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Abstract

Building a successful universal quantum computer will be a revolutionary break-
through and have a significant impact on current challenges in the scientific community.
There are many problems that need to be solved before this becomes a reality. One of
these issues stems from the fact that quantum states collapse when measured, render-
ing the information limited. Quantum State Tomography aims to solve this problem,
which can be implemented using different models. In this thesis three models, Linear
Inversion, Maximum Likelihood Estimation and Bayesian Inference, have been numer-
ically implemented in Python along with code to simulate quantum measurements.
All 3 models show potential, but each have their advantages and disadvantages. One
has to be careful due to the fact that Linear Inversion can return non physical states
if the purity of the state is near unity and if the number of measurements are suf-
ficiently low. With Maximum Likelihood Estimation one can risk that the resulting
state has eigenvalues equal to zero, in the same parameter extrema as Linear Inversion.
Bayesian Inference solves both these issues, but the computational time is significantly
higher. All three models have shown their robustness on simulated data and are capa-
ble of running at least 4 qubit tomography. In addition, the tomographic models were
implemented on superconducting qubits. All 3 Quantum State Tomography models
performed well on the data, showing that control of the qubit was achieved. Which
demonstrates their functionality on experimental data.
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1 Introduction
The idea of utilizing the laws of quantum mechanics to create a universal quantum computer
has been around for decades. But the field has heavily accelerated the last 5-10 years[1][2][3].
A whole array of unsolved or computationally heavy problems could be solved if a fully
functional quantum computer could be designed. Especially in the scientific community,
leaps in A.I., machine learning, computational chemistry, drug development and simulation,
cybersecurity and cryptography and even weather forecasting, could be made. The world of
quantum computing is a fast moving area where different scientific fields interface to solve
problems.
Quantum computing aims to improve our ability to solve these problems using superposition
and entanglement of quantum objects. The quantum object of choice varies from using light,
to ions, to single electrons. The current leading method is by using super conducting qubits,
which exploit the superconducting trait of certain metals, when cooled down to near 0K[4].
What unites all these methods is their need for a robust system to measure, readout and
post process the output, to actually extract the information of interest.
Many different sub-fields have spawned to combat different problematic aspects of quantum
computing. One such problem comes from the collapse of the quantum state when measured,
resulting in only a partial picture of the output being gained. This is where Quantum State
Tomography (QST) has been successfully implemented[5][6][7][8][9]. One generates and
measures the same quantum state several times in different projected planes, whereafter the
true state is reconstructed from said data. It is comparable to reconstructing a 3 dimensional
object using only the shadows cast in the 3 dimensions. This picture is for 1 qubit, but if a
state is comprised of n qubits, then 4n dimensions are needed.
This is an exponentially increasing problem, and sophisticated computational tools are being
implemented. Within the field of QST several different mathematical methods are employed,
three of which will be covered in this thesis. Linear Inversion (LI) Tomography, Maximum
Likelihood Estimation (MLE) Tomography and Bayesian Inference (BI) Tomography. All
three have been numerically implemented in Python. Their flaws will be characterized and
their fidelity compared. Moreover, a script for simulating measurements on quantum states
has been developed and is used as input for these models. Lastly the models will be tested
on experimental data, measured on the commercial 5 qubit superconducting Soprano device
from Quantware[10].

2 Mathematical Concepts

2.1 Density Matrices
A classical bit only assumes one of two distinct states (0 or 1), whereas in quantum com-
puting the quantum bit is a two level quantum system, which allows for a superposition of
the two states[1][11]. The qubit is represented by a unit vector:

|ψ⟩ = α |0⟩ + β |1⟩ (2.1)

Where the states |0⟩ and |1⟩ are defined as

|0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
(2.2)
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Here α and β are the probability amplitudes of the two parts of the superposition, where
|α|2 + |β|2 = 1[8][9].

Figure 2.1: The Bloch sphere. State vector represented by v. The computational basis z, and
the two additional basis x and y, span the Hilbert space, which houses the quantum state. Figure
from [12].

Qubits can be represented on the Bloch sphere, which is a two dimensional complex Hilbert
space, visualized as a 3d sphere. Where the state, |ψ⟩, is described as

|ψ⟩ = cos(θ/2) |0⟩ + eiϕ sin(θ/2) |1⟩ (2.3)

where θ is the polar angle and ϕ is the azimuthal angle. A density matrix is a generalized
description of the state vector, which only can describe pure states, whereas a density matrix
can describe both pure and mixed states[13] (It is important to note that a mixed state is
not the same as a superposition)[14]. A density matrix is a positive semi definite Hermitian
d× d matrix with unit trace. The set of density matrices are defined by four rules

S = {ρ ϵ Cd×d, ρ = ρ†, tr(ρ) = 1, ρ ⪯ 0} (2.4)
where Cd×d is the complex space of size d × d, ρ† is the conjugate transpose of the density
matrix, tr(ρ) is the trace of the density matrix and the positive semi definite property is
shown by ρ ⪯ 0[9]. These rules need to be upheld if the density matrix is physical. Otherwise
the state will not be limited to the Hilbert space which describes it. The density matrix, ρ,
can be described as an ensemble of pure states |ψi⟩ each prepared with a probability of pi.

ρ =
∑

pi |ψi⟩ ⟨ψi| (2.5)

Here |ψi⟩ ⟨ψi| is the inner product of the pure state. When the density matrix is described
in terms of the X,Y and Z basis, as seen in figure 2.1, a convenient way to reparameterize
the density matrix is

ρ = 1
2(I + axσx + ayσy + azσz) (2.6)

Where ax, ay and az are some values and the Pauli matrices are defined as

σx =
[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
(2.7)

For n qubits this can be generalized to

ρ = 1
2n

−→a ·
−→
P (2.8)
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Where −→a is a vector of values and −→
P is a vector of Pauli operators. Both of these vectors

hold 4n elements, where for −→a they correspond to permutations between the a-values of
each qubits three basis + identity and for −→

P corresponds to permutations between the
Pauli matrices + identity. As mentioned there exist both pure and mixed states. The
density matrix of a pure state can be described by a single inner product of a state vector
and is represented on the Bloch sphere as a vector stretching to the shell of the sphere.
Whereas the mixed state is a statistical ensemble of possible outcomes, represented on the
Bloch sphere as a vector inside the sphere[15]. Moreover the purity of a state is defined as

purity = tr(ρ2) (2.9)

where trace is the sum of the diagonal matrix elements. For a pure state the purity must be
equal to one. A purity lower than unity represents a mixed state, and the lower the purity,
the more mixed the state is. The purity of a maximally mixed state is

tr(ρ2
mix) = 1

2n
= 1
d

(2.10)

where n is the number of qubits and d the dimensions of the Hilbert space[9][8].

2.2 Measurements
When one wants to measure a quantum state, one measures the density matrix. To do this
one uses an observable, which is a Hermitian d × d matrix related to a discrete random
variable within the system. Lets call the variable O and the possible values are represented
by the eigenvalues of the observable O; {o1, o2, ..., od}[16]. The expected value of O, for a
system ρ is defined by

⟨O⟩ = tr(Oρ) (2.11)
Since O is diagonalizable it can be spectrally decomposed

O =
d∑

i=1
oiEi =

d∑
i=1

oi |ui⟩ ⟨ui| (2.12)

where Ei = |ui⟩ ⟨ui| is a positive semi-definite Hermitian matrix, which is as a projector into
eigenspace corresponding to oi, where |ui⟩ are its eigenvectors. This allows for eq 2.12 to be
substituted into eq 2.11, giving rise to

⟨O⟩ =
d∑

i=1
oitr(ρEi) =

d∑
i=1

oipi (2.13)

Where tr(ρEi) is equal pi, which is the probability of oi occurring when ρ is measured. The
components Ei are a part of a complete set of Positive Operator-Values Measure (POVM).
The sum of the POVM elements must equal unity.

N∑
i=1

Ei = I (2.14)

It is worth noting that measurement of a single observable is not enough to completely
determine the density matrix. In fact at least d2 − 1 = 4n − 1 observables are needed (-1
because the identity is trivial), where d is the dimensions of the state and n is the number of
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qubits comprising the state. Also one needs to be able to generate the same quantum state
consistently due to Heisenberg’s uncertainty principle not allowing for two non commuting
observables to be measured at the same time. Another caveat is the fact that we can only
measure {0, 1}, which usually is remapped to {1,−1}. Meaning that even if the expectation
value of an observable is 0, a measurement will return −1 or 1. To solve this, one also
needs to prepare the same state n times and measure the same observable every time to
statistically determine the expectation value[9][8]. In eq 2.6 & and 2.8 the observables of
choice are the Pauli matrices described in eq 2.7. With the 6 POVM elements being the
inner product of the respective positive or negative basis vectors of the three cardinal basis
(|0⟩ , |1⟩ , |+⟩ , |−⟩ |i+⟩ , |−i+⟩). These are the observables that will be used on wards.

2.3 Expectation Values
The number of observables that need to be measured can be reduced from 4n − 1 to 3n.
The example below is for a 2 qubit state, but can be expanded to n qubits. A frequency
of each of the 2n = 4 outcomes can be calculated if one was to measure the quantum
system n times. This can be done for each observable, which in this case is every per-
mutation between the X,Y and Z basis of the two qubits, resulting in 3n = 9 observables
(XX,YY,ZZ,XY,YX,XZ,ZX,YZ,ZY), rather than 4n − 1.[16]. From these frequencies a fre-
quency vector can be constructed for each observable resulting in 3n = 9 frequency vectors
each of length 2n = 4.

−→
f =


f1
f2
...
f2n

 (2.15)

Where e.g the XX measurement would be.

−−→
fXX =


f00
f01
f10
f11

 (2.16)

Where {00, 01, 10, 11} are the four binary outcomes of said measurement in the XX basis.
To estimate the expectation values of a state in each measurement basis, one can use the
following matrix relation.

−→
f = 1

2n
·H2n ·

−→
⟨O⟩ (2.17)

Where H2n is the 2n-rank Hadamard matrix.

H2 =
[
1 1
1 −1

]
, H2n = H

⊗
n

2 (2.18)

Which in the XX measurement case would be
f00
f01
f10
f11

 = 1
4 ·


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ·


⟨II⟩
⟨IX⟩
⟨XI⟩
⟨XX⟩

 (2.19)

Only only needs to invert the Hadamard matrix (and normalization) to calculate the expec-
tation values. Showing that from 3n measurements, all 4n (including identity) expectation

4



values can be calculated. In fact this method results in 3n · 2n = 6n expectation values in-
cluding duplicates, which can be averaged to reduce the uncertainty on the measurements.

3 Quantum State Tomography

3.1 Data Simulation
A script for simulating quantum measurements was implemented to generate data for the
QST models. It is based on section 2.2 and 2.3. The projectors of the three cardinal basis (X,
Y and Z) of each qubit is used as the POVM set to simulate all data used. But it is possible
to use any arbitrary POVM set in principle. When more than one qubit is simulated, the
POVM set is expanded into a tensor product between every permutation between the set of
qubits respective projectors. When simulating data it is possible to customize a variety of
parameters including, number of qubits and shots, probability amplitudes, purity, measuring
basis and whether to entangle the system[17].

3.1.1 Numerical implementation

The data simulation code is based on the QuTiP Python package, which defines quantum
states as its own object type[18]. The data simulation class is comprised of many functions,
mainly split in two categories. Generating the random/specific quantum state, and mea-
suring said quantum state. The most central function in this case is the one that actually
measures the generated state.

1 def measure_qubit (self):
2 # Calculate the probability distributions
3 prob_dict , tens_mat = self. calc_prob_nsite ()
4 # Create all possible outcomes
5 row = list(it. product ([-1,1], repeat =self. nqubits ))
6 idx = np. arange (len(row))
7 expect_list = []
8 count_list = []
9 # Loop through all sets of probabilties and choose between

10 # the different outcomes with the given probabilities
11 if self. total_shot == False :
12 pass
13 elif self. total_shot == True:
14 self. shots = int(self.shots /(3** self. nqubits ))
15 for i, prob in enumerate ( prob_dict . values ()):
16 # Measure for n shots
17 measure = list(np. random . choice (len(row), self.shots , p=

prob))
18 # Count the frequency of each outcome and find the measured

probability
19 counts = np.array ([ measure .count (x)/self. shots for x in idx

])
20 # Use this to calculate all expectation values
21 expect1 = (self. hadamard * counts ).real

Listing 1: Qubit measurement
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First the function calc prob nsite() is called which initializes the chosen basis and, using a
QuTiP function generates the probability distribution of outcomes of the generated state
in the chosen basis. These probability distributions are in turn used to actually simulate
the measurement process, which in the process also generates the random measurement
”noise”. This is done by using the np.random.choice() function, where the options for each
measurement basis are the 2n possible outcomes, chosen with its respective probabilities.
The frequency of each outcome is calculated and converted into a probability, which can be
used as seen in eq 2.17 to calculate the measured expectation values[17].

3.2 Linear Inversion
LI is the most basic technique used to reconstruct the density matrix, using the concepts
described in sections 2.1, 2.2 and 2.3. It can be derived from Borns rule.

⟨Oi⟩ = tr(Oiρ) (3.20)

Where ⟨Oi⟩ is the expectation value of some observable. The equation can, according to eq
2.8, be rewritten as

⟨Oi⟩ = tr(Oiρ) = tr(−→aiOi

−→
Pi) (3.21)

Where −→ai is a vector with values related to the density matrix, Oi is the observable and−→
Pi is the corresponding Pauli matrix vector. This can be generalized for all 4n expectation
values. 

⟨O0⟩
⟨O1⟩

...
⟨O4n⟩

 = −→
M · −→a (3.22)

Where −→
M is a 4n × 4n matrix, where every component is defined as

Mij = tr(OiPj) (3.23)

Which shows that LI can be used to calculate the a values and in turn the density matrix
using any tomographically complete set of observables. The convenient choice is choosing
the basis as the X,Y and Z basis, where the observables correspond to the Pauli matrices
described in eq 2.7. This results in the matrix elements being defined by the Kronecker
delta

Mij = tr(PiPj) = 2nδij (3.24)

which results in a −→
M being equal to a 4n×4n identity matrix, allowing for a direct conversion

between the a values and the expectation values, making for easy calculation of the density
matrix described in eq 2.8.

But LI has a severe disadvantage, due to the fact that it can output nonphysical quan-
tum states with negative eigenvalues, by breaking condition 3 in eq 2.4, stating that the
trace of the density matrix is equal to 1. This in turn breaks condition 1, due to the fact
that the density matrix no longer will be restrained in the Cd×d Hilbert space. This happens
due to the random nature of measuring[7].
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3.2.1 Numerical Implementation

The implementation of LI Tomography is mostly based on one quite simple function.
1 def get_lin_inv_rho (self):
2 # np. einsum is used to calculate the dot product as fast as

possible .
3 rho = (1/(2** self. nqubits ))*np. einsum (’i,ijk ->jk’,np.array (self

. expectation ),self. paulis )
4 rho = Qobj(rho , dims =[[2]* self.nqubits ,[2]* self. nqubits ])
5 return rho

Listing 2: Linear Inversion Function

The density matrix is calculated by multiplying the dot product between the expectation
values and the corresponding POVM (the basis are just the x,y and z basis in this case)
with a normalization factor that is defined by the number of qubits[17].

3.3 Maximum Likelihood Estimation
The more sophisticated alternative to LI is QST using MLE. This method eliminates the
negative eigenvalue problem. The approach uses the likelihood function

L(ρ) = Pr(D|ρ) (3.25)

which describes the probability of the measured data, given some density matrix. The
density matrix which results in a maximized likelihood function, should be a good estimate
of the true density matrix.

ρ = max(L(ρ)) (3.26)

In this case the measured data comes in the form of expectation values of a set of observables
as described in section 2.2 and 2.3. In practise it is easier to minimize the negative log
likelihood function

F (ρ) = −log(L(ρ)), ρ = min(F (ρ)) (3.27)

Where F (ρ) for 1 qubit is

F (ρ) =
∑

i=x,y,z

(⟨ Oi⟩ − tr(ρσi))2 (3.28)

Where ⟨ Oi⟩ is the measured expectation values in the three cardinal basis and tr(ρσi)
is the trace of the matrix product between the current guess of density matrix and the
Pauli matrices[5][6][19]. This function is for one qubit, but for n qubits i would be every
permutation of the three cardinal basis between every qubit. The parameters that the MLE
tunes stepwise are not directly the values of the density matrix itself. This is due to the
fact that the density matrix would quickly break the rules set in eq 2.4. Instead Cholesky
decomposition[20] is used to reparameterize the density matrix

ρ = T (t)T (t)†

Tr(T (t)T (t)†) (3.29)
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Where the T matrix is a lower triangular matrix with d2 t components

T =



t1 td+1 + itd+2 . . . . . . td2−1 + itd2

0 t2 td+3 + itd+4
. . . ...

0 0 . . . . . . ...
... . . . . . . . . . t3d−3 + it3d−2
0 . . . . . . . . . td


(3.30)

which is what the MLE algorithm will tune. This parameterization will ensure positivity
and maintain unit trace, which mitigate the problem LI poses[9].

But this approach introduces a new problem in the form of eigenvalues equal to zero which
reflect outcomes with probability zero. This is not non physical, but experimentally speak-
ing this is problematic. When measuring, a finite number of measurements are done for
every observable and the expectation value will trend towards the ”true” expectation val-
ues. Meaning that it is wrong to exclude certain outcomes by reducing eigenvalues to zero.
[5][6].

3.3.1 Numerical Implementation

The implementation of QST using MLE is centered around the likelihood function as de-
scribed above. The function is minimized using SciPy.

1 def MLE_Function_QST (t_tunable , measurements , Paulis ):
2 rho = op_cholesky ( t_tunable )
3 expect = np. einsum (’ij ,ljk ’,rho , Paulis ) # perform matrix

multiplication over array of paulis
4 tr_expect = np. einsum (’iij ’, expect ).real # take the real

component of the trace
5 L = np.sum (( measurements - tr_expect )**2)
6 return L

Listing 3: Likelihood Function - MLE

For every step of the minimization the current t matrix guess, is converted into a density
matrix using Cholesky Decomposition[20] and matrix multiplied with the set of Pauli ma-
trices. Afterwards, the trace is calculated, simulating a measurement. The trace is always
real, but Python will keep +0i, which is why the real component is used. The difference
between this value and the ”true” measured value is then calculated, and summed for all
measured basis. The L value is calculated, the t matrix is tuned and the process is repeated.
When the L value decreases, the corresponding density matrix estimate approaches the true
density matrix.[17].

3.4 Bayesian Inference
BI is a method which can be implemented with a wide variety of techniques. This method
eliminates the respective problems of the two prior methods, meaning no negative eigenvalues
and no zero eigenvalues[5][6]. In this particular implementation of BI the same reparame-
terization as in eq 3.29 & 3.30 is used, except another layer of reparameterization is done,
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reducing the number of parameters from d2 to d2 − 1

t1 = sin θd2−1 sin θd2−2... sin θ2 sin θ1

t2 = sin θd2−1 sin θd2−2... sin θ2 cos θ1
...

td2−1 = sin θd2−1 cos θd2−2

td2 = cos θd2−1

(3.31)

This can be condensed into

ti = cos θi−1

d2∏
j=i

sin θj for i = 1, 2, . . . , d2 (3.32)

where the set of theta values are constricted in the following parameter space

Θ = {0 < θi < π/2, for i = 1, 2, . . . , d− 1, and 0 < θi < π, for d ≤ i ≤ d2 − 1} (3.33)

This allows for easier implementation of BI, with the use of Markov Chain Monte Carlo
(MCMC) and the Metropolis-Hastings Sampling (MHS) Algorithm[9]. The MHS algorithm
is what samples the new set of theta values at every step of the MCMC.
This is done by sampling every theta value simultaneously and independently from truncated
normal distributions, centered around the previous theta values.

θ∗
i |θt

i ∼ TN[ai,bi](θt
i ,∆2

i ) (3.34)

The truncation happens at the boundaries described by eq 3.32.

Figure 3.1: Current theta distribution (green), centered around θt. Proposal theta distribution
(blue), centered around θ∗ which was sampled from the current distribution.

The sampling can be seen (in one dimension) in fig 3.1, where θt is the current theta value
and θ∗ is the sampled candidate. The candidate is sampled from the truncated normal
distribution centered around the previous theta value. Whether the new set of theta values
are accepted or rejected as a set is determined by the MCMC algorithm. To implement this
algorithm a prior distribution needs to be selected, which should be uniform, or as close as
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possible (a Jeffreys prior can also be used). This prior, π(θ), is multiplied with the likelihood
function

π(θ|D) ∝ N !∏M
i=1 ni!

M∏
j=1

tr(ρ(θ)Ej)njπ(θ) (3.35)

which gives the joint posterior function. Or rather, since the joint posterior is not analytically
tractable, the result is proportional to the joint posterior. Here N is the number of shots,
M is all possible outcomes, n is the number of counts in each outcome and tr(ρ(θ)Ej) is
the probability of the given outcome, where Ej is the j’th POVM element. The fact that
the joint posterior is not analytically tractable is why numerical algorithms are needed. In
this implementation the ratio between the joint posterior for the newly sampled set of theta
values and the previous set of theta values is used,

π(θ∗|D)
π(θt|D) =

M∏
i=1

tr(ρ(θ∗)Ei)ni

tr(ρ(θt)Ei)ni
(3.36)

which eliminates the prefactors and the prior distribution. Next a proposal distribution is
needed, which due to sampling from truncated normal distributions is a product of truncated
normal distributions,

q(θ∗|θt) =
d2−1∏
i=1

1
∆i
ϕ( θ∗−θt

i

∆i
)

Φ( bi−θt
i

∆i
) − Φ(ai−θt

i

∆i
)

(3.37)

where the ratio between sampling the new theta set from the current distributions and vice
versa is

q(θt|θ∗)
q(θ∗|θt) =

d2−1∏
i=1

Φ( bi−θt
i

∆i
) − Φ(ai−θt

i

∆i
)

Φ( bi−θ∗
i

∆i
) − Φ(ai−θ∗

i

∆i
)

(3.38)

After the MHS algorithm has sampled new theta values, the MCMC algorithm accepts the
new set, θt+1 = θ∗, with probability

α(θt|θ∗) = min

(
1, π(θ∗|D)
π(θt|D)

q(θt|θ∗)
q(θ∗|θt)

)
(3.39)

otherwise θt+1 = θt[9].

3.4.1 Numerical Implementation

To implement BI a combination of MCMC and the MHS algorithm is used. Only the main
function is shown below.

1 def getRho (self):
2 # Burn in phase
3 thetha , theta_distrib_burn = self. burn_in_phase ()
4 # Sampling phase
5 theta_distrib_samp = self. sampling_phase ( thetha )
6 rho_distrib = [Qobj(btool . op_cholesky ( btool . construct_t (list(i)

, self.dim))) for i in theta_distrib_samp ]
7 rho_mean = np.mean(np. array ( rho_distrib ), axis =0)
8 rho = Qobj(mean , dims =[[2]* self.nqubits ,[2]* self. nqubits ]
9 return rho , theta_distrib_burn , theta_distrib_samp

Listing 4: Bayesian Inference
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First the burn in phase is run. Which samples the initial theta values from a uniform
distribution and then runs through a set number of steps in the MCMC, without considering
any of the previous steps. After this step the chains should have converged to a stable
parameter space, whereafter the sampling phase is initiated. Now the sampling phase is
identical to the burn in phase, except all the accepted sets of theta values are saved, and
a hyper dimensional theta distribution is created. Now from this distribution the mean is
found, which corresponds to the best estimate for the true density matrix[17].

4 Results & Discussion

4.1 Linear Inversion - Negative eigenvalues
As mentioned earlier, the main problem with LI is the fact that its output state can be
nonphysical, due to eigenvalues of zero. The likelihood of the output being nonphysical
when increasing purity, for 1-4 qubits, was studied with numerically generated data to
further examine this phenomenon.

Figure 4.1: Likelihood of unphysical result as function of purity for 1-4 qubits.

For each point 280 random states where generated to ensure that the uncertainty is suffi-
ciently low. Each state was measured 1000 times in each basis. LI Tomography was used
and the eigenvalues where calculated. The trend in figure 4.1 seems to be that there is
a correlation between high purity of the generated state and a higher likelihood of the LI
output being non physical. Moreover when increasing the number of qubits, the increase
happens at a lower purity. See appendix figure A.1 for higher resolution of 1 and 2 qubits.
To further investigate the parameter space, 2D sweeps of the purity vs the total amount of
measurements (shots) was done for 1-4 qubits respectively.
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(a) 1 qubit (b) 2 qubits

(c) 3 qubits (d) 4 qubits

Figure 4.2: Probability of LI Tomography returning a non physical state on the heat map. Purity
of the generated state on the x-axis and number of measurement shots (total) on y-axis, distributed
between the 3n measurements.

Figure 4.2a-4.2d shows increasing purity on the x axis and increasing shots on the y axis,
while the color map indicates the likelihood of the state being non physical. Again each
point is an average of 280 randomly generated states. The shots are distributed evenly
on all the required measurements which scales as 3n. Meaning that for 1 qubit, each basis
measurement uses 1/3 of the shots, whilst for 4 qubits it is 1/81 shots pr basis measurement.
Moreover the minimum purity scales as 1/2n as in eq 2.10. There is a clear correlation
between few shots and high purity, and a high likelihood of a non physical state. This effect
is exacerbated when more qubits are added. Altough, especially with 1 and 2 qubits, there
seems to be a quite large parameter space, where there is a near zero chance of the output
being nonphysical, indicating that LI should not instantaneously be disregarded, due to its
eigenvalue flaw.

4.2 Linear Inversion - Fidelity
Now that it has been established that LI is a viable QST option, a investigation of its fidelity
would be needed.

12



(a) 1 qubit (b) 2 qubits

(c) 3 qubits (d) 4 qubits

Figure 4.3: Trace distance between the generated state, and the state estimated by LI tomography
is shown on the heat map. Purity of the generated state on the x-axis and number of measurement
shots (total) on y-axis, distributed between the 3n measurements.

Figure 4.3 has the same axis as figure 4.2, except the color map indicates fidelity in the
form of trace distance from the output state from the LI tomography, to the true state
generated by the data simulation. The figures show that the purity of the state does not
impact the models ability to estimate the output very much. In fact the trace distance
seems to improve slightly at higher purity. However, almost solely the number of shots that
each basis was measured is responsible for the final trace distance. Moreover, (at least for
1-4 qubits) anything above 104 shots seems to be enough to get a near zero trace distance.
Although the chosen parameters should be compared to the negative eigenvalue figure to
determine whether the outcome is both correct and physical. It should also be mentioned
that the maximum trace distance in the Hilbert space is 1. But due to the non physical
output states generated from LI being outside the Hilbert space, trace distances above 1
can be seen.

4.3 Maximum Likelihood Estimation - Zero eigenvalues
The MLE model eliminates the issue of output states having negative eigenvalues, but
instead introduces the problem of ”polished” data, meaning eigenvalues equal to zero. This
is not as problematic as having non physical output states, but it still does not reflect the
reality of quantum states in a experimental context[6]. To determine the scale of this issue
a similar experiment to section 4.1 was conducted. Only experiments for 1, 2 and 3 qubits

13



were done, due to the data collection for these figures being quite time consuming, but MLE
tomography can be done on at least 4 qubits.

(a) 1 qubit (b) 2 qubit

Figure 4.4: Probability of MLE returning a state with one or more eigenvalues equal to zero is
shown on the heat map. Purity of the generated state on the x-axis and number of measurement
shots (total) on y-axis, distributed between the 3n measurements.

The x and y axis are the same, but this time the color map reflects the probability of the
output state having one or more eigenvalues equal to zero. Now python does not exactly
calculate eigenvalues of zero, but they are close. Due to this a tolerance of ϵ = 10−5 was set,
meaning that any eigenvalue below the tolerance was set to zero. In appendix A.4 the same
data, but with smaller tolerance values of 10−10&10−15, can be seen. But this introduced
artifacting in the data. In figure 4.4 similar trends can be seen as in figure 4.2, in the form
of a higher probability at higher purity and lower shots. If one increases the number of shots
adequately the problem of eigenvalues of zero seems to be avoidable. Figures for 3 qubits
can be seen in appendix, figures A.2, A.4e & A.4f.

4.4 Maximum Likelihood Estimation - Fidelity
The fidelity of MLE was investigated in a similar fashion to the LI model.

(a) 1 qubit (b) 2 qubits

Figure 4.5: Trace distance between the generated state, and the state estimated by MLE to-
mography is shown on the heat map. Purity of the generated state on the x-axis and number of
measurement shots (total) on y-axis, distributed between the 3n measurements.
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Again the x and y axis are the same, and the color map shows the fidelity in form of
trace distance between the MLE generated state and the true state, generated in the data
simulation step. The maximum trace distance seen is 0.5 and 0.675 respectively for 1 and 2
qubits. Which in comparison to the LI model is quite an improvement. See appendix figure
A.3 for 3 qubits.

4.5 Bayesian Inference - Fidelity
The fidelity of BI Tomography was investigated in a similar fashion as LI and MLE.

(a) 1 qubit (b) 2 qubits

Figure 4.6: Trace distance between the generated state, and the state estimated by BI tomography
is shown on the heat map. Purity of the generated state on the x-axis and number of measurement
shots (total) on y-axis, distributed between the 3n measurements.

The computational time of BI is significantly higher, resulting in only 20 states pr point on
the heat map, explaining the artifacts. Which is also why only 1 and 2 qubit experiments
have been run. BI Tomography can be run on up to at least 4 qubits. Nonetheless near
zero trace distance can be achieved at slightly lower total shots, compared to the two other
models. Anything above 102 and 103 for 1 and 2 qubits respectively, results in near zero
trace distance.
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4.6 Tomography on Soprano device
QST was applied experimentally on the Soprano device, which is a quantum processor from
Quantware[10].

Figure 4.7: Soprano Device in the QCage Figure 4.8: Schematic of the Soprano chip.

The chip contains 5 qubits with flux and drive lines allowing for control of both resonator and
qubit frequency. Qubit 0, 1, 3 and 4 are all coupled to qubit 2, allowing for the possibility of
two qubit gates. Additionally, there is an auxiliary qubit (q5) with only a flux line. When
working with experimental readout data, the ground state, |0⟩, and the excited state, |1⟩
need to be defined and separated, before tomography can be done.

Figure 4.9: Qubit 2 - Rabi oscillation.
Drive pulse amplitude on y-axis. High con-
centration of counts represent current state.

Figure 4.10: Qubit 2 - Classifier for state separa-
tion. In phase component on x-axis, out of phase
component on y-axis.

In figure 4.9 qubit 2 was driven with a microwave signal at 5.0289 GHz, corresponding to
the qubits frequency. The pulse amplitude is along the y-axis. The ground state is defined
where the wave amplitude is ∼ 0V , due to the qubit not being driven. The excited state
is defined at ∼ 0.74V corresponding to the large concentration of counts on the right. The
slices, marked by the white line, can then be used to create a classifier using the ’quantum
fitter readout tools’ package[21]. Resulting in figure 4.10, where the centered black line is
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the separator for future measurements on this qubit in both the x, y and z basis. With the
classifier calibrated, a custom sequence was designed for the measuring software Labber.
The sequence has operations for 31 different states that will drive the qubit in a spiral from
the ground state to the excited state. Each state was measured 15000 times total, divided
between the three basis measurements.

Figure 4.11: Bloch sphere with 31 measured states from qubit 2 on the Soprano device. Tomog-
raphy done with LI.

In figure 4.11 the resulting sequence of states can be seen. The measured values were defined
as zero or one by the classifier, for each basis, and the resulting expectation values where
used for QST using LI. The time progression is defined from the color red to the color green.
The figure shows a clear spiral descent from the ground state to the excited state. Now if
everything was done perfectly the states would be on the sphere surface, and not pushed into
the sphere, indicating that the states are not pure. The average purity can be calculated
according to eq 2.9. Resulting in the average purity of the generated states being 0.612.
This can occur due to a multitude of factors in the experimental setup, such as a too hot
cryostat. Nonetheless the execution of the respective parts of the process seems to have been
reasonable. The same data was processed using the LI, MLE and BI models respectively.
Figure 4.12 shows each model and all 3 combined on the Bloch sphere. Side view on the left
side and top view on the right side. All the models seem to perform equally well. This is
due to the fact that with the experiment was run with 15000 measurements, which, as can
be seen from figures 4.3a, 4.5a & 4.6a, is more than enough for a near zero trace distance.
Moreover, the risk of the LI model giving a non physical state or the MLE model giving
a state with eigenvalues of zero, is avoided due to the low purity of the generated states,
demonstrating that these models are applicable in a experimental context. See A.5 in the
appendix for more examples of tomography done on the Soprano device.
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(a) LI - side view (b) LI - top view

(c) MLE - side view (d) MLE - top view

(e) BI - side view (f) BI - top view

(g) All 3 models - side view (h) All 3 models - top view

Figure 4.12: Comparison of the three types of tomography on the 31 states measured on qubit
2 of the Soprano device[10].
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5 Conclusion
Simulation of quantum state measurements was implemented for n-qubits and wide cus-
tomizability of the quantum state is possible. QST was successfully implemented in three
distinct models; LI, MLE and BI. All three models can do tomography on at least 4 qubits
relatively efficient[17]. The inherent problems with LI and MLE where characterized and
the parameter space where they are prevalent was determined. The conclusion being that
both models are not obsolete due to negative and zero eigenvalues respectively. The require-
ment being above 103 shots total for 1 & 2 qubits and purity below unity. The purity was
demonstrated to not currently pose a issue in a experimental context, due to the states not
being pure. The fidelity of all three models was investigated and show that at few qubits,
no more than a magnitude of 104 shots are needed to perform accurate tomography, with all
models. When more qubits are added, one naturally needs to measure more. The models
where shown to perform robustly on simulated as well as experimental data, where it was
capable of doing its task at the end of the pipe line in quantum state readout. Reasonable
control of qubit 2 on the Soprano device was shown and the aim is to increase the fidelity
and hopefully perform two-qubit operations on the device. In conclusion, LI & MLE are
more favorable to use than BI in a experimental context, if the purity of the states are
sufficiently low. This is due to the quite significant increase in computational time for the
BI tomography model.
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A Appendix

A.1 Linear Inversion

(a) 1 qubit (b) 2 qubits

Figure A.1: Likelihood of linear inversion returning a non physical state on y-axis. Purity on
x-axis. every point is 280 randomly generated quantum states, which each have been measured for
1000 shots.

A.2 Maximum Likelihood Estimation

Figure A.2: Probability of 3 qubit MLE re-
turning a state with one or more eigenvalues
equal to zero is shown on the heat map. Purity
of the generated state on the x-axis and num-
ber of measurement shots (total) on y-axis, dis-
tributed between the 3n measurements.

Figure A.3: Trace distance between the gener-
ated state, and the state estimated by 3 qubit MLE
tomography is shown on the heat map. Purity of
the generated state on the x-axis and number of
measurement shots (total) on y-axis, distributed
between the 3n measurements.
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(a) 1 qubit - tol: 10−10 (b) 1 qubit - tol: 10−15

(c) 2 qubit - tol: 10−10 (d) 2 qubit - tol: 10−15

(e) 3 qubit - tol: 10−10 (f) 3 qubit - tol: 10−15

Figure A.4: Probability of MLE returning a state with one or more eigenvalues equal to zero is
shown on the heat map. Purity of the generated state on the x-axis and number of measurement
shots (total) on y-axis, distributed between the 3n measurements.
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A.3 Soprano data

(a) LI - side view (b) LI - top view

(c) MLE - side view (d) MLE - top view

(e) BI - side view (f) BI - top view

(g) All 3 models - side view (h) All 3 models - top view

Figure A.5: Comparison of the three types of tomography on decay from excited to ground state,
using measured data from Soprano device[10]. 23



(a) LI - side view (b) LI - top view

(c) MLE - side view (d) MLE - top view

(e) BI - side view (f) BI - top view

(g) All 3 models - side view (h) All 3 models - top view

Figure A.6: Comparison of the three types of tomography on spiral around z axis from ground
to excited, using measured data from Soprano device[10].
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Figure A.7: QST using LI to construct a smiley using measured data from Soprano device[10].
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