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Abstract

In this thesis, critical behaviour of the classical and transverse quantum Ising model

is analysed in zero and one dimension. This is done by evaluating the correlation function

and correlation length, in each case, and finding the points where ξ diverges. In the zero-

dimensional case, neither the quantum- or the classical model have any critical point. On

the other hand, in one dimensional case, both classical and quantum model have phase

transitions. Using the transfer matrix, the correlation length of the classical case is shown

be have a quantum phase transition at zero field, the long-range order is achieved. In the

quantum case, a Jordan-Wigner and a Bogoliubov transformation is used to diagonalize

the Hamiltonian. The correlation function and length is then calculated by using the

dynamics of domain walls in the limit T � 2J(1 − g). In analysis reveals an quantum

critical point in gc = 1 and the system experience long-rang order in the limit T �
2J(1− g)
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1 Introduction

In condensed matter- and high energy physics, a common model to describe interactions

of many-particle system, is the Ising model. The model was first proposed by the German

Physicist Ernst Ising [1] to describe theory of ferromagnets. Even though, the model was

designed to describe magnets, it is also used as a toy model for studying integrable systems

and qunatum critical behaviour in Theoretical Physics [2]. The Ising model was originally

written as a classical model and has since been quantized to fit reality better. This new model

is named the quantum Ising model and describes the interactions between spins on sites sitting

in a d-dimensional grid with constant separation a and periodic boundary conditions. In one

dimension, the Ising model describes a closed chain of N sites with perimeter L, fig 1a. Going

a dimension up, the two dimensional grid takes the for of a cylinder joint at the ends, fig. 1b.

Here, there are two different loops. One with Nx particles and perimeter Lx, and another

with Ny particles and perimeter Ly. At last, in three dimensions, the grid takes the shape of

a hypertorus in a four dimensional space. Along the xi’th direction, the grid is periodic with

length Li and have Ni particles in each direction. The physical realization is last model is of

course impossible, but should give the same results as a real grid with dimensions (Lx, Ly, Lz)

for large system. The three scenarios are plotted in figure 1. In the Ising model, a given spin,

at site i, interacts with the spin, at site j, with exchange energy −Jij . If Jij > 0, the

interaction is called ferromagnetic, since its energetically favourable for the spins to align.

In the other case, Jij < 0, its energetically favourable for spins to anti-align, and the case is

therefore called antiferromagnetic. A (QIM) of this kind is describes by the Hamiltonian

Ĥ = −
∑
ij

Jij σ̂
z
i σ̂

z
j (1.1)

in units where ~ = 1. To make things simpler, the model is often limited to nearest neighbour

interactions only. In other words Jij 6= 0 if and only if site i and j are nearest neighbours.

This model is called the nearest neighbour quantum Ising model and have hamiltonian

Ĥ = −J
∑
<i,j>

σ̂zi σ̂
z
j (1.2)

(a) d = 1 Ising Chain (b) d = 2 Ising Doughnut (c) d = 3 Ising Grid

Figure 1: The grid of an Ising model in d = 1, 2, 3 dimension with periodic boundary conditions.

a) In one dimension, the sites is placed in a circle with perimeter L. b) In two dimensions, the sites

make a sheath in the form of a closed cylinder. The cylinder has different perimeter, Lx and Ly, and

number of particles Nx and Ny. c) In three dimensions, the sites makes a three dimensional grid. The

periodic boundary conditions is not drawn here due to lack of dimensions.
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where 〈i, j〉 refers to the sum over i and it’s nearest neighbours j. In the ferromagnetic case,

the ground state of this model has a two-fold degeneracy

|+〉 ≡
N⊗
i=1

|↑〉 and |−〉 ≡
N⊗
i=1

|↓〉 (1.3)

with energy E0 = −2dJN and N being the total number of sites in the grid. Here {|↑〉 , |↓〉}
are the eigenstates of the spin operator, σ̂z. In the ground state, all the spins align thereby

creates a spontaneous magnetic field M . The direction of the field is either in the positive

or negative z-direction is chosen by spontaneous symmetry breaking. The cause of this

degeneracy is a Z2 symmetric, generated by the transformation Û(θ) = exp(iθ
∏
j σ̂

x
j ) that

maps the spin operators into negative of themselves

U : σ̂αi → −σ̂αi (1.4)

The Hamiltonian (1.2) is invariant under this transformation, which implies the degeneracy.

The first excited states of the Ising model can be achieved by creating two domain walls

in the grid, fig 2. These walls separates the grid into regions with different polarizations,

creating wall domain with opposite magnetic field, compared to its neighbourhood. This

weakens the magnetization M , and in the limit of many domain walls, the magnetization

vanishes. In the antiferromagnetic case, these many domain wall states are the ground state,

and the magnetization vanished completely for low temperatures T . Do to the translational

invariance of the Ising model, a domain of a given size can moved around without any energy

cost, which causes a big degeneracy is the energy spectrum. Even though, the Ising model

described by the Hamiltonian (1.2) is completely solvable, and one can find every eigenstate

of the Hamiltonian creating and moving around domain walls.

This is all well and good until someone comes and turns on a magnetic field, hαi = Jgαi .

This adds a new term to the Hamiltonian

Ĥ = −
∑
<i,j>

Jσ̂zi σ̂
z
j − J

∑
i

g⊥i σ̂
x
i + g

‖
i σ̂

z
i (1.5)

in units where µ0 = 1. Here gαi > 0 is a dimensional coupling constant, which later will be

used as order parameter to study critical points in the quantum Ising model. The new term

breaks the Z2 symmetry and mixes the eigenstates of the Hamiltonian. This new model is

called the transverse field Ising model, and is, in most cases, not been solved.

(a) (b)

Figure 2: Example of domain walls is the one- and two dimensional quantum Ising model.

The arrows indicate the spin direction, while the dashed lines indicated the domain walls
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1.1 The classical Ising model i longitudinal field

When a problem is very hard to answer, it is sometimes beneficial to solve a simpler version

of the original problem. Sometimes, the answer to the simpler version can then help one

understand the harder problem. Therefore, the classical Ising model, the one from Ising’s

original paper, [1], is still useful and studied. In the classical model, spin operators are

replaced by numbers, which can either plus of minus one

Hc = −J
∑
<i,j>

mimj − h
∑
i

mi (1.6)

Here, mi ∈ {−1, 1} are just numbers and correspond to a classical spin in either a up or

down state. Again, J is the interaction energy between spin and h is a longitudinal field.

Unfortunately, the classical Ising model disagrees with the quantum model on crucial point.

One problem is, that since the model is classical, quantum fluctuations doesn’t exist, and the

model is therefore static in time. Another problem is that the model cannot handle transverse

fields. The model is therefore not only wrong, but cannot even mimic the quantum model

correctly. Even then, the classical model is not completely useless. This is because, as we

will see later, a classical field theory of dimension D can be maps into a quantum field theory

in dimension d, via

D = d+ 1 (1.7)

This is accomplished by mapping one of the spacial dimensions of the classical model, into

a complex time coordinate in the quantum field theory. In this way, the dynamics of a

quantum field theory can be solved by solving a classical field theory in a higher dimension.

The mapping is not exact, but works in some cases. The behaviour of the classical model

can therefore be used to study the dynamics and phase transitions of the quantum model.

1.2 Quantum critical points and quantum phase transitions

A quantum critical point, in the context of condensed matter physics, is a point at T = 0,

where the system changes characteristic in a non-analytical way. It is often the case, that

one has a Hamiltonian, H(g), that dependence on a parameter g. From this Hamiltonian,

the partition function and free energy, of the system, can be calculated via

Z = tr e−Ĥ/T =
∑
a∈A
〈a| exp−Ĥ/T |b〉 and F = −T lnZ (1.8)

in units where kB = 1. Here A ⊂ H is an arbitrary set of basis in the total ket-space H of the

system. In an arbitrary basis, the exponential function of −Ĥ/T is very hard to calculate.

This is due to the definition of the exponential function for matrices, which involves an infinite

number of matrix products

eÂ ≡
∞∑
n=0

1

n!
Ân (1.9)

In the eigenbasis of Ĥ, the matrix product simplifies greatly and the partition function just

becomes a sum of Boltzmann factors

Z =
∑
a∈A

e−Ea(g)/T (1.10)
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From Z and F , most statistical objects can be calculated. When looking at the transverse

field Ising model, (1.5), the order parameter is often the transverse magnetic field, h, and/or

the temperature T . At critical points, the partition function will become non-analytical,

and its high-order derivatives will diverge. When crossing these critical points, the system

experience a quantum phase transition. The non-analytical behaviour of the system comes

from the energy gap ∆, which is the energy difference between the first excited state of the

system and the ground that, will vanish ∆ � T . If the non-analyticity happens for the

second order derivative of the partition function, the phase transition is said to be of second

order.

To study phase transitions, another interesting statistical object to look at, is the two-

point spin correlation function C(x2, x1; t2, t1). The correlation function tell how much a spin

at position x2 and time t2 is correlated with the spin at position x1 and time t1. If there is

a high probability for the spins will point in the same direction, when averaging over every

allowed configuration, the spins are correlated strongly and C ≈ 1. In the other limit, if the

spin are random oriented, the spins are not correlated at all and C = 0. At last, if the spins

are strongly correlated, but anti-align, the correlation function C ≈ −1. To describe this, the

correlation function is defined as

C(x, t) ≡ 〈σ̂z(x, t)σ̂z(0, 0)〉 =

 1
Z tr

(
e−Ĥ/T σ̂z(x, t)σ̂z(0, 0)

)
for t > 0

0 for t < 0
(1.11)

where x = x2 − x1 and t = t2 − t1. Here, the translation- and time shift invariance of the

Hamiltonian is used, so C only depends on the difference in space and time coordinates. Also,

the correlation function is zero for t < 0 because of causality. In some cases, the equal-time

correlation function, C(x, 0) falls off exponentially in terms of separation |x|

C(x, 0) ∝ e−|x|/ξ (1.12)

Here ξ is called the correlation length and is often both temperature and field depended. For

second-order phase transitions, the correlation length diverges, which results in the equal-

time correlation function being constant C(x, 0) = ±N2
0 for all separations |x|. The constant,

N0 = 〈σ̂zi 〉, at the critical point. The system therefore experience long-range order, where all

spins in the grid are strongly correlated.

In this these, the phase transitions of the classical- and quantum Ising model in d = 0, 1

dimension, are studied using the method describes before.
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2 Single Spin

Starting slow, the simplest case of the Ising model, is a single spin i a magnetic field h. The

Ising model for this system can be solved for both the classical case and the quantum case.

In this chapter, the the magnetization, magnetic susceptibility, and the correlation function

is calculated for both the classical- and quantum case.

2.1 Single Classical spin in longitudinal field

Beginning with the classical model in longitudinal field, h, the Hamiltonian simply takes the

form of

HClassical = −hm (2.1)

with m ∈ {−1, 1}. The energy difference, between the up- and down state, called the energy

gap ∆ = 2h. From H, the partition function, free energy, and magnetization can then be

calculated

Z =
∑

m∈{−1,1}

e−hm/T = e−h/T + eh/T = 2 cosh(h/T ) (2.2)

F = −T lnZ = −T ln [2 cosh(h/T )] (2.3)

M = −∂F
∂h

= tanh(h/T ), χ =
∂M

∂h
= − 1

T cosh2(h/T )
(2.4)

For low temperature, as also seen from fig. 3a, the spin mostly point along the h field,

when gives the magnetization M ≈ 1. As temperature increase, the energy gap ∆ = 2h

become less significant and the probability of being in the spin up and down state equals

out P−/P+ = e−∆/T (T→∞)→ 1. The magnetization, M , therefore decreases, and in the

limit of T � ∆ it completely vanished. Looking at the susceptibility, it does not have any

discontinuities, which implies no second order phase transition.

Because the classical model does not capture the quantum fluctuations, the time-correlation

function does not depend on time. The spin, when measured in the m state will then stay

there forever, and the model is static.

(a) (b)

Figure 3: Magnetization (a) and susceptibility (b) of a single classical Ising spin in a magnetic field

h as a function of temperature.
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2.2 Single Quantum Spin in magnetic field

Things get more interesting in the quantum case. First of all, the model can now handle

transverse fields, h⊥, which gives a Hamiltonian of

Ĥ = −h‖σ̂z − h⊥σ̂x = −

(
h‖ h⊥

h⊥ h‖

)
(2.5)

writing the Hamiltonian in matrix notation. The eigenvalues with corresponding eigenstates

can be calculated

E± = ±
√
h2
‖ + h2

⊥ = ±h with v± =
1√
2h

 h⊥√
h±h‖

∓
√
h± h‖

 (2.6)

Note here, that the eigenvalues of the quantum model is the same as in the classical case.

Therefore, both models shares magnetization and susceptibility, as well as the lack of phase

transitions. Another this is that since this is a quantum model, then or non-zero values of

h⊥, the spin operators does not commutate with the Hamiltonian, i.e.
[
σ̂z,x, Ĥ

]
6= 0. In

Heisenberg picture of Quantum Mechanics, the spin operators are therefore not constant in

time, but rather follows the dynamics prescribed by

dσ̂α

dt
=

1

i~

[
σ̂α, Ĥ

]
6= 0 (2.7)

This changes the time-correlation function, since the spin operators now is time dependent.

This results in

C(t1, t2) =
1

Z
tr
[
e−Ĥ/T σ̂z(t2)σ̂z(t1)

]
for t2 ≥ t1 (2.8)

where the operators σ̂zi (t) is the time-evolution of the spin operator along the z axis. For

t1 > t2, the correlation is zero to account for causality. In Heisenberg picture, this is given

by σ̂z(t) = eiĤtσ̂ze−iĤt The correlation function can therefore be written as

C(t2, t1) =
1

Z
tr
[
e−Ĥ/T

(
eiĤt1 σ̂ze−iĤt1

)(
eiĤt2 σ̃ze−iĤt2

)]
(2.9)

=
1

Z
tr
[
e−Ĥ/T (1+iT (t2−t1))σ̂zeiĤ(t2−t1)σ̂z

]
(2.10)

In the last equality, the cyclic invariance of the trace is used. Changing to the eigenbasis of

Ĥ, the spin operator changes via the basis transformation, σz → S−1σzS with transformation

matrix S

S =
1√
2h

 h⊥√
h+h‖

h⊥√
h−h‖

−
√
h+ h‖

√
h− h‖

 and S−1 =
1√
2h

√h+h‖(h−h‖)
h⊥

−
√
h+ h‖√

h−h‖(h+h‖)

h⊥

√
h− h‖


the spin operator in the new basis can then be calculated

σ̃z = S−1σzS =
1

h

(
−h‖ h⊥

h⊥ h‖

)
(2.11)

Putting it all together, the time-correlation function of the single quantum spin can be

calculated.

C(t1, t2) =
1

Zh2
tr

[(
eha 0

0 e−ha

)(
−h‖ h⊥

h⊥ h‖

)(
e−ihb 0

0 eihb

)(
−h‖ h⊥

h⊥ h‖

)]
(2.12)

=
1

Zh2

[
h2
‖e
h(a−ib) + h2

⊥e
h(a+ib) + h2

⊥e
−h(a+ib) + h2

‖e
−h(a−ib)

]
(2.13)
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with a = 1+iT |t2−t1|
T and b = |t2 − t1|. Writing out a and b, the exponents reduces to

a− ib =
1

T
and a+ ib =

1

T
+ 2i|t2 − t1| (2.14)

which results in a correlation function of

C(t1, t2) =
h2
‖

h2
+
h2
⊥
h2

cosh
(
h(1−2iT |t2−t1|)

T

)
cosh(h/T )

(2.15)

This result can be rewritten as a scaling invariant function, Φ̃(y1, y2, y3), with y1 = T |t2− t1|,
y2 =

2h‖
T , y3 = h⊥

T

Φ̃σ(y1, y2, y3) =
4y2

3

y2
2 + 4y2

3

+
y2

2

y2
2 + 4y2

3

cosh
(√

y2
2 + 4y2

3(1− 2i|y1|)/2
)

cosh(
√
y2

2 + 4y2
3/2)

(2.16)

Figure 4: Plot of the Scaling invariant

function Φ̃σ(y1, y2, y3) as a function of y1

for fixed y2 and y3. The function traces

out an ellipse in the complex plane with

semi-major and -minor axis given by a =

y2
y2+4y23

tanh

(
L√
y22+y

2
3

)
and b =

4y23−y
2
2

y22+4y23
, as

well as having centre in C =
3y23

y22+4y23

Plotting the scaling function as a function of

y1 with y2 and y3, the function traces out an

ellipse in the complex plane, fig 4. The el-

lipse has centre in C =
4y2

3

y2
2+4y2

3
and have semi-

minor axis a =
y2
2−4y2

3

y2
2+4y2

3
and semi-major axis

b = y2

y2+4y2
3

tanh(L/
√
y2

2 + 4y2
3). When varying

y1, the scaling function repeated it self for y1 →
y1 + TP . This means that the Single Quantum

spin is 100% correlated to itself at a later time P .

For the qunatum Ising spin, the period is given

by

P =
π√

h2
‖ + h2

⊥

=
π

h
(2.17)

which means that the time evolution of the sin-

gle spin is periodic an angular frequency ω = 2h.

This is an already known result from classical

Larmor precession, where a spin placed in a magnetic field B, precesses with angular fre-

quency ω = eg
2mB. In the zero temperature limit, T → 0, the correlation function reduces

to

C(|∆t|, 2h⊥, h‖) = Φ̃T=0

(
|∆t|, 2h⊥, h‖

)
=
h2
‖

h2
+
h2
⊥
h2
e−2ih|∆t| (2.18)

which traces out a circle in the complex plane with radius R =
h2
⊥
h2 and centre

h2
‖
h2 . In the

limit low perpendicular field limit h⊥ � T , the spin operator along z again commutated with

the Hamiltonian. The quantum fluctuations therefore disappears and the quantum model is

static just like the classical model. This can also be seen from the time-correlation function,

that reduces to C(t) = 1 when h⊥ → 0. The quantum model and classical model are therefore

equal, when h⊥ = 0.
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2.3 Subconclusion

In the classical single spin model, a magnetic field M is created spontaneously. The magnetic

field is strongest in the low temperature limit T � h, but vanishes for T/h → ∞. The

classical model is also static, since correlation function C(t) = 1 is constant in time. Since

the magnetic susceptibility, χ, is analytical for all values of T/h, no second order phase tran-

sitions are found in the classical model.

In the quantum model of the single spin in magnetic field (h⊥, h‖), the magnetization and

magnetic susceptibility is the same as in the classical case. The correlation function here is

not a constant, but instead traces out an ellipse in the complex plane. The angular frequency,

for which the ellipse is draws, ω = 2h =
√
h2
‖ + h2

⊥, which agrees with the result from classi-

cal Larmor precession. In the low perpendicular field limit h⊥ � T , the correlation function

C(t) = 1 is constant in time.

The classical- and quantum model is therefore equal in the limit of h⊥ � T

10



3 Classical Ising chain

Going a dimension up the classical Ising chain is analysed here. The Hamiltonian of the chain

is written as

H = −
N∑
j=1

[Jmjmj+1 + hmj ] (3.1)

with J being the spin-spin exchange energy, h being a longitudinal field, and N being the

number of sites in the chain. Notice that the J here defined to be twice as big as the J in

3.1 Here, the time-correlation function is still constant and the model is static. However, the

spacial, equal-time correlation function C(x, 0) is not. To see this, one first need the partition

function

3.1 Calculating the partition function using transfer matrix

To calculating the correlation function of the system, one first need to calculate the partition

function. To do that, one normally diagonalizes the Hamiltonian first. This is not a trivial

task though. Because the matrix that has to be diagonalized, has 2N × 2N entrenches,

where N is the number of particles, then, for large systems, the task is to hard for even

the best computers. The method of diagonalizing H can therefore not be used to calculate

the partition function. Instead, the transfer matrix method is used. Here, the sum in the

Boltzmann factors is split up into products

Z =
∑

mj∈{−1,1}

e
∑N
j=1

Jmjmj+1+hmj
T =

∑
mj∈{−1,1}

N∏
j=1

Tmjmj+1 (3.2)

Here, the matrix Tab = exp[(Jab+ ha)/T ] is a 2-by-2 matrix called the transfer matrix, and

depends both on the state of the j’th and the j+1’th state. Because of translation invariance

of the Ising model, the Transfer matrix is the same all sites, which results in Z being the

trace of a matrix product

Z =
∑

m1∈{−1,1}

(
TN
)
m1m1

= tr
[
TN
]

(3.3)

In the diagonal basis of T , the partition function simplifies to

Z = λN+ + λN− with λ± = eJ/T cosh(h/T )±
(
e2J/T sinh2(h/T ) + e−2J/T

)
(3.4)

Here, λ± is two eigenvalues of T . A thing that will become important later, it the fact that

λ+ > λ− > 0 in the ferromagnetic case J > 0. This is guaranteed since J > 0 implies

e−4J/T < 1, which further implies
√

sinh2(h/T ) + e−4J/T <
√

sinh2(h/T ) + 1 = cosh(h/T ).

Using this, the eigenvalues in (3.4) are guaranteed to satisfy

λ± > eJ/T (cosh(h/T )− cosh(h/T )) = 0 (3.5)

3.2 Correlation function

To study the order in the classical chain, the equal-time correlation function between the `’th

and the `′’th site, C(`− `′) is studied. Just as before with the partition function, the transfer
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matrix T is used.

C(`− `′) ≡ 〈m`m`′〉 =
1

Z

∑
mj∈{−1,1}

N∏
j=1

Tmjmj+1m`m`′ (3.6)

To rewrite the correlation function in terms of matrix products, the numbers m` and m`′ are

written as the matrix (
1 0

0 −1

)
= σz (3.7)

which coincidentally is the third Pauli matrix. This is not because of any quantum effect.

Remember, this is a pure classical model. It just happens to be a Pauli matrix that describes

the number m` in this context. Writing this out, and using the cyclic structure of the trace,

the correlation function can be written as the following

C(x) =
1

Z

∑
m1,m`′m`

(
T `
′−1
)
m1,m`′

σzm`m`

(
T `−`

′
)
m`′ ,m`

σzm`m`

(
TN−`+1

)
m`,m1

(3.8)

=
1

Z
tr
[
T `
′−1σzT `−`

′
σzTN−`+1

]
=

1

Z
tr
[
T `
′
σzT `−`

′
σzTN−`

]
(3.9)

Again, to simplify calculations, the basis is change to the eigenbasis of Tab, which transforms

the spin matrix σz into

σ̃z = S−1σzS =
1

δ

(
α− Σ α− λ−
λ+ − α Σ− α

)
(3.10)

with α = e
J+h
T , δ = (λ+ − λ−)/2 =

√
eJ/T sinh2(h/T ) + e−2J/T , and Σ = (λ+ + λ−)/2 =

eJ/T cosh(h/T ). Inserting this into the correlation function, one gets

C(`− `′) =
1

Zδ2

(
λN+ (α− Σ)2 + λN−`+`

′
+ λ`−`

′
− (α− λ−)(λ+ − α)+

λ`−`
′

+ λN−`+`
′

− (α− λ−)(λ+ − α) + λN− (Σ− α)2
)

(3.11)

Using that Z = λN+ +λN− , the fraction be split up into an constant term and a term depending

on the separation of the two sites

C(`− `′) =
(α− Σ)2

δ2
+

(α− λ−)(λ+ − α)

δ2

(
λ+

λ−

)−(`−`′)
+
(
λ+

λ−

)−(N−(`−`′))

1 +
(
λ+

λ−

)N (3.12)

Doing the same calculation for ` < `′, reveals a similar result, The only difference is `− `′ is

replaced by `′ − `. The separation can therefore be replaced by with |` − `′| without loss of

generality. Since the correlation function is varying exponentially, one can write it in terms

of ex/ξ, where x = a(l − l′) and ξ being a correlation length. To do this, one can rewrite

λ+/λ− as exp ln(λ+/λ−).

C(x) =
(α− Σ)2

δ2
+

(α− λ−)(λ+ − α)

δ2

e−|x|/ξ + e−(L−|x|)/ξ

1 + e−L/ξ
(3.13)

In doing so, the correlation length, ξ comes out in a natural way as

1

ξ
=

1

a
ln

cosh(h/T ) +
√

sinh2(h/T ) + e−4J/T

cosh(h/T )−
√

sinh2(h/T ) + e−4J/T

 (3.14)
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Since λ+ > λ− > 0 in the ferromagnetic case, J < 0, the correlation length is always real and

positive. At last, using the definitions of Σ, δ, and α, the fractions in eq. (3.13), simplifies

(α− Σ)2

δ2
=

(
e(J+h)/T − eJ/T cosh(h/T )

)2
e2J/T (sinh2(h/T ) + e−4J/T )

=
sinh2(h/T )

sinh2(h/T ) + e−4J/T
(3.15)

(α− λ−)(λ+ − α)

δ2
=

e−4J/T

sinh2(h/T ) + e−4J/T
(3.16)

Also, the factor with exponential terms in (3.13) can be rewritten as a fraction of hyperbolic

cosine terms

e−|x|/ξ + e−(L−|x|)/ξ

1 + e−L/ξ
=
e(L−2|x|)/2ξ + e−(L−2|x|)/2ξ

eL/2ξ + e−L/2ξ
=

cosh
(
L−2|x|

2ξ

)
cosh

(
L
2ξ

) (3.17)

Using all this, the correlation function reduces to

C(x) =
sinh2(h/T )

sinh2(h/T ) + e−4J/T
+

e−4J/T

sinh2(h/T ) + e−4J/T

cosh
(
L−2|x|

2ξ

)
cosh

(
L
2ξ

) (3.18)

Figure 5: Plot of the correlation function of the

classical Ising chain for T/J = 100

Note that the maximum distance that two

spin can be from each other is L/2 because

of the periodic boundary conditions. Plot-

ting for fixed temperature, fig. 5, the cor-

relation function is positive for all separa-

tion and field. All spins therefore tends to

point in the same direction, creating a non-

zero spontaneous magnetic field, M . For in-

creasing temperatures, the correlation func-

tion decreases and the magnetization gets weaker.

3.3 Quantum Critical Point

Looking at the correlation function of the classical Ising chain, eq. (3.14), the square root

term equals zero and the eigenvalues of Tab is equal.√
sinh2(h/T ) + e−4J/T = 0 (3.19)

When this happens, the correlation function diverges and the system experience long-range

order. Clearly, since sinh(x) =, when x = 0 and exp(−2J/T )→ 0, for T → 0. The quantum

critical point, where the system experience long-rang order, must therefore be in the point

(hc, Tc) = (0, 0). In the neighbourhood of the quantum critical point, h � T � J , the

eigenvalues of the transfer matrix, eq. 3.4, reduces to

λ± ≈ eJ/T ± e−J/T =

{
2 cosh(J/T ) for +

2 sinh(J/T ) for −
(3.20)

which further reduces the correlation length, eq. (3.4), to

a

ξ
= ln

(
λ+

λ−

)
≈ ln coth(J/T ) (3.21)
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Since T � J , the correlation function diverges in an exponential way,

ξ

a
=
[
ln
(

1 + e−2J/T
)
− ln

(
1− e−2J/T

)]−1
≈ 1

2
e2J/T � 1 (3.22)

and the system experience long range order. Note here, if the low-temperature limit, T � J ,

is taken first, the correlation length approaches zero. This is okay, since the correlation still

approaches C(x) = 1 for all distances.

C(x) ≈ 1− e−
2|x|h
aT → 1 for T → 0 (3.23)

The system therefore still experience long-range.

3.4 Mapping from classical chain to Single Quantum Spin

As said in the intro, a quantum field theory is dimension d is equivalent to a quantum field

theory in dimension D = d + 1. One should therefore expect the classical Ising chain to be

equivalent the dynamics of the single quantum spin. This can be done here, by mapping the

space-coordinate |x| into a complex a complex time coordinate, τ = it and the length of the

chain L into the temperature of the quantum spin TQ. Doing this via the transformation

|x| → it, L→ 1

TQ
, sinh

(
h

T

)
→ h‖, e−2J/T → h⊥ (3.24)

The space-correlation function is then successfully mapped into the complex-time correlation

function, if and only if

1

2ξ
→ hQ =

√
h2
‖ + h2

⊥ (3.25)

which happens in the quantum limit h� T � J .

3.5 Antiferromagnet

One thing that is worth mentioning, is what happens to the correlation function in the

Antiferromagnetic case, J < 0. Here, exp(−4J/T ) > 1, which implies√
sinh2(h/T ) + e−4J/T > cosh(h/T )⇒ λ− < 0 (3.26)

Still, the absolute value of the ratio of the eigenvalues, |λ+/λ−| is still greater than one. To

avoid any negative or complex correlation lengths, the correlation length is therefore redefined

as

ξ =
1

a
ln

∣∣∣∣λ+

λ−

∣∣∣∣ (3.27)

which results in multiple sign changes in the correlation function, (3.17). Looking only at the

x dependent terms of C, every exponential term changes their sign

(−1)|x|/ae−|x|/ξ + (−1)N+
|x|
a e−(L−|x|)/ξ

1 + (−1)Ne−L/ξ
= (−1)|x|/a

Th
(
L−2|x|

2ξ , N
)

Th
(
L
2ξ , N

) (3.28)
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(a) Even separation (b) Odd separations

Figure 6: Plot of the correlation function for the classical antiferromagntic chain for both even and

odd separations. Both graphs are drawn for T = 3J , Notice in the odd case, the correlation function

takes negative values

Here, Th(x, n) is a function that changes between cosh(x) and sinh(x) when n changes from

being even or odd.

Th(x, n) ≡

{
cosh(x) for even n

sinh(x) for odd n
(3.29)

For large x, Th(x, n) is same for even and odd n. Putting it all together, the correlation

function of the antiferromagnet reduces to

C(x) =
sinh2(h/T )

sinh2(h/T ) + e−4J/T
+ (−1)|x|/a

e−4J/T

sinh2(h/T ) + e−4J/T

Th
(
L−2|x|

2ξ , N
)

Th
(
L
2ξ , N

) (3.30)

Now the correlation function can both be positive and negative, 6. Notice that in the odd-

separation case, 6b, the correlation can take negative values. What is happening here, is the

spins anti-aligning with their nearest neighbour, and creating two sub grids with opposite

polarization.

3.6 Subconclusion

When analysing the classical Ising chain in a magnetic field, h, the equal-time correlation

function C(x, t) can be calculated by used the transfer matrix method. In the ferromagnetic

case, J > 0, the correlation function is positive for all values of separations, fields, and tem-

peratures. The chain therefore creates a spontaneous magnetic field, M which weakens when

temperature increases.

The classical Ising chain also has a quantum critical point at hc = 0, where long-range order

appear is the chain. In this region, the classical Ising chain can be mapped into the time

correlation function of a single quantum spin. This is done by mapping the spacial-coordinate

of the classical model into a complex time coordinate of the quantum model.
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4 Qunatum Ising chain

To complete the picture of Ising chains, the time has come to analyse the transverse field

quantum Ising chain. Here, the general quantum Ising model, eq. (1.5), takes the form

Ĥ = −J
M∑
j=1

[
σ̂xj σ̂

x
j+1 + gσ̂xj

]
(4.1)

Again, the J here is twice as big as in the J in eq. (1.5). Also, note that the Hamiltonian here

is rotated 90◦ compared to the Hamiltonian (3.1). The reason why is because it simplifies

the calculations of the correlation function without changing the underlying physics of the

model. As describes in the introduction, the Ising model can be excited by creating domain

wall on the chain, fig 7a. Because of the translational invariance of Ĥ, a domain can then be

moved around without any energy cost, as long as the number of domains is unchanged. The

transverse field Ising model has, as described later, a phase transition at gc = 1. But before

this can be analysed, the Hamiltonian must be diagonalized.

4.1 Fermionic transformations

To help describe the nature of the chain, a Jordan-Wigner transformation can be used, [3].

This maps the vector space H, consisting of all spin states of the QIC, into a Fock space,

F, of spinless fermions. It does that by mapping a spin up state into the Fock state of zero

fermions, n = 0, and the spin down state into the n = 1 state. In doing so, the annihilation

operator, of the fermions are defined as

ĉi =

i−1∏
j=1

σ̂zj

 σ̂+
i (4.2)

Looking at the chain in fig. 7a, the transformed version of the states, takes the form of fig. 7b.

Since the particles are fermions, they must satisfy the following anti-commutator relations{
ĉi, ĉ

†
j

}
= δij Î and {ĉi, ĉj} =

{
ĉ†i , ĉ

†
j

}
= 0̂ (4.3)

From the fermion operators, the spin operators can be written as

σ̂zi = Î− 2ĉ†i ĉi and σ̂xi =
i−1∏
j=1

(Î− 2ĉ†j ĉj)(ĉi + ĉ†i ) (4.4)

(a) (b)

Figure 7: a) Example of the configuration of a small quantum Ising chain. The chain is

separated into 7 domains by 6 domain walls. b) The Jordan-Wigner transformed version of

a). Here, • marks a site holding a fermion, while ◦ marked a site with no fermions. In both

figures, the dashed line marks the domain walls on the chain.
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Using this, the Hamiltonian takes the form of

Ĥ = −J
M∑
j=1

[
ĉ†j ĉj+1 + ĉ†j+1ĉj + ĉ†j ĉ

†
j+1 + ĉj+1ĉj − 2gĉ†j ĉj + gÎ

]
(4.5)

Since the Hamiltonian has terms such as c†jc
†
j+1, which violates fermion number, particles

can be created spontaneously by flipping spins in pairs. This means that when a pair of

domain walls are created, they will move in opposite directions as time evolves, which has

been verified experimentally, [4]. To describe the motion of domain walls, the momentum

operators, ĉk are introduced as the discrete fourie transformation of the fermionic operators

ĉk =
1√
N

N∑
j=1

ĉje
−ikrj (4.6)

For a chain of length L = Na, the possible momentum states k is limited to

k =
2πn

a
with n ∈ Z and − π

L
< k <

π

L
(4.7)

Using the inverse Fourie transformation, the Hamiltonian can be rewritten in terms of the

momentum operators

Ĥ = J
∑
k

(
2 [g − cos(ka)] ĉ†k ĉk + i sin(ka)

[
ĉ†−k ĉ

†
k + ĉ−k ĉk

]
− gÎ

)
(4.8)

The Hamiltonian still violates fermion number conservation. To avoid this, a Bogoliubov

transformation can be used, which transforms the Hamiltonian into a new Fock space, where

fermion number is conserved. In the new space, the new fermionic momentum operators, γ̂k,

are defined as

γ̂k = uk ĉk − ivk ĉ†−k (4.9)

Here, uk = cos(θk/2) and vk = sin(θk/2) with angle, θk defined by the relation

tan θk =
sin(ka)

g − cos(ka)
(4.10)

The new fermion operators also have to satisfy the same anti-commutator relation as the

Jordan-Wigner operators. Putting it all together, the Hamiltonian in the new Fock space, is

now diagonalized

Ĥ =
∑
k

εk(γ̂
†
kγ̂k − 1/2Î) (4.11)

with dispersion

εk = 2J
√

1 + g2 − 2g cos(ka) ≥ 0 (4.12)

For small values of k, εk approaches ≈ 2J |1 − g| = |∆|, which is the energy required to

create a momentum fermion on the chain. In the limit of g → 1, the energy gap closes, and

fermions can be created spontaneously. The transverse field quantum Ising chain therefore

has a quantum critical point at gc = 1.
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4.2 Correlation function, correlation length and equilibration time

To study phase transitions of the quantum Ising model at gc = 1, the equal-time correlation

function is to be calculated. Using the Jordan-Wigner operators ĉj , the correlation function

between the i’th and the i+ n’th can be calculated

C(x, 0) = C(an, 0) =
〈
σ̂xi σ̂

x
i+n

〉
=

〈
(ĉ†i − ĉi)

i+n−1∏
j=i+1

[
(ĉ†j + ĉj)(ĉ

†
j − ĉj)

]
(ĉ†i+n + ĉi+n)

〉
(4.13)

Here, σ̂xj is factored into (ĉ†j + ĉj)(ĉ
†
j − ĉj). Using Wick’s theorem, which states

〈y1y2, · · · , y2n〉 =
∑
P

〈yP1yP2〉 · · ·
〈
yP (2n−1)yP2n

〉
(4.14)

where P sum over all possible combinations yi and yj pair, the correlation function, in the

limit of large separations, can been calculated. This will not be done here, but has done by

other [7]. The result being a correlation function defined

C(x, 0) = zT 1/4GI (∆/T ) exp

(
−|x|T

c
FI(∆/T )

)
(4.15)

with c = 2Ja, z = J−1/4, and GI and FI being scaling invariant function, defined by the

integrals

FI(s) = |s|θ(−s) +
1

π

∫ ∞
0

dy ln coth

(√
y2 + s2

2

)
(4.16)

lnGI(s) =

∫ 1

s

dy

y

[(
dFI(y)

dy

)2

− 1

4

]
+

∫ ∞
1

dy

y

(
dFI(y)

dy

)2

(4.17)

In eq. (4.15), the correlation function comes out to be

ξ−1 =
T

c
F (∆/T ) (4.18)

which can be evaluated in different limits. This is done in appendix B for three different

limits, which have result

ξ =


√

πc2

2T∆e
∆/T for T � ∆, 0 < ∆

c
|∆| for T � |∆|, 0 > ∆

4T
cπ for T � |∆|

(4.19)

Figure 8: Phase diagram of the transverse

quantum Ising chain. The diagram is sepa-

rated in three regions.

From the limits of the correlation function,

the transverse field quantum Ising chain is

separated into three regions. The first being

the magnetically order side, T � ∆, where

ξ diverges when T → 0 and thereby creat-

ing long-range order. In the second region,

T � −∆, the correlation length is analytical

when T → 0. The chain will here act like a

paramagnet [7], but will not be explored in

this thesis.
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4.3 Magnetically ordered phase

In the low temperature, positive field limit, ∆ > 0, T � ∆, the thermal energy is mush

smaller that the energy gap, and fermions cannot be created spontaneously. The chain,

should therefore be in the ground state with no fermions in the Bogoliubov Fock space, |0〉B.

Since the chain has a temperature, T , thermal excitations can excite particles with momenta

k and relativistic dispersion ε2k ≈ ∆2 + c2k2. These particles will then move around the

chain with constant momenta and collide as classical particles. From the dynamics of these

particles, the equal-time correlation function can be calculated. This is done by considering n

of these particles on the chain. Each particle is created with a momentum probability density

of

ρ ≈
∫ ∞
−∞

dk

2π
e−(∆+ c2k2

2∆
)/T

(
u= ck√

2∆T

)
=

√
∆T

2c2

1

π
e−∆/T

∫ ∞
−∞

due−u
2

=

√
∆T

2c2π
e−∆/T (4.20)

which is equal to n
L . Looking at one of these particle, since the Ising chain is translational

invariant, the probability of finding the particle in an interval of |x| is p = |x|/L. Here L is

the length of the chain. Looking at two spins at point 0 and x, the spin product σ̂x(x)σ̂x(0)

depends on the number of particles, j, in the interval I = [0, x]. For an even number of

particles, the two spins point mostly in the same direction, σ̂x(x)σ̂x(0) = N2
0 > 0, where

N0 is field dependent. For an odd j, the sign is flipped and σ̂x(x)σ̂x(0) = −N2
0 < 0. The

correlation function is therefore given by

C(x, 0) = N2
0

n∑
j=1

(−1)jpj(|x|) (4.21)

where pj(|x|) is the probability of finding j particles in the interval I = [0, x]. In this case,

the problem of finding pj is simple counting problem, which has answer

pj =

(
n

j

)(
|x|
L

)j (
1− |x|

L

)n−j
=

(
n

j

)(
|x|ρ
n

)j (
1− |x|ρ

n

)n−j
(4.22)

Using this, the equal-time correlation function can be calculated for |x| � L

C(x, 0) = N2
0

n∑
j=0

(
−|x|ρ
n

)j (
1− |x|ρ

n

)n−j
= N0

(
1− 2|x|

ρn

)n
≈ N2

0 e
− 2|x|

ρ (4.23)

In this picture, the correlation length ξ is given by

ξ =
1

2ρ
=

√
c2π

2∆T
e∆/T (4.24)

which is the same answer given by the integral (A.5). From the integrals, the constant

N0 =
√
z∆1/8. Since this method works so well at describing the equal-time correlations,

one should expect it to work just as well to describe the time evolution of C. For a particle,

which at time t = 0 was inside the interval |x| and has momentum k, the probability of still

being in the interval at time t > 0 is

pk(t) =
|x− vkt|

L
(4.25)
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Here, vk = ∂kεk is the velocity of the particle. Averaging over all momenta, the the probability

of a particle initially created in the interval [0, x], will have probability p(t) of still being inside

[0, x] at time t. The probability is calculated by averaging pk over all momenta weighed by

the probability of the particle having momentum k

p(t) =
1

ρ

∫
dk

2π
e−εk/T

|x− vkt|
L

(4.26)

Inserting this values into (4.21), correlation function takes the form of

C(x, t) = N2
0 e
−2pN = N2

0R(x, t) (4.27)

with

R(x, t) = exp

(
− 1

π

∫ ∞
−∞

dke−εk/T |x− vkt|
)

(4.28)

and N2
0 = zGI(s). In the limit magnetic limit,

lnGI(s� 1) ≈
∫ s

1

1

4y
dy +

∫ ∞
s

4y2 − 4y + 2

2πy2
e−2ydy ≈ 1

4
ln s⇒ GI(s) = s1/4 (4.29)

The correlation function of the quantum Ising chain, in the limit 0 < T � ∆, is

C(x, 0) = z∆1/4e−|x|/ξ = N2
0 e
−|x|/ξ (4.30)

with N0 = ∆1/8

J1/8 = (2(1− g))−1/8. Looking at the equal-distance correlation function, C(0, t),

one can define a equilibrium time τφ. This is the time scale for which the system returns to

equilibrium after a local, thermal perturbation. τφ can be found by looking at how R(0, t)

restores as a function of time

1

τφ
=

1

π

∫ ∞
−∞

dke−εk/T |∂kεk| = −
2T

π

∫ ∞
0

dk
d

dk
e−εk/T =

2T

π
e−∆/T (4.31)

A useful quantify to have in mind later is the ratio between the equilibrium time τφ and the

correlation length ξ

τφ
ξ

=

√
∆

2Tc2
(4.32)

This will be used to rewrite correlation function in a scaling invariant way. In general, the

integral (4.28) can be calculated by separating the integral into two

I =

∫ k0

−∞
dke−εk/T (x− vkt) +

∫ ∞
k0

dke−εk/T (vkt− x) (4.33)

where k0 is the momentum that satisfy ∂kεkt = x and is given by

k0 =
x∆√

c2t2 + x2
(4.34)

Looking only at the term involving x, the integrals can be solved by combining the two and

expanding εk

Ix = x

[∫ k0

−∞
dke−εk/T −

∫ ∞
k0

dke−εk/T
]

= x

∫ k0

−k0

dke−εk/T (4.35)

(
u= ck√

2∆T

)
≈ x

√
∆T

2c2
e−∆/T

∫ ck0√
2∆T

− ck0√
2∆T

due−u
2

=
xπ

ξ
erf

(
ck0√
2∆T

)
(4.36)
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Here erf(x) ∈] − 1, 0[ is the error function. Using the ratio (??) as well as eq. (4.34), this

input of the error function can be rewritten is a scaling invariant way

ck0√
2∆T

=
∆x√

c2t2 + x2
√

2∆T
=

√
∆

2Tc2

x
t√

1 +
(
x
ct

)2 ≈ x̄

t̄
√
π

(4.37)

The other terms in (4.28) can also be calculated

Ik = t

[
−
∫ k0

−∞
dke−εk/T∂kεk +

∫ ∞
k0

dke−εk/T∂kεk

]
= −2tT

∫ ∞
k0

dk
d

dk
e−εk/T (4.38)

= 2tTe−
√

∆2+c2k2
0/T ≈ πt̄e−

x̄2

πt̄2 (4.39)

Setting in all together, the function R(x, t) can be written as a scaling invariant function

ΦR(x/ξ, t/τφ), given by

ln ΦR(x̄, t̄) = −x̄ erf

(
x̄√
πt̄

)
− t̄e−

x̄2

πt̄2 (4.40)

Figure 9: Plot of the scaling invariant

function ΦR(x, y) as a function func-

tion x/ξ and t/τφ

As seen in eq. (4.20) and (4.31), when T → 0, both

the correlation length, ξ, and the equilibrium time,

τφ diverges. As seen in the plot 9, the scaling func-

tion approaches 1 and the chain experience long-range

order in both space and time

C(x, t) = N2
0 =

(
∆

J

)1/4

(4.41)

The transverse field quantum Ising model, therefore

has a quantum phase transition at T = 0 and g <

gc = 1. When g > gc = 1, the critical behaviour

disappears.

4.4 Subconclusion

In analysing the transverse field quantum Ising chain, the Hamiltonian is diagonalized by

first using a Jordan-Wigner transformation and then using Bogoliubov transformation. This

transforms the a Hamiltonian to describe fermions moving around a chain with momenta k.

The dispersion relation of these fermions are approximately relativistic, and corresponds to a

domain wall moving between sites. The minimal energy for creating a fermion, |∆| = 2J |1−g|,
which vanishes at gc = 1. The transverse field quantum Ising model, therefore has a critical

point transition at gc = 1.

In the fermion picture, the correlation function C(x, t) can be calculated as the result of

a simple counting problem, and shown be a scaling function. From this, the correlation and

equilibration time can be found and shown to diverge in the low temperature, positive gap

limits T � ∆, revealing a quantum phase transition at g < gc. Here, the scaling function is

equal to one, and long-range order appears both in space and time.
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5 Conclusion

In the classical single spin model, a magnetic field M is created spontaneously. The magnetic

field is strongest in the low temperature limit T � h, but vanishes for T/h→∞. The classical

model is also static, since correlation function C(t) = 1 is constant in time. Since the magnetic

susceptibility, χ, is analytical for all values of T/h, no second order phase transitions are found

in the classical model. In the quantum model of the single spin in magnetic field (h⊥, h‖), the

magnetization and magnetic susceptibility is the same as in the classical case. The correlation

function here is not a constant, but instead traces out an ellipse in the complex plane. The

angular frequency, for which the ellipse is draws, ω = 2h =
√
h2
‖ + h2

⊥, which agrees with

the result from classical Larmor precession. In the low perpendicular field limit h⊥ � T ,

the correlation function C(t) = 1 is constant in time. The classical- and quantum model is

therefore equal in the limit of h⊥ � T

When analysing the classical Ising chain in a magnetic field, h, the equal-time correlation

function C(x, t) can be calculated by used the transfer matrix method. In the ferromagnetic

case, J > 0, the correlation function is positive for all values of separations, fields, and

temperatures. The chain therefore creates a spontaneous magnetic field, M which weakens

when temperature increases. The classical Ising chain also has a quantum critical point at

hc = 0, where long-range order appear is the chain. In this region, the classical Ising chain

can be mapped into the time correlation function of a single quantum spin. This is done by

mapping the spacial-coordinate of the classical model into a complex time coordinate of the

quantum model.

In analysing the transverse field quantum Ising chain, the Hamiltonian is diagonalized by

first using a Jordan-Wigner transformation and then using Bogoliubov transformation. This

transforms the a Hamiltonian to describe fermions moving around a chain with momenta k.

The dispersion relation of these fermions are approximately relativistic, and corresponds to a

domain wall moving between sites. The minimal energy for creating a fermion, |∆| = 2J |1−g|,
which vanishes at gc = 1. The transverse field quantum Ising model, therefore has a critical

point transition at gc = 1. In the fermion picture, the correlation function C(x, t) can be

calculated as the result of a simple counting problem, and shown be a scaling function. From

this, the correlation and equilibration time can be found and shown to diverge in the low

temperature, positive gap limits T � ∆, revealing a quantum phase transition at g < gc.

Here, the scaling function is equal to one, and long-range order appears both in space and

time.
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A Different limits of the correlation length ξ for QIC

In the quantum Ising model, the correlation function depends on the two functions, FI and

GI . The functions are defined in terms of the integrals

FI(s) = |s|θ(−s) +
1

π

∫ ∞
0

dy ln coth

(√
y2 + s2

2

)
(A.1)

lnGI(s) =

∫ 1

s

dy

y

[(
dFI(y)

dy

)2

− 1

4

]
+

∫ ∞
1

dy

y

(
dFI(y)

dy

)2

(A.2)

where θ(x) is the heavy-side function. In the context of the quantum Ising model, s = ∆
T ,

where ∆ = 2J(1−g) is the energy gap between the ground state and first excited state of the

Hamiltonian and T is the temperature. In the three different limits, T � ∆, T � −∆, and

T � |∆|, the correlation length can be calculated by approximating the integral the limits.

A.1 Magnetic order phase: T � ∆

In this region, s = ∆/T � 1. Using this, the function FI(s) takes the form of

FI(s� 1) ≈ 1

π

∫ ∞
0

dy ln coth

(
s

2
+

y2

4
√
s

)
(A.3)

=
1

π

∫ ∞
0

dy ln

(
1 + e−se−

y2

2s

)
− ln

(
1− e−se−

y2

2s

)
(A.4)

≈ 2

π
e−s

∫ ∞
0

dy e−
y2

2s =
1

π

√
2sπe−s =

√
2s

π
e−s (A.5)

In the first approximation,
√

1 + x2 = 1 + x2/2 + o(x4) is used, and in the second approxi-

mation, ln(1 + x) = x+ o(x2) is used. Inserting this into A.6 the correlation length is given

by

ξc ≈
√

πc2

2T∆
e∆/T (A.6)

A.2 Paramagnetic phase: ∆ < 0 and T � |∆|

In this limit, the correlations length get an extra term compared to the classical correlation

length, (A.6)

F (s� −1) = −s+
1

π

∫ ∞
0

dy ln coth

(√
y2 + s2

2

)
≈ −s+

c

T
ξ−1
c (A.7)

which gives a correlation length of

ξ ≈ 1
−∆
c + ξ−1

c

(T→0)→ c

|∆|
(A.8)

A.3 Continuum limit: T � |∆|

In this limit, |s| � 1, which gives a FI of

F (|s| � 1) ≈ 1

π

∫ ∞
0

dy ln coth
(y

2

)
=

1

π

∫ ∞
0

dy ln

(
1 + e−y

1− e−y

)
(A.9)

≈ 2

π

∞∑
n=0

∫ ∞
0

dy

2n+ 1
e−(2n+1)y =

2

π

∞∑
n=0

1

(2n+ 1)2
(A.10)
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In the in first approximation, s ≈ 0 is used. In the second approximation, the logarithm is

expanded in terms of e−y which gives an integral, which evaluated gives an infinity sum of a

odd fraction squared. The sum luckily converges to π2

8 and the correlation length is

ξ =
4T

cπ
(A.11)

A.4 Summary

In summary, the correlation function of the quantum Ising model is given by

ξ =


√

πc2

2T∆e
∆/T for T � ∆, 0 < ∆

c
|∆| for T � |∆|, 0 > ∆

4T
cπ for T � |∆|

(A.12)
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