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Abstract
In this thesis I present a new system in which the superconductor-to-insultator transition (SIT)

can be studied. The system consists of a well defined array of superconducting islands coupled via
proximity effect (Josephson junction array). The array is chemically etched in a square pattern of
a thin aluminum (Al) film, epitaxially grown on a superconductor/semiconductor hybrid material.
The advantage of this new system is related to the semiconducting properties maintained in the
system, hence the carrier density can now be controlled by gate-tuning. This provide a knob of
EC/EJ to drive the system through the SIT.
I present a study of different tuning parameters, including gate voltage, perpendicular field and
temperature and I provide with a complete phase diagram for a semiconductor Josephson junction
array and show behavior similar to a 2D disordered superconducting thin films. The well defined
periodic structure of the array lead to unique commesurability effects when a perpendicular field is
applied. I present a current-driven transition from a frustration dip to a frustration peak. Scaling
analysis revealed critical exponents found for integer and fractional frustration fields.
The thin Al film, with the thickness d � ξ0, allow for in-plane field studies where the Zeeman
energy will suppress superconductivity. The effect of an in-plane field was observed in a gate-
temperature driven phase transtion, where different values of an applied in-plane magnetic field
lead to two main obsevations; the in-plane field destroy an intermediate metallic state observed
in a zero field study and improved scaling analysis with a set of critical exponents diverging as a
function of the applied in-plane field.
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Chapter 1

Introduction

A rather intriguing phenomen arise in some materials at low temperature where repulsive electrons
produce paired up states, which is more favorable than staying apart. The pairing of electrons
leads to a zero resistance state, ie. perfect conduction, or more referred to as Superconductivity.

After is was first discovered in 1911, it took almost half a century before it was understood
in a theory developed by Bardeen, Cooper and Schreiffer, celebrated in their unified BCS theory,
explaining the underlying physiscs that would turn almost half of the periodic table into a perfect
conductor. However, supercondutivity is rather fragile and usually disappears within a few degrees
above absolute zero[1]. The superconducting ground state consisting of bound electrons in pairs
coupled together via lattice vibrations (phonons), therefore lead to the questions what external
effects destroy the pairing and what is the underlying mechanims? This opened up a branch involv-
ing superconductivity and the transition into new states of matter. The field has remained active
for many decades and still hold up the condensed matter society [2]. In particular when we confine
our selves to two dimensions it becomes truly interesting with even more unresolved questions:
What external effects can disrupt two-dimensional (2D) superconductivity? How does disorder
affect 2D superconductivity and how can we obtain an insulating state in a continuous phase tran-
sition; the superconductor-to-insulator transition (SIT)? What new states of matter are there yet
to be explored? Many different systems have entered this field and taken on the task to try and
resolve some of these questions. Thin films have provided with many interesting and groundbreak-
ing results, studied with either amorphus or granular structure [3] and later 2D phase transitions
were reported in oxide layers [4] and in networks of superconductors (Josephson junction array) [5].

Structure of the thesis

This thesis will present an experiment towards exploring the breakdown of the superconducting
ground state into an insulating state. I will introduce a new system referred to as a semiconductor
Josephson junction array (JJA), providing a platform for studying the SIT and other fascinat-
ing properties related to Josephson junction arrays (JJAs), revealed ones the sample was happily
cooled down to ∼ 20 mK in a dilution refrigerator.

For the rest of the introductory chapter, I will present some background information on 2D su-
percondutctivity and the effect of introducing disorder, which lead to different mechanisms behind
the breakdown of the superconducting ground state into new phases. In particular, I will focus
on the transition into an insulating state reviewed as a quantum phase transition where scaling
theory can be applied. The scaling relation will later be used to characterize the SIT observed
in the 2D proximity coupled JJA. In Chapter 2, I will provide a more detailed description of the
sample where quantum phase transitions can be studied. This will imply a description of a new
superconductor/semiconductor hybrid material and a design of the sample, utilizing some of the
properties this material provides. The semiconducting properties which are still remained in the
system, gives a new knob where the carrier density can easily be controlled electrostatically, and
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will constitute as a tuning parameter in the study of SIT. I end this chapter with a few measure-
ment techniques involved with low temperature physcis and details on using a dilution refrigerator.
In Chapter 3, I will present some resluts found in the study of this new system. The chapter serves
as an elaborating part and should be combined with Appendix A, where the main results of the
study will be presented as a frst draft manuscript in a paper format. In the chapter I provide a
detailed description of the method used to perform scaling analysis to extract critical exponent
related to the characteristic phase transition. In addition to, I present some more detailed results
discussed in the manuscript. I therefore recommend the reader to jump to Appendix A before
moving on to Chapter 3. Chapter 4 will summarize the study and comment on some results,
leading to a discussion of open questions and further analyses to be made.
Appendix A presents the experiment and main results in a paper form with purpose of publishing
after further analysis have been performed. Appendix B,details on the fabrication procedure for
the devices made on an InGaAs/InAs heterostructure. Appendix C, present in a table form main
results of two different measured devices (A and B), showing similar characteristic phase transi-
tions. Appendix D show two supplental figures.

To clarify figure reference; figures with decimal numbering refer to chapters of the thesis part,
while none decimal numbering are used for figure reference in the manuscript, see Appendix A.

1.1 Superconductivity in two-dimensions
So why are two-dimensions so much different form having three dimensions and why have so many
scientists devoted them selves to study this particular low dimensional system? The explanation
can be parted into two, where the first is related to the effect of disorder on superconductivity.
It seems rather intriguing why superconductivity should still exist, since 2D is the marginal di-
mension of localization and superconductivity[2], hence in 2D an interplay between the two effects
bring forward the question why superconductivity should even exist? The second part is related
to the underlying mechanism that breaks down superconductivity in two-dimensions and the entry
to new states of matter.

Disorder and superconductivity

Superconductivity is well understood with the highly developed BCS theory attributing the su-
perconductivtity to pairing electrons (Cooper pairs), held together in a many-body phase-coherent
state, with a binding energy defined to be 2∆, where ∆ is the gap[1]. We can characterize the
superconducting state by a complex order parameter ∆(r) = |∆(r)| exp(iφ(r)), and surpression of
∆(r) to zero, hence destroys the superconducting state. We now gradually introduce disorder to the
system; in the first limit of weak disorder Anderson argued in his study on localization [6] that weak
disorder is not enough to destroy pairing correlations, hence superconductivity is unaffected in this
limit. Even in the limit where all single particle eigenstates become localized superconductivity
still exists [2]. By further increasing disorder we eventually approach the critical regime where all
electrons are localized on single sites and we obtain a superconductor-to-insulator transition (SIT).

The fermionic and bosonic mechanism

The interplay of localization and superconductivity brought forward a rich field of studying the
nature of the SIT and still adresses many open questions. Two competing models try to explain
the mechanism that drives the system into a new phase. First, it was argued that a combined
action of Coulomb interactions and disorder, would reduce the pairing amplitude and break the
Cooper pairs up into their consistutent fermions fermionic mechanism.
Another side holds that Cooper pairs would remain bound and view the SIT as caused by phase
fluctuations, which destroy long-range phase coherence. This idea was modelled by Fisher in
1990[7], where increasing disorder for charge-2e bosons showed enhanced phase fluctuations bosonic
mechanism. In his study he included temperature- and magnetic-field-driven SIT and provided
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with a complete phase diagram for 2D disordered superconductors[7]. It became an important
milestone for the field, where he predicts the SIT to happen at exactly the universal quantum pair
resistance RQ = h/(2e)2.

1.2 The SIT - A quantum Phase transition
The SIT is an example of a quantum phase transition (QPTs) where the system is driven through its
critical point by the change of some control parameter. The phase transition is a zero-temperature
phase transition, however, it also affects the behavior of a system at finite temperature [8]. In
the vicinity of the quantum critical point between the two phases, there are many competing
interactions, however a slight change in the control parameter will favour one type of order over
the other. These fluctuations between the two states are quantum fluctuations and is the driving
force of the QPT [9].
The transition explained can be pointed to different control parameters, depending on the system
that are being driven into the insulating phase. In 2D thin films changing the parallel- or magnetic
field, disorder, charge carriers, etc. can bring the sytem through the critical point [3, 4, 5] also
reported in some JJAs [10] where an insulating state has been observed. In more recent studies a
transition to a metallic phase was found [11, 5].
For a general view of the QPT controlled by a parameter δ, a generic phase diagram [2] is presented
in Fig. 1.1. The two phases; superconducting (S) and insulating (I) phases are viewed on each
side of the quantum critical point δc. By increasing the control parameter δ, it changes the
superconducting transition temperature Tc, and vanishes completely at δc before entering the
insulating part of the phase diagram. In the middle where the system is neither superconducting
nor insulating we define the quantum critical (QC) region where quantum fluctuations are enhanced
and QC scaling is obeyed. This might be the open window for experimental work to figure out
what happens in the shadowed fan of QC behavior.

IS

QC

T

Tc0

0

Tc

δc
δ

Figure 1.1: Generic phase diagram of a SIT presented as quantum phase transition. SIT controlled by a
parameter δ cross from superconducting state to an insulating state. The quantum critical point δc is where the
system enter the insulating part of the phase diagram. In the middle where the system is neither superconducting

nor insulating there is quantum critical region.

Scaling model near the critical region

In this section a scaling model will be presented and later used in the study of SIT in a 2D proximity
coupled Josephson junction array. The theory of quantum phase transitions is constructed in a
similar way as thermodynamic phase transitions, and according to the scaling hypothesis[8] all
physical quantities near the vicinity of classical phase transitions have a singular part, which shows
power law dependencen on a variable with the length dimension and leads to divergent lengths
near a phase transition. The correlation length ξ depends on the proximity to the phase transition,
determined by the value of the control parameter, eg. temperature, hence the correlation length
is defined [9]

ξ = ξ0 | t |−ν , (1.2.1)
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and diverges at the transition point. The exponent ν is the correlation length exponent, ξ0 is
zero-temperature correlation length and t = |T − Tc|/Tc is the reduced temperature. Apart from
the correlation length I introduce the relaxation time of the order parameter in the critical region

τ ∼ ξz, (1.2.2)

and z is the dynamical critical exponent. If the transition is controlled by some other parameter,
δ, than temperature, eg. magnetic field or disorder, it simply changes t and I define the general
expression

τ ∼| δ |−zν . (1.2.3)

Divergent correlation lengths and times with divergent behavior of the mesureable quantities near
the phase transition lead to the use of scaling analysis, which reveal critical exponents. The scaling
theory can further be used to determine the universality class of the transition [9, 2]. Matthew
Fisher [2] presented a scaling theory at nonzero temperatures, to be used to characterize the
measured resistance in the regime of critical fluctuations. Written in terms of control parameter δ
and temperature this leads to

R(δ, T ) = RcF(| δ − δc | T 1/−zν), (1.2.4)

where R is the sheet resistance, Rc is the resistance value at the critical point and F is an arbritrary
function. The scaling relation assumes a continuos and direct SI transtion controlled by some
parameter. In percolation theory it suggests two distinct numbers to classify whether the system
obey classical or quantum effects. For classical percolation zν = 4/3 and for quantum percolation
zν = 7/3 [12]. When it comes to experimental use of (3) we measure the product zν, however, for
a system with long-range interactions, like a bosonic system where Coulomb interactions are longe-
range, z is believed to be unity, leaving ν as the variable exponent to classify the transition [2].
The scaling of measured resistance will be used to characterize a SI transtion of the 2D proximity
coupled Josephson junction array reported in this thesis.

1.3 JJA - A platform to study SIT
Through years different systems have entered the field of studying the superconductor-to-insulator
transition can be studied and provided new insights in 2D superconducting systems; do we obtain
a direct transition to from a

Superconducting
 island

C, EJ

 C0

Tunnel 
barrier

Figure 1.2: Schematic of a Josephson junction array of square superconducting islands. Josephson
junction array of superconducting islands weakly coupled by tunnel barrier. The junctions can be characterized by
the Josephson coupling EJ and the junction capacitance EC . Each island has a self-capacitance C0 to the ground

far away.
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superconducting to insulating state and what underlying physics determine the transition?. In
this thesis I will present a system providing a new platform in which the SIT can be studied.
This involves a combination of a new superconductor/semiconductor hybrid material and a well
defined 2D array of superconductors. I will in this section breifly state a model of an array of
superconductors, more familiar known as a Josephson junction array.

The array can be thought of as a network of superconducting islands that are weakly coupled
by a tunnel junction, shown in Fig. 1.2. The tunnel junction is characterized by the coupling
strength between the adjacent islands, determined by the Josephson energy EJ = Φ0Ic/(2π), with
Ic as being the junction critical current[13]. The junction has a capacitance C used for deter-
mining the charging energy EC = e2/2C. Each island is coupled to a ground far away and has a
self-capacitance of C0. These are the two characteristic energy scales; where the Josephson energy,
associated with tunneling of Cooper pairs between the superconducting islands, and the charging
energy, setting the energy scale for which one extra electron charge can be added to a neutral
island. The competition between the single-electron effects and the Josephson effect gives rise to
SIT when the ratio EC/EJ is varied [13].

Josephson junction arrays also provide an ideal system to study frustration effects when a
magnetic field is applied perpendicular to the array. This is unique for a periodic array of super-
conducting islands and is where a JJA profoundly differ from its cousin; granular superconducting
thin films. In granular thin films the small grains constitute as small superconducting islands and
are randomly spread [8]. They have different sizes and various coupling energies. In a well defined
periodic array there is a controlled way to continously tune the coupling strength and the periodic
lattice structure will lead to phase frurstration effects, and will be discussed in later in the this
thesis.



Chapter 2

Device design and measurement
setup

The design of the sample used for studying the SIT in a Josephson junction array will be presented
before moving on to the measurement setup. For detailed fabrication steps I refer to Appendix B,
where each fabrication has been divide in the different sections:

� Mesa patterning

� Island patterning and etching

� Deposition of insulator

� Deposition of top gates

2.1 Design of SIT sample
The design of the sample used to study the SIT and material properties will be presented in this
section. The SIT sample has been cleaved in dimensions 2.5×5mm2 of wafer JS118, which utilizes
an InAs/GaAs quantum well structure with 7nm epitaxial grown aluminum (Al) on top, see layer
stack of JS118 in Fig 2.1. The wafer has been grown in Chris Palmstroms laboratory in Santa
Barbara, CA, by Javad Shabani, and was carefully characterized by the 2DEG team of Center for
Quantum Devices with reference to Morten Kjærgaard’s Thesis [14], in which details upon mobility
and density measurements can be found along with properties of the thin Al film. Using a Hall bar
geometry the mobility and 2DEG electron density of the wafer was found to be µ = 7.500cm2/Vs
and n = 3.2·1016m−2 respectively. These measurements were performed at zero gate voltage where
the system has two subbands. To avoid the two subbands I operate at a slightly negative voltage,
where the system is believed to be in the single band limit.

The device design consists of an etched mesa patterned in a Hall bar convetion, with Al arrays
(grey) constituting as the Josephson junction arrays. The array of 40x100 islands has been made
by chemical etching the thin Al film into a square lattice, leaving the 2DEG (blue) exposed be-
tween each superconducting island, shown in Fig. 2.1a. The array is covered witg a topgate (gold),
constituting as anew knob to control EC/EJ . Between a topgate and the Al array a dielectric
layer of Al2O3 oxide layer has been deposited.

The sample is designed to utilize coventional Hall measurements, hence probing the longitudinal
voltage Vxx and the Hall voltage Vxy. Vxy data will not be presented in this thesis. In order to
perform 4-terminal measurement each Hall bar is designed with 4 side probe contacts and 2 end
contacts constituting source and drain. The complete sample consists of a total of 12 Hall bars,
each with a different array pattern characterized with the spacing between the aluminum islands,
a and the dimension parameter of the square island, b, see Fig. 2.1b. The Hall bars each have
a length of 150µm and a width of 40µm, where the length is taken as the distance between the
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1µm
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Figure 2.1: Semiconductor/superconductor Josephson junction array. a Schematics of the device,
involving a square array of superconducting Al islands. The Al film is grown epitaxially on a InGaAs/InAs

heterostructure c. The device is connected to a current source and measured using a four-terminal measurement
for the longitudinal resistance Vxx. b Scanning electron micrograph of the sample. False colored us to map the

layers onto c where the layer stack of the material is shown.

two end contacts. This size of the Hall was chosen for convenience in the fabrication steps of the
sample. The size of the array pattern exactly fits into one writing field determined by the pro-
vided e-beam system, and will preventing stitching errors once the array is patterned on each Hall
bar. Stitching errors will create irregularieties in the array pattern, hence destroy the periodic-
ity of the array and is therefore highly prioritized to be avoided in the fabrication of the SIT sample.

The array pattern has been extended on both sides of the side probes on the Hall bar, however,
the probed part of the array will be set by the spacing of the side contacts, L = 110µm and the
width of the array, which is equal to the Hall bar width, W = 40µm. The ratio L/W is used to
define the resistance per square Rs. . Further details on array patterning will be specified in the
fabrication steps in Appendix B.

2.2 Measurement setup
Dilution refrigerator

The measurements presented in this thesis has been performed in a Triton cryofree dilution refrig-
erator, providing the cooling source for the experiment to reach low enough temperatures to obtain
a superconducting state in the thin Al film. The unpatterned Al film has a critical temperature of
∼ 1.6 K [14]. To study the superconductor-to-insulator transition lower temperatures are prefered
to enter the regime of quantum critical behavior. The fridge can provide an extensive cooling
process by mixing 3He and 4He in the mixing chamber unit and by continously distrubing the
equilibrum phase, the fridge can reach a base temaperature of Tmc = 20 mK, providing the right
enviornment where kBT is low enough to no longer hide quantum effects.
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The measurements have been performed in a newly setup fridge system. In the setup of the
fridge, RF and RC PCB filters were installed. The RC filter is a three stage of first a 7-pole π filter
with a cut-off frequency fc = 80 MHz. The next two stages are low pass filters with R2 = 500 Ω,
C2 = 2200 pF and R3 = 1200 Ω, C3 = 1000 pF. In the cooldown of the first sample, the resistors
in the RC filters was found to become superconducting. The resistors was made with a Tantalum
Nitride Resistive film, which turned superconducting ∼ 1.5 K. In the next cooldown the RC filters
had been change to filters with non-superconducting resistors. However, no significant changes was
found in the measurements of the two cool downs.

The sample has been mounted on a Copenhagen board sample board, which has been developed
for RF resonators and provide 48 DC lines. For the SIT experiment I will operate at such low
frequencies < 100 Hz that fast lines will not be needed. The sample was bonded, using a wire
bonder of silver thread and then mounted in the puck according to the vector magnet installed
in the fridge. The magnet is (1, 1, 6) T vector magnet and the sample has been placed in the
orientation that allow for the highest field in the plane of sample when loaded in the dilution
refrigerator, see Fig 2.2a.

Measurement teqniques

I here present a typical setup for the measurements performed on the SIT sample. I will describe
some of the main strategies to account for when measuring in a voltage bias setup and in a current
bias setup. In both cases I have used a 4-terminal setup.

For the voltage-bias setup, I source V ACin = 5 µV by using a Stanford Research SR830 Lock-
in, providing the AC signal at a frequency f = 77 Hz through a voltage divider with a factor
1/10.000. The AC excitation is low enough to ensure not smearing out important feautures in the
measurements. By increasing the excitation the signal strength will improve but also introduce
heating of the sample. I use a Low Noise/ High Stability IV Converter SP983 IV to measure
the current through the sample V ACout . I probe the longitudinal voltage Vxx using a home build
preamplifier with a sufficiently high input impedance to allow measurements in the insulating
regime where the resistance is of the order R ≈ 100MΩ. I control the voltage on the topgate using
a DAC, providing a range of ±10V. The described setup of a voltage bias measurement is shown in
a schematic in Fig. 2.2b. The magnetic field was applied using two different methods; the Oxford
Power Supply is used to power the magnet when sweeps in the range of 1T is needed, for example
in in-plane field studies the where the critical field of the Al is ∼ 1.6 T. In perpendicular field
studies much lower field strengths are required, < 100 mT, and very fine sweeps at low field was
made using a combination of standard 2400 Keithley Source meter and a Kepco Power Supply to
amplify the current. A magnetic field strength of 100 mT in an Oxford standard vector magnet
require a current of 5.9 nA, and cannot be provided by a standard Keithley. The Kepco has a DC
output range of ±20 A.

A different setup is used for current bias measurements. A Yokogawa provide as the DC voltage
supply through a 100kΩ bias resistor. When the sample resistance is of the order of the bias resistor,
some of the current will start to flow back and only a percentage through the sample. It is therefore
important to measure the current that actually goes through. The critical current of which the
array becomes normal is IAc ≈ 20 µA, which sets the current scale for the DC measurements. I
bias with an AC component through 1 GΩ resistor with 5V excitation, which gives IAC = 5 nA.
I measure the differential voltage through a voltage amplifier that amplifies both AC and DC
components of the signal by a factor of 100. The output is measured with a lock-in for the AC
part and a DMM to measure the DC component. The differential resistance, dV/dI is found from
the measured AC voltage and current. The resistance R is found from dividing the measured DC
voltage with current.
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Figure 2.2: Measurement setup. a Orientation of sample JS118.12 bonded on Copenhagen board in the puck. b
Voltage bias setup, showing 4-terminal measurement of the device. Source V AC

in = 5 µV by using Lock-in,
providing the AC signal at a frequency f = 77 Hz through a voltage divider. The current is measured through IV
converter and I probe the longitudinal voltage Vxx using a home build preamplifier, which amplies by a factor of
1000. The AC signal is measure with a lock-in. c Current bias setup, showing 4-terminal measurement of the

device. The DC voltage supply through a 100 kΩ bias resistor combinated with 1 GΩ resistor with 5V excitation,
leading to IAC = 5 nA. I measure the differential voltage through a voltage amplifier that amplifies both AC and
DC components of the signal by a factor of 100. The output is measured with a lock-in for the AC part and a

DMM to measure the DC component.



Chapter 3

SIT and commensurability effects in
a semiconductor JJA

In this chapter I will present data that serves as supplement to the paper in Appendix A. In the
chapter I will provide with another version of the three parameter phase diagram to highlight a few
features explained in the manuscript and the observed transitions in relation to the boson model,
first formulated by Matthew Fisher in 1990[2]. I will present commensurability effects, including
low field frustration effects and vortex penetration, observed at higher fields for two different gate
voltage values values. I end this chapter with a detailed description of a method used to perform
a scaling analysis of the vortex insulator-to-dynamic votex transtion.

3.1 Phase diagram
In this section I present the phase diagram dicussed in Appendix A with a few more remarks and
details in relation to the different transitions dependent on the tuning parameter. I discuss the
phase diagram according to the dirty boson model of 2D superconducting thin films proposed by
Matthew Fisher[7]. At finite field the semiconductor Josephson junction array exhibit a supercon-
ducting state, which will be destroyed ones the temperature, T is increased or the gate voltage,
VTG, is decreased. A gate-temperature driven SIT is shown in ground plane in Fig. 3.1a.
According to the boson model (Fig. 3.1b), the disorder-temperature tuned phase transition can
be described in terms of vortex unbinding, in the same way as a Berezinskii–Kosterlitz– Thouless
(BKT) transition, where vortex are paired in the superconducting state and unbind when entering
the insulating state. It is expected that a Josephson junction array undergo a BKT transition and
has been observed in different experiments on JJAs [13, 15]. It is therefore favorable to study the
gate-temperature driven phase transition captured for this new type of JJA system, to see whether
the system undergoes a BKT transition. A model that encounter the structure of the square Al
array is therefore needed to determine if there is a BKT transition. In ref. [3] a method to de-
termine the BKT transistion temperature is found by fitting the BKT square-root dependence on
tempererature [13]

R0(T )/RN = c exp(−b[EJ/(T − TJ)]1/2), (3.1.1)

where b and c are constants of 1st order, the normalized temperature is defined T/EJ(T ). The
resistance R0 is normalized with respect to the normal-state junction resistance RN . The model
presented in (3.1) can be a way to analyze the gate-temperature tuned transition and determine
if there is a BKT transition, also predicted to occur in the disorder-temperature driven transition
in the boson model.

At zero-temperature and at finite magnetic field we move along the VTG axis, (left side plane
of Fig. 3.1a). The system exhibit a true superconducting state and upon increasing the mag-
netic field or VTG superconductivity will be destroyed and the system enter and insulating state
is entered. In the dirty boson picture this is decribed as a vortex-glass phase, where Cooper-pairs

10
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are localized while vortices condense ones we enter the insulating phase. In the superconducting
state the opposite happens where Cooper-pairs have condensed (bose condensed) and vortices are
localized. In this scenario the Cooper-pairs are present in both phases, and therefore the quantum
pair resistance RQ = h/(2e)2 ≈ 6.45kΩ is a universal value for the transition. In Fig. 3.1a, a green
contour line corresponding to 6.45kΩ has been plotted in the phase diagram for the JJA. Both the
gate-field tuned and gate-temperature tuned SIT do not transition at the universal value. There
might be different explanations for this observation and leads to the question whether Cooper-pairs
have been broken at the transition and system is now dominated by fermionic physics?

The thermodynamic phase plane, the temperature-field driven transition, has a very different
concavity compared to the diry boson model. This side of the phase diagram has been studied
extensively in a current-voltage setup and I provide a detailed description in Appendix A.

3.2 Commensurability effects in a JJA
The contructed Josephson junction array has been studied intensively in a perpendicular magnetic
field where magnificent periodic features emerge. This is where JJAs stand out from studies in thin
films and granular structures where these effects will not be present. The well defined periodic
structure in a JJA gives rise to low field frustration effects. Vortices enter the array above a
threshold and due to the junction arrays periodic lattice struture, it gives rise to a potential where
vortices are pinned to the sides. Only above the depinning current vortices will start to flow[16].
And at low magnetic fields the properties of the array are determined by the single vortices entering
the array and upon increasing the magnetic field more commensurability effects come into play
[8, 1].
The vortices enter the array in a rational number f = p/q and the groundstate of the system

consists of a cherckerboard configuration of vortices with a q × q elementary cell[1]. For f = 1/2
the vortices are filling half of the array and for the integer f = 1, one vortex has filled each
elementary cell, shown in Fig. 3.2a. When the array is in one of these groundstate configurations,
it resides in a superconducting state, represented as minima in R(B), see Fig. 3.2b, where a
collection of integer frustration minima at low field values is observed. For a square lattice minima
are expected to appear at f = 1/2, 1/3, 1/4, 2/5, ..., and small changes in the magnetic field can
disrupt the commensurated state so vortices become mobile, hence lead to dissipation [8], which
will accompain the flow of current through the lattice junction.

The first integer frustration minima is expected to appear at B0 = Φ0/A, with A = (a + b)2

being the area of the unit cell and Φ0 is the flux quanta. Frustration minima was observed in two
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samples; device A with a seperation of b = 150nm and device B with a separation b = 350nm. The
area of the unit cell will be slightly different in the two samples. For device A, the first minima
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corresponding to interger f , is expected to appear at ∼ 1.8 mT, and the next at minima 2B0,
and so forth. In Fig. 3.2b clear frustration dips of device A appear with a period of ∼ 1.7 mT
ending with the last observed minima at ∼ 7 mT, corresponding to the 4th frustration field where
the ground state consists of 4 vortices aligned in each elementary cell. Dips at fractional field
frustration values appear in between the integers. Each trace in Fig. 3.2b correspond to different
temperatures, where blue is lowest and red is highest. By continously increasing the temperature
the frustration minima smear out and eventually disappear at ∼ 1.5 K.

In reference to Fig. 3.2b, at relatively higher field a different but strong periodic feature appear
with the first event at ∼ 12 mT at low temperature, persisting even at high temperatures where
the event has moved down in field. This effect is not related to the alignment of vortices in the
periodic lattice, instead it reflects the shape of the superconducting island. The feature is the
vortex penetration field of the superconducting island and the first event correspond to exactly
one vortex penetrating the islands. For each ∼ 4mT, the next event appear, corresponding to the
next integer number of vortices pentetrating the island. The effect has been studied in a 1 µ m
square aluminum island reported in ref. [17, 18].
The penetration fields are strongly dependent on temperature and decrease uniformly when the
temperature is increased. The effect has been observed at different gate voltage values both in the
regime where the system obtain its normal state resistance and appear even stronger in a regime
where a field-tuned transition to a metallic state is observed at the critical value Bc = 40 mT.

3.3 Vortex insulator-to-dynamic vortex state
The vortex insulator-to-dynamic vortex state appear as a clear transition from frustration dip to
frustration peak in the measured differential resistance dV/dI, see Fig. 3.4a. However, the mea-
sured resistance R = V/I remain dips at all frustration values through the transition, see Fig.
3.4b,. One interpretation suggests that the system is still pinned, as the resistance would capture
dissipation due to depinning [19] and the transition from frustration dip to a frustration peak must
be related to another mechanism prveiously explained as a dynamic Mott transition [19].
The transtion can be viewed in the same way as a superconductor-to-insulator transition with
current as the control parameter, referred to as a current-driven transtion. It is possible to identify
the seperatrix that divide the two different states; the insulating vortex state from the dynamic
vortex state where frozen vortices have become mobile. In the language of phase transitions this
leads to scaling of the measureable quantity with respect to the order parameter, and reveal a
critical exponent which characterizes the system near the transition.
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remain a dip at frustration filling values when an electric current is applied.
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Scaling model of frustration dip-to-peak

In this section I will provide a more detailed decription of a method used to perform scaling analysis
in relation to equation (1.2.4). The scaling relation can be written in terms of the measureable
quantity dV/dI, the scaling order parameter I and the variable b = f − fc, where fc is the field
frustration value. The scaling relation takes the form [19]

dV (f, I)

dI
−
[dV (f, I)

dI

]
I=I0

= F
( | I − I0 |
| b |ε

)
. (3.3.1)

I will present the method used to find the critical exponent for transtion of frustraion dip-to-peak
of f = 1. For this type of transition there is a left and right side transition, to be analyzed
independently. I find the seperatrix for both sides from the condition d(dV/dI)/df |f=fc = 0,
revealing one for each side. The separatrix on left side correspond to a critical current of IL0 = 2.5µA
and the right separatix is equal to a critical current of IR0 = 2.35µA. I proceed to analyze the
sides independently by first identifying the regions where the transitions are clear. The left and
right transition are presented as two subpanels in Fig. 3.4a and appear in regions far from the
frustration minima. If we move further into the critical region, the transition obtain some behavior
of the other side and scaling is not possible close to fc.
A log-log plot of d[dV/dI − dV/dI(I − I0)]/dI and 1/b was constructed for both the left and right
side. It’s slope is equal to ε if equation (3.3.1) is obeyed. Fig. 3.5b shows the result obtained from
the left side transition with both the upper (red) and lower (blue) branch. The points collapse in
a region of a same sloped trend until the lower branch saturates while the upper branch continue
with a slightly steeper slope. Fitting to the region where both branches collapse, disregarding the
outlying points, I obtain a value for the critical exponent for the transition equal to εL = 1.5.
Following the same procedure for the right side, the two branches are clearly separated and follow
different slopes. The upper branch reveal a slope similar to the one obtained from fitting to the
left side transition εR = 1.7 while the upper branch suggests a larger critical exponent, see Fig.
3.5c. The two different exponents found for the upper and lower branch on the right side, explains
why the scaling plot presented in Fig. 5 in the Appendix A is not a good scaling compared to the
transition on the left side. This method can be used to determine the critical exponent of more
frustration dip-to-peak transitions.
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Chapter 4

Conclusion and Outlook

To conclude, the new system of a superconductor/semiconductor Josephson Junction array have
successfully demonstrated a gate-tuned phase trnasition from a superconducting state to an in-
sulating state. In a gate-temperature driven phase transition an intermediate state of metallic
behavior was observed and leads to the question if scaling is possible in the regime where of no
direct SIT. The data was analyzed according to the relation presented in eq. (1.2.4) and revealed
a critical exponent ∼ 2.7. It is still not clear why the scaling works for this transition when the
system exhibit an intervening state in SIT.

The gate-temperature driven SIT was studied at different values of an applied in-plane field and re-
vealed a direct transition from a superconduting state to an insulating state, with no intermediate
metallic state. A scaling analysis improved scaling and showed a collapse of the critical exponent
when the applied field was increased. The diverging exponents are still unresolved, however, seem
to clearly dependt on the effect of an in-plane magnetic field.

In a perpendicular field commensurability effects at low field values were observed. A current-
driven transition of frustration minima to frustration peak was studied and suggests a transition
where frozen vortices become mobile when a critical current is applied. Scaling analysis of the
current-driven transition revealed exponents for f = 1 close to 1.5 for the lower branch and 1.7 for
the upper branch. A critical exponent of frustration f = 1/2 was found to be ∼ 2. The current-
driven dip-to-peak evolution of frustration fields show same indications of a previously reported
vortex Mott insulator to vortex metal transition. The scaling analysis presented here reveal differ-
ent exponents for each frustration field values, hence the transition presented in this study is still
open for interpretation. More frustration field values are yet to be analyzed to see if the critical
exponents can divide into integer and fraction frustration filling.

A complete phase diagram of the parameters VTG, B⊥ and T , was constructed and show
similar transition behavior compared to the previously proposed phase diagram of 2D disordered
superconducting thin films [Fisher]. The phase diagram is yet to be examined and an analysis of
the gate-temperature driven transition is favored to see if the system undergoes a BKT transition,
expected for JJAs[16] and reported in previous studies of JJAs [20].
The thermodynamic phase plane show a different concavity and was characterized in a current-
voltage study, where a field tuned transition to a metallic state was observed and a field-tuned
transition to an insulating state was observed in the limit where the normal state resistance is
similar to the separatrix Rx ∼ 13 kΩ.
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A Semiconductor Josephson Junction Array
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In the relation to many years attention drawn to two-dimensional (2D) systems of proximi-
tized superconductors and the breakdown of the superconducting ground state by tuning different
control parameters, we here report on a superconductor/semiconductor hybrid system combined
with a Josephson junction array (JJA), providing a new platform to study the superconductor-
to-insulator transition (SIT). We present a system with gate-control of EC/EJ , and study a col-
lection of parameter-tuned transitions, including temperature-, perpendicular magnetic-field- and
diorder-tuned transitions from a superconducting-to-insulating state and we provide a complete
three parameter phase diagram of a semiconductor/superconductor JJA. We observe a unique set
of commensurability effects when imposing a perpendicular magnetic field, and study a current-
driven transition from commensurated field minima to peaks, interpreted in context of a vortex
insulating-to-dynamic vortex state. In an in-plane field study, we show a collapse of the critical
scaling exponent as we approach the paramagnetic normal state.

Introduction
Through decades 2D superconductors and new phases

associated with destroying superconductivity have been
studied intensively and still remain an active field. In
particular the effect of disorder on superconductivity
seemed rather intriguing, why superconductivity should
still exist with an interplay between localization and
superconductivity [1]. However, experiments have suc-
cesfully shown that 2D superconductivity exists and can
be destroyed by tuning different parameters, including
temperature, disorder and magnetic field. Through
years there have been many different approaches to-
wards studying the breakdown of superconductivity in
2D, including granular and amorphous thin films and
later studied in Josephson junction arrays and different
types of oxide layers [2–4]. The fascination and interst
in this field relates to the constant revelation of new
unresolved problems associated with the breakdown of
the superconducting ground state into new states of
matter. In many cases a transition to a metallic state
was observed [4, 5] and later other systems yielded a
direct transition into an insulating phase where the
conductivity exhibits weak localization, strong localiz-
tion or activated behavior [6]. The mechanism behind
the superconductor-to-insulator transition (SIT) has
pushed competing paradigms either modelling the SIT in
terms of phase fluctuations, hence destroying long-range
superconductivity [1] (bosonic) or in terms of Coulomb
repulsion as the main active ingredient to reduce the
pairing amplitude (fermionic).

In the recent years, attention has been devoted to
the study of island systems as Josephson junction
arrays (JJAs), which in its essense is very similar to
a granular superconducting thin film where islands of
different sizes are randomly distributed and due to
proximity effect leads to a superconducting state. In
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Figure 1: Semiconductor/superconductor Josephson
junction array. a Schematics of the device, involving a square

array of superconducting Al islands. The Al film is grown
epitaxially on a InGaAs/InAs heterostructure c. The device is

connected to a current source and measured using a four-terminal
measurement for the longitudinal resistance Vxx. b Scanning
electron micrograph of the sample. False colored us to map the
layers onto c where the layer stack of the material is shown.

a JJA the ingredients to drive the phase transition
is given in the competition between the Josephson
energy and Coulomb blockade, which can be tuned
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Figure 2: Gate-tuned superconductor-to-insulator
transition. a The measure Resistance as a function of

temperature. Each curve correspond to a different VTG value.
The separatrix to is highlighted with a dashed line at

VTG = −3.75 V, and correspond to critical value where all
temperature cross in a single point in b at Rx ∼ 13 kΩ. c Scaling
plot of Rs/Rx as a function of the variable t, plotted with best
exponent α = 0.37 and show data collapsing on both upper and

lower branch.

by either physically changing the geometric param-
eters of the JJA (island size or separation), or by
electrostically tuning the density of charge carriers.
Approaches towards gate-tuned transitions have been
reported, involving specific types of (JJAs) with a hy-
brid of superconductor-metal-superconductor, where a
phase transition into a metallic phase was observed [4, 7].

We study JJA in a new system in which a gate-
tuned transition to an insulating state was observed.
We utilize a new material, consisting of a supercon-
ductor/semiconductor hybrid system consisting of
InGaAs/InAs 2D electron gas (2DEG) and epitaxial
grown Al. Recent measurements reported on gateablility
of the material [1] and even showed promising results
toward realizing topological states of matter that might
be interesting in future studies. These remarkable
results encourages to pursue new applications of the
material. The advantage of this new system is related
to the semiconducting properties maintained in the
system, hence the carrier density can now be controlled
by gate-tuning, which affects the coupling between
islands. We here report on a new gate-tunable system
that combines a 2D semiconductor/superconductor
with a large Josephson junction array in the sequence
super-semi-super.
Our system consists of a proximity-induced array of
made out of epitaxial grown aluminum (Al) with a
thinkess of 7 nm on top of an InGaAs/InAs heterostruc-
ture. The array of 40x100 islands has been made by

chemical etching the thin Al film into a square lattice,
leaving the 2DEG exposed between each superconduct-
ing island (Fig. 1). The islands have a width of a = 1µm
and are separated by a distance b = 150 ± 9 nm (device
A) and b = 350 ± 11 nm(device B) between the edge
of each neighboring islands (Fig. 1.b). Characteriza-
tion measurements of this material gives a density of
n = 3 · 1012cm−2 and a mobility of µ = 104cm2/Vs,
yielding a mean free path of le ∼ 230 nm [1], which is
comparable to the island distance. These measurements
were taken at zero gate voltage where the system has
two subbands, we therefore operate at slightly negative
voltage, where we believe the system is in the single
band limit. The array was covered with a 40 nm of
Al2O3 consituting as an insulating layer between the
array and a topgate (10 nm Ti/250 nm Au) deposited
on top of the array (Fig. 1).

The system show that by systematically depleting
more and more carriers we observe a transition into
an insulating state. We study the system affected by
a perpendicular magnetic field in which an intervening
metallic phase has been observed along with remarkable
commensurability effects reflecting the periodicity of the
array and area of each superconducting island. The very
thin Al film allow for in-plane field studies, in which
the superconducting properties are destroyed and the
system enter a normal state at the critical in-plane field
value.
We present data on both devices, which have been
measured in a dilution refrigerator using four-terminal
lock-in measurement setup, unless differently stated we
always show the differential resistance dV/dI. We begin
by describing measurements of device A and find similar
results in device B.

Gate-tuned SIT
We first discuss the gate-tuned transition from
superconducting-to-insulating state. In reference to
Fig. 2a, we show measurements of the resistance per
square islands Rs as a function of temperature ranging
from T=30 mK up to 1.8 K. Each curve has a fixed
carrier density set by the topgate voltage VTG. We
observed a gate-tuned transition from superconductor
(decrease of resistance at low T ) to an insulating state
(increase in resistance at low T ) measured up to eight
orders of magnitude of Rs. At temperatures ∼1.6 K we
observe a kink in resistance which persists even at very
negative gate values, interpreted as the superconducting
transition of the Al islands, consistent with the critical
temperature of the Al film [1]. By further cooling the
system exhibit a 2D superconducting state for gate
voltages above −3.5 V , starting with an abrupt drop in
resistance around 1 K at the highest gate value −3 V .
We identify curves saturating at finite resistance values
as an intervening metallic state where the transition
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Figure 3: Three parameter phase diagram of a
semiconductor/supercondutor Josephson junction array.
Phase diagram for three control parameters VTG,B⊥ and T for a
semiconductor Josephson junction array. Contour lines of real
data sets with 100 Ω and 250 Ω highlight the concavity in the

thermodynamic phase plane at VTG = −3 V.

temperature is surpressed. Decreasing the gate voltage
down to −3.9V we approach an insulating state in which
the resistance increases as the temperature is lowered in
contrast to the superconducting state. The insulating
and superconducting behavior is separated by a curve of
constant resistance in the temperature interval, which is
denoted the separatix at VTG = −3.75 V (dashed line in
Fig. 2a).

Scaling analysis of superconductor-to-insulator
transtion—In Fig. 2b we plot Rs as a function of
gate voltage with curves corresponding to different
temperatures from 30 mK to 1.5 K. They exhibit a
single well defined crossing point at a critical resistance
value of Rx ∼ 13 kΩ at Vx = −3.75 V corresponding to
the separatrix.

The existence of a crossing point of which the re-
sistance is temperature independent suggests quantum
phase transitions (QPTs) where the crossing of the phase
boundary changes the quantum mechanical ground state.
A scaling theory can be used to characterize the mea-
sured resistance in the regime of critical fluctuations
where the correlation length ξ and time τ diverges as
ξ ∝| VTG − Vx |−ν and τ ∝ ξz ∝| VTG − Vx |−zν (assum-
ing a gate-tuned transition), hence determine the critical
exponents ν and z in the scaling relation [8]

R(VTG, T ) = RxF ((VTG − Vx)T 1/zν). (1)

The scaling analysis was made by selecting curves of
temperatures from 60 mK up to 220 mK. By subtracting
the separatrix from the measured Rs a scaling analysis
with respect to the variable t =| VTG − Vx | T−α

was made. In a plot of logarithmic values of Rs vs t,
the superconducting and insulating state will develop
into two branches, shown in Fig. 2c (upper being the
insulating state and lower being the superconduting
state). To best represent both branches we find the
exponent estimated from finding minima of the variance
of slopes extracted from fitting straight lines for different
values of the exponent α = 0.1 − 0.9 for the upper
and lower branch separately in. The best exponent
which gave α ∼ 0.37 yielding a critical exponent of
zν ∼ 2.70. The result shown in Fig. 2c resembles
previously reported scaling analyses of superconductor-
to-insulator transistions reporting on different values
of the critical exponent ranging from values close to
classical percolation zν = 4/3 [3, 6, 9] to exponents close
to quantum percolation with zν = 7/3, which is often
seen for more disordered systems [2]. The best exponent
found by fitting to our data is closer to the value of
quantum percolation and show scaling up to four orders
of magnitude of Rs.

Phase diagram
Historically disorder, T and B are the most studied pa-

rameters [10][3] and we here present a phase diagram of
the three control parameters VTG, T and B⊥, see Fig. 3.
We observed an insulating phase by continously tuning
the coupling between the islands controlled by VTG. An
insulating phase was obtained for both cases of a gate-
temperature and gate-field tuned transition while at the
thermodynamic phase plane a field-tuned transition to a
normal state was observed when the gate is at the least
negative value. The constructed phase diagram shown in
Fig. 3 remebles the original phase diagram of the dirty
boson model proposed by M. P. A. Fisher [8] and sug-
gests that our superconductor/semiconductor JJ array in
many respects behaves as 2D disordered thin films. We
see however, a different concavity in the thermodynamic
phase plane and we will focus on this part of the phase
plane.
We plot contour lines of real data sets with resistance
values of 100 Ω and 250 Ω tracing the phase diagram out
in space. The contour lines mark an intermediate phase
above 100Ω and below 250Ω in the thermodynamic phase
plane, at VTG = −3V. In this state locally superconduct-
ing puddles still exists before the sysem enters a complete
normal state. The transition will be explained shortly in
a current-voltage study. The contour line of the resis-
tance value 100Ω traces the temperature dependent crit-
ical field Bc(T ) while 250 Ω corresponds to Hc2 = 60mT
for VTG = −3 V.

Current-voltage characteritics in the thermodynamic
phase plane— We zoom in on the field-driven phase
transition as a function of temperature and study
three planes each fixed at a different gate voltage
value. See Fig. 4 starting from left; VTG = −3V (4a),
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Figure 4: Thermodynamic phase plane in three regimes of different disorder a, The thermodynamic phase plane for
VTG = −3 V, with fitted line to highlight the curvature of the feature that dose not depend on gate voltage. Current-voltage

characteristic at b T = 30 mK and for c T =800 mK for four different field values. d, Phase plane at VTG = −3.75 V where the normal
state resistance is similar to the separatrix in Fig. 2. Current-voltage characteristic at four different field values for e T = 100 mK

showing a SI transtion and f T= 1.3 K, showing a SN transition. g The insulating phase plane with VTG = −3.85 V. Current-voltage
characteristic at h T = 30 mK and i T = 800 mK show insulating behavior for all field values.

VTG = −3.75V where the normal state resistance is
similar to the separatrix in Fig. 2 (4d) and the more
depleted regime at VTG = −3.85V (4g). We notice a
feature whose shape does not depend on gate voltage
(dashed line). A 4th-order polynomial fuction was fitted
in Fig. 4a and replotted in the two more depleted
regimes to highlight the curvature of the feature. In
order to obtain further insight in the type of transitions
in the three different regimes, we studied each in a
current-voltage setup.

In the first limit we show dV/dI as a function of IDC
for two different temperatures (T = 30 mK and 800 mK)
and four different field values, see Fig. 4b and 4c. At
low temperature and zero magnetic field the system
exhibit a superconducting state below a well-defined
critical current of the islands IIc = 2.5 µA. For Idc > IIc
the superconductivity is destroyed and a dissipative
state emerges. The system obtain its normal resistance
value above the critical current of the array IAc = 20 µA
(see Fig. D.1 in supplementary as it exceeds the axis
limit in Fig. 4b). For B = 60 mT the supercondutivity
is lost and enters a normal state. Until this point the
system retain a superconducting flavor in agreement
with our interpretation of an intermediate phase where
some superconductivity is still left. Increasing the tem-
perature to T = 800mK we clearly observe that crossing
past the dashed line we enter a normal state where the
current-voltage characteristic is completely flat (see Fig.
4c), and below this line dV/dI it remains a dip. To
conclude, in the weak disordered limit we obeserve a

superconducting (S) to normal (N) phase transiton with
an intermediate state of still superconduting behavior.

In the more depleted limit (Fig. 4d) we notice a
very different shape of the field-tuned transition as
we increase the temperature. In this limit a reentrant
superconducting state emerge at higher temperature.
We observe two different kinds of transitions; a low
temperature SI transition, when a peak in resistance
at low IDC is observed and at high temperature a SN
transition, when the resistance is flat for all values of
IDC . We capture the SI transition at fixed temperature
(100 mK) and measure the current-voltage characteristic
for different field values (Fig. 4e). At low field we
have a trace of superconducting behavior, showing dips
in dV/dI. We see a finite resistance, but it is so low
compared to the normal state resistance that it must be
related to superconductivity. As we increase the field,
the dip turns into a peak, indicating an insulating state.
The dip-to-peak turnaround shown in Fig. 4e happens
when the resistance of the sample is equal to Rx ∼ 13kΩ,
ie. at the resistance value where we see the transition to
the insulating state in Fig. 2. In reference to Fig. 4d, we
have SI transition in the low temperature limit and a SN
transition at high temperature. The separation line is
defined from current-voltage measurements between the
two temperatures presented here and we see the peak
dissappear in dV/dI when the temperature is ∼ 500 mK
and remain flat for all temperatures above.

We end the current-voltage study in the very depleted
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limit, where the system exhibit a complete isulating
state at low temperature and for all field values, rep-
resented in a giant peak in dV/dI at low dc-current
(Fig. 4h) and suggests a strongly blockaded system.
Increasing the temperature in this regime surpresses the
insulating state, shown in a split peak at low dc-current
(Fig. 4i). The slight dip indicate a trace back to the
orginal superconducting state, in the form of a reverse
transition, however, the system remain highly resistive
and an insulating state is still preserved.
We measured both samples A and B in the weak
disorder, strong disorder and very strong disordered
limit and observe same characteristic phase planes and
transitions, see Fig. C.1 in supplementary.

Appearance of commensurability effects in JJA— In a
Josephson junction array the periodic structure leads
to strong commensurability effects. We observe an
interplay between two different effects where the first
effect is not related to the periodicity of the array. The
effect appears at relative high fields where we observe
strong temperature dependent waterfall-like features
(horizontal thin stripes in Fig. 4a) appear, and is equally
spaced ∼ 4 mT after the first event at ∼ 12 mT at low
temperature (see supplemented Fig. 3.3).
This effect is related to the size of each individual square
island and indicate the fields where one vortex enters
the Al islands. The vortex penetraion field decrease
uniformly with increasing temperature and the first
strong feature where one flux penetrates is in agreement
with ref. [11, 12], reporting on penetration fields as a
function of temperature for a 1µm square Al island.
Below the flux penetration field we have a complete
superconducting state (Meissner state).
The second effect is related to the periodicity of the
square array. Magnetic flux enter the array in quantized
values so an integer number of vortices passes through
each corner [13], hence impose phase frustration between
the islands. The array reside in the superconducting
state at integer values of frustration f (the average
number of flux quanta per unit cell) and at any rational
fractions, i.e. f = 1/2 where the array has been half
filled with vortices. However, small changes can easily
disrupt the commensurability and lead to dissipation
when the vortices become mobile. We define the frus-
tration parameter f = B/B0, where B0 = Φ0/A with
A beging the area of a unit cell (A = (a + b)2) and
Φ0 = h/2e is the flux quanta. We find B0 = 1.8 mT
in agreement with our observation of the first strong
frustration minima (see supplemented Fig. 3.2).

Transition from frustration dip-to-peak
In a Josephson junction array the vortices organize in

the lattice at every commensurated fields and reside in
a superconducting state, as explained previously. The
vortcies are freezed into a very defined arrangement as
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Figure 5: Current-driven transition from frustration
dip-to-peak a A color map of transition from frustration dip to
frustration peak upon increasing the applied current IDC . b Line
cuts of the differential resistance show dips turning into peaks of
frustration filling f = 1/2 and f = 1. c Frustration filling f = 1

with the left and right seperatrix, used to perform scaling
analysis, presented in d for the left branch, with a critical
exponent εL = 1.5 and e for the right branch with εL = 1.7.

an effect of trapping at pinning sides of the array and
due to mutal repulsion leading to a strong localizing
action [14]. This state of localized vortices at commen-
surated fields, meaning an integer number of vortices per
pinning, has previously been studied in terms of a vortex
Mott insulator [15] due to a current-driven transition
from a state of locked vortices to dynamic vortices at
commensurated fields, shown in transition of frustration
dip to frustration peak. The important observation in
this study is the fact that dV/dI turns into a peak at
each frustration filling while the resistance R = V/I
remain a dip. This is interpreted as a still pinned system
even at high dc-current, since resistance would capture
dissipation caused by depinning [15],

We here report on a current-driven transition from a
frustration dip to frustration peak in the measured differ-
ential resistance dV/dI performed in a dc-current setup
with an ac-excitation current of 5nA applied. We mea-
sured both samples A and B, and observe the same kind
of transitions at commensurated fields when applying an
electric current. Both samples were studied at different
gate voltages. We here present data from device B in
the limit where the gate is least negative. In this sam-
ple the superconducting islands are slightly further sepa-
rated, which changes B0 to 1.5 mT in the frustration pa-
rameter f = B/B0. We observe pronounced frustration
dips corresponding to f = 1/2 and f = 1 and moderate
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dips at rational fillings f = 1/4, 1/3 and 2/3, shown in
Fig. 5a. Each of them turn into peaks when an elec-
tric current is applied, where strong signatures of both
f = 1 and f = 1/2 lights up in a candle-like fire when
approaching the critical current corresponding to each
frustration feature (Fig. 5a). Integers are more robust
as shown in Fig. 5a and 5b compared to fractional f
where less modulation is required to disrupt the com-
mensurability [13]. The dip-to-peak evolution of rational
fillings f = 1/4, 1/3 and 2/3, show a less pronounced
transition while f = 0 indicate a different behavior of
two large peaks emerging on each side and remain two
separate peaks until destroyed by the applied dc-current.
The two separate peaks mirrored around f = 0 can be
interpreted as a state of not exactly zero, but an equal
mix of residual vortex and antivortex, where field flips
one of a kind and a dip-to-peak transition at zero frus-
tration is not achieved in this limit. In a limit where the
fixed gate voltage is more negative, we drive a transition
from dip-to-peak at f = 0 by applying a dc-current. In
this limit we only see a vague signature of f = 1 and
no frustration dip or peak at f = 1/2 (see supplemented
Fig. D.2). The more neagtive gate voltage surpresses
superconductivity, hence the commensurability.
Detailed plots of dV/dI as a function f = B/B0 are
shown in Fig. 5b, presenting frustration dips-to-peak in
the differential resistance. Similiar to ref [15] we find that
at each frustration filling the resistance R = V/I remain
a dip (see supplemented Fig. 3.4).
Scaling model of f = 1 — We now characterize the tran-
siton investigated in the critical region of f = 1, (see Fig.
5c), where scaling theory predicts that measurable quan-
tities, in our case is dV/dI, follow scaling laws near the
phase transition. We perform a scaling of the order pa-
rameter, the applied dc-current I, similar to [Valerii] of
frustration f = 1. We define | I−I0 |∝| b |ε at the critical
point (I0, fc), where fc is the field frustration value, and
I0 is the current of the separatrix. We write the scaling
relation of the form

dV (f, I)

dI
−
[dV (f, I)

dI

]
I=I0

= F
( | I − I0 |
| b |ε

)
. (2)

We perform an independent scaling of both left and
right side of the critical frustration. We note an asym-
metry of left and right side observed for the integer
frustration filling f = 1, and similarly in device A
for f = 1, 2 and 3, while the fractional frustration
f = 1/2 remain symmetric around fc. The asymmetry
leads to different separatices found from the condition
d(dV/dI)/df |f=fc= 0, which is where dV/dI is flat
when approaching fc and shown in Fig. 5c. When
performing the scaling analysis we subtract dV/dI with
the separatrices independently, where IL0 = 2.5µA for
the left-hand side and IR0 = 2.35µA for the right-hand
side. We find the expression for b = f − fc, where fc = 1
in this case and f = B/B0. We see a slight change

in the value of B0 as we increase the electric current;
the commensurated field value decrease with increasing
current and will be taken into account in the scaling
analysis, leading to b = B/B0(I)− 1.
We find the best exponent by fitting a straight line to
a plot of logarithmic values of d(dV/dI − dV/dI(I =

I
L/R
0 )/dI) and 1/b, revealing a critical exponent
for f = 1 equal to εL = 1.5 for the left side and
εR = 1.7 for the right side. Fig. 5d and 5e are scaling
plots of left and right branch respectively, showing
dV/dI − dV/dI(I = I

L/R
0 ) as a function of the variable

|I − IL/R0 |/|b|1.5. The left branch give a better scaling
result, with points collapsing together on the same line,
while the right branch show more spread of the data.
Our study of a current-driven transition from frustra-
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Figure 6: In-plane magnetic field effect on
disorder-temperature driven SIT . a B|| = 275 mT. The
measured resistance as a function of temperature. Each curve

correspond to a different VTG value. The separatrix is highlighted
with a dashed line at VTG = −2.80 V, and correspond to critical
resistance value close to Rx ∼ RQ. b Commensuration effects in

an in-plane field. At zero field the system shows
incommensurability. At B|| = 150 mT frustration has

disappeared. c Measured resistance as a function of VTG. All
temperature curves cross in a single point atRx ∼ RQ. d Scaling
plot showing improved scaling and a critical exponent α = 0.1
corresponding to zν = 10. e Collapse of critical exponents when

increasing B||.
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tion dip to peak, revealed scaling of the order parameter
I for a collection of frustration filling values. The
scaling analysis of integer filling f = 1 yielded a critical
exponent of 1.5 for the left side and 1.7 for the right side.
and fractional filling f = 1/2 gave a critical exponent of
2, which is different from previously reported studies,
where a critical exponent of integer frustration values
was found to be 2/3 and for frustration filling f = 1/2
the critical exponent was equal to 1/2 [15]. We conclude
that our semiconductor Josephson junction array can
be used to study a vortex insulating state driven into
a state of wandering vortices when applying an electric
current. We find the same indications of a previously
reported vortex Mott insulator to metal transition
citeValerii, however, the difference in exponents lead to
the open question that the transition of frozen vortices
into a dynamic state may have different kinds of origins.

Collapse of critical exponent in an in-
plane magnetic field

We end this study by taking the advantage of a
new knob to affect the supercondutivity of our 2D
proximity-coupled array. We have already seen that a
magnetic field applied perpendicular to our system has
a detrimental effect on the superconductivity, leading
to a state of normal resistance value when the gate is
least negative and in a more depleted limit we drive
the system through the SIT, hence obtain a field-tuned
insulating state. In a thin film where thickness d � ξ0
(ξAl0 = 1.6 µm [16]) we have the ability to suppress the
superconductivity by the Zeeman enrgy in InAs. Previ-
ous studies of this material [17] found a critical in-plane
field value of the thin Al film equal to Bc = 1.65T.

We study the effect of an in-plane magnetic field in a
gate-temperature driven phase transition. We present
data on device B, which qualitatively behaves as device
A, and study a gate-temperature driven SIT at different
values of an applied in-plane magnetic field. We here
show resuslts at B|| = 275 mT as an example, see Fig.
6a. In reference to Fig. 6b, we show the effect of an
applied in-plane field on commensuration effects. At
zero field the system shows incommensurability, as in
the old sample, as field is increased the commensura-
bility becomes weaker until B|| = 150 mT, where the
frustration has disappeared.

In Fig. 6a the measured Rs as a function of temper-
ature show the transtion from superconduting state to
an insulating state at B|| = 275 mT. The separatrix is
found for the critical gate-voltage value Vx = −2.80V
(dashed line in Fig. 6a) where the resistance is constant
in the temperature interval. Below the critical value
we bring the system into an insulating regime and we
measured the SIT up to seven orders of magnitude in
Rs (Fig. 6a). At temperatures ∼ 1.6 K we still capture

the superconducting transition of the Al islands.

We compare the new study to the gate-temperature
driven SIT studied at zero field. We remark two obser-
vations; first, we note the separatrix at Vx = −2.80V ,
correspond to a critical resistance value very close to
the quantum pair resistance value RQ = 6.45 kΩ. We
plot Rs as a function of VTG with curves representing
different temeratures. The curves cross in a well defined
point almost at RQ, shown in Fig. 6c. We performed
a scaling analysis according to equation (1) and found
α = 0.10, corresponding to zν = 10. In Fig. 6d we have
plotted Rs scaled with respect to RQ, and both branches
meet in a single point at Rs ' RQ.
The second observation is the disappearence of an
intervening metallic state. The transition we observe
with an in-plane field applied can therefore be regarded
as a direct transition from a superconducting to insu-
lating state. The scaling analysis revealed an exponent
α = 0.10. In addition to, the data collapse on both
the upper and lower branch with almost no deviation,
indicating that the scaling has improved significantly.
We understand the improved scaling in the context
of a direct SIT. The scaling relation presented in (1)
assumes a continuous and direct SI transtion [1], where
our previous study presented in Fig. 1, show indication
of an intermediate metallic state. With an in-plane field
we have destroyed the intervening state, leading to a
direct SIT and an improved scaling close to the phase
transition. This also eliminates the possible heating
effect as we cool down for being the source of the
saturating curves in Fig. 1.
Values of α for different in-plane field values are pre-
sented in Fig. 6e. The critical exponents as a function of
B|| diverges, suggesting that α collapse as we approcah
the paramagnetic normal state.

In conclusion, our superconductor/semiconductor
Josephson Junction array have provided a very tunable
system, enabling a continuous phase transition from a
superconducting state into a insulating state. We per-
formed a scaling analysis in the gate-temperature driven
phase transition revealing a critical exponent comparable
to quantum percolation. We further studied the JJA in
a three parameter phase plane and was able to field-tune
the system into a normal resistive state when the gate
voltage is least negative, while close to the critical resis-
tance value we were able to field-tune the system into
an insulating phase at low T. We observed pronounced
commensurablity effects related to the periodic structure
of the array. Applying an electric current we drove the
system from a frustration dip into a frustration peak,
suggesting localized vortices at low current and a state
of dynamic vortices at high current. We obeserved this
type of transition in a wide collection of frustration fill-
ings. Additionally the system respond to in an in-plane
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and a direct gate-temperature driven supercondutor-to-
insulator transition was presented with improved scaling
and a critical exponent collapsing as a function of higher
in-plane field values.
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Appendix B

Fabrication steps

B.1 Mesa patterning
The first step of the fabrication of the sample is mesa patternig. This step is where Hall bars and
alignmentmarks are defined by e-beam lithography, then etched using a wet etch procedure. A
2.5×5mm chip is first cleaved off the JS118 wafer where the optimum is to aim for good spots of the
wafer, which means staying away from the edge where non-uniformities in the eptixial aluminum
often occurs. These bad regions in the aluminum have been shown to cause a lot of troubles and
inconsistent etching of the aluminum. Since the aluminum arrays are etched, choosing a good
region from the beginning can be crucial for how well defined each island of the periodic array
turns out to be.
The mesa patterning include e-beam lithography of the designed pattern and then etched in a
three-step etching procedure, elaborated in the listed instructions below.

� Clean and spin resist After cleaving the chip, rinse it for 2 min in Millipore (MP) water, 2
min in acetone, 1 min in IPA and blowdry with N2.
Spin PMMA A4 using acceleration and time setting 4000 rpm, 45 seconds. Center the chip
on the resist spinner, start the selected program and pause at 500 rpm while dispensing 2
drops of PMMA A4. Start program and it will spin up to the maximum acceleration of 4000
rpm and spin for 45 seconds. Bake 3 mins at 185 ◦C.

� E-beam Lithography In this step both mesas and alignmentmarks are patterned. The align-
mentmarks will be used in the proceeding fabrication steps and it is therefore important that
these are exposed with a low current setting whereas the large features will be written with
a higher current setting.

High definition - alignmentmarks : I = 500 pA, writing field = 300 µm, 60.000 dots and
dwell time of 0.4 µS/dot. Resulting in a dose of 800 µC/cm2.

Low definition - mesa: I = 20 nA, writing field = 600 µm, 20.000 dots and dwell time of
0.36 µS/dot. Resulting in a dose of 800 µC/cm2.

After finishing the exposure the chip is developed and plasma etched to remove leftover resist
residues.

1. Develop 60 s swirl in MIBK:IPA in ration 1:3. Rinse in IPA and blowdry with N2.

2. Plasma etch 60 s, which removes ∼ 15 nm of PMMA.

� Mesa etch The recipe for mesa etch is developed by the 2DEG team (Moretn Kjærgaard,
Fabrizio Nichele and Henri Suominen) after struggling with many issues. For more details
than provided here, I refer to ref. [1]. The etching of mesas is a 3 step cycle of first removing
the Al top layer, then etch the mesa, where the depth is set to be sure that no parallel
conduction paths between nearby mesas remain after etching. The last Al etch secure that
not Al residues are left.

28
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First prepare the two etchants:

1. Pour standard Aluminum Etchant Type D for Transene into a 50 mL plastic beaker and
place it with another beaker of Millipore water in a 50◦C hotbath. Keep a large beaker
(∼ 100 mL) filled with MP water next to the hotbath. It will take ∼ 10min for the etch
to thermalize and should be checked with a thermometer before etching of Al.

2. In the meantime the mesa etch is prepared by mixing H2O : citric acid : H3PO4 : H2O2

in the ratio 220 : 55 : 3 : 3. Since H2O2 is the oxidaizing agent it should be added in the
end to obtain a consistent etching rate of ∼ 0.5 nm/s. Start by mixing 220 mL H2O in
a beaker (750 mL) and place in with a magnet in the bottom of the beaker on a magnet
stirrer.

3. Pour in 55 mL citric acid (1M) and start the magnet stirrer.

4. Take out the H2O2 stored in a refrigerator as it needs to thermalize at room temperature
before adding it to the etchant. Storing it in a cold place will keep its lifetime longer.

5. Add 3 mL of H3PO4 to the mixture and keep stirring.

6. Finally add the H2O2 after it has been ∼ 5 min at room temperature.

7. Check the temperature of the Al etch with a thermometer and make sure the temperature
is within ±1.5◦ as the rate depends on the temperature [1].

Now the etch cycle can begin:

8. Use an acid tweezer and swirl 10 s in the Al etch. Rinse 20 s in warm MP water and
finally rinse 40 s in fresh MP water. Blowdry both chip and tweezer N2.

9. Etch for 10 min (600 s) in the mesa etch. Keep the magnet stirrer on to have continous
motion of the etchant. The setting on the magnet stirrer should correspond to ∼ 1 Hz.
Rinse in fresh MP water for 40 s and finish with blowdry of N2.

10. Finally etch one more time in the Al etch. 10 s in the Al etch and 20 s in warm MP,
finish with a rinse in fresh MP and blowdry with N2.

11. Remove the resist mask using ∼ 50◦C acetone for 5 min and rinse in IPA for 1 min.
Blowdry with N2.

B.2 Island patterning
The island patterning is a delicate procedure, where doses for the e-beam lithography step has
been optimized along with ething time and temperature of the Al etch. The Al has been found
to depend a lot on the quality of the Al itself, and therefore it is highly recommended that the
Al surface look uniform as it will cause problems when the island pattern needs to be done. Two
scenarios of and bad etch can be seen in Fig.

� Clean and spin resist Rinse the chip for 2 min in MP water, 2 min in acetone, 1 min in IPA
and blowdry with N2.
Spin PMMA A2 using acceleration and time setting 4000 rpm, 45 seconds. Center the chip
on the resist spinner, start the selected program and pause at 500 rpm. Dispensing 2 drops
of PMMA A2 and start program. Bake 3 mins at 185 ◦C.

� E-beam Lithography I = 100 pA, writing field = 150 µm (corresponding to the size of the
array pattern), 60.000 dots and dwell time 0.38 µS/dot, leading to a dose of 600 µC/cm2.
After finishing the exposure the chip is developed and plasma etched to remove leftover resist
residues.

1. Develop 60 s swirl in MIBK:IPA in ration 1:3. Rinse in IPA and blowdry with N2.

2. Plasma etch 60 s, which removes ∼ 15 nm of PMMA.

� Aluminum etch The Al etch recipe has been developed after testing a bunch of different
combinations of time and temperatures to prevent the etch from running too far under the
PMMA where it starts etching the islands that I wish to remain as well defined as possible.
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The best combination of time and temperature is 11 s at 46◦C. Make sure the temperature
is within ±0.5◦. Test with a thermometer before proceeding the etching of the island pattern.
One way to check the etching if you don’t want to waste a whole sample, is to make test
windows in regions where it dose not affect the device. I placed three different array pat-
terns around the alignmentmarks where aluminum was still left. The test patterns are then
examined before removing the resist, using E-beam imaging. Then a second etch can be
made if there is still Al left between the islands. In this way the etch is more controlled and
underetching is more safe than overetch and detroy the sample.

1. Use an acid tweezer and swirl 11 s in the Al etch. Rinse 20 s in warm MP water and
finally rinse 40 s in fresh MP water. Blowdry both chip and tweezer N2.

2. Load the sample in the provided E-beam system (using 10kV acceleration voltage) where
imaging is allowed. Search for your test windows and check your etch. If the etch is
good and no Al is left between the islands proceed and move to step 3. otherwise jump
back to 1.

3. Remove the resist mask using ∼ 50◦C acetone for 5 min and rinse in IPA for 1 min.
Blowdry with N2.

a b

1 um 1 um

aluminum 

etched 
aluminum

aluminum 

etched 
aluminum

Figure B.1: Aluminum etch of two different samples. a Sample JS118.11 from a good area of the wafer, show
no residue between the Al islands after etching, while b sample JS118.12 from a bad area of the wafer, show

residue in between the islands.

B.3 Deposition of insulator
For deposition of the insulating layer between the Al pattern and the top gate I use a atomic layer
deposition (Cambridge Nanotech Savannah ALD). I define a recipe in the program provided by
the system with settings 400 pulses of trimethylaluminum (TMA), using H2O as oxidizing agent.
In then end this result in ∼ 40 nm Al2O3 oxide layer. The steps are as follows:

� Clean Thorough cleaning of the chip, using first a 3 min clean in 1,3-Dioxolane at ∼ 50◦, then
2 min in Acetone and a finishing step of 1 min in IPA. Blowdry with N2.

� ALD deposition Place the chip in the center of the ALD machine and close the lid. Start the
program which usually takes ∼ 17 hrs.
When the program has finished take out the chip of the ALD machine and store safely until
deposition of the top gates.

B.4 Deposition of gates
The final step of fabrication of the SIT sample is deposition of metallic top gates. The gates are
made in one final E-beam lithography step followed by metal evporation. The gates are of the size
of serveral microns and there is no need to do a high defintion lithography step here.
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� Clean and spin resist Rinse the chip for 2 min in MP water, 2 min in acetone, 1 min in IPA
and blowdry with N2.
Spin EL6 using acceleration and time setting 4000 rpm, 45 seconds. Center the chip on the
resist spinner, start the selected program and pause at 500 rpm. Dispensing 2 drops of EL6
and start program. Bake 3 mins at 185 ◦C. Spin PMMA 4 using same procedure and setting
as described above. Bake for 5 mins at 185 ◦C.

� E-beam Lithography I = 20 nA, writing field = 600 µm, 20.000 dots and dwell time 0.36
µS/dot, leading to a dose of 800 µC/cm2.
After finishing the exposure the chip is developed and plasma etched, using the standard
recipe:

1. Develop 60 s swirl in MIBK:IPA in ration 1:3. Rinse in IPA and blowdry with N2.

2. Plasma etch 60 s, which removes ∼ 15 nm of PMMA.

� Metal evaporation The evaporation is performed using AJA International ATC-E (E-beam
evaporation). A layer of titanitum (Ti) followed by a layer of gold (Au) are evaporated:

1. 10 nm Ti at an angle of 10◦ with rotation setting at 45 RPM

2. 150 nm Au. The first 20 nm of Au has been evaporated at an angle of 10◦ and rotation
setting at 45 RPM. The remaining 130 nm is evaporated with an angle of 0◦ and same
rotation.

� Lift-off For the lift-off process, the chip is place in a beaker of 1,3-Dioxolane for ∼ 4 hrs. Then
heated in a hotbath to 50◦ for 10 min. Finish lift-off process with a needle attached to
the end of the N2 gun and carefully blow over the sample, while it is still in the beaker of
1,3-Dioxolane. This will help remove the flaps of metal hanging of the edge of the mesas.
Use an optical microscope to see that only the top gates remain and finish lift-off process by
cleaning the sample in IPA and blowdry with N2 with no needle attached.



Appendix C

Device A and B: Phase planes
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Figure D.1: Current-voltage measurement of the Josephson junction array. a Measured voltage as a
function of applied current. The lower subpanel show the critical current of the array IAc = 20µA and b the

critical current for the island IIc = 2.5µA.
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Figure D.2: Zero field turnaround from minia to peak. In a more depleted limit with gate at VTG = −3.3V
for device A. a,b The measured differential resistance, showin a dip-to-peak at zero field. c,d The measured

resistance remain a dip for all values of applied current.
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