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Abstract

A recent experiment has demonstrated Nagaoka’s ferromagnetism in a quantum dot
system [3]. This thesis investigates the ferromagnetism of a toy model of a three-site
quantum dot system using the Hubbard model and an exact diagonalisation method. Two
cases are considered: two-electron filling and four-electron filling. The former is found
not to lead to ferromagnetism. The latter, conversely, is found to lead to ferromagnetism
in large parts of the four-electron system’s phase space. A method is proposed for spin
measurements based on a spin-to-charge conversion.

i



Contents

Abstract i

1. Introduction 1

2. Theory 2
2.1. Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1. Two-particle Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1.2. Four-particle Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.1. Aharonov-Bohm effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2. Zeeman effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3. Symmetries and conserved quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.1. Particle number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2. Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.3. Crystal momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Results 8
3.1. Non-interacting limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1. Perturbative treatment of the on-site interaction . . . . . . . . . . . . . . . . 9
3.2. Representations of the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3. Two-electron results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4. Four-electron results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4.1. Ferromagnetism of the ground state . . . . . . . . . . . . . . . . . . . . . . 12
3.4.2. Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4.3. Magnetic effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.4. Measurement of spin: Introducing a second detuning . . . . . . . . . . . . . 16
3.4.5. Spin-to-charge conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4. Conclusion 18

A. Second quantisation 20

B. Conservation of spin 22

ii



Chapter 1

Introduction

Theory has long predicted the phenonenon of itinerant magnetism in condensed matter systems—i.e.
magnetism caused only by the Coulomb interaction of electrons, which are free to move around in the
system [8]. One such example is Nagaoka’s ferromagnetism, which in an 𝑁-site lattice at a filling
of 𝑁 − 1 electrons arises in the limit of infinite characteristic energies of the Coulomb interactions
between the electrons. Nagaoka proved in the Hubbard model that these conditions lead to the ground
state having the electron spins pointing in the same direction and therefore being ferromagnetic [7].
Recently, Nagaoka’s ferromagnetism was demonstrated experimentally in a quantum simulation system
in the form of a four-site quantum dot plaquette with a filling of three electrons (therefore fulfilling the
𝑁 − 1-filling condition) and large interaction energies [3]. Quantum dots are electrostatically defined
‘traps’ in semiconductor heterostructures which can achieve thermal energies much lower than that
of the tunnelling (hopping) amplitudes between dots and the characteristic energies of the Coulomb
repulsion for electrons located on the same dot; various geometries of quantum dot arrays therefore
provide ideal platforms for quantum simulations of phenomena in strongly-correlated electron systems
and quantum computation [6].

In this thesis, the possibility of a quantum simulation of Nagaoka’s ferromagnetism in a three-
site triangular quantum dot array, as seen in Fig. 2.1, is explored. Both two-electron filling and
four-electron (two-hole) filling are considered. Real quantum dot systems are of course subject to
a diverse range of effects related to material disorder, fabrication imperfections, and interactions
with the environment. These, along with temperature, will be ignored in the toy model approach
employed in this thesis, as the goal is to explore coarsely the most important physical phenomena and
to gain an indication of the experimental possibilites of the system. In Ch. 2, the model is introduced
including naturally the definition of the Hilbert spaces and the Hamiltonian. We use the Hubbard
model Hamiltonian along with two terms which give rise to the magnetic Aharonov-Bohm and Zeeman
effects. The symmetries of the Hamiltonian and their implications on the analysis are discussed. In
Ch. 3, the results for the two-electron and four-electron systems are presented. The spectra in the
translationally invariant non-interacting limit are calculated and the Coulomb interaction is treated
perturbatively. Then, using exact diagonalisation methods, we numerically determine the energies
of the interacting part of the phase space, and a phase diagram is presented in Fig. 3.5 showing that
large parts of the phase space of the four-electron system exhibits ferromagnetism. The interplay of
the two magnetic effects is also explored. Finally, a protocol for the measurement of the spin of the
system is proposed based on an adiabatic detuning scan. Concluding remarks and an experimental
outlook are given in Ch. 4.
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Chapter 2

Theory

This chapter introduces the model in which the calculations in Ch. 3 are performed. We begin
immediately below by defining the two-electron and four-electron Hilbert spaces of the problem, and
then in Sec. 2.2 follow by introducing the Hubbard Hamiltonian and the two magnetic effects. To
simplify the analysis, we discuss in Sec. 2.3 the important conserved quantites of the Hamiltonian,
namely the particle number, the spin and the crystal momentum. Throughout the thesis, we will work
in the second quantisation formalism of quantum mechanics. Further background on this is given in
Appendix A.

2.1. Hilbert spaces

Figure 2.1. Diagram-
matic representation of
the system.

The three dots are in the triangular configuration depicted in Fig. 2.1, with 𝐴 being the area of the
triangle and 𝑎 the lattice spacing. The sites of the dots are indexed by 𝑟 = 1, 2, 3, and we imagine
them to be potential traps described by the Hamiltonians 𝐻𝑟. The locations of the sites are

𝐑1 = 𝑎
(

1∕2
√

3∕2

)

, 𝐑2 =
(

0
0

)

, 𝐑3 = 𝑎
(

1
0

)

, (2.1)

and the lattice spacing will be taken to be of order 2 × 102 nm. Each site Hamiltonian 𝐻𝑟 admits a
set of eigenstates {|𝜓𝑛,𝑟⟩} with 𝑛 being the principal quantum number. For the analysis in this thesis,
we will imagine the level spacing between the ground state and first excited state 𝐸2,𝑟 − 𝐸1,𝑟 to be
so much larger than the other energy scales in the problem, such that orbitals other than |𝑟⟩ = |𝜓1,𝑟⟩
can safely be ignored. As the states are to be electron states, a spin degree of freedom must also be
included. Taking 𝜎 =↑, ↓ to be the 𝑧-component of the electron spin, we end up with six orthonormal
single-particle orbitals {|𝑟⟩⊗ |𝜎⟩}. We now define the zero-particle vacuum state |Ω⟩ and the creation
and annihilation operators 𝑐†𝑟,𝜎 and 𝑐𝑟,𝜎 , which obey the anticommutation relations in Eq. (A.3).

Below we define a basis for the two-particle and the four-particle Hilbert space of this system. As
we will see, the Hamiltonian conserves the electron number 𝑁 and the spin component 𝑆𝑧, making it
prudent to choose a basis for which these are well-defined, as this ensures that the representation of
the Hamiltonian becomes block-diagonal. The terminology local and non-local combination will be
used to signify combinations of particles at the same site or at different sites. E.g. the middle set of
states in Eq. (2.2) are non-local.

2.1.1. Two-particle Hilbert space
Taking the 𝑟-index to be defined modulo 3 (i.e. 𝑟 = 4 mod 3 = 1), the basis for the 15-dimensional
two-particle Hilbert spaces comprises in part nine triplets

{𝑐†𝑟,↑𝑐
†
𝑟+1,↑|Ω⟩} ∪

{ 1
√

2
(𝑐†𝑟,↑𝑐

†
𝑟+1,↓ + 𝑐

†
𝑟,↓𝑐

†
𝑟+1,↑)|Ω⟩

}

∪ {𝑐†𝑟,↓𝑐
†
𝑟+1,↓|Ω⟩} for 𝑟 = 1, 2, 3 (2.2)
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2.2. HAMILTONIAN 3

with 𝑆𝑧 = 1, 0,−1 from left to right. In addition the basis includes the six singlets

{𝑐†𝑟,↑𝑐
†
𝑟,↓|Ω⟩} ∪

{ 1
√

2
(𝑐†𝑟,↑𝑐

†
𝑟+1,↓ − 𝑐

†
𝑟,↓𝑐

†
𝑟+1,↑)|Ω⟩

}

for 𝑟 = 1, 2, 3. (2.3)

2.1.2. Four-particle Hilbert space
This Hilbert space is also 15-dimensional, and the basis states can in fact be defined in analogy with
Eqs. (2.2) and (2.3). We define the totally filled state

|Ωℎ⟩ =
∏

𝑟,𝜎
𝑐†𝑟,𝜎|Ω⟩, (2.4)

which might equivalently be interpreted as a hole vacuum. It is then easy to construct the four-electron
basis of nine triplets

{𝑐𝑟,↑𝑐𝑟+1,↑|Ωℎ⟩} ∪
{ 1
√

2
(𝑐𝑟,↑𝑐𝑟+1,↓ + 𝑐𝑟,↓𝑐𝑟+1,↑)|Ωℎ⟩

}

∪ {𝑐𝑟,↓𝑐𝑟+1,↓|Ωℎ⟩} for 𝑟 = 1, 2, 3, (2.5)

and six singlets

{𝑐𝑟,↑𝑐𝑟,↓|Ωℎ⟩} ∪
{ 1
√

2
(𝑐𝑟,↑𝑐𝑟+1,↓ − 𝑐𝑟,↓𝑐𝑟+1,↑)|Ωℎ⟩

}

for 𝑟 = 1, 2, 3. (2.6)

In the hole picture, these are then two-hole states.

2.2. Hamiltonian
Systems of highly correlated electrons on a lattice of localised orbitals {|𝑖⟩} are often modelled in the
Fermi-Hubbard model, which is described by the Hamiltonian

 = −
∑

⟨𝑖,𝑗⟩

∑

𝜎
𝑡𝑖,𝑗𝑐

†
𝑖,𝜎𝑐𝑗,𝜎 + 𝑈

∑

𝑖
𝑐†𝑖,↑𝑐𝑖,↑𝑐

†
𝑖,↓𝑐𝑖,↓, (2.7)

where ⟨𝑖, 𝑗⟩ denotes a nearest-neighbor sum [1]. The first term kin is analagous to the tight-binding
Hamiltonian and models the hopping of an electron from orbitals |𝑗⟩ to |𝑖⟩. The second term
int models the Coulomb interaction of different-spin electrons occupying the same orbital |𝑖⟩,
as 𝑐†𝑖↑𝑐𝑖↑𝑐

†
𝑖↓𝑐𝑖↓ = �̂�𝑖↑�̂�𝑖↓ vanishes unless 𝑛𝑖↑ = 𝑛𝑖↓ = 1. For our purposes, the Hamiltonian may be

rewritten and extended in the following way

 =
∑

𝑟,𝜎
𝛿𝑟�̂�𝑟,𝜎 − 𝑡

∑

𝑟,𝜎
(𝑐†𝑟+1,𝜎𝑐𝑟,𝜎 + h.c.) + 𝑈

∑

𝑟
�̂�𝑟,↑�̂�𝑟,↓. (2.8)

The addition of the first term allows for a difference in the chemical potentials at each site, which we
call detunings. The second term is again the hopping term where again the 𝑟-index is defined modulo
3 and the hopping parameters 𝑡𝑖,𝑗 = 𝑡 are taken to be homogeneous. The on-site interaction may also
be written

int = 𝑈
2
∑

𝑟
�̂�𝑟(�̂�𝑟 − 1), (2.9)

where �̂�𝑟 = �̂�𝑟,↑ + �̂�𝑟,↓ is the number of electrons occupying the orbital |𝑟⟩.
The effects of a magnetic field 𝐁 = 𝐵�̂� are two-fold. The first is the Aharonov-Bohm effect—

electrons accrue a phase related to the magnetic flux when tunneling between sites. The second is the
Zeeman effect—electrons have a magnetic moment which interacts with the field.
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2.2.1. Aharonov-Bohm effect
As is usual in quantum mechanics, the effect of the magnetic field 𝐁 = ∇ × 𝐀 on a system described
by the Schrödinger equation

𝐻(𝐩, 𝐫)Ψ = 𝑖ℏΨ̇ (2.10)

is taken into account through the minimal coupling Hamiltonian, which is obtained by the substitution

𝐻(𝐩, 𝐫) → 𝐻(𝐩 − 𝑞𝐀, 𝐫). (2.11)

Here, 𝑞 is the charge of the particle [4]. Equivalently, the wavefunction may be transformed by the
gauge transformation

Ψ′ = 𝑒𝑖𝜃(𝐫)Ψ, 𝜃(𝐫) = 𝑞
ℏ ∫

𝐫

𝐫0
d𝐫′ ⋅ 𝐀(𝐫′), (2.12)

where 𝐫0 is an arbitrary reference point. This wavefunction will satisfy the Schrödinger equation in
Eq. (2.10). The same gauge transformation can also be performed in second quantisation, where it is
called the Peierls substitution. It is effected by the transformation

𝑐𝑟,𝜎 → 𝑒𝑖𝜃(𝐑𝑟)𝑐𝑟,𝜎 , 𝑐†𝑟,𝜎 → 𝑒−𝑖𝜃(𝐑𝑟)𝑐†𝑟,𝜎 ; 𝜃(𝐑𝑟) =
𝑒
ℏ ∫

𝐑𝑟

𝐫0
d𝐫 ⋅ 𝐀(𝐫), (2.13)

where we have let 𝑞 = −𝑒 [5]. The hopping terms in Eq. 2.20 are the only affected terms, and they
transform in the following way

−𝑡𝑐†𝑟+1,𝜎𝑐𝑟,𝜎 → −𝑡𝑒−𝑖
(

𝜃(𝐑𝑟+1)−𝜃(𝐑𝑟)
)

𝑐†𝑟+1,𝜎𝑐𝑟,𝜎 , (2.14)

where the Peierls phase is then defined as

𝜃𝑝𝑟 = 𝜃(𝐑𝑟+1) − 𝜃(𝐑𝑟) =
𝑒
ℏ ∫

𝐑𝑟+1

𝐑𝑟
d𝐫 ⋅ 𝐀(𝐫). (2.15)

This phase is related to the magnetic flux, which can be seen by considering the translation of the
state 𝑐†1𝜎|Ω⟩ around the triangle

𝑒−𝑖𝜃
𝑝
3𝑒−𝑖𝜃

𝑝
2𝑒−𝑖𝜃

𝑝
1𝑐†1,𝜎𝑐3,𝜎𝑐

†
3,𝜎𝑐2,𝜎𝑐

†
2,𝜎𝑐1,𝜎𝑐

†
1,𝜎|Ω⟩ = 𝑒−𝑖(𝜃

𝑝
3+𝜃

𝑝
2+𝜃

𝑝
1)𝑐†1,𝜎|Ω⟩. (2.16)

The accumulated phase is then

𝜃𝑝3 + 𝜃
𝑝
2 + 𝜃

𝑝
1 = 𝑒

ℏ ∮𝜕
d𝐫 ⋅ 𝐀(𝐫)

= 𝑒
ℏ ∫

d2𝐫 ⋅ 𝐁(𝐫)

= 𝑒Φ
ℏ

= 2𝜋Φ
Φ0

, (2.17)

where  (resp. 𝜕 ) is the surface (resp. boundary) of the triangle, and Φ0 = ℎ∕𝑒 is the flux quantum.
The Peierls phase can thus be taken to be 𝜃𝑝𝑟 = 2𝜋Φ∕3Φ0 for all 𝑟, and the substitution amounts to
replacing the tunnelling terms of the Hamiltonian with

−𝑡𝑒−𝑖2𝜋Φ∕3Φ0𝑐†𝑟+1,𝜎𝑐𝑟,𝜎 . (2.18)

It should be noted that the above is based on the approximation of the dots being pointlike and located
at 𝐑𝑟. More sophisticated approaches would involve averaging over the wavefunctions |𝑟⟩, but that is
beyond the scope of this thesis.
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2.2.2. Zeeman effect
The interaction of the magnetic field with the electronic magnetic dipoles is described by the Zeeman
term

Z = 𝑔𝜇𝐵𝐵𝑆𝑧

= 1
2
𝑔𝜇𝐵𝐵

∑

𝑟
𝑐†𝑟 𝜎𝑧𝑐𝑟

= 1
2
𝑔𝜇𝐵𝐵

∑

𝑟
(𝑐†𝑟,↑𝑐𝑟,↑ − 𝑐

†
𝑟,↓𝑐𝑟,↓), (2.19)

where the definition of the spin operator is given in Sec. 2.3.2 and 𝜇𝐵 is the Bohr magneton. The
effective Landé factor in GaAs is 𝑔 = −0.44 [9].

The complete Hamiltonian of the model is thus

 =
∑

𝑟,𝜎
𝛿𝑟�̂�𝑟,𝜎 − 𝑡

∑

𝑟,𝜎
(𝑒−𝑖2𝜋Φ∕3Φ0𝑐†𝑟+1,𝜎𝑐𝑟,𝜎 + h.c.) + 𝑈

∑

𝑟
�̂�𝑟,↑�̂�𝑟,↓ +

1
2
𝑔𝜇𝐵𝐵

∑

𝑟
𝑐†𝑟 𝜎𝑧𝑐𝑟 (2.20)

2.3. Symmetries and conserved quantities
The Hamiltonian in Eq. (2.20) has several symmetries, which, as mentioned in Sec. 2.1, will simplify
the analysis. From elementary quantum mechanics, we know that if a certain observable �̂� representing
a generator of a symmetry satisfies [, �̂�] = 0, then the eigenvalues of �̂� are conserved, and we may
choose a simultaneous eigenbasis for  and �̂�. This ensures that  is block-diagonal, with each
block associated with a degenerate eigenspace of �̂�.

2.3.1. Particle number

We wish to show that 𝑁 is a conserved quantity, i.e. [, �̂�] = 0. Start by noting that the commutator
is linear, and that we have the identity

[�̂�𝑟↑�̂�𝑟↓, �̂�] = [�̂�𝑟↑, �̂�]�̂�𝑟↓ + �̂�𝑟↑[�̂�𝑟↓, �̂�]. (2.21)

Due to the preceding two observations, it is enough to consider the commutator [𝑐†𝑟1,𝜎1𝑐𝑟2,𝜎2 , �̂�] for
any (𝑟1, 𝜎1) and (𝑟2, 𝜎2). We expand

[𝑐†𝑟1,𝜎1𝑐𝑟2,𝜎2 , �̂�] =
∑

𝑟,𝜎

(

𝑐†𝑟1,𝜎1𝑐𝑟2,𝜎2𝑐
†
𝑟,𝜎𝑐𝑟,𝜎 − 𝑐

†
𝑟,𝜎𝑐𝑟,𝜎𝑐

†
𝑟1,𝜎1

𝑐𝑟2,𝜎2
)

. (2.22)

From the anticommutation relations in Eq. (A.3) it follows for any (𝑟′, 𝑟) and (𝜎′, 𝜎) that

𝑐𝑟′,𝜎′𝑐
†
𝑟,𝜎 = 𝛿𝑟′,𝑟𝛿𝜎′,𝜎 − 𝑐†𝑟,𝜎𝑐𝑟′,𝜎′ (2.23)

Plugging this into Eq. (2.22) yields

[𝑐†𝑟1,𝜎1𝑐𝑟2,𝜎2 , �̂�] =
∑

𝑟,𝜎

(

𝑐†𝑟1,𝜎1 (𝛿𝑟2,𝑟𝛿𝜎2,𝜎 − 𝑐
†
𝑟,𝜎𝑐𝑟2,𝜎2 )𝑐𝑟,𝜎 − 𝑐

†
𝑟,𝜎(𝛿𝑟1,𝑟𝛿𝜎1,𝜎 − 𝑐

†
𝑟1,𝜎1

𝑐𝑟,𝜎)𝑐𝑟2,𝜎2
)

. (2.24)

The Kronecker delta-terms will cancel when summing, leaving us with

[𝑐†𝑟1,𝜎1𝑐𝑟2,𝜎2 , �̂�] =
∑

𝑟,𝜎

(

𝑐†𝑟,𝜎𝑐
†
𝑟1,𝜎1

𝑐𝑟,𝜎𝑐𝑟2,𝜎2 − 𝑐
†
𝑟1,𝜎1

𝑐†𝑟,𝜎𝑐𝑟2,𝜎2𝑐𝑟,𝜎
)

= 0. (2.25)

The particle number is conserved, making the Hamiltonian a direct sum of blocks associated with
fixed-particle number subspaces, which justifies the definition of the two-particle and four-particle
bases above.
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2.3.2. Spin
The spin at site 𝑟 = 1, 2, 3 in the direction 𝑖 = 𝑥, 𝑦, 𝑧 can be measured by applying the operator

�̂�𝑖,𝑟 =
1
2
𝑐†𝑟 𝜎𝑖𝑐𝑟, (2.26)

where 𝜎𝑖 are the Pauli matrices. The total spin of the system in the direction 𝑖 is then given by

�̂�𝑖 =
∑

𝑟
�̂�𝑖,𝑟. (2.27)

The spin operators are the generators of spin rotations, so the unitary operator associated with a
rotation of the spin at site 𝑟 about the direction and by the angle defined respectively by 𝜶 and 𝛼 = ‖𝜶‖
is given by

Θ𝜶,𝑟 = exp
[

𝑖
∑

𝑗
𝛼𝑗�̂�𝑗,𝑟

]

= 𝑒𝑖𝜶⋅�̂�𝑟 , (2.28)

and a homogeneous rotation of all the spins is thus associated with the unitary operator

Θ𝜶 =
∏

𝑟
Θ𝜶,𝑟

= exp
[

𝑖
∑

𝑟

∑

𝑗
𝛼𝑗�̂�𝑗,𝑟

]

= exp
[

𝑖
∑

𝑗
𝛼𝑗�̂�𝑗

]

= 𝑒𝑖𝜶⋅�̂�. (2.29)

If the Hamiltonian commutes with all rotations Θ𝜶 , it commutes with the generators of these rotations
(see Appendix B). Therefore, commutation with Θ𝛼 for any 𝜶 implies commutation with all three
spin components. For vanishing magnetic field, the Hamiltonian consists solely of sums and products
of terms of the form 𝑐†𝑟 𝑐𝑟′ . In Appendix B it is derived that

Θ𝜶𝑐𝑟Θ†
𝜶 = 𝑈𝑐𝑟 = exp

[

𝑖
∑

𝑗

𝛼𝑗
2
𝜎𝑗
]

𝑐𝑟, (2.30)

where 𝑈 ∈ SU(2). Thus, for the product 𝑐†𝑟 𝑐𝑟′ we obtain

𝑐†𝑟 𝑐𝑟′ → Θ𝜶𝑐
†
𝑟 𝑐𝑟′Θ

†
𝜶

= Θ𝜶𝑐
†
𝑟Θ

†
𝜶Θ𝜶𝑐𝑟′Θ†

𝜶

= 𝑐†𝑟𝑈
†𝑈𝑐𝑟′

= 𝑐†𝑟 𝑐𝑟′ . (2.31)

This implies that [Θ𝜶 ,] = 0, and so the Hamiltonian for vanishing magnetic field conserves all
spin components. A finite magnetic field, on the other hand, entails the consideration of the Zeeman
Hamiltonian in Eq. (2.19), which consists of terms of the form 𝑐†𝑟 𝜎𝑧𝑐𝑟. These terms break the rotational
invariance about the 𝑥-axis and 𝑦-axis and consequently do not conserve 𝑆𝑥 and 𝑆𝑦. This stems from

𝑐†𝑟 𝜎𝑧𝑐𝑟′ → Θ𝜶𝑐
†
𝑟 𝜎𝑧𝑐𝑟Θ

†
𝜶

= Θ𝜶𝑐
†
𝑟Θ

†
𝜶Θ𝜶𝜎𝑧𝑐𝑟Θ†

𝜶
(∗)
= 𝑐†𝑟𝑈

†𝑈𝜎𝑧𝑐𝑟
= 𝑐†𝑟 𝜎𝑧𝑐𝑟, (2.32)

where the equality (∗) is true only if 𝜶 ∝ �̂�. Intuitively, this makes sense; if a rotation about e.g. the
𝑦-axis is performed on the quantity 𝜎𝑧𝑐𝑟, it must become a linear combination of 𝜎𝑧𝑐𝑟 and 𝜎𝑥𝑐𝑟. In
conclusion, the full Hamiltonian in Eq. (2.20) conserves the 𝑧-component of spin. As �̂�𝑧 and �̂�2

admit a simultaneous eigenbasis, this justifies the definition of the bases in Sec. 2.1 as sets of triplets
and singlets.
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2.3.3. Crystal momentum
Letting the detunings 𝛿𝑟 = 0 for all 𝑟 leads to the Hamiltonian being invariant under the transformation
𝑟 → 𝑟 + 1 and thus displaying a discrete translational invariance. The Bloch theorem implies in this
case that the wavefunctions will be characterised by a crystal momentum 𝑘, which is conserved. The
crystal momenta for the triangular configuration are 𝑘 = 2𝜋𝑛∕3𝑎 for 𝑛 = 0, 1, 2.

The Hamiltonian is in fact invariant both under the transformations 𝑟 → 𝑟 + 1—which may be
regarded as rotations of integer multiples of 2𝜋∕3—and reflections about the bisectors of the triangle.
These transformations constitute the point group D3.



Chapter 3

Results

This chapter starts off with an analytical treatment of the non-interacting and translationally invariant
limit 𝑈 = 0 and 𝛿𝑟 = 0 for all 𝑟. A derivation of the first order singlet-triplet splitting in the four-
electron system is presented in Sec. 3.1.1, and it will beckon further investigation of the ferromagnetic
properties of this system. In Sec. 3.2, the Hamiltonian is represented in the bases defined in Sec.
2.1, and exact diagonalisation methods are then used in a numerical analysis of the systems. In Sec.
3.3 we find no ferromagnetism in the two-electron system, but in Sec. 3.4, the four-electron system
is found to exhibit ferromagnetism in a large region of its phase space. The Aharonov-Bohm and
Zeeman effects are investigated numerically in Sec. 3.4.3, and we end in Secs. 3.4.4 and 3.4.5 by
proposing a protocol for the measurement of the spin of the system.

3.1. Non-interacting limit
The non-interacting limit is obtained by letting 𝑈 = 0. This makes the Hamiltonian quadratic in
the fermionic operators, which affords a simpler treatment of the problem; it suffices to diagonalise
the Hamiltonian in a single-particle basis {𝑐†𝑟,𝜎|Ω⟩}. Defining the vector 𝐂 = ({𝑐𝑟,𝜎})𝑇 allows the
Hamiltonian for 𝑈 = 0 to be expressed

 = 𝐂†𝐻sp𝐂, (3.1)

due exactly to its quadratic nature. The single-particle representation of the Hamiltonian 𝐻sp can be
readily diagonalised by a unitary transformation

𝐂†𝐻 ′
sp𝐂 = 𝐂†𝑈†𝐻sp𝑈𝐂, (3.2)

which may of course equivalently be stated as a unitary transformation of the fermionic vector operators

𝐃 = ({𝑑𝜈})𝑇 = 𝑈𝐂, (3.3)
where the fermionic operators {𝑑𝜈} annihilate single-particle eigenstates of the Hamiltonian. Many-
particle states are then easily constructed simply by populating these states.

We would like to find the unitary transformation 𝑈 which performs this diagonlisation, and by
letting the detunings 𝛿𝑟 = 0, for all 𝑟 we know based on Sec. 2.3.3 that the Hamiltonian is diagonalised
exactly by Fourier transforming the fermionic operators from real space to momentum space—i.e.
{𝑑𝜈} = {𝑐𝑘,𝜎} with 𝑘 = 2𝜋𝑛∕3𝑎 for 𝑛 = 0, 1, 2. The transformation may be expressed

𝑐𝑟,𝜎 =
∑

𝑘
𝑈𝑟,𝑘𝑐𝑘,𝜎 = 1

√

3

∑

𝑘
𝑒𝑖𝑘𝑟𝑎𝑐𝑘,𝜎 (3.4)

We substitute first into the hopping part of the Hamiltonian kin, getting

kin = − 𝑡
3
∑

𝑟,𝜎

∑

𝑘,𝑘′
(𝑒−𝑖2𝜋Φ∕3Φ0𝑒−𝑖𝑘(𝑟+1)𝑎𝑒𝑖𝑘

′𝑟𝑎𝑐†𝑘,𝜎𝑐𝑘′,𝜎 + h.c.)

8
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= −𝑡
∑

𝑘,𝑘′,𝜎

(

[1
3
∑

𝑟
𝑒𝑖2𝜋𝑟(𝑛

′−𝑛)∕3
]

𝑒−𝑖2𝜋Φ∕3Φ0𝑒−𝑖𝑘𝑎𝑐†𝑘,𝜎𝑐𝑘′,𝜎 + h.c.
)

. (3.5)

The factor in the bracket is exactly 𝛿𝑘,𝑘′ , making the sum

kin = −𝑡
∑

𝑘,𝜎
(𝑒−𝑖𝑘𝑎−𝑖2𝜋Φ∕3Φ0𝑐†𝑘,𝜎𝑐𝑘,𝜎 + h.c.)

= −2𝑡
∑

𝑘,𝜎
cos

(

𝑘𝑎 + 2𝜋Φ
3Φ0

)

𝑐†𝑘𝜎𝑐𝑘𝜎 , (3.6)

(a)

(b)

(c)

Figure 3.1. Single-
particle spectra, with
dots representing
states.

We thus recover the expected cosine dispersion of the tight-binding model, with an Aharonov-Bohm
phase. The Zeeman term Z can also be transformed, giving

Z = 1
6
𝑔𝜇𝐵𝐵

∑

𝑟

∑

𝑘,𝑘′
𝑒−𝑖𝑘𝑟𝑎𝑒𝑖𝑘

′𝑟𝑎𝑐†𝑘𝜎𝑧𝑐𝑘′

= 1
6
𝑔𝜇𝐵𝐵

∑

𝑘,𝑘′

∑

𝑟
𝑒𝑖2𝜋𝑟(𝑛

′−𝑛)∕3𝑐†𝑘𝜎𝑧𝑐𝑘′

= 1
2
𝑔𝜇𝐵𝐵

∑

𝑘
𝑐†𝑘𝜎𝑧𝑐𝑘.

=
𝑔𝜇𝐵Φ
2𝐴

∑

𝑘
𝑐†𝑘𝜎𝑧𝑐𝑘 (3.7)

The case of no magnetic field and the dispersion in Eq. (3.6) leads to the spectrum depicted in Fig. 3.1a.
The two spin-degenerate states of energy −2𝑡 have a crystal momentum of 𝑘0 = 0, and the spin and
momentum degenerate states of energy 𝑡 have crystal momenta 𝑘1 = 2𝜋∕3 and 𝑘2 = 4𝜋∕3. Turning
on a magnetic field has two separate effects as discussed in Secs. 2.2.1 and 2.2.2. Eq. (3.6) shows
that the Aharonov-Bohm effect breaks the crystal momentum degeneracy and leads to a spectrum
like the one in Fig. 3.1b, where the Zeeman effect has been ignored. Looking at Eq. (3.7), it is clear
that the Zeeman effect as usual breaks the spin degeneracy and, ignoring the Aharonov-Bohm effect,
leads to a spectrum as in Fig. 3.1c.

The above lets us say some things about the two- and four-electron systems. The two-electron
ground state is a singlet, and has an energy of −4𝑡. The lowest triplet energy is −𝑡 and is six-fold
degenerate. On the contrary, the four-electron ground state is six-fold degenerate, with three triplet
states and three singlet states. Defining |Ω̃ℎ⟩ analogously to Eq. (2.4), they are

|𝑇1⟩ = 𝑐𝑘1,↑𝑐𝑘2,↑|Ω̃ℎ⟩,

|𝑇2⟩ = 𝑐𝑘1,↓𝑐𝑘2,↓|Ω̃ℎ⟩,

|𝑇3⟩ =
1
√

2
(𝑐𝑘1,↑𝑐𝑘2,↓ + 𝑐𝑘1,↓𝑐𝑘2,↑)|Ω̃ℎ⟩;

(3.8)

and
|𝑆1⟩ = 𝑐𝑘2,↑𝑐𝑘2,↓|Ω̃ℎ⟩,

|𝑆2⟩ = 𝑐𝑘3,↑𝑐𝑘3,↓|Ω̃ℎ⟩,

|𝑆3⟩ =
1
√

2
(𝑐𝑘1,↑𝑐𝑘2,↓ − 𝑐𝑘1,↓𝑐𝑘2,↑)|Ω̃ℎ⟩.

(3.9)

This degeneracy between triplets and singlets is the first indication that the four-electron system might
exhibit more interesting ferromagnetic behaviour.

3.1.1. Perturbative treatment of the on-site interaction
Finding the singlet-triplet splitting in the four-electron system in first order perturbation theory would
greatly illuminate whether or not the ground state possesses ferromagnetic properties. The first step in
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such a calculation is to transform the on-site interaction from the real space basis into the momentum
basis using the transformation in Eq. (3.4),

int = 𝑈
∑

𝑟
𝑐†𝑟,↑𝑐𝑟,↑𝑐

†
𝑟,↓𝑐𝑟,↓

= 𝑈
9
∑

{𝑘𝑖}

∑

𝑟
𝑒−𝑖𝑘1𝑟𝑎𝑒𝑖𝑘2𝑟𝑎𝑒−𝑖𝑘3𝑟𝑎𝑒𝑖𝑘4𝑟𝑎𝑐†𝑘1,↑𝑐𝑘2,↑𝑐

†
𝑘3,↓

𝑐𝑘4,↓

= 𝑈
3
∑

{𝑘𝑖}

[1
3
∑

𝑟
𝑒𝑖(𝑘2+𝑘4−𝑘1−𝑘3)𝑟𝑎

]

𝑐†𝑘1,↑𝑐𝑘2,↑𝑐
†
𝑘3,↓

𝑐𝑘4,↓. (3.10)

The factor in the brackets is expressing the conservation of momentum in the interaction, 𝑘2 + 𝑘4 =
𝑘1 + 𝑘3. Let the momentum transfer 𝑞 = 𝑘4 − 𝑘3. Then

1
3
∑

𝑟
𝑒𝑖(𝑘2+𝑘4−𝑘1−𝑘3)𝑟𝑎 = 𝛿𝑘2−𝑘1,𝑞 , (3.11)

which on identifying 𝑘 = 𝑘2 and 𝑘′ = 𝑘4 makes the Hamiltonian

int =
𝑈
3

∑

𝑘,𝑘′,𝑞
𝑐†𝑘+𝑞,↑𝑐𝑘,↑𝑐

†
𝑘′−𝑞,↓𝑐𝑘′,↓. (3.12)

We know from Sec. 2.3 that int commutes with the spin operators, meaning that they have simulta-
neous eigenstates. We need therefore not use degenerate perturbation theory for the triplet subspace.
It is also apparant that int conserves the crystal momentum, and as the three singlet states in Eq.
(3.9) have different momenta (resp. 𝑘1, 𝑘2, and 0), refraining from degenerate perturbation theory for
the singlet subspace is also possible. We start with the first two states in Eq. (3.8), for which

⟨𝑇1|int|𝑇1⟩ = ⟨𝑇2|int|𝑇2⟩ = 𝑈, (3.13)

as only three terms with 𝑞 = 0 from the sum in Eq. (3.12) contribute. For the third, non-local state,
four terms with 𝑞 = 0 contribute, but two terms with 𝑞 = 𝑘1 and 𝑞 = 𝑘2 combine to cancel this fourth
zero momentum transfer contribution. Thus,

⟨𝑇3|int|𝑇3⟩ = 𝑈. (3.14)

For the first two states in Eq. (3.9), we obtain

⟨𝑆1|int|𝑆1⟩ = ⟨𝑆2|int|𝑆2⟩ =
4𝑈
3
, (3.15)

as now four terms with 𝑞 = 0 contribute to the matrix element. The non-local singlet state yields

⟨𝑆3|int|𝑆3⟩ =
5𝑈
3
, (3.16)

because the aforementioned combination of non-zero momentum transfer terms now combine such
that they contribute to the sum. The singlet-triplet energy splitting is then

Δ𝐸 = 5𝑈
3

− 𝑈 = 𝑈
3
, (3.17)

meaning that, at least for small U, one would expect ferromagnetism to occur.
For further investigation of the two-electron and four-electron systems, we must turn to an exact

diagonalisation approach, which starts with representing the Hamiltonian in the multiple-particle
bases.
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3.2. Representations of the Hamiltonian
As discussed in the definition of the Hilbert space in Sec. 2.1, the bases were chosen such as to make
the representations block diagonal, with blocks corresponding to well-defined particle number and
spin. The two-electron Hilbert space is spanned by the states defined in Eqs. (2.2) and (2.3), and a
calculation yields the triplet blocks

𝑆=1,𝑆𝑧
𝑁=2 =

⎛

⎜

⎜

⎝

𝐾𝑆𝑧 𝑒𝑖2𝜋Φ∕3Φ0 𝑡 𝑒−𝑖2𝜋Φ∕3Φ0 𝑡
𝑒−𝑖2𝜋Φ∕3Φ0 𝑡∗ 𝛿 +𝐾𝑆𝑧 𝑒𝑖2𝜋Φ∕3Φ0 𝑡
𝑒𝑖2𝜋Φ∕3Φ0 𝑡∗ 𝑒−𝑖2𝜋Φ∕3Φ0 𝑡 ∗ 𝛿 +𝐾𝑆𝑧

⎞

⎟

⎟

⎠

, (3.18)

where 𝐾 = 𝑔𝜇𝐵𝐵 = 𝑔𝜇𝐵Φ∕𝐴 characterises the strength of the Zeeman effect and 𝑆𝑧 = −1, 0, 1. The
singlet block has the form

𝑆=0
𝑁=2 =

(

l
𝑁=2 𝑇𝑁=2

𝑇 †
𝑁=2 n-l

𝑁=2

)

, (3.19)

where the local singlet block is

l
𝑁=2 =

⎛

⎜

⎜

⎝

𝑈 0 0
0 𝑈 0
0 0 2𝛿 + 𝑈

⎞

⎟

⎟

⎠

;

the non-local singlet block is

n-l
𝑁=2 =

⎛

⎜

⎜

⎝

0 −𝑒𝑖2𝜋Φ∕3Φ0 𝑡 −𝑒−𝑖2𝜋Φ∕3Φ0 𝑡
−𝑒−𝑖2𝜋Φ∕3Φ0 𝑡∗ 𝛿 −𝑒𝑖2𝜋Φ∕3Φ0 𝑡
−𝑒𝑖2𝜋Φ∕3Φ0 𝑡∗ −𝑒−𝑖2𝜋Φ∕3Φ0 𝑡∗ 𝛿

⎞

⎟

⎟

⎠

; (3.20)

and the tunneling block is

𝑇𝑁=2 = −
√

2𝑡
⎛

⎜

⎜

⎝

𝑒−𝑖2𝜋Φ∕3Φ0 0 𝑒𝑖2𝜋Φ∕3Φ0

𝑒𝑖2𝜋Φ∕3Φ0 𝑒−𝑖2𝜋Φ∕3Φ0 0
0 𝑒𝑖2𝜋Φ∕3Φ0 𝑒−𝑖2𝜋Φ∕3Φ0

⎞

⎟

⎟

⎠

. (3.21)

The four-electron Hilbert space is spanned by the states in Eqs. (2.5) and (2.6). The triplet blocks are

𝑆=1,𝑆𝑧
𝑁=4 =

⎛

⎜

⎜

⎝

2𝛿 + 𝑈 +𝐾𝑆𝑧 −𝑒𝑖2𝜋Φ∕3Φ0 𝑡 𝑒−𝑖2𝜋Φ∕3Φ0 𝑡
−𝑒−𝑖2𝜋Φ∕3Φ0 𝑡∗ 𝛿 + 𝑈 +𝐾𝑆𝑧 𝑒𝑖2𝜋Φ∕3Φ0 𝑡
𝑒𝑖2𝜋Φ∕3Φ0 𝑡∗ 𝑒−𝑖2𝜋Φ∕3Φ0 𝑡∗ 𝛿 + 𝑈 +𝐾𝑆𝑧

⎞

⎟

⎟

⎠

, (3.22)

where again 𝐾 = 𝑔𝜇𝐵𝐵 = 𝑔𝜇𝐵Φ∕𝐴 and 𝑆𝑧 = −1, 0, 1. The singlet block can be written

𝑆=0 =
(

l
𝑁=4 𝑇𝑁=4

𝑇 †
𝑁=4 n-l

𝑁=4

)

, (3.23)

where

l
𝑁=4 =

⎛

⎜

⎜

⎝

2𝛿 + 2𝑈 0 0
0 2𝛿 + 2𝑈 0
0 0 2𝑈

⎞

⎟

⎟

⎠

(3.24)

is the block associated with local states,

n-l
𝑁=4 =

⎛

⎜

⎜

⎝

2𝛿 + 𝑈 𝑒𝑖2𝜋Φ∕3Φ0 𝑡 𝑒−𝑖2𝜋Φ∕3Φ0 𝑡
𝑒−𝑖2𝜋Φ∕3Φ0 𝑡∗ 𝛿 + 𝑈 𝑒𝑖2𝜋Φ∕3Φ0 𝑡
𝑒𝑖2𝜋Φ∕3Φ0 𝑡∗ 𝑒−𝑖2𝜋Φ∕3Φ0 𝑡∗ 𝛿 + 𝑈

⎞

⎟

⎟

⎠

, (3.25)

is associated with non-local states, and

𝑇𝑁=4 =
√

2𝑡
⎛

⎜

⎜

⎝

𝑒−𝑖2𝜋Φ∕3Φ0 0 𝑒𝑖2𝜋Φ∕3Φ0

𝑒𝑖2𝜋Φ∕3Φ0 𝑒−𝑖2𝜋Φ∕3Φ0 0
0 𝑒𝑖2𝜋Φ∕3Φ0 𝑒−𝑖2𝜋Φ∕3Φ0

⎞

⎟

⎟

⎠

(3.26)

represents the tunnelling between these subspaces.
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Figure 3.2. Lowest triplet (dashed) and singlet (solid) energies of the two-electron system. (a) Produced with
𝑈 = Φ = 0. (b) Produced with 𝛿 = Φ = 0.

3.3. Two-electron results

Figure 3.3. Single-
particle spectrum
for the double-QD
system.

The two-electron system is found to be ferromagnetically uninteresting, i.e. the ground state is a singlet
at all values of 𝑈∕𝑡 and 𝛿∕𝑡. By some heuristic arguments together with the above established fact
that the system exhibited a −4𝑡 singlet-triplet splitting in the translationally invariant non-interacting
limit, this conclusion can be quite easily arrived at by considering some limits. Let Φ = 0 in all cases.
Consider first the cases 𝑈 = 0 and 𝛿∕𝑡 ≪ −1. Here, we are effectively dealing with a single-dot
system, meaning that the ground state must be a singlet. The opposite limit, 𝛿∕𝑡 ≫ 1, leads again
to an effective reduction, but in this case to a double-dot system. The double-dot is just the familiar
two-level problem, whose spectrum is displayed in Fig. 3.3 (see e.g. Ch. 6 in [8]). From the spectrum,
it is clear that the ground state is a singlet, with the singlet-triplet splitting being −2𝑡.

Consider now 𝛿 = 0 and 𝑈∕𝑡 ≫ 1. In this case, it is clear to see that the local singlets will
effectively be excluded from the Hilbert space, leaving only the non-local singlets and the triplets.
Based on the representations found in the previous section, we may argue that l

𝑁=2 becomes
irrelevant to ground state considerations in the limit, and as the lowest eigenvalue of n-l

𝑁=2 is −2𝑡,
the singlet-triplet splitting should, in the large on-site interaction limit, be −𝑡.

Two numerical plots are presented in Fig. 3.2, where exactly the behaviour described above is
observed. The singlet-triplet splittings found by the heuristic arguments also match the numerical
results. The four-electron system carries much more interesting behaviour, and so we shall turn our
attention to it presently.

3.4. Four-electron results

3.4.1. Ferromagnetism of the ground state
As found in Sec. 3.1, the four-electron system exhibits in the translationally invariant non-interacting
limit a six-fold degeneracy of the ground state energy −2𝑡. As a first approach, we shall again make
some heuristic arguments to try to understand the systems limiting behaviour while neglecting for the
moment the effects of a magnetic field. Consider 𝑈 = 0 and 𝛿∕𝑡 ≪ −1: two electrons are ‘frozen’ at
𝐑3, leaving two electrons in the remaining two dots. Effectively, the system is a double-dot filled with
two electrons, and this leads to the expectation that the singlet-triplet splitting should approach −2𝑡 as
in the large detuning limit above. Consider now 𝑈 = 0 and 𝛿∕𝑡 ≫ 1: the system is again effectively a
double-dot, but this time it is filled with four electrons. This leads to the immediate conclusion that
the ground state must be a singlet, as any triplet is forced to occupy the dot at 𝐑3 with at least one
electron.

For 𝛿 = 0 and 𝑈∕𝑡 ≫ 1, we may employ the same argument as in the two-electron case: the local
singlet subspace is effectively excluded, leaving the only relevant part of the singlet Hamiltonian for
ground state considerations to be n-l

𝑁=4. Its lowest eigenvalue is −𝑡 + 𝑈 , while the lowest eigenvalue
of 𝑆=1

𝑁=4 is −2𝑡 + 𝑈 . In the limit then, the singlet-triplet splitting is 𝑡, i.e. the system exhibits ferro-
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Figure 3.4. The singlet-triplet splitting. The blue dotted line marks an energy of 𝑡, and the grey dashed line
indicates the first term i the perturbative expansion Δ𝐸 = 𝑈∕3.

magnetism.
This argument is confirmed in Fig. 3.4, which shows by a numerical calculation the singlet-triplet

splitting approaching 𝑡 for 𝑈∕𝑡 → ∞. We would thus expect the ferromagnetism to survive even for
finite temperature 𝑇 if 𝑘𝐵𝑇 ≪ 𝑡. The pertinent question now is then for how large detunings at each
value of the on-site interaction energy the ferromagnetism is maintained. The next section answers
this by presenting a ground state phase diagram.

3.4.2. Phase diagram
A ground state phase diagram is displayed Fig. 3.5, where it is seen that for large parts of the phase
space, the system is in fact ferromagnetic. As argued in the above, in the limits 𝛿∕𝑡 ≪ −1 and
𝛿∕𝑡 ≫ 1 the ground state is a singlet, but increasing the on-site interaction energy makes the system
ferromagnetic.

The two plots beside the phase diagram are taken along the slices of 𝑈∕𝑡 = 5 and 𝑈∕𝑡 = 15 as
indicated. What can be seen on them is that there in the singlet subspace occurs two crossings, which
have been indicated by white dashed lines in the phase diagram. One crossing occurs for all 𝑈 at
𝛿∕𝑡 = 0. The other crossing for a given 𝑈 approaches the line 𝛿 = 𝑈 . To better understand the 𝛿 = 0
crossing, we might exactly diagonalise the single-particle Hamiltonian 𝐻sp with the detuning. This
will break the translational invariance which was taken advantage of in Sec. 3.1. Ignoring spin, the
matrix has the following form

𝐻sp =
⎛

⎜

⎜

⎝

0 −𝑡 −𝑡
−𝑡 0 −𝑡
−𝑡 −𝑡 𝛿

⎞

⎟

⎟

⎠

. (3.27)

The mirror symmetry between sites 𝐑1 and 𝐑2 is still present with this detuning, and this mirror
symmetry can in the single-particle basis be expressed

𝑈mir =
⎛

⎜

⎜

⎝

0 1 0
1 0 0
0 0 1

⎞

⎟

⎟

⎠

, (3.28)

The fact that [𝐻sp, 𝑈mir] = 0 guarantees simultaneous eigenstates of 𝐻sp and 𝑈mir, and the latters
eigenstates are

|1⟩ = 1
√

2
(𝑐†1𝜎 − 𝑐

†
2𝜎)|Ωℎ⟩,

|2⟩ = 1
√

2
(𝑐†1𝜎 + 𝑐

†
2𝜎)|Ωℎ⟩,

|3⟩ = 𝑐†3𝜎|Ω⟩.

(3.29)
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Figure 3.5. Ground state phase diagram and two slices at 𝑈∕𝑡 = 5 and 𝑈∕𝑡 = 15, which include the lowest
triplet energy 𝐸𝑆=1

0 and the two lowest singlet energies 𝐸𝑆=0
0 and 𝐸𝑆=0

1 . The plots were produced with Φ = 0.
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Figure 3.6. The three eigenvalues of 𝐻sp
with detuning 𝛿.

The similarity matrix 𝑃 = (|1⟩, |2⟩, |3⟩) will block-
diagonalise 𝐻sp by the transformation

𝑃−1𝐻sp𝑃 =
⎛

⎜

⎜

⎝

𝑡 0 0
0 −𝑡 −

√

2𝑡
0 −

√

2𝑡 𝛿

⎞

⎟

⎟

⎠

. (3.30)

One eigenvalue is 𝑡. The other two can easily be found to be

𝛿 − 𝑡
2

± 1
2

√

9𝑡2 + 2𝑡𝛿 + 𝛿2. (3.31)

Plotting all three eigenvalues as a function of 𝛿, as seen in
Fig. 3.6, it is clear that when two electrons populate each of

the two lowest orbitals, there occurs a crossing at 𝛿 = 0. The other crossing is not as straightforward
to explain, but the degeneracy occurs close to the line 𝛿 = 𝑈 . The non-local singlets with one electron
on the third dot

1
√

2
(𝑐†𝑟,↑𝑐

†
𝑟+1,↓ − 𝑐

†
𝑟,↓𝑐

†
𝑟+1,↑)|Ω⟩ (3.32)

Figure 3.7. Aharonov-
Bohm effect at
Φ∕Φ0 = 1∕2.

for 𝑟 = 2, 3 and the local singlet with both electrons removed from the third dot 𝑐3↑𝑐3↓|Ωℎ⟩ also
experience a crossing in energy exactly at 𝛿 = 𝑈 , which can be seen from their respective matrix
elements in Eqs. (3.24) and (3.25). We may therefore infer that it is a kind of local—non-local
singlet degeneracy which accounts for the second crossing. Both crossings shall prove to make
somewhat more difficult the measurement of the spin and to make necessary the introduction of a
second detuning.

3.4.3. Magnetic effects
As discussed briefly in Sec. 3.1, the Aharonov-Bohm and Zeeman effects affect the spectrum of the
system differently—the former splits the crystal momentum degeneracy and the latter splits the spin
degeneracy. It is clear to see from Fig. 3.1, that by splitting the crystal momentum degeneracy, the
ground state degeneracy between singlets and triplets is also broken, and the ground state favoured
by the Aharonov-Bohm effect is then that of the singlet. On the other hand, the Zeeman effect, which
energetically favours one spin direction over the other, leads to a triplet ground state. We should then
expect in the ground state phase diagram for the parameters Φ and 𝑡 to see a competition between the
two.
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Figure 3.8. Ground state phase diagram for the parameters Φ and 𝑡, which show the competition between
singlet-preferring Aharonov-Bohm effect and the triplet-preferring Zeeman effect. These plots were produced
with 𝐴 = (200 nm)2∕2 and 𝑔 = −0.44, the latter incidentally resulting in the lowest energy triplet being the
one with 𝑆𝑧 = 1.

In Fig. 3.8, some phase diagrams are presented for different values of𝑈 . There is a clear periodicity
in the ground state being a singlet or a triplet. When Φ is an integer multiple of Φ0, the ground
state is a triplet, and when Φ is a half-integer multiple of Φ0, the ground state is a singlet. This can
be understood by considering for which values of the flux the spectrum in Fig. 3.1b displays its
most extreme configurations. Take 𝑈 = 0 for the moment. When Φ = 0 the singlet and triplet are
degenerate, and this behaviour is recovered when Φ = Φ0, as can be seen from Eq. (3.6)—the states
with crystal momentum 𝑘0 are, so to speak, ‘rotated’ into the states with crystal momentum 𝑘1, etc.,
and an identical spectrum is recovered. For Φ between these values, there is a point at Φ = Φ0∕2
where the singlet-triplet splitting is maximal. At this point the spectrum looks as in Fig. 3.7. This
matches exactly the behaviour in the phase diagram.

The relative strength of the Aharonov-Bohm and Zeeman effect is characterised by the ratio
𝑔𝜇𝐵𝐵∕𝑡 = 𝑔𝜇𝐵Φ∕𝐴𝑡 = −5 × 10−4 for Φ = Φ0, 𝐴 = (200 nm)2∕2, 𝑡 = 10meV, and 𝑔 = −0.44, but
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Figure 3.9. Ground state phase diagram and two slices at 𝑈∕𝑡 = 5 and 𝑈∕𝑡 = 15, which include the lowest
triplet energy 𝐸𝑆=1

0 and the two lowest singlet energies 𝐸𝑆=0
0 and 𝐸𝑆=0

1 . The plots were produced with Φ = 0
and a second detuning 𝛿2 = 𝑡.

normally attainable magnetic fields are of order 1 T, which for the aforementioned area equates to
a flux of about 5Φ0. The small scale of the system is thus the reason that the Zeeman effect is so
small as to not be noticable on the scales of the flux presented in the figure. The broadening of the
triplet-bands must then also almost exclusively be due to the on-site interaction, which, as explicated
in the above sections, favours a triplet ground state. The narrowing of the triplet bands for increasing
𝑡 is then due to the increase in strength of the Aharonov-Bohm effect in comparison with the on-site
interaction, and the Zeeman effect plays no part in this.

3.4.4. Measurement of spin: Introducing a second detuning
If the system is initialised at 𝛿 = 0 and a given 𝑈 , one would like to have a way to measure whether the
system is in a triplet or singlet configuration. Increasing 𝛿 adiabatically and then measuring the charge
on the third dot would be one such way. As 𝛿 exceeds a certain threshold, the lowest energy singlet
state will have no electrons on the third dot. Meanwhile, the triplet is forced to have one. If the system
is initialised into the triplet state, then this is no problem, as 𝛿 can indeed be increased adiabatically
such that theoretically no state-mixing occurs. However, the singlet measurement is troubled from the
very beginning as mentioned in Sec. 3.4.2. As the lowest singlet energy is degenerate at 𝛿 = 0, the
system will, if initialised as a singlet, be in an unpredictable mix of the two lowest energy singlet states.
The second degeneracy close to 𝛿 = 𝑈 , which was theorised to be due to a kind of local—non-local
degeneracy, also poses a problem. If 𝛿 is adiabatically increased across this crossing, an unpredictable
mix of local and non-local singlet states results, which will make any charge measurement ambiguous:
the measurement of a charge −𝑒 on the third dot could be both a singlet and a triplet, rendering the
measurement useless.

In Fig. 3.9 is seen a phase diagram where a second detuning 𝛿2 on the second dot has been
introduced. The translational invariance at 𝛿 = 0 is then broken and, as seen in the figure, the second
crossing is also eliminated. The splitting between the singlet states at 𝛿 = 0 is for 𝛿2 = 𝑡 and 𝑈 = 5𝑡
on the order of 0.4𝑡. The splitting at the second former crossing is for the same parameter values on
the order of 0.7𝑡. This makes the adiabatic scan possible, and it should be possible to unambiguously
distinguish the triplet from the singlet by a charge measurement on the third dot.

3.4.5. Spin-to-charge conversion
We will now relate the spin state to the charge on the third dot. Define the charge operator
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Figure 3.10. The expectation value of �̂�3 in the lowest energy triplet state |𝑆 = 1⟩ and the two lowest energy
singlet states |𝑆 = 0, 1⟩ and |𝑆 = 0, 2⟩. Both plots are produced with Φ = 0 and 𝑈∕𝑡 = 5. In (a), the second
detuning 𝛿2 = 0. In (b), 𝛿2 = 𝑡

�̂�3 = −𝑒
∑

𝜎
𝑐†3,𝜎𝑐3,𝜎 (3.33)

Any state |𝜓⟩ can be expanded in the basis of the four-electron Hilbert space as

|𝜓⟩ =
∑

𝑟,𝜎

∑

𝑟′,𝜎′
⟨Ωℎ|𝑐

†
𝑟′𝜎′𝑐

†
𝑟𝜎|𝜓⟩𝑐𝑟,𝜎𝑐𝑟′,𝜎′ |Ωℎ⟩. (3.34)

The expansion coefficients 𝑣𝑟,𝑟′,𝜎,𝜎′ = ⟨Ωℎ|𝑐
†
𝑟′𝜎′𝑐

†
𝑟𝜎|𝜓⟩ are the eigenvectors of the Hamiltonian and

are found in the numerical exact diagonalisation. The expectation value of �̂�3 can then be written

⟨�̂�3⟩ = ⟨𝜓|�̂�3|𝜓⟩

=
∑

𝑟1,𝜎1

∑

𝑟′1,𝜎
′
1

∑

𝑟2,𝜎2

∑

𝑟′2,𝜎
′
2

𝑣†
𝑟2,𝑟′2,𝜎2,𝜎

′
2
𝑣𝑟1,𝑟′1,𝜎1,𝜎′1⟨Ωℎ|𝑐

†
𝑟2,𝜎2

𝑐†
𝑟′2,𝜎

′
2
�̂�3𝑐𝑟1,𝜎1𝑐𝑟′1,𝜎′1 |Ωℎ⟩. (3.35)

As �̂�3 depends only on the number operator �̂�3𝜎 , it is diagonal in the basis. Therefore,

⟨�̂�3⟩ =
∑

𝑟,𝜎

∑

𝑟′,𝜎′
|

|

𝑣𝑟,𝑟′,𝜎,𝜎′ ||
2
⟨Ωℎ|𝑐

†
𝑟′,𝜎′𝑐

†
𝑟,𝜎�̂�3𝑐𝑟,𝜎𝑐𝑟′,𝜎′ |Ωℎ⟩. (3.36)

The representations of �̂�3 in the four-electron Hilbert space basis is for the three triplet subspaces

𝑄𝑆=13 = diag(−2𝑒,−𝑒,−𝑒), (3.37)

and for the singlet subspace

𝑄𝑆=03 = diag(−2𝑒,−2𝑒, 0,−2𝑒,−𝑒,−𝑒). (3.38)

In Fig. 3.10, two plots of ⟨�̂�3⟩ are presented. One for 𝛿2 = 0 and one for 𝛿2 = 0.1𝑡. We see that in the
lowest-energy singlet state, the charge on the third dot vanishes, while for the second-lowest singlet
state, it approaches −𝑒, and it is therefore a non-local singlet state as theorised. Thus, adding a second
small detuning parameter 𝛿2 should make discriminating between singlets and triplets by adiabatically
increasing the detuning to or above 𝛿 ∼ 5𝑡 possible.



Chapter 4

Conclusion

In this thesis, the magnetic properties of a toy model of a three-site quantum dot system with a
triangular geometry has been explored. A negative result is obtained, when the system is populated
with two electrons. In this case, no parts of the phase space exhibit ferromagnetism, and the singlet-
triplet splitting is generally bigger than or equal to −2𝑡. Conversely, four-electron filling of the system
results in large parts of the phase space of the system being ferromagnetic, as seen in Fig. 3.5, with
the singlet-triplet splitting approaching the hopping parameter 𝑡 in the large on-site interaction limit.
Thus, for thermal energies 𝑘𝐵𝑇 ≪ 𝑡, one should in experiments expect to observe ferromagnetism in
the system. The Aharonov-Bohm effect was in addition found to be more important than the Zeeman
effect due to the small size of the system.

A protocol for measurement of the spin of the ground state was proposed based on adiabatically
increasing the detuning parameter from 𝛿 = 0 to 𝛿 ∼ 5𝑡 or above, as this introduces a charge difference
between the singlet and the triplet of one elementary charge −𝑒. Introduction of a secondary small
detuning parameter 𝛿2 is necessary for this procedure, as it breaks the degeneracies in the singlet
subspace and therefore allows the adiabatic increase of the detuning parameter without unpredictable
state mixing within the singlet subspace.

Further theoretical work on this system could include the inclusion in the model of further effects,
such as the Rashba spin-orbit coupling or calculations for less symmetric configurations of the systems,
i.e. non-homogeneous 𝑈𝑟 or 𝑡𝑟.
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Appendix A

Second quantisation

This appendix is a brief introduction to second quantisation. Treating many-electron systems in the
first quantisation formalism of quantum mechanics, as expounded in Griffiths [4], requires complicated
antisymmetrisation procedures due to the indistinguishability of electrons.1 The wavefunction of an
𝑁-electron system Ψ(𝐫1, 𝐫2,… , 𝐫𝑁 ) is the position representation of a state vector |Ψ⟩, an element
of the antisymmetric subspace of an 𝑁-particle Hilbert space, which may be denoted 𝐴ℋ⊗𝑁 . The
appropriate position space basis is composed of the Slater determinants, which are functions of the
form 𝐵�̂�

∏𝑁
𝑖=1 𝜓𝜈𝑖 (𝐫𝑖), where {𝜓𝜈(𝐫)} is an ordered orthonormal position basis of the single-particle

Hilbert space characterised by set of quantum numbers {𝜈}, 𝐵 is a normalisation factor, and �̂� is
the antisymmetriser: an operator which superposes the product states such that interchange of any
two different coordinates 𝐫𝑗 and 𝐫𝑘 leads to a sign change of the wavefunction. Operators in first
quantisation also depend upon the number of particles under consideration.

Second quantisation is a signficantly simpler formalism for dealing with many-electron systems.
Assuming as before an ordered orthonormal basis for the single-particle Hilbert space {|𝜈𝑖⟩} for
𝑖 = 1, 2,…, we label states simply by the occupation number 𝑛𝜈𝑗 of each orbital |𝜈𝑗⟩,

|Ψ⟩ = |𝑛𝜈1 , 𝑛𝜈2 ,…⟩;
∑

𝑖
𝑛𝜈𝑖 = 𝑁. (A.1)

Of course for electrons, only 𝑛𝜈𝑗 = 0, 1 is possible due the Pauli exclusion principle. The latter
equation above restricts the states to the same Hilbert space 𝐴ℋ⊗𝑁 discussed above. If it is relaxed,
the states span a more general space called the Fock space ℱ , which encompasses states of all possible
particle numbers.

Handling these states is done by defining the operator 𝑐𝜈𝑗 and its Hermitian conjugate 𝑐†𝜈𝑗 , which
are said respectively to annihilate and create a particle in the orbital |𝜈𝑗⟩. They are defined by their
action on the state vector

𝑐†𝜈𝑗 |… , 𝑛𝜈𝑗 ,…⟩ = |… , 𝑛𝜈𝑗 + 1,…⟩,

𝑐𝜈𝑗 |… , 𝑛𝜈𝑗 ,…⟩ = |… , 𝑛𝜈𝑗 − 1,…⟩.
(A.2)

This definition and the required sign change of the state vector upon interchange of any two particle
labels leads to an operator algebra defined by the following anticommutation relations:

{𝑐𝜈𝑖 , 𝑐𝜈𝑗} = 0, {𝑐†𝜈𝑖 , 𝑐
†
𝜈𝑗
} = 0, {𝑐†𝜈𝑖 , 𝑐𝜈𝑗} = 𝛿𝜈𝑖,𝜈𝑗 , (A.3)

where {𝐴,𝐵} = 𝐴𝐵 − 𝐵𝐴 is the anticommutator of 𝐴 and 𝐵. Thus, an 𝑁-particle state may be
constructed by operating on the vacuum state |Ω⟩ = |0, 0,…⟩ with creation operators, which yields

|Ψ⟩ =
𝑁
∏

𝑖=1
𝑐†𝜈𝑖 |Ω⟩. (A.4)

1This appendix is based on Chapter 1 in [2].
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The most important operators in this formalism are the particle number operator �̂�𝜈𝑗 = 𝑐†𝜈𝑗 𝑐𝜈𝑗 and
the total particle number operator �̂� =

∑

𝑖 𝑐
†
𝜈𝑖𝑐𝜈𝑖 . Operating on a state |Ψ⟩ as defined in the above

equation gives
�̂�𝜈𝑗 |Ψ⟩ = 𝑛𝜈𝑗 |Ψ⟩; �̂�|Ψ⟩ = 𝑁|Ψ⟩. (A.5)

In fact, in second quantisation, all operators can be expressed as linear combinations of products of
annihilation and creation operators, and they do not depend on the particle number.

Specialising to the triple QD-system described in Chapter 1, we have {𝜈} = {(𝑟, 𝜎)} as the basis is
{|𝜓𝑟⟩⊗ |𝜎⟩}. This leads naturally to the creation and annihilation operators 𝑐†𝑟,𝜎 and 𝑐𝑟,𝜎 interpreted
as respectively creating or annihilating an electron in the state |𝜓𝑟⟩⊗ |𝜎⟩. As a notational shorthand
𝑐𝑟,↑ and 𝑐𝑟,↓ (equivalently for the creation operators) can be collected in the spinor 𝑐𝑟 = (𝑐𝑟,↑, 𝑐𝑟,↓)𝑇 ,
which transforms under SU(2).



Appendix B

Conservation of spin

This appendix contains some results which are used in Sec. 2.3.2.
It was claimed that if the Hamiltonian commutes with the unitary operators Θ𝜶 representing spin

rotations, then it commuted with the spin operators. This follows from considering the object

d
d𝑠

[, 𝑒𝑠𝑖𝐒⋅𝜶] = (𝑖𝐒 ⋅ 𝜶)𝑒𝑠𝑖𝐒⋅𝜶 − (𝑖𝐒 ⋅ 𝜶)𝑒𝑠𝑖𝐒⋅𝜶

= [, 𝑖𝐒 ⋅ 𝜶]𝑒𝑠𝑖𝐒⋅𝜶 . (B.1)

If [,Θ𝜶] = 0 for all 𝜶 is assumed to hold, then the left-hand side of the above equation must vanish,
i.e. (d∕d𝑠)[, 𝑒𝑠𝑖𝐒⋅𝜶] = 0. The consequence of this is that [, �̂�𝑖] = 0 for all 𝑖.

We now prove the relation in Eq. (2.30). Assume 𝜶 to be parallel with one of the axes 𝑖 = 𝑥, 𝑦, 𝑧.
We use a lemma of the Baker-Campbell-Hausdorff formula to get

Θ𝜶𝑐𝑟Θ†
𝜶 = 𝑒𝑖𝛼𝑆𝑖𝑐𝑟𝑒

−𝑖𝛼𝑆𝑖

= 𝑐𝑟 + [𝑖𝛼𝑆𝑖, 𝑐𝑟] +
1
2!
[𝑖𝛼𝑆𝑖, [𝑖𝛼𝑆𝑖, 𝑐𝑟]] +⋯

= 𝑐𝑟 +
𝑖𝛼
2
[𝑐†𝑟 𝜎𝑖𝑐𝑟, 𝑐𝑟] +

1
2!

( 𝑖𝛼
2

)2
[𝑐†𝑟 𝜎𝑖𝑐𝑟, [𝑐

†
𝑟 𝜎𝑖𝑐𝑟, 𝑐𝑟]] +⋯ (B.2)

The first commutator is

[𝑐†𝑟 𝜎𝑖𝑐𝑟, 𝑐𝑟] = 𝑐†𝑟 𝜎𝑖𝑐𝑟𝑐𝑟 − 𝑐𝑟𝑐
†
𝑟 𝜎𝑖𝑐𝑟

= −𝜎𝑖𝑐𝑟, (B.3)

due to the first term vanishing upon application to any state, and the anticommutation relations. The
next commutator is

[𝑐†𝑟 𝜎𝑖𝑐𝑟, [𝑐
†
𝑟 𝜎𝑖𝑐𝑟, 𝑐𝑟]] = −[𝑐†𝑟 𝜎𝑖𝑐𝑟, 𝜎𝑖𝑐𝑟]

= −𝑐†𝑟 𝜎𝑖𝑐𝑟𝜎𝑖𝑐𝑟 + 𝜎𝑖𝑐𝑟𝑐
†
𝑟 𝜎𝑖𝑐𝑟

= 𝜎2𝑖 𝑐𝑟 − 𝜎𝑖𝑐
†
𝑟 𝑐𝑟𝜎𝑖𝑐𝑟

= 𝑐𝑟. (B.4)

It is clear that the nested commutators have a cyclic structure, which allows writing the expression as

Θ𝜶𝑐𝑟Θ†
𝜶 = 𝑐𝑟 −

𝑖𝛼
2
𝜎𝑖𝑐𝑟 +

1
2!

( 𝑖𝛼
2

)2
𝑐𝑟 −

1
3!

( 𝑖𝛼
2

)3
𝜎𝑖𝑐𝑟 +⋯

=
[

1 − 1
2!

(𝛼
2

)2
+⋯

]

𝑐𝑟 − 𝑖
[𝛼
2
− 1

3!

(𝛼
2

)3
+⋯

]

𝜎𝑖𝑐𝑟

= cos
(𝛼
2

)

− 𝑖 sin
(𝛼
2

)

𝜎𝑖𝑐𝑟
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= 𝑒−𝑖𝛼𝜎𝑖∕2𝑐𝑟 (B.5)

Letting𝑈 = 𝑒−𝑖𝛼𝜎𝑖∕2 and noting that the Pauli matrices are Hermitian, we see that𝑈𝑈† = 𝑒−𝑖𝛼𝜎𝑖∕2𝑒𝑖𝛼𝜎𝑖∕2 =
1, confirming that 𝑈 ∈ SU(2).
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