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Abstract

In this thesis I will make use of the Boltzmann equation describing electron
movements in materials to find a general formula for the current density. I will then
move on to determining the current density for a free electron model, followed by
another model type of model, the tight binding model. Since the tight bind model
depends on how the crystalline structure of the material is, I will work with just
two different types of crystal structures. I will start with the simple cubic structure,
and then move on to the more commonly observed face centered cubic structure.
I will conclude with considering how this work in the future can be used to find
the current densities for other materials, as well as how it is possible to incorporate
anomalous behaviors such as the ones from Weyl semi metals.
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1 Introduction

In this thesis I will be analysing how materials respond to electric fields by making use
of the Boltzmann equation in the low temperature limit of the semi classical approach.
This allows me to find conductivities of different types of materials, using both the free
electron model, as well as the tight binding model. These conductivities are important
in different areas of physics, such as optical physics and solid state physics. This work
was motivated by wanting to properly understand this type of base model, such that it
can expanded upon later to include anomalous effects, such as the effects for the exotic
material called "Weyl semi-metals". These effects can be somewhat easily included into
the formulas by changing the semi classical formula for the electron velocities to include
an extra anomalous velocity. This is an interesting area because Weyl semi-metals have
been observed to be great materials to use for photo-electrical effects like the ones in
solar panels, and light sensors.

2 The Boltzmann equation

All throughout this thesis I will make use of the Boltzmann equation to describe how
electrons in materials respond to an external stimuli in the form of electric fields, which
can be provided by light. The equation is as follows

∂ f
∂t

+
∂ f
∂r
· dr

dt
+

∂ f
∂k
· dk

dt
=

(
d f
dt

)
coll

. (1)

Here f is the distribution function, r is the normal position vector of space, k is the
wave vector, describing the momentum, and

(
d f
dt

)
coll

is the collision integral, which I
will not go into detail with in this thesis. However we can describe it by introducing a
relaxation time for collisions such that the collision integral is(

d f
dt

)
coll

= − f − fFD
τ

, (2)

with fFD being the Fermi-Dirac distribution.
To further describe electrons I will throughout the thesis make use of the semi-classical
formulae

ṙ = v =
1
h̄

∂ε

∂k
(3)

k̇ =
−e
h̄
(E + v× B), (4)

which when combined with the Boltzmann equation allows us to write

− f − fFD
τ

=
∂ f
∂t
− e

h̄
E ·∇k f . (5)
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To get this I have also assumed that f is spatially uniform ( ∂ f
∂r = 0), and that there is no

magnetic field (B = 0), which is reasonable as long as the electric field from the light is
not too large.

3 Finding a solution to the Boltzmann equation

To work with the Boltzmann equation, I will first assume that we can describe the ap-
plied electric field as

E(t) = E0e−iωt. (6)

I will also use the method of Parker et al. [1], and assume that the distribution function
can be written as a infinite sum of exponentials

f (t) =
∞

∑
n=−∞

fne−inωt. (7)

By doing so I can insert this in the Boltzmann equation (5) to get a recursive formula

−∑∞
n=−∞ fne−inωt + f0

τ
=

∞

∑
n=−∞

(−inω) fne−inωt − e
h̄

∞

∑
n=−∞

e−i(n+1)ωtE0 ·∇k fn (8)

⇒ −∑∞
n=−∞ fne−inωt + f0

τ
=

∞

∑
n=−∞

(−inω) fne−inωt − e
h̄

∞

∑
n=−∞

e−inωtE0 ·∇k fn−1 (9)

To find a solution from this I will simply compare terms proportional to e−inωt, such
that for n = 0, we see that if we choose f0 = fFD

0 = − e
h̄

E0 ·∇k f−1. (10)

From this we see that there is a solution of the form f−1 = 0.
And if we then move on to the other terms (n 6= 0), we see that the recursive formula
tells us that

− fn
τ

= −inω fn −
e
h̄

E0 ·∇k fn−1 (11)

⇒ fn =
e
h̄

E0 ·∇k fn−1
1/τ− inω

(12)

By then looking at the term for n = -1, we see that

f−1 = 0 =
e
h̄

E0 ·∇k f−2
1/τ− inω

. (13)

Which again allows us to find a solution of the form f−2 = 0. This can of course be
continued such that for all negative numbers we see that we can find solutions of the
form

f−n′ = 0 f or n′ ∈N (14)
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Which means we only need to consider the positive terms for our distribution function

f (t) =
∞

∑
n=0

fne−inωt = f0 +
∞

∑
n=1

e
h̄

E0 ·∇k fn−1
1/τ− inω

e−inωt (15)

4 Electric transport

To describe electric transport in materials it is usually best describe it with the use of
the current. Therefore I will here use that we can write the current density as [3]

j = −e
∫
[dk]v( f − f0). (16)

I will throughout make use of [dk] as the integral over k-space, times 2 from the fact
that electrons are spin 1/2 particles, and divided by the appropriate factors of 2π, such
that if we have a d-dimensional k-space then [dk] = ddk 2

(2π)d .

If we define the current density in the α direction (with α ∈ {x, y, z}) as jα then we can
write the current density as

jα =
∞

∑
n=1

{
−e
∫
[dk]vα fne−inωt

}
(17)

≡
∞

∑
n=1

jα
(n) (18)

We see that the integral involves factors of the distribution function, so I will start by
finding a solution for fn.

Starting from n = 1, we see

f1 =
e
h̄

(E0)α

1/τ− iω
∂ f0

∂kα

(19)

=
e
h̄

(E0)α
∂ε
∂kα

1/τ− iω
∂ f0

∂ε
. (20)

Quickly moving on to the second term of the distribution function (n=2) we we see that
we can write this as

f2 =
e
h̄

(E0)α

1/τ− 2iω
∂

∂kα

(
e
h̄

(E0)β

1/τ− iω
∂ f0

∂kβ

)
(21)

=
e2

h̄2

(E0)α(E0)β

(1/τ− 2iω)(1/τ− iω)

∂2 f0

∂kα∂kβ

. (22)

And from this we see that a pattern emerges, that allows us to write any term with n>0
in the distribution on the form

fn =
en

h̄n
∂n f0

∂kα1
. . . ∂kαn

n

∏
m=1

(E0)αm

(1/τ−miω)
, (23)
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where αi is any given direction, and note that I am using the Einstein summation con-
vention, such that all αi’s are summed over. Using this in equation (17), we get that the
current density is

jα =
∞

∑
n=1
−e
∫
[dk]vα en

h̄n
∂n f0

∂kα1
. . . ∂kαn

n

∏
m=1

(E0)αm

(1/τ−miω)
e−inωt (24)

=
∞

∑
n=1

−en+1

h̄n

n

∏
m=1

( Eαm

(1/τ−miω)

) ∫
[dk]vα ∂n f0

∂kα1
. . . ∂kαn

. (25)

Which means that, by the way I have defined the n’th term of the current density, we
can write these terms as

jα
(n) =

−en+1

h̄n

n

∏
m=1

( Eαm

(1/τ−miω)

) ∫
[dk]vα ∂n f0

∂kα1
. . . ∂kαn

. (26)

We notice that the terms involves derivatives of the Fermi Dirac distribution. But since
the derivatives of the distribution function are difficult quantities to work with, I will
use the fact that we can use integration by parts to move the derivatives of the distri-
bution function to the velocity instead. I will tacitly assume that all boundary terms in
in the integration by parts play no role for the current. By doing so we see that we can
write the current density as

jα
(n) =

−en+1

h̄n

n

∏
m=1

( Eαm

(1/τ−miω)

)
(−1)n

∫
[dk] f0

∂nvα

∂kα1
. . . ∂kαn

. (27)

We notice that since partial derivatives commute, if we define the n’th order conductiv-
ity such that jα

(n) = σαα1...αn Eα1
. . . Eαn

. Then the conductivity has to be symmetric in the
upper indices, which I will make use of later on.
It is however most often more useful to find the current density using integration by
parts only n-1 times, such that the current density terms are

jα
(n) =

(−1)n−1en+1

h̄n+1

n

∏
m=1

( Eαm

(1/τ−miω)

) ∫
[dk]

(
−∂ f0

∂ε

)
∂ε

∂kα1

∂nε

∂kα∂kα2
. . . ∂kαn

. (28)

The reason that this is more useful, is that if we assume that we are in the low temper-
ature limit (kBT << ε), then we can rewrite the derivative of the Fermi-Dirac distribu-
tion as a delta function instead, such that the current density is

jα
(n) ≈

(−1)n−1en+1

h̄n+1

n

∏
m=1

( Eαm

(1/τ−miω)

) ∫
[dk]δ(ε(k)− εF)

∂ε

∂kα1

∂nε

∂kα∂kα2
. . . ∂kαn

. (29)

To make this easier to work with, I will use that we can change the variable of the delta
function.

δ(ε(k)− εF) =
δ(k− k(εF))∣∣∣ ∂ε(k)

∂k

∣∣
k=k(εF))

∣∣∣ = δ(k− kF)

h̄v(kF)
=

δ(k− kF)√
∑α′

(
∂ε

∂k
α
′

)2
(30)
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Inserting this change of variable we see that the current density terms instead becomes

jα
(n) ≈

(−1)n−1en+1

h̄n+1
2

(2π)d

n

∏
m=1

( Eαm

(1/τ−miω)

) ∮
CF

dd−1k
1√

∑α′

(
∂ε

∂k
α
′

)2

∂ε

∂kα1

∂nε

∂kα∂kα2
. . . ∂kαn

.

(31)

Here CF is the contour of the Fermi surface, which in a 2D k-space is a line, and in 3D
k-space a surface.

5 Recovering the Drude conductivity

Now that we have a general formula for the current density terms, let us instead take a
step back from all the different orders for the current, and only consider the first order.
This in turn should let us recover the well known Drude conductivity.

I will start with finding the static conductivity, i.e ω = 0. I will do this by starting with
equation (27) for the current density.

jα
(1)(ω = 0) =

e2

h̄
τEβ

∫
[dk] f0

∂vα

∂kβ

(32)

Here I will start off by using that we can define an effective mass such that 1
m∗

= 1
h̄2

∂2ε

∂k2 .
By then assuming that the mass is not a function of the wave vector k, we can move it
outside of the integral.

jα
(1)(ω = 0) = e2(m−1

∗ )αβτEβ

∫
[dk] f0 (33)

Then we can use that the integral over just the distribution function, is simply the same
as the electron density n, so we see that

jα
(1)(ω = 0) = ne2τ(m−1

∗ )αβEβ. (34)

This formula of course lets us define that the conductivity is of the form

σ
αβ
0 ≡ ne2τ(m−1

∗ )αβ (35)

such that jα
(1)(ω = 0) = σ

αβ
0 Eβ as normal.

If we then assume that the effective mass tensor can be described by a scalar, i.e m−1
∗ =

1
d δαβ(m

−1
∗ )αβ, we recover the well known DC Drude conductivity.

σ0 =
ne2τ

m∗
(36)

5



If we now consider the AC case, i.e ω 6= 0, we get that the current density is of the form

jα
(1) =

e2

h̄
Eβ

1/τ− iω

∫
[dk] f0

∂vα

∂kβ

. (37)

This we can simply compare to the static case, such that we we write this current density
as

jα
(1) =

σ
αβ
0

1− iωτ
Eβ (38)

For which we once again recognise the conductivity as the well known AC conductivity
for the Drude model

σ
αβ
AC =

σ
αβ
0

1− iωτ
. (39)

6 Electric transport for a free electron model

Using what I found to describe the current, I will now analyse the physics in the use
of a free electron model, for which we have the valence electrons of each atom in the
material flying freely around inside the material. To describe this model I will make
use of the energy formula for this type of model

ε =
h̄2k2

2m
= ∑

α′

h̄2k2
α′

2m
(40)

From what we found earlier we know that to find the currents, we first need to calculate
the different derivatives of this energy.
So starting with the first and second derivatives we get

∂ε

∂kα

=
h̄2kα

m
(41)

∂2ε

∂kα∂kβ

= δαβ h̄2

m
(42)

We see immediately that for derivatives of more than two times we have 0, for this type
of electron model.

∂nε

∂kα1
. . . ∂kαn

= 0 for n > 2 (43)
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Using this together with equation (31) for the current densities, we see that for the first
order we get

jα
(1) =

e2

m
2

(2π)d

Eβ

(1/τ− iω)

∮
CF

dd−1k
kαkβ√
∑α′ k

2
α′

. (44)

By defining that for the 3D case, the x, y and z components can be described in the
k-space, by 2 different angles θ and φ, we can write

kα =


kF(θ, φ, µ) sin(θ) cos(φ) for α = x
kF(θ, φ, µ) sin(θ) sin(φ) for α = y
kF(θ, φ, µ) cos(θ) for α = z

(45)

Here we have the azimuthal angle θ ∈ [0, π] and the polar angle φ ∈ [0, 2π[.And the
Fermi wave vector kF is given by the formula ε(kF) = εF = µ, where µ is the usual
chemical potential.
This in turn lets us write that the conductivity tensor for 3D space is

σαβ =
e2

m
2

(2π)3
1

(1/τ− iω)

∫ π

0
dθ
∫ 2π

0
dφkF(θ, φ, µ) sin(θ)kαkβ (46)

=
e2

m
2

(2π)3
1

1/τ− iω
k3

F(µ)
∫ π

0
dθ
∫ 2π

0
dφ sin(θ)

kαkβ

k2
F

(47)

=

 e2

m
2

(2π)3
1

1/τ−iω k3
F(µ)

4π
3 for α = β

0 otherwise
(48)

I have in the second step made use of the fact that the Fermi wave vector is a constant
with respect to the angles in this model. And I have in step three made use of the
parities of kα and kβ.
If we now use that for the 3D case, we have that the number of states for this type of
model, is know from statistical mechanics by the formula N = 2 4π

3 k3
F

L3

(2π)3 . We can get

the electron density n = N
L3 = 2

(2π)3
4π
3 k3

F.

This, not surprisingly, once again gives us back the AC Drude model, but here we
observe by the form of our energy that the effective mass is exactly the electron mass,
as expected.

σαβ =
ne2τ

m
δαβ

1− iωτ
=

σ0

1− iωτ

1 0 0
0 1 0
0 0 1

 (49)

For higher orders we see directly from equation (27) that all orders of n > 1 involves
differntials of orders 3 or higher, which according to equation (43) means that it all gives
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0. And since all orders of n > 1 is zero we can simply write the full current density of
the free electron model as

jα =
σ0

1− iωτ
Eα (50)

7 The tight binding model

Since the simple free electron model did not have any terms with orders of n > 1, I
will move on to a more physical model. I will make use of the tight binding model,
where the valence electrons of atoms are restricted to only be able to jump between the
nearest neighbors. To describe the nearest neighbor position it is normal to introduce
the lattice vectors in normal space ai, such that we can describe crystalline materials,
with repeating cells of atoms. By doing so we can write that the energy must be on the
form [2]

ε = ε0 − t ∑
i

eik·ai , (51)

where t is the energy term describing the movement from one atom to the neighbor, the
so called hopping term, I have here assumed that the energy is the same for all of the
nearest neighbors, but this does of course not need to be the case in general.

8 Electric transport for a simple cubic tight binding model

I will here make use of the tight binding model, on a material with a simple cubic crys-
tal structure. I could as well work with the orthorhombic crystal structure, which is a
generalization of the cubic structure. But as a start I will use the simple cubic model, for
which I can describe the system using the lattice vectors ai ∈ {(±a, 0, 0), (0,±a, 0), (0, 0,±a)},
which gives the well known energy

ε = ε0 − 2t ∑
α′

cos
(
akα′

)
(52)

8.1 First order

Again I will start the analysis for this model by determining the derivatives of the en-
ergy.
So for the first derivative of the energy we get that it is

∂ε

∂kα

= 2at sin
(
akα). (53)

Then simply using equation (31), we see that the first order current density can be
written as

jα
(1) =

e2

h̄2
4at

(2π)d

Eβ

1/τ− iω

∮
CF

dd−1k
sin
(
akα) sin

(
akβ
)

√
∑α′ sin2(akα′)

. (54)
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Then by comparing to equation (32), we see that we can define a static conductivity of
the form

σ
αβ
0 =

e2τ

h̄2
4at

(2π)d

∮
CF

dd−1k
sin
(
akα) sin

(
akβ
)

√
∑α′ sin2(akα′)

. (55)

And then by comparing this to the equation for the conductivity tensor in (35), as a
function of the effective mass tensor, it is clear that

n

mαβ
∗

=
4at

h̄2(2π)d

∮
CF

dd−1k
sin
(
akα) sin

(
akβ
)

√
∑α′ sin2(akα′)

. (56)

If we work in 3D, we have that the conductivity is then given by the formula

σ
αβ
0 =

e2τ

h̄2
at

2π3

∫ π

0
dθ
∫ 2π

0
dφ k2

F(θ, φ, µ) sin(θ)
sin
(
akα) sin

(
akβ
)

√
sin2(akx) + sin2(aky) + sin2(akz)

(57)

To find out how the conductivity tensor is structured, I have analysed the parity of the
different terms inside of the integral. These parities I have summed up in table 1.
From that we see see that if α 6= β the parities mean that the integral becomes 0. And as
we might expect we get for all α = β the same value. To see that they all have the same
value, I have chosen to make a graph of the integral, which is shown in figure 1.

Figure 1: The integral from equation (57) with a=1. All three integrals are equal and
therefore the lines coincide.
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8.2 Second order

For the second order current density I need to once again find a derivative, which this
time is the second

∂2ε

∂kα∂kβ

= δαβ2a2t cos
(
akα) (No summation over α) (58)

Please note that for the rest of the calculations, where I will be using these second and
higher order derivatives, I will omit the comments that there should not be summed
over α.

Now to find the actual second order current density, I will again use equation (31) to
see that it becomes

jα
(2) =

−e3

h̄3
4a2t

(2π)d

EβEγδαγ

(1/τ− iω)(1/τ− 2iω)

∮
CF

dd−1k
sin
(

akβ
)

cos
(
akα)√

∑α′ sin2(akα′)
(59)

By then once again looking in table 1, we see that now by the parities, for all α and β
the integral becomes 0, which of course means that jα

(2) = 0.

Expression About φ = π About φ = 3
2 π About θ = π

2
(1) kF even even even
(2) cos(ax kF sin(θ) cos(φ)) even even even
(3) sin(ax kF sin(θ) cos(φ)) even odd even
(4) cos

(
ay kF sin(θ) sin(φ)

)
even even even

(5) sin
(

ay kF sin(θ) sin(φ)
)

odd even even
(6) cos(az kF cos(θ)) even even even
(7) sin(az kF cos(θ)) even even odd

(8)
√

sin2(axkx) + sin2(ayky) + sin2(azkz) even even even
(9) sin(θ) even even even

Table 1: Table of parities

8.3 Generalizing to n’th order

Now that we have some examples for the first two orders, the procedure is relatively
simple, for the n’th order term we need to find the n’th derivative of the energy and
use this to write a current. So I will start by finding the n’th derivative, which here is
simple because sine and cosine transform into each other under differentiation.

∂n

∂kα1
. . . ∂kαn

ε(k) =

{
(−1)

n−1
2 2antδα1 α2 . . . δα1 αn sin

(
akα1

)
for n odd

(−1)
n+2

2 2antδα1 α2 . . . δα1 αn cos
(
akα1

)
for n even

(60)
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Again note that there is supposed to be no summation over α. By once again insert-
ing into the general formula for the current density (31), we see that we can write the
current density for the simple cubic tight binding model as

jα
(n) =


(−1)

n−1
2 en+1

h̄n+1
4ant
(2π)d

Eα1
...Eαn

δα α2 ...δα αn

∏n
m=1(1/τ−miω)

∮
CF

dd−1k
sin(akα1) sin(akα)√

∑
α
′ sin2(ak

α
′ )

for n odd

(−1)
n
2 en+1

h̄n+1
4ant
(2π)d

Eα1
...Eαn

δα α2 ...δα αn

∏n
m=1(1/τ−miω)

∮
CF

dd−1k
sin(akα1) cos(akα)√

∑
α
′ sin2(ak

α
′ )

for n even
(61)

We immediately notice that the integral for all of the even orders are the same, which
means they are all zero, from what we found for the second order. And from what we
found for the first order we see that if α 6= α1 the integral becomes zero here as well,
meaning that the overall current can be determined by the conductivity tensors

σαα1 ...αn =


(−1)

n−1
2 en+1

h̄n+1
4ant
(2π)d

1
∏n

m=1(1/τ−miω)

∮
CF

dd−1k
sin(akα1) sin(akα)√

∑
α
′ sin2(ak

α
′ )

for n odd and α = αi∀i

0 otherwise
(62)

By reintroducing the static conductivity we can find that the n’th order conductivity is
given by

σαα1 ...αn =

{
(−1)

n−1
2
( eaτ

h̄

)n−1 σαα
0

∏n
m=1(1−miτω)

for n odd and α = αi∀i

0 otherwise
(63)

We see that if we define that σ(n) ≡ σαα1...αn with α = αi∀i, then the scaling factor
between the odd orders is.

σ(n+2)

σ(n)
= −

( eaτ

h̄

)2 1
(1− (n + 1)iτω)(1− (n + 2)iτω)

(64)

From this ratio we see that it is highly dependent on the factor eaτ
h̄ . I have chosen to plot

the first three odd orders of the conductivity in figure 2, with the relatively large ratio
of 0.5

[m
V

]
.

Going on we can see that we simply can write the total current as

jα =
∞

∑
k=0

(−1)k
(

eaEατ

h̄

)2k
σαα

0

∏2k+1
m=1 (1−miωτ)

Eα (65)

Moving all the constants outside we see that the sum is

jα = σαα
0 Eα

∞

∑
k=0

(−1)k
(

eaEατ

h̄

)2k 1

∏2k+1
m=1 (1−miωτ)

(66)
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Figure 2: The odd order conductivities from equation (63) as a function of the angular
frequency ω, with the scaling factor eaτ

h̄ = 0.5
[m

V

]
, and τ = 10−10s

We see that this sum of course involves the usual first order term, but that all higher
order terms depend on the factor eaEατ

h̄ . And since the denominator of the fraction has
the factors that it has. We see that if the factor of eaEατ

h̄ >1 the sum diverges towards
infinity. Which tells us, that for large E-fields our model must break. Either because of
the semi classical Boltzmann equation not working for these strong fields, or because
the tight binding model no longer hold.
I have plotted the current in figure 3, for different factors, with the first order current as
a reference.

I will now try to analyze this formula for the current density in the case where ωτ >> 1.
Here the current density must be

jα = i
σαα

0 h̄
eaτ

∞

∑
k=0

1
(2k + 1)!

(
eaEα

h̄ω

)2k+1

(67)

= i
σαα

0 h̄
eaτ

sinh
(

eaEα

h̄ω

)
. (68)

I will of course also analyze the completely opposite case where ωτ << 1, for which

12



Figure 3: The current from equation (66) summed for the first 200 terms, for the time
t=0, with τ = 10−10s, and different scaling factors, with the first order current as a
reference. It is clear that if the scaling factors are small, the graphs almost coincide.

the current density is given by

jα = σαα
0 Eα

∞

∑
k=0

(
−
(

eaEατ

h̄

)2
)k

. (69)

This is a geometric series, and this only converge if the value inside of the power series

is less than 1, i.e if
(

eaEατ
h̄

)2
< 1, in which case it becomes

jα = σαα
0 Eα 1

1 +
(

eaEατ
h̄

)2 . (70)

8.4 Simple orthorhombic lattice

As a quick side note of our analysis of the simple cubic lattice. We can clearly see
from our formulae, that if we use the lattice vectors of the simple orthorhombic lattice
ai ∈

{
(±ax, 0, 0), (0,±ay, 0), (0, 0,±az)

}
instead. All that changes in all of the formulae

is that a→ aα.

13



So then all in all the current density would be

jα
(ortho) = σαα

0 Eα
∞

∑
k=0

(−1)k
(

eaαEατ

h̄

)2k 1

∏2k+1
m=1 (1−miωτ)

. (71)

9 Electric transport for a face centered cubic tight binding model

Since most materials in nature have a more complicated structure than the simple cubic,
I will move on to the more common face centered cubic (FCC) lattice structure in 3D.
Here the lattice vectors are ai ∈

{
(± a

2 ,± a
2 , 0), (± a

2 , 0,± a
2 ), (0,± a

2 ,± a
2 )
}

, where the ±’s
are all independent.
This in turn gives us back an energy of the form

ε = ε0 − 2t

 ∑
α′ 6=β′

cos

(
ak′α
2

)
cos

(
akβ′

2

) (72)

= ε0 − 4t
[

cos
(

akx
2

)
cos

( aky

2

)
+ cos

(
akx
2

)
cos

(
akz
2

)
+ cos

( aky

2

)
cos

(
akz
2

)]
(73)

9.1 First order

Once again we will need the derivatives, so I will start by taking the first derivative of
the energy

∂ε

∂kα

= 4t
a
2

 ∑
α′ 6=α

sin
(

akα

2

)
cos

(
akα′

2

) . (74)

I will immediately move on to the second derivative, where we see two cases, one for
α = β and one for α 6= β

∂2ε

∂kα∂kβ

=

4t
( a

2

)2
[

∑α′ 6=α cos
(

akα

2

)
cos

(
akα
′

2

)]
for α = β

−4t
( a

2

)2 sin
(

akα

2

)
sin
(

akβ

2

)
for α 6= β

(75)

Since it is not yet clear what the pattern will be, I will find the third derivative

∂3ε

∂kα∂kβ∂kγ

=


−4t

( a
2

)3
[

∑α′ 6=α sin
(

akα

2

)
cos

(
akα
′

2

)]
for α = β = γ

−4t
( a

2

)3 cos
(

akα

2

)
sin
(

akγ

2

)
for α = β 6= γ

0 for α 6= β 6= γ & α 6= γ

(76)
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Notice I have only written 3 of the cases, since we know that we can obtain the others
by simply interchanging indices, since the partial derivatives commute. We also note
that if the energy is differentiated with respect to the three directions we get 0.

Now that we have up to the third derivative, we can generalize the derivatives. I have
chosen to find the general formula, using indices α, β, γ ∈ {x, y, z}, with α 6= β, α 6= γ
and β 6= γ

∂nε

∂knα
α ∂k

nβ

β ∂k
nγ
γ

=



(−1)
n+2

2 4t
( a

2

)n
[

∑α′ 6=α cos
(

akα

2

)
cos

(
akα
′

2

)]
for n even & n = nα

(−1)
n−1

2 4t
( a

2

)n
[

∑α′ 6=α sin
(

akα

2

)
cos

(
akα
′

2

)]
for n odd & n = nα

(−1)
n+2

2 4t
( a

2

)n sin
(

akα

2

)
sin
(

akβ

2

)
for n even & nα, nβ ≥ 1 & nγ = 0

(−1)n4t
( a

2

)n cos
(

akα

2

)
sin
(

akβ

2

)
for n odd & nα even & nα, nβ ≥ 1 & nγ = 0

0 for nα, nβ, nγ ≥ 1

(77)

Since we now have all of the derivatives of the energy, we can then once again deter-
mine the n’th order current density using (31).

jα
(n) =

(−1)n−1en+1

h̄n+1
2

(2π)3

n

∏
m=1

( Eαm

(1/τ−miω)

)

·
∮

CF

d3k
∑α′ 6=α1

sin
(

akα1

2

)
cos

(
akα
′

2

)
√

∑α′ sin2
(

akα
′

2

) [
∑α′′ 6=α′ cos

(
akα
′′

2

)]2

∂nε

∂kα∂kα2
. . . ∂kαn

(78)

I will of course start by defining what the static conductivity is for this current density

σ
αβ
0 =

e2τ

h̄2
4at

(2π)3

∮
CF

d3k

[
∑α′ 6=β sin

(
akβ

2

)
cos

(
akα
′

2

)] [
∑α′ 6=α sin

(
akα

2

)
cos

(
akα
′

2

)]
√

∑α′ sin2
(

akα
′

2

) [
∑α′′ 6=α′ cos

(
akα
′′

2

)]2
,

(79)

We see again by the parity argument, that the integral reduces to 0 if α 6= β, i.e we can
write the static conductivity on the form σ

αβ
0 = δαβσ0.
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9.2 Second order

If we look at the second order conductivity, we surprisingly once again see that by the
parity, all the terms equal 0, no matter which α , β & γ one chooses.

σαβγ =
−e3

h̄3
2

(2π)3
1

∏2
m=1(1/τ−miω)

·
∮

CF

d3k
∑α′ 6=β sin

(
akβ

2

)
cos

(
akα
′

2

)
√

∑α′ sin2
(

akα
′

2

) [
∑α′′ 6=α′ cos

(
akα
′′

2

)]2

∂2ε

∂kα∂kγ

(80)

And by the general equation for the derivatives (77), we once again see the quite re-
markable result, that not only does this second order integrate to zero, but all even
orders integrates to zero, no matter our choice of directions.

9.3 Third order

Moving on to the third order we see that the conductivity is described by

σαα1α2α3 =
e4

h̄4
2

(2π)3
1

∏3
m=1(1/τ−miω)

·
∮

CF

d3k
∑α′ 6=α1

sin
(

akα1

2

)
cos

(
akα
′

2

)
√

∑α′ sin2
(

akα
′

2

) [
∑α′′ 6=α′ cos

(
akα
′′

2

)]2

∂3ε

∂kα∂kα2
∂kα3

(81)

To work with this, I will examine the different cases for directions. Starting with all
indices being the same, then the conductivity is

σαααα = −
( aeτ

2h̄

)2 σαα
0

∏3
m=1(1−miτω)

(82)

But compared to the simple cubic case this is not the only non-zero term. All the terms
with only two different directions, and an even number α indices also have non-zero
integrals. Because the conductivity is symmetric in the indices I will simply find one of
these.

σαβαβ = −4t
( a

2

)3 e4

h̄4
2

(2π)3
1

∏3
m=1(1/τ−miω)

·
∮

CF

d3k
∑α′ 6=β sin2

(
akβ

2

)
cos

(
akα
′

2

)
cos

(
akα

2

)
√

∑α′ sin2
(

akα
′

2

) [
∑α′′ 6=α′ cos

(
akα
′′

2

)]2
(83)
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One can show that the sum inside of the integral will integrate to half of that from
equation (79), however I will not do that here. But in figure 4 I show numerically that
this is indeed the case, for different chemical potentials µ. This in turn means that the
conductivity, can be described by the static conductivity

σαβαβ = −1
2

( aeτ

2h̄

)2 σαα
0

∏3
m=1(1−miτω)

(84)

This means that for the third order, the conductivity must be given as

σαα1α2α3 =


−
( aeτ

2h̄

)2 σαα
0

∏3
m=1(1−miτω)

for αi = α∀i

− 1
2

( aeτ
2h̄

)2 σαα
0

∏3
m=1(1−miτω)

for nα even & nβ even

0 otherwise

(85)

Here I have said that nα is the number of indices in the conductivity which is in the α
direction, and nβ is the number of indices in the conductivity in some other direction
different from α, i.e if α is x, then β is either y or z, and so on.

Figure 4: The integrals from equations (79) and (83), which I have named I1 and I2
respectively, with a=1.

9.4 Generalizing to the n’th order

Given what we have just found for the first, second and third order conductivities, it is
not too difficult to see that because of the derivatives in (77), the pattern is as follows

σαα1α2 ...αn =


(−1)

n−1
2
( aeτ

2h̄

)n−1 σαα
0

∏n
m=1(1−miτω)

for n odd & αi = α∀i

(−1)
n−1

2 1
2

( aeτ
2h̄

)n−1 σαα
0

∏n
m=1(1−miτω)

for n odd & nα even & nβ even

0 otherwise

(86)
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From this we can see that the current density, must be of the form

jα = σααEα + σαααα(Eα)3 + 3σααββ(Eβ)2Eα + 3σααγγ(Eγ)2Eα + . . . (87)

where α, β, γ ∈ {x, y, z}, but α 6= β, α 6= γ and β 6= γ. By then using the static
conductivity, we construct a more useful formula

jα =
σαα

0 Eα

1− iτω
−
(

aeτEα

2h̄

)2
σαα

0

∏3
m=1(1−miτω)

Eα

− 3
2

(
aeτEβ

2h̄

)2
σαα

0

∏3
m=1(1−miτω)

Eα − 3
2

(
aeτEγ

2h̄

)2
σαα

0

∏3
m=1(1−miτω)

Eα + . . . (88)

By spotting the pattern from what we know from equation (86), of the general con-
ductivities for this model (giving a sum of even orders), and that the conductivities
are symmetric in their indices (giving a combinatorial term). The full sum can then be
written on the form

jα = σαα
0 Eα

∞

∑
k=0

(−1)k
( aeτ

2h̄

)2k 1

∏2k+1
m=1 (1−miτω)

[(
Eα)2k

+
1
2

k

∑
l=1

(
2k + 1

2l

) (
Eα)2(k−l)

((
Eβ
)2l

+
(
Eγ)2l

)]
. (89)

10 Conclusion

Throughout this thesis I have found the current densities and conductivities of different
types materials with the use of two different models in the semi classical approach.
For the first model, the free electron model, I found that the conductivity was simply
given by a single first order conductivity and that all higher orders vanished. This, I
assume, is because of the simplicity of the model, and I therefore proceeded to a more
physical model, the tight binding model, which take into account the nearest neighbors
for each atom. For this model I found that for a simple cubic, an orthorhombic and
a face centered cubic lattice structure all odd orders of the conductivity vanish. This,
however, might once again be caused by the simple model in use, one might check what
would happen if we tried another type of model, since we know that we have observed
second and other even order responses for different materials experimentally.
All of this work lays a solid foundation for further exploration of other nonlinear optical
properties, for different types of materials.

I have also, throughout the thesis, ignored the influence of the magnetic field. This
causes no great error for small electric fields but if large E-fields from light are con-
sidered, they will, of course, be accompanied by sizable magnetic fields as well which
needs to be accommodated for.
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For further work one could examine how the current density and therefore also the
conductivities change when we allow for the anomalous velocity which is included in
Weyl semi-metals due to the so called Berry curvature. This means one would have to
include an extra term for the current densities which might change the vanishing terms
for the conductivities which I have calculated.

However all of this work is done within the framework of the semi-classical approxi-
mation. For a full analysis of the conductivities one might want to change the models
to proper quantum mechanical ones which allows for many other effects to be taken
into consideration.
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