
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

Extensible hardware for control of
superconducting qubits

Bachelor Thesis
Written by Daniel Ramyar
June 11, 2017

Supervised by
Karl David Petersson

U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

Faculty: Faculty of Science

Institute: The Niels Bohr Institute

Department: Center for Quantum Devices

Author: Daniel Ramyar

Email: njt478@alumni.ku.dk

Title: Extensible hardware for control of superconducting
qubits

Supervisor: Karl David Petersson

Handed in: June 14, 2017

Defended: ??

Name

Signature

Date

Contents

1 Introduction 1

2 Theory 2
2.1 Qubits . 2

2.1.1 The Hydrogen Atom . 3
2.1.2 Superconducting Qubits 4

2.2 The Cooper Pair Box . 7
2.3 Circuit QED . 9
2.4 Jaynes-Cummings Hamiltonian 10
2.5 Dispersive Regime: Qubit Readout 10
2.6 Gate tunable Qubits . 11
2.7 Single Qubit Rotations . 11
2.8 Single Sideband Modulation . 12

3 Setup 13
3.1 Proposed Setup for Qubit Control 13
3.2 IQ Mixer Optimization Algorithm 14

4 Experiment 16
4.1 Spectroscopy . 16
4.2 Rabi . 16
4.3 Gate tuneup / ALLXY . 20
4.4 Conclusion . 20

A Mixer Optimization Algorithm Code 22

3

Abstract

Currently very expensive mixer hardware is used in order to control and readout
single qubit devices. This will pose an issue to future scalability and projects as
multiqubit devices are getting made and more mixers are needed. Looking for
more scalable solutions this thesis has therefore set out to test much cheaper
and more scalable mixer hardware.

To benchmark the new setup we replaced the currently used internal mixers
of the Rohde&Schwarz RF source with the new mixer hardware and did spec-
troscopy, rabi oscillation and ALLXY measurements. All but the ALLXY test
did perform on par with the old setup. We believe this was due to bad pulse
modulation timings and could be addressed with fine tuning in future testing.

Chapter 1

Introduction

At the heart of all modern day computers, phones and various smart electron-
ics lies a central processing unit (CPU), which relies on technology invented a
hundred years ago, namely the transistor.

Since the invention, progress of transistor technology has been improving
at a staggering pace, going from big vacuum tubes (1907) to small solid state
transistors (1947) and decreasing their size and increasing their count ever since
[1].

Unfortunately this progress is seeming to come to an end as transistor size
are becoming so small that we are approaching quantum mechanical limits 1.

Though all hope is not lost, it was proposed by Richard Feynman [7] doing
computations using quantum phenomena, where information is expressed using
qubits instead of classical bits. This would allow for much faster computations
of specific problems as will be discussed in the next section. Much work has
been done in the area of quantum computers and multiple propositions has since
been made for the underlying technology behind the qubit.

One of these propositions is the superconducting qubit. The advantage of
using superconducting qubits is scalability as they are very "simple" in nature
and can be readily made with current micro fabrication techniques.

This thesis will give an introduction to the theory behind superconducting
qubits as discussed in [2] and test out new extensible hardware for use in future
qubit experiments.

1http://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338

1

http://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338

Chapter 2

Theory

2.1 Qubits
To understand the qubit and why they will bring exponentially faster compu-
tation speeds to certain problems, we’ll start by taking a look at the classical
bit (binary digit). The definition of a bit comes from information theory and
represents one unit of information, which can take one of two values (usually 0
or 1). Every bit can therefore only hold one piece of information.

Using multiple bits we can do operations and solve complex mathematical
problems. One of these problems is prime factorization, which is a problem of
figuring out which two prime numbers was used to create a product i.e solving
an equation looking like this prime1 · prime2 = 35.

Now this problem might seem easy and is doable for modern computers,
it gets exponentially harder to solve as the product gets larger (try solving
prime1 · prime2 = 445051). The reason why this problem is hard to solve for
a computer is basically because the only way for a computer to find the prime
factors is simply to try multiplying all combinations of prime numbers until it
gets it right.

Lets say you had to solve a 1400 digit product with a modern desktop com-
puter it would take about 6.4 quadrillion years to solve1, which is exactly why its
used in RSA-cryptography. It is simply not possible for conventional computers
to solve this problem in a reasonably time.

Qubits on the other hand are represented as a quantum mechanical two-
state system |ψ〉 = α |1〉+β |2〉 where |ψ〉 is the wave function, |1〉 and |2〉 is the
two states of the system and α and β are probability amplitudes. Compared
to the classical bit which can only be in one state at a time, a qubit can be
in a superposition of two. Adding more qubits allows the system to be in
a superposition of multiple states, 2N to be exact where N is the number of
qubits, which means that just by having 500 logical qubits we would be able to
test 2500 states at once! This property is exactly why we would be able to solve
prime factoring problems infinity faster[6] and why groups around the world are
pursuing this technology.

1https://www.digicert.com/TimeTravel/math.htm

2

https://www.digicert.com/TimeTravel/math.htm

2.1.1 The Hydrogen Atom
One natural choice for the physical representation of a qubit would be a hydrogen
atom, which is a very well understood system and has exactly the properties we
need. In the hydrogen atom we would use the ground- and first excited state as
our qubit. To control the state of our qubit we would shine a laser on the atom
with a frequency equal to the energy difference between |0〉 and |1〉 (∆E = ~ω01

where ω01 is the transition frequency). The laser would then excite the atom to
its first excited state and no further because of the anharmonicity of the energy
levels figure (2.1). If we keep shining our laser on it, the atom would oscillate
between |0〉 and |1〉, which is what we call rabi oscillations. Knowing the cycle
time of the rabi oscillations allows us to prepare the atom in its first excited
state or in a superposition between |0〉 and |1〉, by having the laser on for exactly
the amount of time it takes the electron to jump to the desired state.

Now say we prepared the atom in |1〉, we would want to know how long
it would stay there, as it would decay because of spontaneous emission. This
decay time is often denoted as T1 in literature. Instead lets say we prepared
the atom in a superposition of |0〉 and |1〉, the time in which the system stays
coherent i.e how long can we wait before we no longer measure the superposition
we prepared it in, is denoted T2*.

[eV]

0.0

|0i

|1i

|2i

Ionization

-13.6

-3.4

-1.51

h̄!01

|1i ! |0i

h̄!01

|0i ! |1i

~d~E

Figure 2.1: On the left we see a laser ~E = E0 cos(ω01t) shining on a hydrogen atom which
will couple with the dipole moment of the atom Ĥ = −~d · ~E(t) and stimulate it. On the
right we see the energy levels for a hydrogen atom where the laser is stimulating the |0〉 → |1〉
transition. Since we don’t turn off the laser the electron will keep going back and forth between
the ground- and first exited state which we call rabi oscillations.

3

2.1.2 Superconducting Qubits
Wire

Capacitor

Inductor

Figure 2.2: Electrical compo-
nents used in superconducting
qubits

The disadvantage of using hydrogen or other
atoms in that case as our qubits is scalability, as
it requires complex setups just to control a few
qubits. That’s why we’ll turn our heads toward
superconducting qubits, that are much easier to
fabricate and scale up as discussed earlier.

The superconducting qubit also has the ad-
vantage of being made from standard electrical
components consisting of wires, capacitors and in-
ductors figure (2.2) and because the components
are superconducting, we remove one source of de-
coherence for free, as there will be no heat dissi-
pation due to resistivity, which would affect our
T1 and T2* times.

LC-circuit

In order to create our superconducting qubit we will need a quantized system,
therefore we will start looking at a quantized LC-circuit. We have two compo-
nents in a LC-circuit, an inductor and a capacitor. The system will look like in
figure 2.3a. The energy stored in an inductor and a capacitor is given respec-
tively by EL = LI2

2 and EC = Q2

2C , where L is the inductance, I is the current
through the inductor, Q is the charge on the capacitor and C is the capacitance.
So our hamiltonian for this system will looks like

Ĥ =
Q̂2

2C
+

Φ̂2

2L
, (2.1)

where we have rewritten the inductor energy in terms of its flux Φ = LI. The
solution to this equation, which is exactly the same as the harmonic oscillator,
is described in figure 2.3b, where the gab between each state is ω01 = 1√

LC
.

L C

(a) The LC-circuit

E[a.u]

� [a.u.]

|0i

|1i

|3i

!01 = 1p
LC

(b) LC-circuit Energy levels

4

L C

M
ir

cr
ow

av
e

so
u
rc

e

(a) Microwave Control capacitively
coupled with our LC circuit

J C

M
ir

cr
ow

av
e

so
u
rc

e

(b) Here we replaced the inductor with a
Josephson junction

As we are free to choose our capacitance and inductance of the system, an
ideal transition frequency would be below superconducting temperatures2 and
above operating temperatures, this would allow the system to automatically
decay into its ground state as there would not be enough energy provided by
the environment to excite our system, while still maintaining the required su-
perconductivity. A typical transition frequency would be ω01 = 1√

LC
= 6 Ghz

≈ 300 mK with a fridge temperature of 20 mK.
To excite our quantized LC-circuit we would then capacitively couple the

circuit with a microwave generator seen in figure 2.4a, which would provide a
voltage of V (t) = V0 cos(ω01t) on the system and act exactly as the laser on the
atom ~E = E0 cos(ω01t).

Josephson junction

Josephson junction
Structure of

Josephson junction

Figure 2.5: Left picture shows the superconductors (orange) sandwiching a weak link (grey),
right picture shows the notation for a josephson junction in a circuit diagram.

The problem with using the LC-circuit as our qubit is that the distance
between all the states are now identical and we are no longer able to stimulate
individual transitions like we could with the hydrogen atom and therefore not
able to use it as a qubit.

For this reason we need to add some non-linearity into our system and that
is achieved with the Josephson junction. A Josephson junction is created by
sandwiching a weak link between a superconductor, as shown in figure 2.5, this
weak link can either be an insulator3, a non superconducting metal4 or any
restrain on the superconductivity at the weak link5.

2You can convert frequencies to temperatures with this formula hν = kT where h is
plancks constant, ν is frequency, k is boltzmans constant and T Kelvin

3SIS Superconductor-Insulator-Superconductor
4SNS Superconductor-Normal-Superconductor
5SsS Supercondcutor-Restrained Superconductor-Superconductor

5

The current though the Josephson junction is given by

I = I0 sin

(
2πΦ(t)

Φ0

)
, (2.2)

where I0 is the supercritical current through the junction and Φ0 = h
2e is the

magnetic flux quantum.
Taking the time derivative of 2.2 we get

İ = I0
2π

Φ0
Φ̇ cos

(
2πΦ

Φ0

)
, (2.3)

where Φ̇ = V (t) and self-inductance is given by L = V (t)

İ
.

We can then define the Josephson inductance as

LJ =
Φ0

2πI0

1

cos(2πΦ/Φ0)
. (2.4)

The Josephson junction therefore acts as a non-linear inductor. If we re-
member from (2.1), the energy stored in the inductor is proportional to 1

L and
if we then replace L with LJ , we will have a cosine potential (figure 2.6) in-
stead of an infinite parabolic potential well. The states would therefore need
to readjust and would no longer be uniformly spread. We have now achieved
anharmonicity we also saw in the hydrogen atom, exactly what we needed.

E[a.u]

� [a.u.]

|0i

|1i

|3i

Figure 2.6: JC-circuit energy levels

6

2.2 The Cooper Pair Box
Going back to the LC-circuit for a moment we can rewrite (2.1) using ω01 = 1√

LC

Ĥ =
Q̂2

2C
+

1

2
Cω01Φ̂2. (2.5)

Recognizing this as the quantum harmonic oscillator, where P̂ is equivalent
to Q̂ and x̂ to Φ̂, the first term is describing the kinetic energy and the sec-
ond term the potential. Therefore the commutation relations we know from the
quantum harmonic oscillator, will also apply here. To diagonalize the hamilto-
nian we introduce â† and â, as with the quantum harmonic oscillator. Q̂ and Φ̂
can therefore be written as

Q̂ = i

√
~

2z0
(â† − â), (2.6)

Φ̂ =

√
~z0

2
(â† + â), (2.7)

where z0 =
√

L
C .

Plugging these expressions back in 2.5 we get

Ĥ = ~ω01(â†â+
1

2
), (2.8)

which again is the same result as the quantum harmonic oscillator.
Now we can do the same calculation for the JC-circuit, but we first have to

find the energy in the Josephson junction. We already know that the current
going through the junction is given by (2.2) and we know that the energy is the
time integral of the power therefore

E =

∫
P (t)dt =

∫
V (t)I(t)dt =

∫
(
dΦ

dt
)(I0 sin

(
2πΦ

Φ0

)
)dt

= −Ej cos

(
2πΦ

Φ0

) (2.9)

where EJ = I0
2π
Φ0

. EJ can be seen as the frequency of the cooper pair tunneling,
as seen in figure 2.7a

EJ = Frequency of tunneling

(a) Copper pair tunneling through barrier

J C

EC = Energy needed to put charge

into the JC-Circuit from infinity

(b) Electron put on circuit

Figure 2.7

7

Vg

Figure 2.8: Depiction of random charge Vg capacitively coupled to our qubit

The hamiltonian for the JC-circuit will therefore look like

Ĥ =
Q̂2

2C
− Ej cos

(
2πΦ

Φ0

)
(2.10)

We can clean this up a bit by instead of looking at how much charge is tunneling
through our junction to the number of cooper pairs (electron pairs), Q̂ = (2e)n̂,
where n̂ is number of cooper pairs.

Furthermore we define φ̂ = 2πΦ
Φ0

Ĥ =
(2e)2

2C
n̂2 − Ej cos

(
φ̂
)

Ĥ = 4EC n̂
2 − Ej cos

(
φ̂
) (2.11)

where in the last step we defined EC = e2

2C which is the energy it takes to put
a charge into our circuit (figure 2.7b).

Now as our devices are not perfect there will be random charges in the
environment bonding to imperfections on our qubit. These extra charges are
capacitively coupled to our qubit and acts as a little voltage source (figure 2.8)
which will take away charges from our qubit. We would therefore need to take
them into account, by subtracting the amount of charges taken away from our
circuit, which we will denote ng (gate charge)

Ĥ = 4EC(n̂− ng)2 − Ej cos
(
φ̂
)
. (2.12)

We have now derived the hamiltonian for the cooper pair box. This hamiltonian
can be solved analytically in the phase basis6.

Now looking at the solutions for the first 3 energy levels in fig 2.9a it is seen
that the energy levels depend greatly on the charge noise which would pose a
great problem as random fluctuations of charges on our qubit would greatly
vary the transition frequencies. As our hamiltonian is only dependent on EJ
and EC , the solution to this problem would be to find an optimal EJ

EC
ratio and

look at how this ratio affects our energy levels. Looking at figure 2.9 it can be
seen that increasing our EJ

EC
ratio makes us less and less susceptible to charge

noise. Increasing our ratio so EJ

EC
>> 1 we see that we no longer are affected by

charge noise. This is the domain where the transmon qubit lies.
6For more information look at [3]

8

Figure 2.9: Plot from [3] page 3

2.3 Circuit QED
Now that we have made our qubit how do we do measurements on it?

To answer that question will take a short detour to the field of cavity QED,
which is the study of photon interaction with particles confined inside a cavity
fig 2.10a. Here we have basically tuned down our laser so much that it is now
only emitting single photons.

A cavity is basically two mirrors facing each other, only allowing certain
frequencies to pass through i.e when the wavelength matches the length of the
cavity. The reason why these cavities are used is because the electric field is
very weak, since we are now using photons, which couples very weakly with the
atoms in question7. We would therefore have to increase the strength of the
electric field as we want single photons to have a large effect on the atoms. We
know that ~E ∝ 1√

λ
so we can increase the electric field by lowering the volume

of the cavity and thereby achieving a strong coupling with the atom.
A cavity can be made in the superconducting circuit by shaving of two parts

of the transmission line fig 2.10b. The electric field confined in this cavity is
very large due to the size of the cavity and can therefore couple strongly to the
large dipole moment of the qubit island, this is what we call the circuit QED.

~E

�

!r

~d

(a) This is depicting an atom inside an optical
cavity

!r ~d

~E

�

(b) A cavity between the transmission line in
the superconducting circuit

Figure 2.10

7If you remember the dipole couples with the E-field as H = ~E · ~d

9

Figure 2.11: Diagram of the full transmon qubit circuit

2.4 Jaynes-Cummings Hamiltonian
As the cavity only allows for certain resonance frequencies i.e only certain en-
ergies are allowed, it will behave as the harmonic LC-circuit. Bringing all that
we have learned until now together, we can write the hamiltonian as a sum of
the LC- and JC-circuit

Ĥ =
Q̂2
r

2Cr
+

Φ̂2
r

2Lr︸ ︷︷ ︸
LC−circuit

+ 4EC(n̂− ng)2 − Ej cos
(
φ̂
)

︸ ︷︷ ︸
JC−circuit

, (2.13)

Ĥ = ~ωr(â†â+
1

2
) +

~ω01

2
σ̂z + ~g(â†σ̂−︸ ︷︷ ︸

create

+ âσ+︸︷︷︸
annihilate

), 8 (2.14)

where ωr and ω01 respectively is the cavity resonance frequency and the qubit
frequency, â† and â the raising and lowering operators, σ̂z the Pauli spin matrix
operator, g = ~E · ~d the qubit-cavity coupling strength and finally σ+ and σ̂−
the spin raising and lowering operators.

The create term in (2.14) can be seen as a photon created by the lowering
operator that will then jump to the cavity, where the annihilate term will remove
a photon from the cavity by exiting the qubit.

2.5 Dispersive Regime: Qubit Readout
Qubit readout can be done by working in the dispersive regime of the Jaynes-
Cummings hamilton i.e |∆| = |ω01 − ωr| � g. Here the Jaynes-Cummings
hamilton will reduce to

H ≈ (ωr + χ)â†â+
ω01

2
σ̂z, (2.15)

where χ = g2

∆ .
Now we can se that the cavity transmission frequency depends on the state

of the qubit, so if the qubit is in the ground state the cavity frequency will
be shifted down and if the qubit is in its exited state be pulled up, as can be
seen in figure 2.12. This principle is used to determine the state of the qubit in
experiments.

8A more detailed derivation can be found in [4].

10

|0i |1i

!r � � !r + �!r

T
ra

n
sm

is
si

on
A

.U

!

1

Figure 2.12: Showing the cavity transmission frequency being shifted as the state of the
qubit changes

2.6 Gate tunable Qubits
The type of qubits I will be doing measurements on is a gatemon qubit [9]. The
gatemon is basically a transmon qubit, where we can tune the qubit frequency
with an electrostatic gate. This gate is placed near the josephson junction and
by changing the voltage on the gate we can change the critical current going
through the junction and thereby changing the qubit frequency.

2.7 Single Qubit Rotations
To visualize various qubit operations we will be using a Bloch sphere (figure
2.13), which is a 3D representation of the Hilbert space spanned by the qubit
states. In the Bloch sphere the north pole represents the ground state |0〉
and south pole the exited state |1〉. Operations will in this representation be
described by rotation of the state vector about the x,y and z axis.

Incorporating the microwave drive, where the drive frequency will be denoted
ωd, in the Jaynes-Cummings hamiltnian, the following relation can be derived
[2]

Ĥ = ~(∆r + χσ̂z)â
†â+

~∆d

2
σ̂z +

~
2

(ΩxR(t)σ̂x + ΩyR(t)σ̂y) (2.16)

where ∆r = ωr − ωd is the detuning between cavity resonance and drive fre-
quency, ∆d = ω01−ωd is the detuning between the qubit and the drive frequency
and lastly ΩxR, ΩyR which are the two rabi drive amplitudes phase shifted π

2 from
each other.

We see now that by knowing the rabi frequency, ΩxR and ΩyR allows us to
rotate our vector state arbitrary around the x- and y-axis, by choosing the phase
and amplitude of the drive signal. For the ALLXY test we will be interested in
the π and π

2 rotations about the x- and y-axis of the bloch sphere.

11

Figure 2.13: The Bloch sphere

2.8 Single Sideband Modulation
In order to do coherent control of the qubit, we will be using single sideband
modulation. This allows us to modulate a signal either below or above the
carrier frequency. This means that we will be able to do x and y rotations on
the qubit without worrying about carrier leakage interfering with the operation.

Single sideband modulation is done with the IQ mixer. In the I port a signal
s(t) is multiplied with the carrier frequency, which in our case is ωd, and in the
Q port the Hilbert transform of the signal is multiplied with a π

2 phase-shifted
carrier. The I and Q signals are then added together.

To give an example of this lets say we put s = cos(ωrf t) to the I port, a
carrier signal of cos(ωdt) to the LO port and ŝ = sin(ωrf t) to the Q port.

cos(ωdt) cos(ωrf t) + sin(ωdt) sin(ωrf t) = (2.17)

1

2
(cos(ωd + ωrf) + cos(ωd−ωrf)) +

1

2
(cos(ωd − ωrf)− cos(ωd+ωrf)) = (2.18)

cos(ωd + ωrf) (2.19)

We see that all but the upper sideband cancel out.
In order to find a more general Hilbert transform of the the single sideband

modulated signal, we will to have it in the form of

sssb = Re[m(t)] cosωdt+ Im[m(t)] sinωdt (2.20)

where m(t) is the pulse envelope (in the ALLXY experiment below we will be
using gaussian envelopes). The Hilbert transform of sssb can be found know-
ing that H(sin(ωdt)) = − cos(ωdt) and H(cos(ωdt)) = sin(ωdt). Furthermore
knowing that s(t) is much slower than cosωdt, the Bedrosian’s theorem can be
applied. The Hilbert transform of sssb will therefore be

ŝssb = Re[m(t)] sinωdt− Im[m(t)] cosωdt. (2.21)

From this we would calculate the signals from the I and Q, like the above
example and end up with

I± = Re[m(t)] cosωdt± Im[m(t)] sinωdt (2.22)

Q± = ±Re[m(t)] sinωdt+ Im[m(t)] cosωdt (2.23)

Where I+ and Q+ is for selecting the upper sideband and I− and Q− is for the
lower sideband, where we have multiplied ŝssb with -1.

12

Chapter 3

Setup

3.1 Proposed Setup for Qubit Control
In order for this setup to be scalable and easily upgradeable, the system is
designed to be modular. This system consists of 3 different module types, a
module which contains a 6 way splitter to split the carrier frequency into multiple
mixer assemblies, a mixer module which consists of an amplifier, a mixer and a
directional coupler and finally 10 way switch to be able to monitor the signals
from the mixer modules. A full schematic can be seen in figure 3.1 .

6 way power splitter
Minicircuits
ZN6PD-63W

6 qubits

Amplifier
Minicircuits
ZX60-V62

Mixer
Analog Devices
HMC525LC4

RF IN
I IN
Q IN

IN OUT
CPL

RF OUT

TEST OUT

POWER

Tektronix AWG5014C

Attenuator

To qubit

Directional
Coupler
Minicircuits
ZADC-10-63

10 way switch
Minicircuits
SPI-SP10T

up to 10 qubits

Microwave generator
R&S SGS100A

Spectrum Analyzer
Signal Hound
USB-SA124B

Modulator board for each qubit

Figure 3.1: Schematic of new scalable mixer setup, by Karl David Peterson

13

Figure 3.2: Fully assembled rack
setup

Figure 3.3: From left - the 6 way splitter module, mixer module and 10 way switch

3.2 IQ Mixer Optimization Algorithm
As the mixers we are working with are not perfect calibration is needed to
maximize carrier and sideband suppression. The 3 variables that are needed to
be taken into account for is the I and Q voltage offsets, amplitude and phase
difference. The optimization algorithm works by calibrating the voltage offsets
first. Here it starts by doing a large sweep and looking at the value at the carrier
frequency, then choosing the lowest value it does a more fine sweep around that
value and again choosing the lowest value, finally doing one last very fine sweep
around this value and choosing this value. This is done on both the I and Q
voltage offsets. Now it moves on to the amplitude of the I signal, doing the
same routine of doing a coarse, medium and fine sweep looking for the lowest
value of the lower sideband. Lastly it will run through multiple phase differences
between the I and Q ports and find the lowest value of the lower sideband.

Doing this rutine multiple times we will eventually find the optimized value,
see figure (3.4 and 3.5) for before and after optimization. The code can be found
in the appendix.

14

Figure 3.4: Before calibration, using a carrier frequency of 5 Ghz and IF frequency of 50
mhz

Figure 3.5: After calibration

15

Chapter 4

Experiment

The following measurements were taken with the help of Lucas Casparis and
Natalie Pearson, using the new mixer setup, on a 6 qubit device created by
Lucas. A detailed setup description can be found in [8].

Tektronix AWG5014C
I

Q
R&S Qubit

Tektronix AWG5014C
I

Q
LO

R&S

Qubit

Figure 4.1: On the left we see a depiction of the old setup and on the right where we’ve
replaced the internal mixer of the R&S with the new external mixers

4.1 Spectroscopy
In a spectroscopy we sweep the frequencies at increasing gate voltages and mea-
sure the magnitude of the output signal, when the magnitude dips, we have
transmission through the cavity, which means that we’ve hit the qubit frequency.
Comparing the results from the old (4.3) and the new setup (4.2) we see that
the performance is on par with the internal mixers of the R&S.

4.2 Rabi
Seeing the spectroscopy was successful we moved on doing rabi measurements.
During these measurements we noticed that at the qubit frequency there was a
significant shift figure (4.5). We believe this was due to poor carrier suppression.
We circumvented this problem with using mixer sidebands instead of the carrier
and observed much better performance.

16

Figure 4.2: Spectroscopy using new mixer setup

Figure 4.3: Spectroscopy using old mixer setup

17

Figure 4.4: Rabi measurements using mixer sidebands

Figure 4.5: Rabi measurements using mixer carrier frequency

18

Figure 4.6: ALLXY measurement using old setup the order of the operations can be found
in table 5.1 in [2]

Figure 4.7: ALLXY measurement using new setup

19

4.3 Gate tuneup / ALLXY
Finally we tried to tune the qubits doing an ALLXY test. In an ALLXY test all
combinations of one and two π,pi2 rotations, about both the x- and y-axis are
performed. By looking at the measurements deviation from the expected values,
different error types can be identified and accounted for. In this experiment
we used single sideband modulated gaussian pulses. All the combinations of
operations and more detailed description can be found in [2] where the order of
our operations can be found in table 5.1.

We first did the ALLXY measurements using the old setup to get a baseline
on how good we could tune the qubit. Looking at a line cut in figure 4.6 it
was pretty good, as the measurements fit the expected values when doing the
various operation combinations. Now changing to the new setup we did not see
same success as can be seen in figure 4.7.

We can see from the line cut that doing a π rotation (operation 19 and 20)
is not getting the same result as doing two π

2 rotations (operation 17 and 18).
This indicates that our x and y gates are not perfectly π

2 shifted from each other
and would therefore cause under rotation in the Bloch sphere. This could be
addressed by fine tuning of phase difference between the sideband modulated
pulses, unfortunately time ran out and could therefore be a calibration to try
in future experiments.

4.4 Conclusion
From these results we can conclude that this new setup looks very promising,
though further tuneup would be needed in order to match the performance of
the R&S.

This proof of concept opens up new possibilities for future multi qubit ex-
periments, as it is now shown that much cheaper hardware allows for similar
performance as current setups. To further improve the scalability and reduce
costs of this setup, one could consider creating a integrated circuit with mixers,
amplifiers and decouplers build in.

20

Bibliography

[1] Gordon E. Moore Cramming more components onto integrated circuits
Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.

[2] Matthew David Reed Entanglement and Quantum Error Correction with
Superconducting Qubits

[3] Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J.
Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf
Charge insensitive qubit design derived from the Cooper pair box Phys.
Rev. A 76, 042319 (2007)

[4] Alexandre Blais, Ren-Shou Huang, Andreas Wallraff, S. M. Girvin, and
R. J. Schoelkopf Cavity quantum electrodynamics for superconducting elec-
trical circuits: An architecture for quantum computation PHYSICAL RE-
VIEW A 69, 062320 (2004)

[5] T.W. Larsen, K.D. Peterson, F. Kuemmeth, T.S Jespersen, P. Krogstrup, J.
Nygaard and C.M. Marcus Semicondcutor-Nanowire-Based Superconduct-
ing Qubit Phys. Rev. Lett. 115, 127001 – Published 14 September 2015

[6] Peter W. Shor Algorithms for Quantum Computation: Discrete Logarithms
and Factoring Proc. 35nd Annual Symposium on Foundations of Computer
Science (Shafi Goldwasser, ed.), IEEE Computer Society Press (1994), 124-
134.

[7] Richard P. Feynman Simulating Physics with Computers International
Journal of Theoretical Physics, VoL 21, Nos.6/7, 1982

[8] Anders Kringhøj Readout and Control of Semiconductor- Nanowire-Based
Superconducting Qubits

[9] Blake Robert Johnson Controlling photons in superconducting electrical cir-
cuits

21

Appendix A

Mixer Optimization
Algorithm Code

22

AWG Automation initialiser

June 11, 2017

In [1]: '''Initialize the AWG'''

import os
import time
import logging

import numpy as np
import matplotlib.pyplot as plt

logger = logging.getLogger()
logger.setLevel(logging.INFO)

import qcodes.instrument_drivers.tektronix.AWG5014 as awg # <--- The instrument driver
from qcodes.instrument_drivers.tektronix.AWGFileParser import parse_awg_file # <--- A helper function

awg1 = awg.Tektronix_AWG5014('AWG1', 'TCPIP0::172.20.3.14::inst0::INSTR', timeout=40)

AWG clock freq not set to 1GHz

Connected to: 1.20000000E+009 None (serial:None, firmware:None) in 0.08s

In [2]: #Set the amplitude of used channels to not destroy the IQ mixer

awg1.clock_freq(1e9)

current_amp = 0.2

awg1.ch1_amp.set(current_amp)
awg1.ch2_amp.set(current_amp)

awg1.ch1_offset.set(0)

awg1.ch2_offset.set(0)

In [3]: # noofseqelems runs all the different waveforms after each other in the waveformgenerator
noofseqelems = 50

1

noofpoints = 2001
band_frequency = 50e6

waveforms = [[], []] # one list for each channel
m1s = [[], []]
m2s = [[], []]
for ii in range(noofseqelems):

waveform and markers for channel 1
#Remember that i put 2 times in to get right mode

wf0 = np.sin(2*np.pi*np.linspace(0, 2000 , noofpoints) * (band_frequency * 1e-9) - ii*0.1*(np.pi / 180) - 90 * np.pi / 180)
wf0 = np.delete(wf0, int(noofpoints-1))
waveforms[0].append(wf0)

waveforms[0].append(np.sin(2*np.pi*(ii+1)*np.linspace(0, 1 , noofpoints)))
#waveforms[0] = np.delete(waveforms[0], int(noofpoints-1))

m1 = np.zeros(noofpoints-1)
m1[:int((noofpoints-1)/(ii+1))] = 1
m1s[0].append(m1)
m2 = np.zeros(noofpoints-1)
m2s[0].append(m2)

waveform and markers for channel two
#Remember that i put 2 times in to get right mode
wf = np.sin(2*np.pi*np.linspace(0, 2000, noofpoints) * band_frequency * 1e-9)
wf = np.delete(wf, int(noofpoints-1))
waveforms[1].append(wf)

m1 = np.zeros(noofpoints-1)
m1[:int(noofpoints-1/(ii+1))] = 1
m1s[1].append(m1)
m2 = np.zeros(noofpoints-1)
m2s[1].append(m2)

In [6]: # number of repetitions
nreps = [0 for ii in range(noofseqelems)]

trig_waits = [0]*noofseqelems
Goto state
goto_states = [0]*noofseqelems
Event jump
jump_tos = [0]*noofseqelems

awg1.make_send_and_load_awg_file(waveforms, m1s, m2s,
nreps, trig_waits,

2

goto_states, jump_tos, channels=[1, 2])

In [5]: awg1.clear_message_queue()

In [7]: awg1.all_channels_on()
awg1.run()

Out[7]: 'Running'

In [8]: import qcodes.instrument_drivers.signal_hound.USB_SA124B as sh
import matplotlib.pyplot as plt

''' Here you specify the path to your sa_api.dll file
which is located in the signal hound install folder. '''

sa_api_path = 'C:\Program Files\Signal Hound\Spike\sa_api.dll' # Specify here between the apostrophe

sh1 = sh.SignalHound_USB_SA124B('sh1', sa_api_path)

INFO:root:qcodes.instrument_drivers.signal_hound.USB_SA124B : Initializing instrument SignalHound USB 124A
INFO:Main.DeviceInt:Opening Device
INFO:Main.DeviceInt:Querying device for model information
INFO:Main.DeviceInt:Querying device for model information

Initialized SignalHound in 6.83s

In [242]: ''' Specify the frequency and span to sweep accros in hz '''

#Specify frequency
frequency = 4.85e9
sh1.frequency(frequency)

#Specify Span
span = 100e6
#span = 10e3
sh1.span(span)

#This updates the frequency and span parameters and prepares the device for measurement
sh1.prepare_for_measurement()

'''Determine whether or not you want to plot your sweeped span'''

plot_or_not = 'yes' #yes or no between the apostrophe

3

if plot_or_not == 'yes':
spectrum = sh1.sweep() #Sweeps the desired range and returns like this, np.array([freq_points, datamin, datamax])

fig = plt.figure(figsize=(20,10))
ax = fig.add_subplot(111)
plt.plot(spectrum[0], spectrum[1]) #Plots dBm vs frequency
ax.xaxis.set_major_formatter(plt.FormatStrFormatter('%.5e'))
plt.ylabel('dBm')
plt.xlabel('Frequency [Hz]')
plt.show()

'''If you only want the power at the specified frequency'''

power_at_freq = sh1.get_power_at_freq()

print('Power at %.2e [Hz] is %.2f [dBm]' % (sh1.get('frequency'), power_at_freq))

INFO:Main.DeviceInt:Setting device CenterSpan configuration.
INFO:Main.DeviceInt:Setting device reference level configuration.
INFO:Main.DeviceInt:Setting device Sweeping configuration.

Warning: saBandwidthClamped

Power at 4.85e+09 [Hz] is -53.07 [dBm]

In [235]: import time
start_time = time.clock()

#Initialize the spectrum analyser
sh1.frequency(frequency)
sh1.span(10e3)
sh1.prepare_for_measurement()

#Initialize sweep for channel1
a = []
ch1_offset = 0.03

#Initialize sweep for channel2
b = []
ch2_offset = 0.03

4

t = 0
##
while t <= 15:

awg1.ch1_offset.set(ch1_offset)
time.sleep(0.4)
power = sh1.get_power_at_freq()

a.append([ch1_offset, power])
ch1_offset += -0.004

t += 1

#Finds the minimum in a and returns the offset value for this minimum
g = round(min((i for i in a), key=lambda i: i[1])[0],3)

a = []
ch1_offset = g + 0.004

t = 0

while t <= 8:
awg1.ch1_offset.set(ch1_offset)
time.sleep(0.4)
power = sh1.get_power_at_freq()

a.append([ch1_offset, power])
ch1_offset += -0.001

t += 1

g = round(min((i for i in a), key=lambda i: i[1])[0],3)
awg1.ch1_offset.set(g)

##
t = 0

while t <= 15:
awg1.ch2_offset.set(ch2_offset)
time.sleep(0.4)
power = sh1.get_power_at_freq()
b.append([ch2_offset, power])

ch2_offset += -0.004

t += 1

5

#Finds the minimum in a and returns the offset value for this minimum
h = round(min((i for i in b), key=lambda i: i[1])[0],3)

b = []
ch2_offset = h + 0.004

t = 0

while t <= 8:
awg1.ch2_offset.set(ch2_offset)
time.sleep(0.4)
power = sh1.get_power_at_freq()
b.append([ch2_offset, power])

ch2_offset += -0.001

t += 1

h = round(min((i for i in b), key=lambda i: i[1])[0],3)
awg1.ch2_offset.set(h)

##

print((time.clock() - start_time), "seconds")

INFO:Main.DeviceInt:Setting device CenterSpan configuration.
INFO:Main.DeviceInt:Setting device reference level configuration.
INFO:Main.DeviceInt:Setting device Sweeping configuration.
INFO:Main.DeviceInt:Call to initiate succeeded.

30.333558417165477 seconds

In [238]: import time
start_time = time.clock()

#Initialize the spectrum analyser
sh1.frequency(frequency - band_frequency)
sh1.span(10e3)
sh1.prepare_for_measurement()

6

time.sleep(1)

#Initialize sweep for channel1
a = []
ch1_amplitude = current_amp + 0.100

t = 0
##

while t <= 5:
awg1.ch1_amp.set(ch1_amplitude)
time.sleep(0.5)
power = sh1.get_power_at_freq()
a.append([ch1_amplitude, power])

ch1_amplitude += -0.04

t += 1

#Finds the minimum in a and returns the offset value for this minimum
g = min((i for i in a), key=lambda i: i[1])[0]
awg1.ch1_amp.set(g + 0.04)

new part
a = []
ch1_amplitude = g + 0.04

t = 0

while t <= 5:
awg1.ch1_amp.set(ch1_amplitude)
time.sleep(0.5)
power = sh1.get_power_at_freq()
a.append([ch1_amplitude, power])

ch1_amplitude += -0.016

t += 1

g = min((i for i in a), key=lambda i: i[1])[0]
awg1.ch1_amp.set(g + 0.008)

##

a = []
ch1_amplitude = g + 0.008

7

t = 0

while t <= 16:
awg1.ch1_amp.set(ch1_amplitude)
time.sleep(0.5)
power = sh1.get_power_at_freq()
a.append([ch1_amplitude, power])

ch1_amplitude += -0.001

t += 1

g = min((i for i in a), key=lambda i: i[1])[0]
awg1.ch1_amp.set(g)

print((time.clock() - start_time), "seconds")

INFO:Main.DeviceInt:Setting device CenterSpan configuration.
INFO:Main.DeviceInt:Setting device reference level configuration.
INFO:Main.DeviceInt:Setting device Sweeping configuration.
INFO:Main.DeviceInt:Call to initiate succeeded.

21.32087232743106 seconds

In [237]: import time
start_time = time.clock()

#Initialize the spectrum analyser
sh1.frequency(frequency - band_frequency)
sh1.span(10e3)
sh1.prepare_for_measurement()

#Initialize sweep for channel1
a = []
seq_pos = 1

t = 0

while t < noofseqelems:
awg1.sequence_pos.set(seq_pos)
time.sleep(0.5)
power = sh1.get_power_at_freq()

a.append([seq_pos, power])
seq_pos += 1

8

t += 1

#Finds the minimum in a and returns the offset value for this minimum
g = min((i for i in a), key=lambda i: i[1])[0]
awg1.sequence_pos.set(g)

print((time.clock() - start_time), "seconds")

INFO:Main.DeviceInt:Setting device CenterSpan configuration.
INFO:Main.DeviceInt:Setting device reference level configuration.
INFO:Main.DeviceInt:Setting device Sweeping configuration.
INFO:Main.DeviceInt:Call to initiate succeeded.

35.099577999888425 seconds

In [240]: np.savetxt('C:\\Users\\Triton 5 DAQ\\Desktop\\daniel\\5ghz_50mhz_RS25dbm_HM1000a.txt', spectrum)

In [7]: import numpy as np

In [128]: power

Out[128]: -45.067314147949219

In [243]: low = power_at_freq

In [241]: high = power_at_freq

In [244]: delta = high - low

In [245]: delta

Out[245]: 53.076743410667405

In [153]: low

Out[153]: -54.266780853271484

In []:

9

	Introduction
	Theory
	Qubits
	The Hydrogen Atom
	Superconducting Qubits

	The Cooper Pair Box
	Circuit QED
	Jaynes-Cummings Hamiltonian
	Dispersive Regime: Qubit Readout
	Gate tunable Qubits
	Single Qubit Rotations
	Single Sideband Modulation

	Setup
	Proposed Setup for Qubit Control
	IQ Mixer Optimization Algorithm

	Experiment
	Spectroscopy
	Rabi
	Gate tuneup / ALLXY
	Conclusion

	Mixer Optimization Algorithm Code

