〉 = 〈ψ|e−iγÂeiγ |ψ〉 = 〈ψ|Â|ψ〉. (2.7)

Thus, we may simplify (2.6) by multiplying with a global phase factor of e−iϕα , and obtain

|ψ〉 = z|0〉+ qeiϕ|1〉, (2.8)

where ϕ = ϕβ−ϕα. Writing the complex number qeiϕ as x+iy, and recalling the normalization
requirement from (2.4), we may write

z2 + (x+ iy)(x− iy) = x2 + y2 + z2 = 1, (2.9)

implying that possible values for x, y and z may be appropriately visualized as points on the
surface of a unit sphere. Since surfaces only have two dimensions, we may eliminate our excess
parameter by rewriting our coefficients in spherical coordinates with r = 1 using

x = cosϕ sin θ′,

iy = i sinϕ sin θ′,

z = cos θ′.

(2.10)

Our reason for denoting the zenith angle by θ′ will become clear in a moment. This allows us
to write the coefficients as

|ψ〉 = z|0〉+ (x+ iy)|1〉 = cos θ′|0〉+ eiϕ sin θ′|1〉. (2.11)

Since we would like opposite points on the Bloch sphere to represent orthogonal states, we
investigate the results of a change of coordinates given by

(θ′, φ)→ (π − θ′, ϕ+ π) (2.12)

changing |ψ〉 into |ψopposite〉:

|ψopposite〉 = cos(π − θ′)|0〉+ ei(ϕ+π) sin(π − θ′)|1〉
= − cos θ′|0〉 − eiϕ sin θ′|1〉
= −|ψ〉. (2.13)

In the context of information theory, this is disasterous - if we assign to every Bloch vector a
distinct information and if several vectors correspond to equivalent physical states, it will not be
possible to determine from an experiment which piece of information our qubit is representing.
We must make sure that every possible Bloch vector corresponds to one, and only one, physical
state and vice versa, i.e. a bijective mapping.

Fortunately, we may ’spread out’ our set of physical states across the whole sphere by
setting θ′ = θ

2 and thus restoring a bijective relation between physical states and Bloch sphere
representations:

|ψ〉 = cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉, (2.14)

where the qubit states |0〉 and |1〉 correspond to the north and south poles, respectively, as
shown in figure 1. We can now verify that opposite points on the Bloch sphere correspond to
orthogonal states by following the same procedure as in eq. (2.13) to obtain

|ψ〉 = cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉 → (2.15)

|ψopposite〉 = sin

(
θ

2

)
|0〉+ ei(ϕ+π) cos

(
θ

2

)
|1〉 (2.16)

1Phase differences can be observed through interference effects, but a global phase factor has no effect on
the phase difference, so multiplying by a global phase gives us the same physical state.

3



2.3 Single-qubit Gates
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Figure 1: Bloch sphere representation of a qubit state represented by the red vector. The qubit states
|0〉 and |1〉 are visualized as the north and south pole of the Bloch sphere.

finding

〈ψ|ψopposite〉 = cos

(
θ

2

)
sin

(
θ

2

)
〈0|0〉+ e−iϕei(ϕ+π) sin

(
θ

2

)
cos

(
θ

2

)
〈1|1〉 (2.17)

= cos

(
θ

2

)
sin

(
θ

2

)
〈0|0〉+ eiπ sin

(
θ

2

)
cos

(
θ

2

)
〈1|1〉 (2.18)

= 0. (2.19)

Having mapped all possible qubit states onto the surface of the Bloch sphere, the question is
now how to describe the action of an unitary operator on the Bloch sphere. Let us look at
single qubit gates.

2.3 Single-qubit Gates
Gates are active components that transform the state of a bit in a desired fashion. As a starting
point let us consider the Pauli gates and seek to understand these transformations of a single
qubit on the Bloch sphere.

2.3.1 Pauli Operators

Since a single qubit is a two-level quantum system, it can be convenient to treat it in the
language of spin-half particles. Let us introduce the Pauli operators

σ̂x =

[
0 1
1 0

]
, σ̂y =

[
0 −i
i 0

]
, σ̂z =

[
1 0
0 −1

]
. (2.20)
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2.3 Single-qubit Gates

These matrices correspond to quantum gates and transform the state of a qubit |ψ〉 as

σ̂x

(
α
β

)
=

(
β
α

)
,

σ̂y

(
α
β

)
=

(
−iβ
iα

)
,

σ̂z

(
α
β

)
=

(
α
−β

)
.

(2.21)

Note that σ̂x corresponds to the classical NOT-gate, because it ’flips’ the basis state:

{|0〉, |1〉} σ̂x−→ {|1〉, |0〉}. (2.22)

However if we as an example apply the Pauli σ̂x operation on the superposition state

1√
2

(|0〉+ |1〉) σ̂x−→ 1√
2

(|0〉+ |1〉) , (2.23)

this just leaves the state unchanged.

Investigating the transformations of (2.21) on the Bloch sphere one realizes that the Pauli
operators are equivalent to a reflection (or rotation by π) of the Bloch vector around the asso-
ciated axis. This is visualized in figure 2.

z

yx

0

1

: input

: σx

: σy

: σz

Figure 2: Bloch sphere representation of the rotations induced by the action of the Pauli matrices
on the initial state (red vector). The action of {σ̂x, σ̂y, σ̂z} transforms the inital state (red) to a new
state represented by the {green, blue, yellow} vector, respectively. So, the action of the Pauli matrices
correspond to π-rotation of the Bloch vector around the associated axis.
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2.4 Multiple Qubits

2.3.2 Rotation Operators

It can be shown [1, p. 175] that in general, a rotation by φ around an axis n̂ = (nx, ny, nx) is
given by

Rn̂(φ) ≡ eiφn̂·σ/2 = cos (
φ

2
)1̂− i sin (

φ

2
)(nxσ̂x + nyσ̂y + nzσ̂z), (2.24)

where σ = (σ̂x, σ̂y, σ̂z), and we use that (n̂ · σ)2 = 1̂. This rotation operator will play an
important role since any unitary transformation can be decomposed into a rotation on the
Bloch sphere multiplied by a global phase [1, p. 175]:

Û = eiαRn̂(φ), (2.25)

where α, φ and the three-dimensional unit vector n̂ are real. This is a nice feature, as we can
now visulize any single-qubit gate as a rotation on the Bloch sphere.

2.3.3 Hadamard, Phase and π/8 Gate

In this short section, we introduce three single-qubit gates which are not very prominent in this
thesis, but nevertheless play an important role in the subject of universal quantum computation,
which will be discussed at the end of this chapter.

First, let α = π/2, φ = π and n̂ = ( 1√
2
, 0, 1√

2
) in eq. 2.25 to obtain a transformation known

as the Hadamard gate:

Û = eiπ/2Rn̂(π) (2.26)

= eiπ/2
[
cos (π/2)1̂− i sin (π/2)

1√
2

(σ̂x + σ̂z)

]
(2.27)

=
1√
2

[
1 1
1 −1

]
≡ H, (2.28)

Note, that the Hadamard gate can be obtained form the Pauli operators as H = (σ̂x + σ̂z)/
√

2
and that it transforms a qubit in the computation basis as

H

(
α
β

)
=

1√
2

(
α+ β
α− β

)
. (2.29)

The phase and π/8 gates, denoted S and T , on the other hand induce rotations by π/2 and
π/4 around the z-axis, which we can write as

S ≡
[

1 0
0 i

]
= eiπ/4

[
e−iπ/4 0

0 eiπ/4

]
= eiπ/4Rz(π/2), (2.30)

T ≡
[

1 0
0 eiπ/4

]
= eiπ/8

[
e−iπ/8 0

0 eiπ/8

]
= eiπ/8Rz(π/4). (2.31)

Now we have seen that the action of single-qubit gates induces a rotation on the Bloch sphere.

2.4 Multiple Qubits
Just as in classical computing, we need to consider the state of n qubits. This is written as the
tensor product of n qubit states

|ψ〉n = |ψ1〉 ⊗ |ψ1〉 ⊗ · · · ⊗ |ψn〉. (2.32)

In general, a system of n qubits is a 2n-level system with 2n basis states. In the case of two
qubits, the computational basis is

{|00〉, |01〉, |10〉, |11〉} (2.33)

6



2.5 Controlled Multi-qubit Gates

We write a single-qubit gate U acting only on the jth qubit as U (j). The action of this gate is

U (j)|ψ〉n = |ψ1〉 ⊗ · · · ⊗ (U |ψj〉)⊗ · · · ⊗ |ψn〉. (2.34)

As an example, consider the action of the Pauli operator σ̂x on the first of the two qubits in
the multi-qubit state |10〉:

σ̂x|1〉 ⊗ 1̂|0〉 = |00〉 (2.35)

In the following section we introduce multi-qubit gates, which transform both of the qubit
subspaces.

2.5 Controlled Multi-qubit Gates
A type of multi-qubit gate of particular interest is the controlled gate, which acts on a control
qubit |c〉 and a target qubit |t〉, transforming only the state of the target qubit. Denoting initial
and final states by i and f , we write

|ci〉|ti〉
ÛC−−→ |ci〉|tf 〉, (2.36)

meaning "If |c〉 is true (|1〉), then and only then apply U to |t〉".
In the computational basis, (2.33), this is a block diagonal 4× 4 matrix of the form

Ûc = |0〉〈0| ⊗ 1̂ + |1〉〈1| ⊗ Û =


1 0 0 0
0 1 0 0
0 0 U11 U12

0 0 U21 U22

 . (2.37)

A useful control gate is the controlled-NOT or CNOT:

ÛCNOT = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σ̂x. (2.38)

The matrix representation in the computational basis:

ÛCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.39)

Looking at the columns of this matrix, we see that it transforms two-qubit states in the following
way:

{|00〉, |01〉, |10〉, |11〉} ÛCNOT−−−−−→ {|00〉, |01〉, |11〉, |10〉}. (2.40)

So, if our control qubit is set to |1〉, then the NOT-gate, σ̂x, is applied to the target qubit.

At this point, we have examined fundamental gates and it is natural to wonder how many
gates we have to construct to be capable of performing any desired quantum computation.
This is the subject of universality.

2.6 Universality
In the following, we wish to introduce the notions of universal quantum computation and uni-
versal sets of single-qubit gates. Distinguishing between these terms is important, so we will
introduce them seperately.

7



Universal Sets of Single-Qubit Gates

This term covers a set of single-qubit gates which can transform a given single-qubit state into
any other single-qubit state. As an example, we show that the set of gates consisting of two
rotation operators around different axes, with tunable angle, is universal.

The simple, but not very rigorous, way of showing this is to refer to the Bloch sphere
illustration in figure 1. From the figure, it can be seen that if we may rotate the Bloch vector
with angles of our choosing around two set non-parallel axes, we may reach any point on the
sphere. The proof is rather cumbersome, so we choose to omit it.

Universal Quantum Computing

This term refers to the ability of a set of gates to approximate any unitary transformation
to arbitrary accuracy, meaning that any quantum computation is possible on the set of gates
in question. It has been proven that the Hadamard, phase, π/8- and CNOT-gates constitute
such a set[1, pp. 188-194]. We do not replicate the proof here, but merely state the result as
motivation for our attempts to arrive at physical realizations of controlled gates and universal
single-qubit sets (with which we may then construct the Hadamard phase and π/8 gates).

3 Majorana Fermions
The theoretical concept of the Majorana fermion was introduced in the 1930’s by Ettore Majo-
rana, and have become interesting over recent years as they may be realized experimentally as
quasiparticle excitations in superconductors[2, 247-51]. Mathematically, Majorana fermions, or
simply Majoranas, are descriped by superpositions of fermionic creation and annihilation op-
erators, so before we discuss the properties of Majoranas and derive their statistics, we briefly
review the properties of fermionic operators.

3.1 Fermionic operators
This section deals with the fermionic creation and annihilation operators known from the for-
malism of second quantization. The operators are denoted ĉ† and ĉ, respectively, and their
effects can be qualitatively described as adding and removing a fermion to a given system state.
More accurately, we may write

ĉ†|0〉 = |1〉,
ĉ|1〉 = |0〉,
ĉ†|1〉 = 0,

ĉ|0〉 = 0.

(3.1)

As we will show later on, |0〉 and |1〉 are the only allowed states for fermionic systems.
ĉ and ĉ† obey the following relations

ĉĉ = ĉ†ĉ† = 0,

{ĉ†n, ĉ†m} = 0,

{ĉn, ĉ†m} = δnm ⇒
[ĉ, ĉ†] = 1− 2ĉ†ĉ,

(3.2)

where curly brackets denote anticommutators, i.e. ĉĉ†+ ĉ†ĉ = 1, for instance. Furthermore, we
know from basic quantum mechanics that the number states, |n〉, are eigenstates of the number
operator n̂ = ĉ†ĉ with

ĉ†ĉ|n〉 = n|n〉, (3.3)

8



3.2 Properties of Majorana Fermions

and form a complete set ∑
n

|n〉〈n| = 1. (3.4)

However, rewriting the squared number operator n̂2 = ĉ†ĉĉ†ĉ using the relations in (3.2) yields

n̂2 = ĉ†(1− ĉ†ĉ)ĉ = ĉ†ĉ = n̂. (3.5)

Evidently, the states must satisfy n = n2, i.e., the only allowed states are n = 0, 1. This means
that, for an arbitrary state |Ψ〉, we can use (3.4) to write out the mathematically trivial, but
physically interesting, expression |Ψ〉 = 1|Ψ〉 and obtain

|Ψ〉 =
∑
n

|n〉〈n|Ψ〉, (3.6)

= c0|0〉+ c1|1〉, (3.7)

which has the same form as the state of a qubit (2.3) indicating that we may use the fermionic
number states to define a qubit.

3.2 Properties of Majorana Fermions
One consideration which leads to a description involving Majorana fermions arises when at-
tempting to write the fermionic creation and annihilation operators ĉ and ĉ† as

ĉ = (γ1 + iγ2)/2, (3.8)

ĉ† = (γ1 − iγ2)/2, (3.9)

where γ1 and γ2 are the Majorana operators. By adding or subtracting eqs. (3.8) and (3.9),
the following expressions for γ1 and γ2 can be obtained:

γ1 = ĉ† + ĉ,

γ2 = i(ĉ† − ĉ).
(3.10)

From the definitions in eqs. (3.10) and the properties of fermionic operators summarized in
eqs. (3.2), it is easily seen that the Majorana operators satisfy

γ†i = γi (3.11)

and

γ2
i = ĉĉ† + ĉ†ĉ = {ĉ, ĉ†} = 1. (3.12)

Unitarity, then, follows from the expressions above, as γ†i γi = γ2
i = 1. The anticommutator

{γi, γj} can be calculated using (3.12) for i = j and (3.10) for i 6= j:

{γi, γj} = γiγj + γjγi = 2γ2
i = 2 if i = j, (3.13)

{γi, γj} = γiγj + γjγi = γiγj − γiγj = 0 if i 6= j. (3.14)

For later purposes, it is rewarding to use the anticommutator for i and i+ 1 to show that

(γi+1γi)
2 = γi+1γiγi+1γi = −γ2

i+1γ
2
i = −1 (3.15)

The relevant properties of the Majorana fermions can then be summarized as

γ†i = γi,

γ2
i = 1,

{γi, γj} = 2δij ,

(γi+1γi)
2 = −1.

(3.16)
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4 Braiding Statistics
The purpose of this chapter is to show that Majorana fermions have non-abelian braiding
statistics, a term which concerns the effects of an interchange of two particles. Majorana
interchanges do not generally commute, as opposed to interchanges of ordinary fermions and
bosons, which get a phase factor of −1 and 1, respectively. Because this factor is independent
of which particles are interchanged, we may say that interchanges in bosonic and fermionic
systems commute, i.e. they have abelian statistics.

In general, our approach follows that of a recent article by Ivanov [3]. However, we derive
in detail the ’transformation rules’, which serve as a premise in Ivanov’s work. Our procedure
will be to derive an expression for the Aharonov-Bohm, or AB, phase acquired by a Majorana
fermion during interchanges. This AB phase, however, depends on the magnetic flux through
the superconductor (which is quantized, as we will show), so we must first examine the properties
of superconductors and their response to magnetic fluxes.

A Few Properties of superconductors

Although interesting in their own right, superconductors are not a central topic in this thesis,
and will not be treated in-depth. We will merely give a short description of the concepts of
Cooper pairs and vortices, which are important to our derivations, and refer the reader to
relevant litterature[4].

Cooper-pairing is the abilty of a large number of electrons to form a condensate of pairs
which is descriped by a single wavefunction. We may write this in polar coordinates as

ΨS(r, θ) = |∆|eiθ(r), (4.1)

where ∆ is known as the BCS gap parameter. eq. (4.1) will play an important role in the
derivation of flux quantization.

Vortices in superconductors are circulating currents that form in order to cancel out applied
magnetic fields. As shown in figure 3, a vortex will be formed near each applied magnetic field.
As the distance from the center of an applied flux becomes large, the magnetic field, and thus

vortex

ΦB

side view

top view

Figure 3: Illustration of vortices in a 2D superconductor

the current required to cancel it, vanishes, so we expect the vortices to be localized near each

10



4.1 Flux Quantization

applied flux.2 Taking these two effects as a premise, we may derive the effect of quantization
of fluxes applied to superconductors.

4.1 Flux Quantization
The purpose of this section is to argue that the magnetic flux through a vortex in a p-wave
superconductor is quantized, as proving this is essential to our discussion of the effects of
Majorana braiding.

We first consider a condensate wavefunction in the form of eq. (4.1). At a large distance R
from a vortex at the origin, no current is expected to run. In the presence of a vector potential
A(r), the canonical momentum operator p̂ = −i~∇ gets an extra term, so the new operator p̂′
is

p̂′ = −i~∇− qA(r). (4.2)

Thus, the expression for the current at distance R from the vortex is

J(r) = Ψ∗S(r)
1

m

(
~
i
∇− qA(r)

)
ΨS(r), (4.3)

=
|ΨS(r)|2

m
(~∇θ(r)− qA(r)) , (4.4)

= 0, (4.5)

from which it is easy to see that ~∇θ(r) = qA(r). A circular path integral on both sides yields

~
∮
∇θ(r) · dl = q

∮
A(r) · dl. (4.6)

We require azimuthal periodicity in (4.1), so the LHS is 2πn~, whereas the RHS can be rewritten
using Stokes’ theorem:

q

∮
A(r) · dl = q

∫
(∇×A(r))︸ ︷︷ ︸

=B

·da, (4.7)

= qΦ, (4.8)

where we identified the magnetic flux Φ =
∫
B · da. Notice that ∇×A is only assumed to be

zero along the integration path, and so we expect a nonzero magnetic flux because the surface
integral includes regions with a non-vanishing magnetic field, that is ∇×A 6= 0.
The quantization of the magnetic flux can now be expressed as

Φ =
2πn~
q

, (4.9)

where n is the flux quantum number.
To see how this affects the braiding of Majorana fermions, we must investigate the Aharonov-

Bohm effect in the case of an electromagnetic vector potential arising from a quantized magnetic
flux.

4.2 The Aharonov-Bohm Phase
This section is intended to demonstrate how, given a solution Ψ to the Schrödinger equation, a
new solution Ψ′ to a Schrödinger equation including a vector potential term can be obtained.
We first consider an arbitrary curlless, vector potential, and move on to treat the special case
of the vector potential caused by a quantized magnetic flux.

2For a detailed treatment of these effects, see Phillips[2]
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4.2 The Aharonov-Bohm Phase

In the presence of an electromagnetic potential, the canonical momentum operator is given
by (4.2), and results in the Schrödinger equation

i~
∂Ψ

∂t
=

1

2m

(
~
i
∇− qA

)2

Ψ + VΨ. (4.10)

Observing that the RHS of (4.10) contains zeroth, first and second order spatial derivative terms
of Ψ is an excellent motivation to try a few calculatory tricks. A trick for solving differential
equations like this in regions where ∇×A = 0 (which must be the case if our discussion from
section 4.1 is to apply), is to attempt to collect the terms in the parenthesis on the RHS of
(4.10), by defining Ψ′ such that

Ψ = Ψ′ exp

(
qi

~

∫ r

0

A(r′) · dr′
)
, (4.11)

setting g(r) ≡ q
~
∫ r

0
A(r′) · dr′. Calculating p̂Ψ, and exploiting that ∇g(r) = (q/~)A(r) yields

~
i
∇Ψ =

~
i
∇
(
eig(r)Ψ′

)
=

~
i

(
i∇g(r)

)
eig(r)Ψ′ +

~
i
eig(r)∇Ψ′

= qA(r)Ψ +
~
i
eig(r)∇Ψ′ (4.12)

This effectively turns eq. (4.10) into a second order differential equation as −i~∇Ψ = (−i~∇+
qA)Ψ′, so the momentum term in (4.10) becomes(

~
i
∇− qA

)
Ψ =

~
i

(∇Ψ′)eig(r), (4.13)

and thus (
~
i
∇− qA

)2

Ψ = −~2eig(r)∇2Ψ′. (4.14)

By insertion in (4.10), Ψ′ satisfies the ordinary Schrödinger equation, meaning that the solution
to the Schrödinger equation in the presence of a curlless vector potential is just the ordinary so-
lution multiplied by exp( qi~

∫ r

o
A(r′)·dr′), that is, introducing A(r) into the Scrödinger equation

leads to a transformation in a given solution Ψ given by

Ψ→ Ψ exp

(
qi

~

∫ r

0

A(r′) · dr′
)

= Ψ · eig(r). (4.15)

Moving on now to the special case of a vector potential caused by a quantized magnetic flux,
we recall from our discussion of (4.8) that

Φ =

∮
A · dl =

∫
(∇×A) · da, (4.16)

in regions far from the vortex. Due to gauge invariance, we may perform a transformation
A→ A+∇Λ to the Coulomb gauge, such that ∇·A = 0. In that case, and choosing a circular
path in the LHS of (4.16), we can set A parallel to dl and write

A(r) = Ar(r) · r̂ +Aφ(r) · φ̂ (4.17)

= Aφ(r) · φ̂. (4.18)

Now, with no radial component in A and only a scalar radial dependency in its azimuthal
component, eq. (4.16) becomes

Φ =

∮
A(r) · dl =

∫ 2π

0

Aφ(r)r dφ (4.19)

= 2πrAφ(r)⇒, (4.20)

A =
Φ

2πr
φ̂, (4.21)

12



4.3 Transformation Rules

where the flux is given by (4.9). Notice that a path integral over any trajectory for A will
depend only on the azimuthal angle φ. Thus, we may obtain an expression for the Aharonov-
Bohm phase, caused by a rotation of an arbitrary angle around a vortex, from (4.15). For a
single flux quantum (n = 1), this is

Ψ→ Ψ exp

(
qi

~

∫ θ

0

n~
qr
r dφ

)
⇒ (4.22)

Ψ′ = Ψ exp (iθ) . (4.23)

In the following, we will investigate the effects of this phase in the presences of several vortices,
and how this affects the interchange of vortices, which will finally allow us to derive the braiding
operators.

4.3 Transformation Rules
Because vector fields are additive, we can calculate the general expression for the phase in the
presence of multiple vortices at positions Rn:

Ψ′ = Ψ exp

(
i
∑
n

θn

)
= Ψ exp

(
i
∑
n

arg (r−Rn)

)
. (4.24)

These phases are illustrated in figure 4.

θi+1 θi+2 θi+3

γi

γi+2 γi+3γi+1

r-Ri+1

r-Ri+2

r-Ri+3

Figure 4: Illustration of the phase shift arising from moving one vortex around another.

It can be shown[7] that the zero energy solution to the Bogolubov-de-Gennes equations at
each vortex is a Majorana fermion, and can be written as

γ =
1√
2

∫
dr
(
F (r)e−iΩ/2ĉ+ h.c.

)
, (4.25)

where F (r) is an envelope function that localizes the Majorana and

Ω =
∑
n

arg (r−Rn) . (4.26)

Thus the mth Majorana is described by

γm =
1√
2

∫
dr
(
F (r)e−iΩm/2ĉ+ h.c.

)
, (4.27)

where

Ωm =
∑
n 6=m

arg (r−Rn) . (4.28)
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4.4 Derivation of the Braiding Operators

It can be seen that γm has branch points in all coordinates given by Rn, because all trans-
formations of the type θn → θn + 2π lead to the changes in γm given by γm → −γm. Note,
however, that a change of 4π in θn gives no change in γ.3 Thus, single valuedness can be re-
stored by introducing branch cuts (see figure 5) from each vortex such that the phase change
when moving vortex m an arbitrary angle around vortex n (for simplicity, we start at θ = 0)
is θn + 2lπ, where l is the number of times the branch cut has been crossed. In terms of γm,

Branch cut
θi+1 θi+2 θi+3

γi

γi+1 γi+2 γi+3

Figure 5: Graphical representation of the branch cuts (dashed lines). The mth Majorana can now be
taken as one single valued function γm(θ1, θ2, ..., θn) before crossing the cut, and as a new single valued
function −γm(θ1, θ2, ..., θn) after crossing the cut.

then, this is equivalent to the change given by

γm(θ = 0)→ (−1)
l
γm(θn), (4.29)

In order to investigate the effects of an interchange of two neighbouring Majoranas, we now
introduce an operator Ti, which exchanges the ith Majorana with the (i+1)th. From figure 5 we
see that γi does not cross a branch cut, and so, relabelling the Majoranas after the interchange,
we have the transformation

γi → γi+1. (4.30)

The other Majorana involved in the exchange, however, crosses the one cut originating from γi,
and so eq. (4.29) gives us the transformation

γi+1 → −γi. (4.31)

We also note that the Majoranas that are not involved in the exchange cross either zero, or an
even number of branch cuts., Using (4.29) we may conclude, that the phase of the remaining
Majoranas is unchanged. So to sum up, the transformation rules are

Ti(γi) = γi+1,

Ti(γi+1) = −γi,
Ti(γj) = γj ,

(4.32)

where j 6= i, i+ 1.

4.4 Derivation of the Braiding Operators
Having obtained the transformation rules, we may begin our search for unitary operators which
describe the same interchanges, that is, we seek a unitary operator τi, such that

Ti(γj) = τiγjτ
−1
i . (4.33)

3Functions of the type z1/2, where z is a complex number, are often used as a textbook example of branch
points in contour integral theory - see for instance Riley[6, p. 721]
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4.5 Exponential Form

In the following, we will see that this can be realized by defining

τ±1
i =

1√
2

(1± γi+1γi). (4.34)

Using the anticommutator from (3.16), it can be shown that (4.34) is unitary:

τiτ
−1
i = (1 + γi+1γi)(1− γi+1γi)/2 = (1− γi+1

=−γi+1γi︷ ︸︸ ︷
γiγi+1 γi)/2, (4.35)

= 1. (4.36)

It can now be checked whether the transformation described by (4.34) obeys the rules of eqs.
(4.32) in the three relevant cases, i.e. whether τiγjτ−1

i = Ti(γj) for j = i, j = i + 1 and
j 6= i, i+ 1, respectively, which can be be verified using the relation summarized in eqs. (3.16).

4.5 Exponential Form
In the following, we will show that (4.34) can also be written in the form of an exponential as

exp(π/4 Ô) =
1√
2

(1± Ô), (4.37)

where we define Ô ≡ (γi+1γi) for simplicity.
Before moving on, we would like to point out the analogy to Eulers famous identity

eiθ = cos θ + i sin θ. (4.38)

This identity is usually proved by writing out the Taylor series of eiθ, where the alternating
sign in the series for sin θ and cos θ is ensured because i2 = −1. This is analogous to Ô2 = −1,
which is ensured by eq. (3.16). Thus, it seems appropriate to write out the Taylor series for
eq. (4.37):

exp
(π

4
Ô
)

=

∞∑
n=0

Ôn

n!
∇n exp

(π
4
Ô
) ∣∣∣∣

0

, (4.39)

=

∞∑
n=0

Ôn

n!

(π
4

)n
, (4.40)

where ∇n =
∂n

∂Ôn
.

From (3.16) we know that Ô2 = −1, so

Ô2n = (−1)n. (4.41)

It now seems apropriate to let our derivation follow the structure of a Taylor series-based proof
for Eulers famous identity. Using the same approach on the odd integers (2n+ 1) yields

Ô2n+1 = Ô2nÔ, (4.42)

= (−1)nÔ. (4.43)

Equation (4.40) can now be rewritten as

exp
(π

4
Ô
)

=

∞∑
n=0

Ôn

n!

(π
4

)n
, (4.44)

=

∞∑
n=0

(−1)n

(2n)!

(π
4

)2n

︸ ︷︷ ︸
even

+Ô

∞∑
n=0

(−1)n

(2n+ 1)!

(π
4

)2n+1

︸ ︷︷ ︸
odd

, (4.45)
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4.6 Matrix Form of Braiding Operators

where the sum labeled ’even’ corresponds to the terms with even n in the sum in eq. (4.40)
and vice versa. Now, comparing with the Taylor series for the cosine function

cos θ = 1− θ2

2!
+
θ4

4!
− θ6

6!
+ ... (4.46)

=

∞∑
n=0

(−1)n

(2n)!
θ2n, (4.47)

we see that for θ = π/4, this is exactly the ’even’-sum of eq. (4.45). Intrigued by this crazy
random happenstance, we calculate the series for sin θ:

sin θ = θ − θ3

3!
+
θ5

5!
− θ7

7!
+ ..., (4.48)

=

∞∑
n=0

(−1)n

(2n+ 1)!
θ2n+1, (4.49)

which is equal to the ’odd’ term if θ = π/4. Having obtained these two series, we continue the
calculation from (4.45):

∞∑
n=0

(−1)n

(2n)!

(π
4

)2n

+ Ô

∞∑
n=0

(−1)n

(2n+ 1)!

(π
4

)2n+1

= cos(π/4) + Ô sin(π/4), (4.50)

=
1√
2

+
1√
2
Ô, (4.51)

which, in turn, gives us the end result:

τi = exp
(π

4
γi+1γi

)
=

1√
2

(1 + γi+1γi). (4.52)

4.6 Matrix Form of Braiding Operators
In the presence of several vortices, the Majoranas can be combined in pairs to form complex
fermions. The creation and annihilation operators of the fermions will then be represented by
eqs. (3.8) and (3.9), respectively. The first fermion (ĉ†1) will then be represented by γ1 and
γ2, the second (ĉ†2) by γ3 and γ4 and, generalizing, ĉ†n by γ2n−1 and γ2n. This means that
for odd values of i, the operator τi represents a braiding of two Majoranas that constitute the
same fermion. For convenience, we will label the Majoranas γ1 and γ2 in the following, but the
calculations presented hold for all odd i.

Using the expressions from eq. 3.10, normal ordering the operators ĉ and ĉ† (ĉ† to the left,
ĉ to the right) and using the commutator from (3.2), we find

τ1 = exp
(π

4
γ2γ1

)
= exp

(π
4
i(ĉ† − ĉ)(ĉ† + ĉ)

)
, (4.53)

= exp
(
−iπ

4
[ĉ, ĉ†]

)
, (4.54)

= exp
(
i
π

4
(2ĉ†ĉ− 1)

)
. (4.55)

Choosing (|0〉, ĉ†|0〉) as a basis, τ1 can the be expressed by a Pauli matrix, such that

τ1 = exp
(
−iπ

4
σz

)
, (4.56)

where

−σz =

(
−1 0
0 1

)
. (4.57)

Since the braiding of Majoranas constituting one fermion should leave the remaining fermions
unchanged, we introduce the handy notation σ

(n)
z , which acts with the Pauli matrix on the
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subspace of the n’th fermion only. In the case of two fermions and application of τ1, for
instance, we have

τ1 = exp
(
−iπ

4
σ(1)
z

)
= exp

(
−iπ

4
σz ⊗ 1

)
. (4.58)

Interfermionic braidings are best represented by eq. (4.34), such that for instance

τ2 =
1√
2

(1 + γ3γ2) = i(ĉ†2ĉ
†
1 − ĉ2ĉ1 + ĉ2ĉ

†
1 − ĉ

†
2ĉ1) + 1. (4.59)

Note that when any matrix elements are calculated, the terms with a positive sign will turn
negative as a result of the normal ordering.

Choosing a four-vortex system as an illustrative example, we express the three possible
braiding operators in the basis {|0〉, ĉ†1|0〉, ĉ

†
2|0〉, ĉ

†
1ĉ
†
2|0〉}.

τ1 =


e−iπ/4

eiπ/4

e−iπ/4

eiπ/4

 = e−iπ/4


1

i
1

i

 , (4.60)

τ3 =


e−iπ/4

e−iπ/4

eiπ/4

eiπ/4

 = e−iπ/4


1

1
i

i

 , (4.61)

τ2 =
1√
2


1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1

 . (4.62)

The non-abelian braiding statistics of Majorana fermions can now be verified by checking that
for instance τ1τ2 6= τ2τ1.

Comparing the expressions for τ1 and τ3 with the general expression for a rotation operator
from eq. (2.24), we see that these operators can only perform a rotation of π/2 around the z
axis on the Bloch sphere, and thus can not constitute a universal set of single-qubit gates, as
dicussed in section 2.6.

Also, the braiding operators can not be used to construct a CNOT gate as they are all
parity conserving, i.e., they do not change the particle number from even to odd or vice versa.
Why a parity mixing operator is neccesary to construct a CNOT gate is discussed in detail in
section 6, so we will skip this subject for now and move on to describe a model that allows
Bloch sphere rotations of arbitrary angles.

5 Non-Abelian Operations on Majorana Fermions
In this section we describe a recently proposed method [8] of carrying out braiding operations
on a system of Majorana fermions. These manipulations will provide a richer set of single qubit
operations than possible with the braiding operators derived in section 4.

5.1 Single Dot Coupled to One Majorana Fermion
The simplest version of the model, and hence our starting point, consists of two Majorana
bound states, or MBSs, which together define a fermion M12, as shown in figure 6. One MBS is
tunnel coupled to a quantum dot which may contain N or N + 1 electrons. Since each fermion
can only be in the states |0〉 or |1〉, we know that the transfer of a single electron to or from a
MBS will invert the parity of the fermion it defines. Thus we may invert the parity of M12 by
forcing a charge transfer between the quantum dot and M12 by means of the gate G1.
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5.1 Single Dot Coupled to One Majorana Fermion

γ1γ2
v1

M12

G1

D1

Figure 6: One Majorana fermion (γ1) is tunnel coupled to the quantum dot (D1) by a tunnel coupling
v1. The gate G1 may cause an electron top tunnel between the dot and the fermionic system M12. We
denote this operation P1

The quantum dot has two possible states containing N and N + 1 electrons, respectively.
Thus, we refer to the state |φ〉D of the dot as either empty |0〉D or full |1〉D. Since M12 is a
fermionic system, we recall our discussion in section 3.1, and label its two states |0〉M12

and
|1〉M12

. Using the notation |ψ〉 ⊗ |φ〉 = |ψ〉M12
|φ〉D = |ψφ〉 = |Ψ〉, and denoting fermionic

operators acting on the dot by d̂ and d̂†, we may then write our combined Hilbert space as

H = {|00〉, |01〉, |10〉, |11〉}

= {|0〉, d̂†|0〉, ĉ†|0〉, d̂†ĉ†|0〉}.
(5.1)

Now we would like to define a qubit by {|0〉, |1〉}qubit = {|0〉M12
, |1〉M12

}.
Since we can not know the initial state of the fermionic Majorana system |i〉M12 without

measuring on both γ1 and γ2 at the same time, we have to require degeneracy of the ’even’
and ’odd’ total parity states in order to use the Majorana system to represent a qubit with the
computational basis states {|0〉, |1〉} ({empty, full} fermion).

To examine the effects of the tunnel coupling, we add a ’tunneling term’ HT1 to the inter-
action Hamiltonian of the combined dot and Majorana system, which then becomes

H1 = H0 +HT1
(5.2)

= εd̂†d̂+ (v∗1 d̂
† − v1d̂)γ1 (5.3)

= εd̂†d̂+ (v∗1 d̂
† − v1d̂)(ĉ+ ĉ†) (5.4)

where ε is the ground state energy of the dot and v1 is the tunnel coupling.
Our task is now to calculate all the matrix elements of this Hamiltonian. Starting with H0,

we see that the inner product 〈Ψi|H0|Ψj〉 is zero if φ = 0 or, from orthonormality, if ψi 6= ψj ,
so

〈H0〉 = δφ,1δi,j , (5.5)

meaning that H0 only gives us two nonzero matrix elements:

〈01|H0|01〉 = 〈11|H0|11〉 = ε. (5.6)

The tunnel Hamiltonian HT1 , on the other hand, contains both the annihilation and creation
operators of the dot and the Majorana state:

HT1 = (v∗1 d̂
† − v1d̂)(ĉ+ ĉ†) (5.7)

= v∗1 d̂
†ĉ− v1d̂ĉ+ v∗1 d̂

†ĉ† − v1d̂ĉ
†, (5.8)

where we are going to evaluate the four terms separately. Fortunately, we can realize that each
term only contribute with a single nonzero matrix element from the condition

0 = d̂|0〉D = d̂†|1〉D = ĉ|0〉M12
= ĉ†|1〉M12

, (5.9)
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5.1 Single Dot Coupled to One Majorana Fermion

and from the orthonormality of our basis states in (5.1).
As an example, consider the first term in eq. (5.8), v∗1 d̂†ĉ. From the condition in (5.9), we

see that the ket involved in calculating the nonzero element must be |10〉. From orthonormality,

we then see that the corresponding bra must be
(
d̂†ĉ|10〉

)∗
= 〈01|, and thus we may finally

calculate the matrix element:

〈01|v∗1 d̂†ĉ|10〉 = v∗1〈0|d̂d̂†ĉĉ†|0〉 (5.10)

= v∗1〈0|(1− d̂†d̂)(1− ĉ†ĉ)|0〉 (5.11)
= v∗1 , (5.12)

where we have used that ĉĉ† = 1 − ĉ†ĉ, which follows from the anticommutator in (3.2). Rea-
soning this way, we can find all the terms in (5.8). Since we now know that 〈0|d̂d̂†ĉĉ†|0〉 = 1, we
may simplify our calculations by rearranging the operators to this form. The anticommutation
of fermionic operators then gives us a factor of minus one for each such permutation. So, we
obtain

〈00|(−v1d̂ĉ)|11〉 = −v1〈0|d̂ĉ(d̂†ĉ†|0〉) = −v1(−1)〈0|d̂d̂†ĉĉ†|0〉 = v1, (5.13)

〈11|v∗1 d̂†ĉ†|00〉 = v∗1(〈0|ĉd̂)d̂†ĉ†|0〉 = v∗1(−1)2〈0|d̂d̂†ĉĉ†|0〉 = v∗1 , (5.14)

〈10|(−v1)d̂ĉ†|01〉 = −v1(〈0|ĉ)d̂ĉ†(d̂†|0〉) = −v1(−1)3〈0|d̂d̂†ĉĉ†|0〉 = v1. (5.15)

In the ’even-odd total parity’ basis {|0〉, d̂†ĉ†|0〉, ĉ†|0〉, d̂†|0〉}, the matrix representation of (5.4),
then is a block diagonal matrix

H1 =


0 v1 0 0
v∗1 ε 0 0
0 0 0 v1

0 0 v∗1 ε

 , (5.16)

where the two diagonal blocks correspond to the even and odd total parity subspaces. Note
that the total parity of the combined system is conserved, and that the ’even’ {|0〉, d̂†ĉ†|0〉} and
’odd’ {ĉ†|0〉, d̂†|0〉} subspaces behave identically. Thus, we may write the computational basis
of the system from figure 6 as

{|0〉, |1〉}qubit = {|0〉M12
, |1〉M12

}, (’even’ total parity), (5.17)
{|0〉, |1〉}qubit = {|1〉M12

, |0〉M12
}, (’odd’ total parity). (5.18)

The energy eigenvalues are

det(H1 − λ · 1) = 0⇒ (5.19)

λ± =
ε±

√
ε2 + 4|v1|2

2
, (5.20)

where we choose the lowest energy eigenvalue

E = λ− = ε/2−
√

(ε/2)2 + v2
1 . (5.21)

The degeneracy of the ’even’ and ’odd’ total parity subspaces allows us to use the fermionic
Majorana system as our qubit despite the fact that we can not know in which subspace we
operate in with the setup (figure 6). So initially, we have to describe the Majorana system in
the superposition state of empty and full:

|i〉M12
= α|0〉M12

+ β(ĉ†|0)〉M12
. (5.22)

On the other hand, we are able to prepare the dot in a full charge state |1〉D = d̂†|0〉D. The
combined system is in the initial state: |Ψ〉i = |1〉D|i〉M12

. Then, adiabatically changing the
gate potential ε of the dot, we change the charge state of the dot, letting one electron tunnel
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5.2 Several Majorana Fermions

through to the Majorana system. The combined system is then described in the superposition
state

|Ψ〉 = a(ε) · d̂†|0〉D
[
α|0〉M12

+ β(ĉ†|0〉)M12

]
+ b(ε) · |0〉D

[
α(ĉ†|0〉M12

) + β|0〉M12

]
(5.23)

= a(ε)|1〉D|i〉M12
+ b(ε)|0〉D(γ1|i〉M12

), (5.24)

where b(ε)/a(ε) = E/v1. As we are able to control the coefficients a(ε) and b(ε) by changing ε
we now let ε/v1 →∞ inverting the parity of the Majorana system as b(ε)→ 1. This is defined
as the tunnel-braid operation P1:

|i〉M12

P1−→ γ1|i〉M12
. (5.25)

Note that during the tunnel-braid operation P1 our system is in the superposition state (5.23),
but we end up with a product state of the dot and the Majorana system |Ψ〉f = |0〉D|f〉M12

=
|0〉Dγ1|i〉M12

. The Majorana is not entangled with the dot, which allows us to use the fermionic
Majorana system to represent a qubit. Rewriting the operation (5.25) in terms of the transfor-
mation of the coefficients α, β, one realizes that the action of γ1 corresponds to the Pauli σ̂x
gate [

α
β

]
M12

P1−→ γ1

[
α
β

]
M12

=

[
β
α

]
M12

= σ̂x

[
α
β

]
M12

. (5.26)

In general, coupling one Majorana to a quantum dot, we can perform the tunnel-braid operations

|i〉M12

Pi−→ γi|i〉M12
, (5.27)

where γodd = σ̂x and γeven = σ̂y. In order to obtain a richer set of operations let us consider
the case of two Majoranas coupled to a quantum dot.

Basic tunnel-braid operations in two-qubit basis

In the two-qubit computational basis {|00〉, |01〉, |10〉, |11〉}

γ1 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , γ2 =


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 ,

γ3 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , γ4 =


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 .

(5.28)

5.2 Several Majorana Fermions
In this section we investigate the effects of tunnel coupling two Majorana fermions, γ1 and γ2

to the same dot with v1 and v2, respectively. See figure 7.
In this case the interaction Hamiltonian (5.4) gets an extra term

H12 = H0 +HT1
+HT2

, (5.29)

where

HTi = (v∗i d̂
† − vid̂)γi. (5.30)

Using the previous method for calculating the matrix elements of HT2 in the ’even-odd total
parity’ basis and remembering γ2 = i(ĉ† − ĉ), we now find

H12 =


0 v1 − iv2 0 0

v1 + iv2 ε 0 0
0 0 0 v1 + iv2

0 0 v1 − iv2 ε

 . (5.31)
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5.2 Several Majorana Fermions

G1

D1γ1 γ2

Φ1

v1 v2

Figure 7: Two Majorana fermions (γ1 and γ2) are connected to the same dot (D1) through a tunnel
coupling v1 and v2, respectively, controlled by gates next to G1. The tunnel-braid operation P12 can
be applied using the gate G1. To obtain degeneracy of the ’even’ and ’odd’ total parity subspaces, we
tune the phase difference of the Majoranas with a magnetic flux Φ1 in the loop.

Now there is a phase difference between the ’even’ and ’odd’ energy eigenvalue

Eeven or odd = ε−
√

(ε/2)2 + |v1|2 + |v2|2 ∓ 2|v1v2| sin (ϕ1/2)), (5.32)

where ϕ1 = 2 arg(v1/v2).

We need to restore the degeneracy of the ’even’ and ’odd’ subspaces in order to use the fermionic
system as our qubit without any information about the system of Majoranas beforehand. This
we can do by requiring

sin (ϕ1/2) = 0⇒ ϕ1 = 2nπ. (5.33)

Since the phase difference can be controlled by a magnetic flux Φ1 (see figure 7), so ϕ1 = Φ1/Φ0,
where Φ0 = h/2e, this can be done by tuning the magnetic flux to

Φ1 = 2nπ · Φ0 =
hnπ

e
. (5.34)

By this tuning, we obtain a Hamiltonian of the form (5.16) with v1 → v, where v2 = |v1|2 + |v2|2
and

Eeven or odd = ε−
√

(ε/2)2 + v2. (5.35)

Additionally, we can define a new Majorana operator, obeying eqs. (3.16), as a linear superpo-
sition of our two Majoranas

γ12 =
1

v
(|v1|γ1 + |v2|γ2) = uγ1 + vγ2, (5.36)

and a new dot-electron operator then cointaining a common phase˜̂
d = d̂ exp [i arg(v1)]. (5.37)

This allows us to rewrite the interaction Hamiltonian (5.29) as H12 = H0 +HT , where

HT = v(
˜̂
d† +

˜̂
d)γ12. (5.38)

At this point we have reduced the system of a dot coupled to two Majoranas to a dot coupled
to a single superposition state of the two; γ12. This allows us to carry out the same conclusions
as in the previous section and define the tunnel-braid operation P12:

|i〉M12

P12−−→ γ12|i〉M12
= (uγ1 + vγ2)|i〉M12

= (uσ̂x + vσ̂y)|i〉M12

(5.39)

In the following section, we describe these operations as rotations on the Bloch sphere.
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5.2 Several Majorana Fermions

5.2.1 Bloch Sphere Representation

Referring back to eq. (2.24) and neglecting a global phase of i, we see that the tunnel-braid
operation of (5.39) is equivalent to a π-rotation of the Bloch vector around an axis in the
xy-plane on the Bloch sphere:

iRn̂xy (π) = i
[
cos
(π

2

)
1− i sin

(π
2

)
(nxσ̂x + nyσ̂y)

]
(5.40)

= nxσ̂x + nyσ̂y (5.41)
= γ12 (5.42)

with u = nx and v = ny. We are able to tune u and v and this way perform π-rotations around
an arbitrary axis in the xy-plane. We may also apply subsequent operations, which we write as

|i〉M12

P12−−→ γ12|i〉M12

P ′
12−−→ γ′12γ12|i〉M12

, (5.43)

which corresponds to the action of the product γ′12γ12 onto the initial state. In terms of the
tuneable coefficients, the operator product is

γ′12γ12 = (u′u+ v′v) + (u′vγ1γ2 + v′uγ2γ1) (5.44)
= (u′u+ v′v) + i(u′v − v′u)σ̂z (5.45)
= − [cos (φ/2)1− i sin (φ/2)σ̂z] (5.46)
= −Rn̂z (φ). (5.47)

This is a rotation by a tunable angle around the z-axis on the Bloch sphere as visualized in
figure 8. Applying a third operation P ′′12 we are again able to express the sequence of tunnel-

z

yx

0

1

: input

: P12

: P12P'12

Figure 8: Visualization of rotation induced by P12 and P12P
′
12 operation on the Bloch sphere.

(1) Take the blue vector as the initial qubit state, then applying a operation P12 makes the vector
rotate π around the corresponding axis in the xy-plane and transforms to the red state vector.
(2) Applying a second P ′

12 operation with different coefficients rotates then the red vector into the
purple. We see that the differense between the blue and the purple vector is just a rotation by some
angle around the z-axis.

braid operations as a π-rotation around an axis in the xy-plane, so we are basically back to our
starting point.
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5.2 Several Majorana Fermions

With the Bloch sphere representation in mind we see that an odd sequence of P12 operations
induces a π-rotation around an tuneable axis in the xy-plane and an even sequence induces a
rotation by tunable angle around the z-axis.

To summarize, in the system of figure 7 we are restricted to operations that induce two types
of rotations on the Bloch sphere; a rotation by π around a tunable axis in the xy-plane and a
rotation by tuneable angle around a z-axis. Since we can not decompose the general rotation
operator (2.24) into these operations, they do not constitute a universal set of single-qubit
operations. Note that a qubit is composed of two Majorana fermions.

5.2.2 Four Majoranas Representing a Qubit

Consider now a system of four Majoranas coupled to quantum dots as shown in figure 9. Now
we have three tunnel-braiding operation P12, P23 and P34 of superposition modes avaible. The

G3

γ4D3γ2

G1

D1γ1

Φ1

v1 v2 D2 γ3

G2

Φ2 Φ3

M34M12

Figure 9: Four Majorana states γ1, γ2, γ3, γ4 coupled to quantum dots D1, D2 and D3.

matrix representation of two subsequent tunnel-braiding operations P12P
′
12 on the same dot

with different coupling is in the ’even-odd’ parity basis {|00〉, |11〉, |01〉, |10〉}:

γ12γ
′
12 =


a− ib

a+ ib
a− ib

a+ ib




a′ − ib′
a′ + ib′

a′ − ib′
a′ + ib′

 (5.48)

=


(a− ib)(a′ + ib′)

(a+ ib)(a′ − ib′)
(a− ib)(a′ + ib′)

(a+ ib)(a′ − ib′)

 .

(5.49)

If we instead perform the operations on the second fermion, i.e. P ′23P23, this yields the same
result as γ12γ

′
12 = [γ34γ

′
34]T . Applying two subsequent interchange tunnel-braidings P23 on the

other hand yields

γ23γ
′
23 = (uσ̂(1)

y + vσ̂(2)
x )(u′σ̂(1)

y + v′σ̂(2)
x ) (5.50)

=


0 0 c −id
0 0 id c
c −id 0 0
id c 0 0




0 0 c′ −id′
0 0 id′ c′

c′ −id′ 0 0
id′ c′ 0 0

 (5.51)

=


cc′ + dd′ −i(dc′ + cd′) 0 0
i(dc′ + cd′) cc′ + dd′ 0 0

0 0 cc′ + dd′ −i(dc′ + cd′)
0 0 i(dc′ + cd′) cc′ + dd′

 . (5.52)

These block diagonal matrices have only parity conserving elements and the ’even’ and ’odd’
subspaces are degenerate, since their matrix elements are identical. This allow us to choose the
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’even’ parity basis {|00〉, |11〉} and only consider the matrix representations of the tunnel-braid
operations in this supspace.

Acting with two operations on one fermion we find an operation equivalent to a rotation by
tuneable angle around the z-axis:

γ12γ
′
12 =

(
aa′ + bb′ + i(ab′ − ba′) 0

0 aa′ + bb′ + i(−ab′ + ba′)

)
(5.53)

= (aa′ + bb′)1 + i(ab′ − ba′)σ̂z (5.54)
= −Rn̂z (φ) (5.55)

Furthermore, two interfermionic operations are a rotation by tunable angle around the y-axis4

γ23γ
′
23 =

(
vv′ + uu′ −i(uv′ + uv′)
i(uv′ + vu′) vv′ + uu′

)
(5.56)

= (vv′ + uu′)1 + (uv′ + uv′)σ̂y (5.57)
= − [cos (φ/2)1− i sin (φ/2)σ̂y] (5.58)
= −Rn̂y (φ). (5.59)

Having obtained a set of operations that makes us capable of rotations by arbitrary angle
around two non-parallel rotation axis, we have in fact obtained a universal set of single qubit
operations.

6 Discussion & Conclusion
The aim of this section is to discuss possible alterations to the model described in section 5 and
to present our conclusions.

6.1 Discussion
Although the model discussed in section 5 provides a complete set of single-qubit operations, a
controlled two-qubit gate is needed to allow for universal quantum computation. Unfortunately,
we have not been able to remedy this, but we will discuss here two modifications that we have
considered to the model in question. One modification introduces an ’auxiliary qubit’, whereas
the other involves redefining the computational basis.

6.1.1 Auxiliary Qubits

The main concern which lead us to consider this modification is the inability of the possible
tunnel-braid operations to mix parity conserving with parity changing operations. To clarify,
consider an arbitrary matrix M :

M =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 . (6.1)

In the computational basis of section 5.2, the blue matrix elements conserve parity, whereas
the red elements change parity. This is more easily identified in Dirac notation where parity
changing operations in general contain terms like

Mij ∝ |even〉〈odd|, or
Mij ∝ |odd〉〈even|.

(6.2)

4In [?] P23P ′
23 correspond to a rotaion around the x-axis. This operator product correspond to our P13P ′

13
operation.
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6.1 Discussion

For instance the M12 term becomes M12 · |11〉〈01|. Since the ket and bra have even and odd
total parity, respectively, the M12 term is parity changing. Comparing the matrix in (6.1) with
the CNOT 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (6.3)

we see that the operation corresponding to the CNOT gate must mix parity changing and
conserving terms. This is a problem because we see from (5.28) that the fundamental tunnel-
braiding operations available to us (γ1 to γ4) are all parity changing, meaning that also linear
superpositions will be parity changing. Note also that even though we may apply consecutive
operations, it follows from (6.2) that this will only affect the total change of parity for the
operator and not mix parities.

One way to attempt to resolve this is to introduce an auxiliary qubit, as shown in figure 10.
Including this new fermion composed of γ5 and γ6, the Hilbert space becomes

γ4D3γ2D1γ1 D2 γ3

γ5 γ6

D4

M12 M34

M56

Figure 10: An additional dot couples one of the two fermions constituting the computational basis with
an auxiliary qubit, which is not part of the computational basis.

H = {|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉}. (6.4)

This makes a few additional tunnel-braiding operations possible, such as a quantum dot coupling
to γ3 and γ5 with coupling strengths a and b, respectively, which we may write as

γ35 = a · σ̂(2)
x + b · σ̂(3)

x (6.5)
(6.6)

However, if we restrict ourselves to the subspace of the Hilbert space constituted by the old
computational basis, this operation is equivalent to 1⊗ (a · 1+ b · σ̂x) and thus has the matrix
representation

γ35 =


a b 0 0
b a 0 0
0 0 a b
0 0 b a

 , (6.7)

which at first sight appears to solve the problem. However, the representation of γ35 in the
computational basis is not unitary γ†35γ35 6= 1, rendering the general theory of quantum in-
formation inapplicable. Of course the transformation is unitary in the basis of the complete
Hilbert space where an entangled state is created – Letting i and f denote initial and final
states of individual fermions, we may write

γ35|iii〉 = |i〉1 (a|i〉2|f〉3 + b|f〉2|i〉3) , (6.8)

but to restore unitarity, we must perform a measurement on fermion 2 or three. Any desired
superposition state achieved by this parity mixing operation is thus collapsed, and we are thus
no better off than we started.
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6.2 Conclusion

6.1.2 Change of Computational Basis

As described in section 2.2, the only condition necessary to describe a qubit is a two-dimensional
complex vector. Recalling the Hilbert space of eq. (5.1), we see that nothing in fact prevents
us from defing our qubits in a basis other than {|0〉1, |1〉1}, {|0〉2, |1〉2}. For example, we may
define our qubits in bases with distinct parity. Denoting qubit numbers by subscript, we define

{0, 1}1 ≡ {|00〉, |11〉},
{0, 1}2 ≡ {|01〉, |10〉}.

(6.9)

In this computational basis, the fundamental tunnel-braid operations become

γ1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , γ2 =


0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

 , (6.10)

γ3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , γ4 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 . (6.11)

In this basis, it is actually possible to construct a controlled phase gate:

1

2
γ1γ4 (γ1 + γ2) (γ3 + γ4) =


1 0 0 0
0 1 0 0
0 0 i 0
0 0 0 −i

 , (6.12)

which seems very promising at first sight. Unfortunately, it can be seen from the definition of
the new computational basis in (6.9) that since the states of both qubits comprise states of both
fermions, any change to the state of an individual fermion will change the state of both qubits.
In other words, single-qubit operations are not possible in the computational basis descriped by
(6.9).

6.2 Conclusion
In this thesis, we gave a brief introduction to the subject of quantum computation, and the
theory of Majorana fermions. Using only basic quantum mechanics, we found the effects of flux
quantization and the Aharonov-Bohm phase, and finally derived the non-abelian statistics of
Majorana fermions realized in vortices in p-wave superconductors.

After arguing that the braiding of said Majorana fermions could never constitute a universal
set of quantum gates, we moved on to consider af model that utilized tunnel-braid operations
to perform Bloch sphere rotations of arbitrary angles. We found that it was possible to obtain
a universal set of single-qubit gates if we exploited the degeneracy of the even and odd parity
subspaces by representing a qubit with four Majorana fermions. This lead us to investigate
whether it was also possible to construct a controlled gate.

This was only possible by defining the two qubits in distinct parity subspaces, which in
turn prevented us from performing single-qubit operations and thus forced us to abandon the
computational basis that defined qubits in seperate parity subspaces.

We also identified the absence of parity mixing matrix elements in the tunnel-braiding
operators as an obstruction to our attempts to construct a controlled gate. We attempted to
remedy this by introducing an auxiliary qubit, which was not included in the computational
basis. However, this violated the unitarity requirement of gates in quantum information theory.
As we saw no way of restoring this unitarity without destroying the entanglement associated
with controlled gates, we also gave up the scheme involving auxiliary qubits.

Of course, we have not shown that it is not possible to construct a universal set of gates
with the model in question, but we have showed that the task is not straightforward and
demonstrated the limitations of the physical model with different computational bases.
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