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Abstract

This thesis investigates type II superconductors consisting of Cooper pairs
with different types of pairing. First, we examine time-reversal Cooper pairs
using the Bardeen-Cooper-Schrieffer (BCS) theory in the simple case of no per-
turbations. We solve the self-consistent gap equation numerically and show how
the superconductivity is suppressed by thermal fluctuations. Subsequently we
add an external magnetic field for which we neglect orbital contributions, i.e., the
Maki parameter is high. We investigate how the gap equation is modified by the
Zeeman interaction and simulate how the superconductivity is suppressed by the
field. Further we review the elusive Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state which has not yet been conclusively observed experimentally. We show that
solving the self-consistent gap equation is equivalent to minimizing the free en-
ergy. Finally, we investigate if the FFLO state is favourable at low temperatures
and at external magnetic fields near the Clogston-Chandrasekhar limit.
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1 INTRODUCTION 1

1 Introduction

Superconductors are some of the most intriguing and peculiar materials present in
modern physics. Superconductivity, so far, only exists at very low temperatures and this
is due to the fact that it is a direct consequence of quantum mechanics [1]. Magnetism
and superconductivity are natural enimies. Eddy currents arise in superconductors
in the presence of magnetic fields which lead to one of two outcomes. Either the
magnetic field is excluded from the material, this is known as the Meissner effect, or
the superconductivity is suppressed in the regions with a non-zero magnetic field. With
a sufficiently large magnetic field the superconductivity will cease to exist. This happens
at the critical field.

BCS theory was the first microscopic theoretical model of superconductors and we
will use this to study the effects of a Zeeman interaction on a superconductor. First,
we will consider the simple case with no external field. Secondly, we will investigate
how an external magnetic field affects the superconductivity in materials where the
orbital effects can be neglected. In both cases we will focus on two-dimensional type II
superconductors with an s-wave, spin-singlet pairing. Furthermore, we will investigate
if it could be favourable to form Cooper pairs without time-reversal symmetry at low
temperatures and high magnetic fields. Thus we will search for the elusive FFLO state.

All figures, except Fig. 5 from [2], in this thesis are made by the author. Numerical
plots and calculations have been produced using MATLABTM.

2 Second Quantization1

Second quantization representation will be presented briefly, as it is used in BCS theory.
Since we are looking at a superconductor, we will only cover second quantization for
fermions, but a similar representation can be made for bosons. In second quantization
representation, or occupation number representation, an N-particle system is described
in a basis given by

| nν1, nν2, nν3, ...〉,
∑
j

nνj = N, (1)

where the occupation number nνj is the number of particles in a state |νj〉. The occu-
pation number operator n̂νj is an eigenoperator to the state |nνj〉 with the occupation
number as eigenvalue.

n̂νj | nνj〉 = nνj | nνj〉. (2)

States containing different numbers of particles are defined to be orthogonal. We can
introduce the creation operator ĉ†νj and the annihilation operator, ĉνj ≡ (ĉ†νj)

†. These
operators either raise or lower the occupation number of state | νj〉 by one. Due to
Pauli’s exclusion principle nνj can only be 0 or 1 for fermions. Thereby it must hold
that

ĉ†νj|1〉 = 0 and ĉνj|0〉 = 0. (3)

1This section is based on chapter 1 of [3].
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The operator algebra for the fermionic creation and annihilation operators can be de-
fined by the following anti-commutation 2 relations

{ĉ†νj, ĉ
†
νk} = 0, {ĉνj, ĉνk} = 0, {ĉνj, ĉ†νk} = δνjνk. (4)

Introducing the Hermitian operator ĉ†ν ĉν and using these anti-commutation relations,
it is trivial to show that it is, in fact, the occupation number operator n̂ν , i.e.,

ĉ†ν ĉν = n̂ν ĉ†ν ĉν |nν〉 = nν |nν〉 where nν = 0, 1. (5)

Operators such as the Hamiltonian of a system can be expressed in terms of the relevant
annihilation and creation operators.

3 Superconductivity with no perturbations

3.1 Bardeen-Cooper-Schrieffer Theory

The Bardeen-Cooper-Schrieffer (BCS) theory was published in 1957 by the physicists
whom the theory is named after. BCS theory describes superconductivity as a micro-
scopic effect due to condensation of Cooper pairs with a bosonic distribution [3]. Most
superconductors known to date are spin-singlet Cooper pairs with d-wave or s-wave
symmetry [4]. We will focus on the latter. This is also referred to as time-reversal
pairs, i.e., the pairing arrises between states with (k, ↑) and (−k, ↓).These spin-singlet
Cooper pairs have a zero center-of-mass momentum, i.e., q = 0. In the simple case of
no external perturbations, we want to investigate how the superconducting band gap
is affected by thermal fluctuations. It is advantageous to work out the calculations
in reciprocal space. In BCS theory the occupation number representation, described
above, is used. The operator ĉ†k↑ĉ

†
−k↓ (ĉ−k↓ĉk↑) is the creation (annihilation) operator

of a time-reversal Cooper pair. The BCS model is described by the Hamiltonian [4]

HBCS =
∑
k

(ξkĉ
†
k↑ĉk↑ + ξ−kĉ

†
−k↓ĉ−k↓)−

V

N2

∑
k,k′

ĉ†k↑ĉ
†
−k↓ĉ−k′↓ĉk′↑ (6)

with
ξk = 2t[cos(akx) + cos(aky)]− µ. (7)

The first term in HBCS counts the kinetic energy, i.e., it adds ξk to the energy if the
state (kσ) is occupied. We sum over the first Brillouin zone, i.e., −π/a ≤ k < π/a. To
avoid double counting due to periodic boundary conditions, we only include one of the
edges. Further we assume inversion symmetry such that ξk = ξ−k. The first term in
the dispersion is expressed in terms of the lattice spacing a and the tunnelling strength
for the nearest neighbour hopping t in accordance to the tight binding model [5]. µ
denotes the chemical potential. When ξk = 0, we are at the Fermi level. The second
term describes the scattering of a Cooper pair with momentum (k′,−k′) into another
pair with momentum (k,−k). The scattering happens with an amplitude of −V .

2For the operators Â and B̂ the anti-commutator is defined by {Â, B̂} ≡ ÂB̂ + B̂Â.
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This term is negative due to the fact that there is an attractive interaction between the
electrons. The N2 in the denominator is the number of sites in the lattice. The scatter-
ing term cannot be calculated analytically; so, we perform a mean-field approximation,
ĉ†k↑ĉ

†
−k↓ĉ−k′↓ĉk′↑ ' 〈ĉ

†
k↑ĉ
†
−k↓〉ĉ−k′↓ĉk′↑ + ĉ†k↑ĉ

†
−k↓〈ĉ−k′↓ĉk′↑〉 − 〈ĉ

†
k↑ĉ
†
−k↓〉〈ĉ−k′↓ĉk′↑〉 [6]. The

last term is constant, and will therefore be neglected here. If we were interested in,
e.g., the total energy of the system, this term could not be neglected. Since we are
only interested in the gap equation, a constant shift in the energy has no conceptual
implication. Defining the superconducting gap

∆ ≡ V

N2

∑
k

〈ĉ−k↓ĉk↑〉, (8)

and using the mean-field approximation, the BCS Hamiltonian can be reduced to

Hmf
BCS =

∑
k

(ξkĉ
†
k↑ĉk↑ + ξ−kĉ

†
−k↓ĉ−k↓)−

∑
k

(∆ĉ†k↑ĉ
†
−k↓ + ∆∗ĉ−k↓ĉk↑). (9)

The Hamiltonian can be written in matrix form and thereby diagonalized by the fol-
lowing rotation of the ĉ-operators(

γ̂k↑
γ̂†−k↓

)
= U †

(
ĉk↑
ĉ†−k↓

)
=

(
u∗k −vk
v∗k uk

)(
ĉk↑
ĉ†−k↓

)
. (10)

uk, vk and ∆ are assumed to be real. This is the Bogoliubov transformation. The
transformation is chosen to be unitary such that the new γ̂-operators represent fermions
too, thus obeying the same anti-commutator relations, see Eq. (4). This is shown in
Appendix A. In fact, they represent fermionic quasi excitation particles. Demanding
that the transformation matrix, U , has to be unitary, i.e., U †U = I, UU † = I and
|det(U)| = 1 we get that u2

k + v2
k = 1. The indices on the new operators γ̂kσ can be

misleading. Since these operators are quasiparticles, the spin index on γ̂kσ should not
be interpreted as spin. It should just be interpreted as a label. The Hamiltonian can
now be diagonalized in the basis of these new operators.

U †Hmf
BCSU =

(
uk −vk
vk uk

)(
ξk −∆
−∆ −ξ−k

)(
uk vk
−vk uk

)
=

(
Ek 0
0 −Ek

)
. (11)

Writing the Hamiltonian on matrix form in this way also shifts the energy with a
constant due to the anti-commutator relations viewed previously, Eq. (4). We will
neglect this with the same argumentation as above. From this we can obtain the
following 2 equations

(u2
k − v2

k)ξk + 2ukvk∆ = Ek, (12)

2ukvkξk + (v2
k − u2

k)∆ = 0. (13)

Using that U is unitary, we can now isolate uk and vk from these equations. The
eigenenergies can be found by solving Hmf

BCS − EkI = 0. Thus we obtain

buk = ±

√
1

2

(
1 +

ξk
Ek

)
, vk = ±

√
1

2

(
1− ξk

Ek

)
and Ek =

√
ξ2
k + ∆2. (14)
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Ek is the quasiparticle energies. Varying k this energy can never become zero due to
the presence of ∆. Thus, a gap opens in the dispersion around zero with a size of 2∆.
Multiplying uk and vk we get

ukvk =

√
1

4

(
1 +

ξk
Ek

)(
1− ξk

Ek

)
=

1

2

√
1− E2

k −∆2

E2
k

=
∆

2Ek

. (15)

The rotation can further be used to rewrite Eq. (8)

∆ =
V

N2

∑
k

〈(ukγ̂−k↓ − vkγ̂†k↑)(ukγ̂k↑ + vkγ̂
†
−k↓)〉 (16)

=
V

N2

∑
k

(u2
k〈γ̂−k↓γ̂k↑〉 − v2

k〈γ̂
†
k↑γ̂
†
−k↓〉+ ukvk(〈γ̂−k↓γ̂†−k↓〉 − 〈γ̂

†
k↑γ̂k↑〉)). (17)

In the last two steps, we have used the anti-commutation relations given in Eq. (4).
Since the operators γ̂kσ,γ̂†kσ represent fermions, they obey Fermi-Dirac statistics. This

implies that 〈γ̂†kσγ̂k′σ′〉 = f(Ek)δkk′δσσ′ , whereas 〈γ̂†kσγ̂
†
k′σ′
〉 = 0 and 〈γ̂kσγ̂k′σ′〉 = 0.

Here f(Ek) = [1 + eEk/kBT ]−1 is the Fermi-Dirac distribution function, where kB and T
are the Boltzmann constant and temperature respectively. The new number operator
γ̂†kσγ̂kσ counts the number of excitations above the superconducting ground state, i.e.,
states with energy Ek > 0. Using these characteristics of the new operators, the gap
equation can be written as

∆ =
V

N2

∑
k

ukvk(〈γ̂−k↓γ̂†−k↓〉 − 〈γ̂
†
k↑γ̂k↑〉)

=
V

N2

∑
k

ukvk(1− 〈γ̂†−k↓γ̂−k↓〉 − 〈γ̂
†
k↑γ̂k↑〉)

=
V

N2

∑
k

ukvk(1− 2f(Ek)).

(18)

Inserting Eq. (15) and using that 1− 2f(Ek) = tanh(Ek/2kBT ) it reduces to

∆ =
V

N2

∑
k

∆

2Ek

tanh

(
Ek

2kBT

)
. (19)
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Fig. 1: Temperature dependence of the superconducting gap, ∆, given in terms of the
hopping constant, t. The plot simulates how the superconductivity is suppressed by
thermal fluctuations as the temperature increases.

This equation invokes self-consistency. A self-consistency equation has a trivial so-
lution with ∆ = 0, and we will investigate whether there exists a nontrivial solution too.
Using Eq. (14) and (19) to simulate how the bandgap changes with the temperature,
we get the tendency plotted in Fig. 1. In the numerical solution, everything is given
in terms of t, the hopping constant. The chemical potential, µ, is chosen such that
the Fermi surface is not in touch with the edges of the Brillouin zone. The scattering
potential, V , is chosen such that ∆ � t, i.e., ∆ ∼ 0.01t. It is clear that as the tem-
perature is increased, the superconducting gap is decreased. It can be shown that the
superconducting band gap in fact is the microscopically derived order parameter of the
superconducting state [4]. Thereby we observe the superconductivity being suppressed
with increasing temperatures in Fig. 1. Eventually the superconductivity is completely
destroyed by thermal fluctuations when ∆ reaches zero at the critical temperature. An
observable consequence of the order parameter is the gap that arises in the density of
states. This is described in Appendix B.

4 Magnetic Perturbation of a Superconductor

In this section, we investigate how a superconductor is affected by an external magnetic
field. An applied magnetic field can suppress the superconductivity in two different
ways, i.e., by orbital effects due to the Lorentz force and by spin effects due to Pauli
paramagnetic pair breaking. The Maki parameter describes the relative importance of
these two effects.

4.1 The Maki Parameter

The orbital effect is often the dominant mechanism in breaking the superconducting
state. There exist materials in which the opposite holds, e.g., materials with a heavy
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effective electron mass or in layered materials where the magnetic field lines are per-
pendicular to these layers [7]. The Maki parameter is given by [8]

αM =

√
2Horb

c2

HP
c2

, (20)

where Horb
c2 is the critical field for a type II superconductor only including the orbital

effects, HP
c2 is the critical field in the paramagnetic limit. In this thesis we will neglect

the orbital effect and focus on the Zeeman interaction, i.e., systems where αM ≥ 1.
This limit is denominated the Pauli limit.

4.2 The Clogston-Chandrasekhar limit 3

Let us now focus on the Pauli paramagnetic pair breaking and find HP
c2(T ). For small

magnetic fields, the paramagnetism will be eliminated by the formation of spin-singlet
Cooper-pairs in the superconducting state. When the magnetic field is sufficiently
large, the Pauli paramagnetic pair-breaking will instead destroy the superconducting
state. This happens when the normal state paramagnetic energy, EP , exceeds the
superconducting condensation energy, i.e., the binding energy of the Cooper pairs, Ec.
The two quantities mentioned is given by

EP =
1

2
χn(HP

c2)2, Ec =
1

2
N0∆2(T ), (21)

N0 being the density of states at the Fermi energy per spin polarization and χn being
the normal spin susceptibility. The latter is given by

χn =
1

2
g2µ2

BN0, (22)

where g is the gyromagnetic ratio and µB is the Bohr magneton. Setting EP = Ec and
isolating HP

c2(T ) we get

HP
c2(T ) =

√
2∆(T )

|g|µB
. (23)

This is the Clogston-Chandrasekhar limit. It tells us how big the external field has to
be to destroy the superconductivity. At this point there will be a first order transition
from the BCS state to the depaired state. Since HP

c2(T ) is directly proportional to ∆,
the temperature dependence of these must have the same form, see Fig. 1. Thus the
superconducting state can survive bigger magnetic fields at lower temperatures. Here
we have assumed that the curvature of ∆(T ) is the same for B 6= 0 as for B = 0.
Whether this is true or not, we will investigate in the following section.

4.3 Modulation of the Gap Equation by a Zeeman Interaction
in s-wave Superconductors

We want to investigate how the gap equation is modulated when a Zeeman interaction
is added. In this section we are dealing with spin-singlet Cooper-pairs with a zero

3This section is inspired by [9]
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center-of-mass momentum. The Hamiltonian is given by

Hmf
BCS,B =

∑
k

(ξk↑ĉ
†
k↑ĉk↑ + ξ−k↓ĉ

†
−k↓ĉ−k↓ −∆B ĉ

†
k↑ĉ
†
−k↓ −∆B ĉ−k↓ĉk↑) (24)

where

ξkσ = 2t[cos(akx) + cos(aky)]− µ+Hzσ = 2t[cos(akx) + cos(aky)]− µ− σ
1

2
gµBB (25)

with

σ =

{
1 for ↑
−1 for ↓ .

(26)

The extra term in ξkσ in Eq. (25) is the Zeeman term where B is the size of the magnetic
field. We focus on the case where the magnetic field is parallel to ↑ and antiparallel to
↓. The Hamiltonian can be written in matrix form choosing an advantageous basis

Hmf
BCS,B =

∑
k

(
ĉ†k↑ ĉ−k↓ ĉk↑ ĉ†−k↓

)
ξk↑ −∆B 0 0
−∆B −ξ−k↓ 0 0

0 0 −ξk↑ ∆B

0 0 ∆B ξ−k↓



ĉk↑
ĉ†−k↓
ĉ†k↑
ĉ−k↓

 , (27)

such that the Hamiltonian is block diagonal. If we denote the top, left block of the
Hamiltonian H2x2, it is clear that the bottom, right block is equal to −H2x2. Thus it
is sufficient to diagonalize only H2x2. We now realize that the H2x2 can be written in
terms of the BCS Hamiltonian without the magnetic field in Eq. (9),

H2x2 = Hmf
BCS +Hz↑I, (28)

where I is the identity matrix. It is now trivial to see that the eigenenergies are just
shifted by the amount Hz↑ and that the eigenvectors must be of the same form as Eq.
(10).

U †(Hmf
BCS +Hz↑I)U = U †Hmf

BCSU + U †Hz↑IU (29)(
Ek↑ 0
0 −Ek↓

)
=

(
Ek +Hz↑ 0

0 −Ek +Hz↑

)
, (30)

where Ek is the eigenenergy from the BCS model without a magnetic field, see Eq.
(14). From this argument we can conclude that we do not need any spin dependency
on the elements of U . If we had kept the spin dependency on the elements of U the
symmetries from demanding that U †U = I, UU † = I, |det(U)| = 1 would force us to
draw the same conclusion. Calculating the eigenenergies of the Hamiltonian in Eq. (27)
by bruteforce, we get

Ekσ = ±ξk↑ − ξ−k↓
2

+

√
(ξk↑ + ξ−k↓)2

4
+ ∆2

B. (31)
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Without the spin dependency, this reduces to the eigenenergies of the system with
no external magnetic field, see Eq. (14). Realizing that Hz↑ =

ξk↑−ξ−k↓
2

and that

ξk =
ξk↑+ξ−k↓

2
, this reads

Ek± = ±Hz↑ +
√
ξ2
k + ∆2

B = Ek ±Hz↑, (32)

which is exactly what we argued above. To diagonalize the Hamiltonian, we perform a
rotation of the original ĉ-operators into γ̂-operators as in section 3.1. The Bogoliubov
transformation is given by

ĉk↑ = ukγ̂k↑ + vkγ̂
†
−k↓

ĉ†k↑ = ukγ̂
†
k↑ + vkγ̂−k↓

ĉ−k↓ = ukγ̂−k↓ − vkγ̂†k↑
ĉ†−k↓ = ukγ̂

†
−k↓ − vkγ̂k↑.

(33)

uk, vk and ∆B are assumed to be real. Following the same procedure as in section 3.1,
the gap equation becomes

∆B =
V

N2

∑
k

〈ĉ−k↓ĉk↑〉

=
V

N2

∑
k

〈(ukγ̂−k↓ − vkγ̂†k↑)(ukγ̂k↑ + vkγ̂
†
−k↓)〉

=
V

N2

∑
k

ukvk (1− f(Ek↓)− f(Ek↑)) .

(34)

From diagonalization and from demanding the transformation matrix U to be unitary,
we obtain the following 4 equations

u2
kξk↑ − v2

kξ−k↓ + 2ukvk∆B = Ek↑, (35)

v2
kξk↑ − u2

kξ−k↓ − 2ukvk∆B = −E−k↓, (36)

ukvk(ξk↑ + ξ−k↓) + ∆B(v2
k − u2

k) = 0, (37)

u2
k + v2

k = ±1. (38)

From these we can isolate uk and vk.

uk = ±

√
2∆2

B + Ek↑(ξk↑ + ξ−k↓) + ξ2
−k↓ + ξk↑ξ−k↓ ±K1

4∆2
B + (ξk↑ + ξ−k↓)2

, (39)

with

K1 = 2∆B

√
∆2
B − Ek↑(Ek↑ + ξ−k↓ − ξk↑) + ξk↑ξ−k↓, (40)

and

vk = ±

√
2∆2

B − E−k↓(ξk↑ + ξ−k↓) + ξ2
−k↓ + ξk↑ξ−k↓ ±K2

4∆2
B + (ξk↑ + ξ−k↓)2

, (41)
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with

K2 = 2∆B

√
∆2
B − E−k↓(E−k↓ − ξ−k↓ + ξk↑) + ξk↑ξ−k↓. (42)

Inserting that Ek↑ = Hz↑ + Ek, E−k↓ = −Hz↑ + E, ξk↑ = ξk + Hz↑ and ξ−k↓ =
ξk − Hz↑ these equations reduces to Eq. (14), which consolidate the fact that the
Zeeman interaction does not affect the eigenvectors. The only difference it gives rise to
is an extra eigenenergy and thereby a small modification of the gap equation. Thus,
ukvk is given by Eq. (15) and the gap equation becomes

∆B =
V

N2

∆B

2Ek

∑
k

(1− f(Ek↓)− f(Ek↑)). (43)

Another way to find an expression for uk and vk and thereby the gap equation is by
looking at the commutator [Hmf

BCS,B, ĉk↑]. These calculations are to be found in appendix
C. The same results are obtained with this method. Embedding the aforementioned
adjustments in the script that solves the self-consistent gap equation and simulates
its dependence of temperature, we see clearly an effect of the Zeeman interaction, see
Fig. 2. It is indisputable that the magnetic field suppresses ∆B and thereby the
superconductivity, though the maximum ∆B at T = 0 is not affected. We observe that
∆ attenuates slowly at temperatures above 0.006 in Fig. 1. At the critical temperature
this should go abruptly to zero. This is a numerical error due to the fact that N is too
small.

Fig. 2: The temperature dependence of the superconducting band gap ∆B with in-
creasing magnetic fields as a function of temperature. The blue curve is for B = 0,
orange for B = 0.007t, yellow for B = 0.01t. For increasing magnetic fields there is a
corresponding decreasing critical temperature.
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Taking the limit T → 0 of Eq. (43) it reduces to

lim
T→0

∆B =
V∆B

2Ek

, (44)

which is independent of the magnetic field. This consolidate the tendency plottet in
Fig. 2. We know from Eq. (25) that a Zeeman field affects states differently depending
on the spin of the state. Thus the application of a magnetic field increases the density of
electrons with spins parallel to the applied field, in this case ↑, since the energy of these
states are decreased, and the opposite is the case for spins antiparallel to the magnetic
field, in this case ↓, see Fig. 3. Pairing time-reversal Cooper pairs in the presence of such
a field means that the two bound electrons do not both have the energy corresponding
to the Fermi surface. Since we have Ek in the denominator in Eq. (15) and thus in
Eq. (34), moving away from the Fermi surface and thereby increasing |Ek| decreases
the superconducting band gap. Thus, when we increase the magnetic field, the Cooper
pairs are forced to be formed by electrons with an increasing difference in energy until
this is no longer favourable and the superconductivity ceases to exist. This motivates
Cooper pairs formed without time-reversal symmetry.

k

E

−k ↓

k ↑
B

EF

Fig. 3: The dispersion of the electrons in the presence of a magnetic field. The spin
up states (red curve) will be pushed down in energy and the spin down states (blue
curve) will be pushed up in energy by the magnetic field. To conserve the time reversal
symmetry of the Cooper pairs, one of the bound electrons must have E 6= EF . The
BCS pairing is illustrated with a dashed line.
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5 Fulde-Ferrell-Larkin-Ovchinnikov state

k

k’

-k

-k’

(a) B = 0

k

k’

q

q

-k’+q

-k+q

(b) B 6= 0

Fig. 4: The pairing states are illustrated with energy orthogonal to the paper. With no
external magnetic field (a) the time-reversal Cooper pairs are formed (−k ↓,k ↑). For
a magnetic field applied orthogonal to the paper (b) the FFLO pairing state is depicted
(−k+q ↓,k ↑). In this case the energy band is spin split due to the Zeeman interaction.

A new state, the FFLO state, was proposed by two different pairs of scientists,
Fulde and Ferrel [10] and Larkin and Ovchinnikov [11] in the 1960s. The FFLO state
was predicted theoretically to appear in superconductors at low temperature and at
large magnetic fields but has not yet been conclusively observed experimentally. The
two groups suggested two different modulations of the band gap ∆, the FF ansatz and
the LO ansatz. They proposed that Cooper pairs could be formed by electrons from
the two different spin bands, i.e., the pairing arising between state (k, ↑) at (-k+q, ↓)
as illustrated in Fig. 4. Thus, the pairing state is formed with a finite center-of-
mass momentum, q, corresponding to the distance between the Fermi surfaces of the
two spin bands. The fact that q 6= 0 breaks the symmetry between the time-reversal
Cooper pairs such that the energy of the coupled electrons is no longer degenerate,
i.e., ξk+q/2↑ 6= ξ−k+q/2↓. The hypothesis is that transitioning the normal state into
this pairing state can enhance the upper critical field [9]. Due to the fact that the
FFLO state originates from paramagnetism, for the FFLO state to appear, it has to be
the Pauli paramagnetic pair-breaking that is the dominating factor in suppressing the
superconductivity [12], i.e., the Maki parameter described in section 4.1 must be high.
For the FFLO state to be found it must hold that the superconductor is in the clean
limit, i.e., when the electron mean free path l is much larger than the superconducting
coherence length ξ0 [13]. Further, previous studies have shown that we must be at very
low temperatures and the magnetic field must be near the Clogston-Chandrasekhar limit
[2]. These very stringent conditions, for the FFLO state to appear, makes it difficult to
observe experimentally. One way to minimize the orbital effetcs is to investigate two-
dimensional layered superconductors with an applied field parallel to the layers. This
case is investigated with, e.g., the organic superconductor κ-(BEDT-TTF)2Cu(NCS)2

[14]. A high magnetic field phase diagram is obtained and due to the fact that magnetic
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order can be excluded in this organic material, Bergk et al. conclude that this could be
a signature of the FFLO state. Another way to obtain a large Maki parameter is using
heavy-fermion materials. A candidate for this is the compound CeCoIn5, for which an
anomaly in the specific heat in the vicinity of the superconducting critical field has
been observed [15]. This anomaly, in addition to the fact that the phase transition
changes from a second to a first order, could be due to the presence of a FFLO phase.
This result is heavily debated and could also be explained by the presence of ordered
local moments [16]. From a numerical study of the phase transition, in the case of
a two-dimensional gas of heavy quasiparticles, the phase diagram in Fig. 5 can be
obtained [2]. This is done for both spin dependent and independent masses. In this
Fig. it is clear that the search for the FFLO state has to be localized to the region
of low temperatures and high fields. Further, we see that the critical field is enhanced
by the FFLO phase. The region, where the FFLO phase is present, is enhanced by
a spin dependency on the masses. In both cases the phase transition changes from a
second order to a first order as in previous studies. Despite the countless inconclusive
evidence for the FFLO state there are no indisputable verification of the FFLO state,
i.e., no thermodynamic or microscopic evidence have been reported so far. Conclusive
evidence could be obtained using scanning tunneling microscopy that can detect the
spatial variance in density of states of the quasiparticles [17]. Further, phase sensitive
experiments measuring the tunnel effect between the FFLO state and the s-wave BCS
state could provide an unambiguous approach to determine the existence of the FFLO
state. In the following section, we will investigate if we can show that the FFLO phase
does indeed exist using BCS theory to examine the free energy of the system.

Fig. 5: Phase diagram for the two-dimensional correlated gas with s-wave symmetry
in the SM case (a) and the SIM case (b). SDM: spin dependent masses. SIM: spin
independent masses. These plots are from [2]. The white area represent the normal
phase, the yellow region is the s-wave BCS phase with q = 0 and blue-red region
corresponds to the FF phase with q 6= 0. The green line represents the BCS critical
field.
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5.1 Modulation of the Gap Equation by a Zeeman Interaction,
q 6= 0

The ansatz Fulde og Ferrell proposed is a modulation of the band gap of a plane wave
form [18]

∆(r) = ∆qe
iq·r, where ∆q ∈ R, (45)

such that the phase of the superconducting gap now oscillates spatially with the wave
vector q. Investigating the Hamiltonian in real space and evaluating the Fourier trans-
formation with this modulation of the band gap, the Hamiltonian in reciprocal space
becomes

H =
∑
kσ

ξkσ ĉ
†
kσ ĉkσ −

V

N2

∑
kk′q

ĉ†k+q/2↑ĉ
†
−k+q/2↓ĉ−k’+q/2↓ĉk’+q/2↑, (46)

where ξkσ is defined in Eq. (25). We can no longer, as we did above, neglect the
constant term, since we are interested in calculating the free energy. Thus, a constant
shift in the energy is now of great importance. Defining the superconducting gap

∆q ≡
V

N2

∑
k

〈ĉ−k+q/2↓ĉk+q/2↑〉 =
V

N2

∑
k

〈ĉ†k+q/2↑ĉ
†
−k+q/2↓〉 (47)

and using the mean-field expansion

ĉ†k+q/2↑ĉ
†
−k+q/2↓ĉ−k+q/2↓ĉ−k+q/2↓ = 〈ĉ†k+q/2↑ĉ

†
−k+q/2↓〉ĉ−k+q/2↓ĉ−k+q/2↓

+ĉ†k+q/2↑ĉ
†
−k+q/2↓〈ĉ−k+q/2↓ĉ−k+q/2↓〉 − 〈ĉ†k+q/2↑ĉ

†
−k+q/2↓〉〈ĉ−k+q/2↓ĉ−k+q/2↓〉

(48)

we can, as in previous sections, rewrite H

H =
∑
kσ

ξkσ ĉ
†
kσ ĉkσ −

∑
k

(∆qĉ−k+q/2↓ĉk+q/2↑ + ∆qĉ
†
k+q/2↑ĉ

†
−k+q/2↓) +

N2

V
∆2

q. (49)

Contrary to preceding sections, we are no longer neglecting the third constant term in
the mean-field expansion. This leads to the last term in H. As long as we are summing
over all k’s in the Brillouin zone, we can always shift the summation and obtain an
equivalent result. Thus, writing

H =
∑
k

(ξk+q/2↑ĉ
†
k+q/2↑ĉk+q/2↑ + ξ−k+q/2↓ĉ

†
−k+q/2↓ĉ−k+q/2↓

−∆qĉ−k+q/2↓ĉk+q/2↑ −∆qĉ
†
k+q/2↑ĉ

†
−k+q/2↓) +

N2

V
∆2

q

(50)

with

ξk,qσ = ξk,q − µ− σ
1

2
gµBB, ξk,q = 2t(cos(a[kx + qx/2]) + cos(aky)) (51)
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makes it possible to write the Hamiltonian on a simple matrix form. To begin with we
focus on the case where q = (qx, 0).

H =
∑
k

(
ĉ†k+q/2↑ ĉ−k+q/2↓

)(ξk+q/2↑ −∆q

−∆q −ξ−k+q/2↓

)(
ĉk+q/2↑

ĉ†−k+q/2↓

)
+
∑
k

ξ−k+q/2↓ +
N2

V
∆2

q.

(52)

Due to the fact that ĉ−k+q/2↓ĉ
†
−k+q/2↓ = 1− ĉ†−k+q/2↓ĉ−k+q/2↓, see Eq. (4), we must add

ξ−k+q/2↓. The eigenenergies of the matrix is given by

Ek,q,σ = Ek,q + σξ
(a)
k,q (53)

with

Ek,q =

√
ξ

(s)2
k,q + ∆2

q, ξ
(s)
k,q =

ξk+q/2↑ + ξ−k+q/2↓

2
, ξ

(a)
k,q =

ξk+q/2↑ − ξ−k+q/2↓

2
. (54)

This has exactly the same shape as Eq. (31). We can now use the Bogoliubov trans-
formation with the same form as in previous sections(

ĉk+q/2↑

ĉ†−k+q/2↓

)
= U

(
γ̂k+q/2↑

γ̂†−k+q/2↓

)
=

(
uk,q vk,q
−vk,q uk,q

)(
γ̂k+q/2↑

γ̂†−k+q/2↓

)
(55)

to diagonalize the Hamiltonian. For clarity we define Hconst. ≡
∑
k

ξ−k+q/2↓ + N2

V
∆2

q.

H =
∑
k

(
ĉ†k+q/2↑ ĉ−k+q/2↓

)
UU †

(
ξk+q/2↑ −∆q

−∆q −ξ−k+q/2↓

)
UU †

(
ĉk+q/2↑

ĉ†−k+q/2↓

)
+Hconst.

=
∑
k

(
γ̂†k+q/2↑ γ̂−k+q/2↓

)(Ek,q,↑ 0
0 −Ek,q,↓

)(
γ̂k+q/2↑

γ̂†−k+q/2↓

)
+Hconst.

=
∑
kσ

Ek,q,σγ
†
k,q,σγk,qσ +

∑
k

(ξ−k+q/2↓ − Ek,q,↓) +
N2

V
∆2

q.

(56)
The constant term

∑
k

Ek,q,↓ comes from γ̂−k+q/2↓γ̂
†
−k+q/2↓ = 1− γ̂†−k+q/2↓γ̂−k+q/2↓. From

the diagonalization we can obtain expressions for uk,q and vk,q. The transformation
matrix is still unitary such that u2

k,q + v2
k,q = 1.

uk,q =

√
1

2

(
1 +

ξk+q/2↑ + ξ−k+q/2↓

2Ek,q

)
=

√
1

2

(
1 +

ξ
(s)
k,q

Ek,q

)
, vk,q =

√
1

2

(
1−

ξ
(s)
k,q

Ek,q

)
.

(57)

Removing the spin dependency and setting q = 0, this reduces to the original uk and
vk, see Eq. (14). Multiplying uk,q and vk,q we obtain

uk,qvk,q =
∆q

2Ek,q

. (58)



5 FULDE-FERRELL-LARKIN-OVCHINNIKOV STATE 15

We can now use the Bogoliubov transformation to rewrite the gap equation with the
same procedure as in section 3.1.

∆q =
V

N2

∑
k

〈(uk,qγ̂−k+q/2↓ − vk,q/2γ̂†k+q/2↑)(uk,qγ̂k+q/2↑ + vk,qγ̂
†
−k+q/2↓)〉 (59)

=
V

N2

∑
k

uk,qvk,q(〈γ̂−k+q/2↓γ̂
†
−k+q/2↓〉 − 〈γ̂

†
k+q/2↑γ̂k+q/2↑〉) (60)

=
V

N2

∑
k

uk,qvk,q(1− f(Ek,q,↓)− f(Ek,q,↑)) (61)

=
V

N2

∑
k

∆q

2Ek,q

(1− f(Ek,q,↓)− f(Ek,q,↑)). (62)

For q = 0 this reduces to Eq. (43).

5.2 Minimizing the Free Energy

From the Hamiltonian in Eq. 56 we can obtain an expression for the partition function,
Z. The last three terms in are just constants, such that they will contribute to the
free energy in the same way they are in the Hamiltonian since Z =

∑
e−βE [19] and

F = − 1
β
lnZ, where β ≡ 1/kBT . Thus, we will only calculate the partition function for

the two first terms which we will denote H1. This calculation is fairly simple due to
the fact that γ̂†k,q,σγ̂k,q,σ = n̂k,q,σ just counts the number of quasiparticles in the given
state.

Z1 =
∑
i

e−βH1 =
∑
i,j

e
−β
(∑

k
Ek,q,↑n̂i,k,q,↑+Ek,q,↓n̂j,k,q,↓

)
=
∑
i,j

∏
k

e−β(Ek,q,↑n̂i,k,q,↑+Ek,q,↓n̂j,k,q,↓)

=
∏
k

(
e−βEk,q,↑ + e−βEk,q,↓ + e0 + e−β(Ek,q,↑+Ek,q,↓)

)
=
∏
k

(
1 + e−βEk,q,↑

) (
1 + e−βEk,q,↓

)
,

F1 = − 1

β
ln(Z1) =

∑
k

ln
((

1 + e−βEk,q,↑
) (

1 + e−βEk,q,↓
))

= − 1

β

∑
kσ

ln
(
1 + e−βEk,q,σ

)
.

(63)
The free energy functional of the total Hamiltonian thereby becomes

F = − 1

β

∑
kσ

ln(1 + e−βEk,q,σ) +
∑
k

(ξ−k+q/2↓ − Ek,q,↓) +
N2∆2

q

V
. (64)
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We will now minimize the free energy with respect to ∆q, i.e., finding a ∆q for which
∂F
∂∆q

= 0 is true.

∂F
∂∆q

=
∂

∂∆q

(∑
k

(
− 1

β

(
ln
[
1 + e−βEk,q,↑

]
+ ln

[
1 + e−βEk,q,↓

])
− Ek,q,↓

)
+
N2∆2

q

V

)

=
2N2∆q

V
+
∑
k

(
− 1

β

[
−β∆qe

−βEk,q,↑

Ek,q(1 + e−βEk,q,↑)
+
−β∆qe

−βEk,q,↓

Ek,q(1 + e−βEk,q,↓)

]
− ∆q

Ek,q

)
=

2N2∆q

V
+
∑
k

∆q

(
f(Ek,q,↑) + f(Ek,q,↓)− 1

Ek,q

)
= 0,

∆q =
V

2N2

∑
k

(
1− f(Ek,q,↑)− f(Ek,q,↓)

Ek,q

)
∆q.

(65)
This is exactly what we found using our Bogoliubov transformation in Eq. (62). Thus,
solving the self-consistent gap equation is equivalent to minimizing the free energy. If
we had not assumed that ∆q was real, we would have to minimize with respect to both
∆q and ∆∗q. The same gap equation would be obtained. To consolidate this result we
can investigate it numerically. For simplicity we set B = 0,q = 0. First, we choose a
specific temperature for which we solve the self-consistent gap equation. Secondly, we
find the normalized free energy F/N2 for a range of ∆’s at the same temperature and
then find the minima of these free energies. These minima do in fact correspond to
±∆q=0 found from self consistency. These saddle points are illustrated in Fig. 6.

Fig. 6: Free energy as a function of ∆. The two minima correspond to ±∆q=0 found
from self-consistency.
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For T → 0, it should be true that F = 〈H〉. This is a way to check whether the free
energy functional is correct. For T → 0, the free energy functional in Eq. (64) becomes

lim
T→0
F =

∑
k

(ξ−k+q/2↓ − Ek,q,↓) +
N2∆2

q

V
. (66)

For T → 0, the expectation value of the diagonalized Hamiltonian in Eq. (56)

lim
T→0
〈H〉 =

∑
kσ

(Ek,q,σ〈γ̂†kqσγ̂kqσ〉 −∆q

∑
k

(
��

���
���

��:0
〈γ̂†k+q/2↑γ̂

†
−k+q/2↓〉+

���
���

���
�:0

〈γ̂−k+q/2↓γ̂k+q/2↑〉)

+
∑
k

(ξ−k+q/2↓ − Ek,q,↓) +
N2∆2

q

V

=
∑
k

(Ek,q,↑���
���:0

f(Ek,q,↑) + Ek,q,↓���
���:0

f(Ek,q,↓) +
∑
k

(ξ−k+q/2↓ − Ek,q,↓) +
N2∆2

q

V

=
∑
k

(ξ−k+q/2↓ − Ek,q,↓) +
N2∆2

q

V
.

(67)
This is a strong indicator that Eq. (64) is correct. As we would expect we get the
same result calculating 〈H〉 given in the basis of the ĉ-operators, see Eq. (50). This is
checked in Appendix D. We can now numerically solve the self-consistent gap equation
and insert this in the expression of the free energy. Doing this for a range of qx’s for
B = 0, we see that the free energy is minimum at qx = 0, see Fig. 7. This suggests that
the FFLO state is not favourable in the absence of a magnetic field, which is what we
would expect. Calculating each term in Eq. (64), we find that the first term is very flat
and approximately zero as expected. The last term proportional to ∆q maximizes the
free energy at q = 0 whereas the term

∑
k

(ξ−k+q/2↓ − Ek,q↓) minimizes the free energy

at qx = 0. The latter dominates such that the total free energy is mimimized at qx = 0.

(a) B = 0 (b) B 6= 0

Fig. 7: Free energy as a function of qx for T → 0 with B = 0 (a) and a B-field just
below the Clogston-Chandrasekhar limit (b).
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(a) (b)

Fig. 8: The free energy as a function of qx and qy with a magnetic field above the critical
field and a temperature just above absolute zero (a). The minima is symmetric around
zero (b). It is clear that the free energy is minimzed if either qx or qy is zero.

We will now investigate if there is a region with low temperatures and magnetic fields
close to the critical field for which the FFLO state is favourable. We can investigate
this in the same approach as above, i.e., find the free energy for a range of qx’s. For
the FFLO state to be favourable, we would expect the minima of the free energy to
be present at a q 6= 0. Let us first theoretically investigate whether the gap equation
and the free energy functional is inversion symmetric, i.e., invariant under the exchange
q→ −q, see Eq. (64). If this is true we would expect two minima symmetrical around
q = 0.

Fq→−q = − 1

β

∑
kσ

ln [1 + exp (−βEk,−q,σ)] +
∑
k

(ξ−k−q/2↓ − Ek,−q↓) +
N2∆2

-q

V
. (68)

All terms dependent of q have an explicit q-dependence in either ξk−q/2↑, ξk−q/2↓ or
both. We can now change the dummy index to k′ = k− q. The only impact from this
change is that the sum must be shifted. This will have no consequences since we are still
summing over the Brillouin zone even if we shift the sum. Thus, the free energy and
the gap equation is inversion symmetric. With a given temperature close to absolute
zero, we can determine the superconducting gap with B = 0, q = 0 and thereby find
the critical field in the Pauli limit using Eq. (23). This allow us to choose a field just
above that limit. Further, we must have a relatively large N to avoid finite size effects.
We choose N = 5000 such that the number of sites in the lattice is N2 = 25 · 106. In
the presence of this field, we can now once more calculate the free energy for different
qx’s. We find that the free energy is no longer minimized at qx = 0, see Fig. 7. This
indicates that the FF phase is favorable at this specific magnetic field. Further, it is
indeed symmetric around zero as predicted. This motivates for the LO ansatz where
the phase is a superposition of the two minima.

∆(x) = ∆−qe
−iqx·x + ∆qe

iqx·x = ∆qe
−iqx·x + ∆qe

iqx·x = 2∆q cos (qx · x) . (69)

Varying the magnetic field slightly such that it is still near the critical field we see that
the qx, for which the free energy is minimized, is shifted. This confirms that these
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Fig. 9: Free energy as a function of the superconducting gap for increasing magnetic
fields. We observe a first order transition from the FFLO state to the normal state.

two are correlated. The fact that the order parameter ∆ is different from zero for a
field above the critical field is itself a strong indicator of the presence of the FFLO
phase. With the same high magnetic field, we can once more calculate the free energy
numerically, varying both qx and qy to investigate if it is favourable to have a modulation
of the band gap both in the x-direction and the y-direction. We find that it is in fact
favourable to have either qx or qy equal to zero, see Fig. 8. Thus the superconducting
gap will have a striped modulation in real space.

The phase transition from the FFLO phase to the normal phase can be investigated
through the free energy, see Fig. 9. As the magentic field is increased the local maxima
at ∆ = 0 becomes a minima. At the critical field this minima becomes smaller than
the two minima at ∆ 6= 0. This transition is thus a first order transition.

6 Conclusion

Throughout this thesis, we have used BCS theory to investigate how a Zeeman interac-
tion affects the superconducting band gap in two-dimensional type II superconductors.
First, we explored the simplest case with no perturbations for superconductors consist-
ing of time-reversal Copper pairs. A self-consistent equation for the superconducting
band gap was obtained theoretically. This was solved numerically, and the tempera-
ture dependence was simulated. We found that the band gap decreases with increasing
temperatures until it reaches zero. This shows how superconductivity is supressed by
thermal fluctuations until it is completely destroyed at the critical temperature. In the
presence of an external magnetic field, we investigated how the self-consistent gap equa-
tion for ∆B was modified by a Zeeman interaction neglecting the orbital effects, i.e.,
for a system with a large Maki parameter. Due to the fact that the states are affected
differently according to the spin of the state, we had to introduce a spin-dependency
which lead to a small modification of the gap equation. Simulating the temperature
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dependence of the gap equation showed that the critical temperature is decreased in the
presence of an external magnetic field. The maximum value of ∆B was not affected by
the applied magnetic field. Subsequently we reviewed the FFLO state. The purpose was
to investigate whether it could be favourable to pair electrons with a non-zero center-
of-mass momentum. To do this, we examined the free energy functional. We showed,
theoretically and numerically, that minimizing the free energy is equivalent to solving
the self-consistent gap equation. Further, we solved the self-consistent gap equation
numerically and determined the free energy for a range of qx’s. In the absence of a
magnetic field, we showed that the FFLO state is not favourable. At low temperatures
and magnetic fields near the Clogston-Chandrasekhar limit, we found that the FFLO
state was indeed favourable. Varying both qx and qy we found that the free energy was
minimal if the modulation of the gap was restricted to only either the x-direction or
the y-direction. The phase transition from the FFLO state to the normal state is a first
order transition. We could also observe both theoretically and numerically that the
free energy functional and the gap equation is symmetric under the exchange q→ −q.
This motivates for the LO phase. In further research it would be of great interest to ex-
amine if, using the LO ansatz rather than the FF ansatz, would modify the free energy.
Could this be a more favorable state? Further, the transition between the FF state and
the depaired state could be investigated. Is this a first order phase transition? This
could be done examining the free energy as a function of ∆q=0 with increasing magnetic
fields. The Maki parameter could be investigated numerically by adding vortices and
investigating when the orbital effects would make the FFLO phase unfavourable. In the
presence of orbital contributions a potential correlation between the Maki parameter
and which state, the FF or the LO, is more favorable. Further, we could examine how
the plot of the superconducting band gap as function of temperature is modified by the
FFLO phase.
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Appendices

A An investigation of the anti-commutators for the

γ̂-operators

We want to investigate if the same anti-commutator relations apply for the quasiparti-
cles as for the original c-operators. If this is true, these new γ̂-operators must describe
fermions. From the Bogoliubov transformation in Eq. (10) we have that

γ̂k↑ = ukĉk↑ − vkĉ†−k↓, γ̂†k↑ = ukĉ
†
k↑ − vkĉ−k↓. (70)

From the second quantization representation we had the following anti-commutator
relations for the c-operators

{ĉνj, ĉ†νk} = δνjνk, {ĉ†νj, ĉ
†
νk} = 0, {ĉνj, ĉνk} = 0. (71)

Let us investigate the first relation.

{γ̂k↑, γ̂†k↑} = {(ukĉk↑ − vkĉ†−k↓), (ukĉ
†
k↑ − vkĉ−k↓)}

= u2
k{ĉk↑, ĉ

†
k↑}+ v2

k{ĉ
†
−k↓, ĉ−k↓} − ukvk[{ĉk↑, ĉ−k↓}+ {ĉ†−k↓, ĉ

†
k↑}]

= u2
k + v2

k = 1.

(72)

{γ̂k↑, γ̂k↑} = {(ukĉk↑ − vkĉ†−k↓), (ukĉk↑ − vkĉ
†
−k↓)}

= u2
k{ĉk↑, ĉk↑}+ v2

k{ĉ
†
−k↓, ĉ

†
−k↓} − ukvk[{ĉk↑, ĉ†−k↓}+ {ĉ†−k↓, ĉk↑}]

= 0.

(73)

{γ̂†k↑, γ̂
†
k↑} = {(ukĉ†k↑ − vkĉ−k↓), (ukĉ

†
k↑ − vkĉ−k↓)}

= u2
k{ĉ
†
k↑, ĉ

†
k↑}+ v2

k{ĉ−k↓, ĉ−k↓} − ukvk[{ĉ†k↑, ĉ−k↓}+ {ĉ−k↓, ĉ†k↑}]
= 0.

(74)

The γ̂-operators do in fact represent fermions.

B Density of States in a Superconductor

The states are filled up to the Fermi level in the normal state where there is a finite
density of states. Let us investigate what happens with the density of states when the
material becomes superconducting. One way to calculate the density of states is to
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count the number of states N up to an energy E and thereafter take the derivative with
respect to this energy.

Ns(E) =
dN(E)

dE
=
dN

dξ

dξ

dE
= Nn(ξ)

dξ

dE
, (75)

where Ns(E) is the density of states in the superconducting state and Nn(E) is the
density of states in the normal state. Since we are interested in what happens near the
Fermi surface and ∆ � EF , it is a good approximation to assume that the density of
states in the normal state are constant in this range, i.e., Nn(ξ) = Nn(0), [20]. This
leads to the simple result

Ns(E)

N(0)
=

dξ

dE
=

{
E√

E2−∆2 for E > |∆|
0 for E < |∆|

, (76)

where we have used the energy given in (14). From this we see explicitly that a gap
with the size 2∆ opens up around the Fermi level in the electron density of states.
This gap arises from the pairing of electrons into Cooper pairs. Thus 2∆ corresponds
to the energy demanded to break up a Cooper pair, e.g., by thermal fluctuations or a
magnetic field. The density of states diverges near the edges of the superconducting
gap, when E = ±∆. This is due to the fact that all the states inside the gap in the
normal state are pushed out of this range of energies for temperatures below the critical
temperature. This causes them to pile up near the edges, see Fig. 10. These are the van
Hove singularities of the superconducting energy spectrum. At T = 0K all occupied
states will have energies below EF − ∆, but as the temperature is increased, Cooper
pairs will be broken resulting in normal electrons occupying states above EF + ∆.
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E

Ns(E)

EF −∆ EF + ∆EF

Ns(0)

γkσ

Fig. 10: Density of states as a function of energy at a temperature 0K < T < Tc in
a BCS superconductor. The shaded area represents the occupied states. At T = 0 all
electrons are paired in Cooper pairs and there will only be occupied states below the
Fermi surface. As the temperature is increased the Cooper pairs will be broken by, e.g.,
thermal fluctuations resulting in normal electrons occupying states above EF + ∆.

C Alternative deriviation of uk and vk

To consolidate the results from section 3, we will look at the commutator between H
and ckσ. We assume that we do need the spin dependency on the elements of U .

[Hmf
BCS,B, ĉk↑] =

∑
k′

(ξk′↑[ĉ
†
k′↑ĉk′↑, ĉk↑]+ξ−k′↓[ĉ

†
−k′↓ĉ−k′↓, ĉk↑]−∆B[ĉ†

k′↑ĉ
†
−k′↓, ĉk↑]−∆B[ĉ−k′↓ĉk′↑, ĉk↑]).

(77)
Now we can use the identity [ÂB̂, Ĉ] = Â{B̂, Ĉ}−{Â, Ĉ}B̂ [3] and the anti commutator
relations we found previously, see Eq. (4).

[Hmf
BCS,B, ĉk↑] =

∑
k′

−ξk′↑ĉk′↑δkk′ + ∆B ĉ
†
−k′↓δk′k = −ξk↑ĉk↑ + ∆B ĉ

†
−k↓δk′k (78)

Now we can insert the Bogoliubov transformation given in Eq. (33).

[Hmf
BCS,B, ĉk↑] = −ξk↑(uk↑γ̂k↑ + vk↑γ̂

†
−k↓) + ∆B(u−k↓γ̂

†
−k↓ − v−k↓γ̂k↑). (79)
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The commutation relation can also be calculated using the fact that the quasiparticle
operators diagonalize the Hamiltonian, i.e., H =

∑
kσ

Ekσγ
†
kσγkσ.

[Hmf
BCS,B, ĉk↑] = [

∑
k′σ

Ek′σγ̂
†
k′σ
γ̂k′σ, (uk↑γ̂k↑ + vk↑γ̂

†
−k↓)] (80)

=
∑
k′σ

Ek′σ(uk↑[γ̂
†
k′σ
γ̂k′σ, γ̂k↑] + vk↑[γ̂

†
k′σ
γ̂k′σ, γ̂

†
−k↓]) (81)

=
∑
k′σ

Ek′σ(−uk↑γ̂k′σδk′kσ↑ + vk↑γ̂
†
k′σ
δk′kσ↑) (82)

= −Ek↑uk↑γ̂k↑ + E−k↓v−k↓γ̂
†
−k↓. (83)

Combining Eq. (79) and Eq. (83) we get the two following equations in the left column.
The same procedure can be applied to [Hmf

BCS,B, ĉ−k↓] and from this we get the equations
in the right column.

uk↑Ek↑ = v−k↓∆B + uk↑ξk↑

vk↑E−k↓ = u−k↓∆B − vk↑ξk↑
u−k↓E−k↓ = vk↑∆B + u−k↓ξ−k↓

v−k↓Ek↑ = uk↑∆B − v−k↓ξ−k↓
(84)

Calculating [Hmf
BCS,B, ĉ

†
k↑] and [Hmf

BCS,B, ĉ
†
−k↓], we obtain the same equations as above.

Combining these equations with u2
k + v2

k = 1 allows us to find analytical expressions for
the elements of U .

uk↑ = ± ∆B√
∆2
B + (Ek↑ − ξk↑)2

u−k↓ = ± ∆B√
∆2
B + (E−k↓ − ξ−k↓)2

vk↑ = ± ∆B√
∆2
B + (E−k↓ + ξk↑)2

v−k↓ = ± ∆B√
∆2
B + (Ek↑ + ξ−k↓)2

(85)

Inserting Ek↑ = B+Ek, E−k↓ = −B+E, ξk↑ = ξk +B and ξ−k↓ = ξk−B, we find that
uk↑, u−k↓ reduces to uk and vk↑, v−k↓ reduces to vk in Eq. (14). Thus we obtain the
same result as from the diagonalization of the Hamiltonian and we observe once more
that we do not need the spin dependency on the elements of U .

D The expectation value of the nondiagonalized FFLO

Hamiltonian for T → 0

We want to investigate if the expectation value of the nondiagonalized FFLO Hamil-
tonian in Eq. (50) is the same as the expectation value of the diagonalized FFLO
Hamiltonian in Eq. (56) T → 0. This is a way to control that we have not made any
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mistakes in the diagonalization process.

〈H〉 =
∑
k

[ξk+q/2↑〈ĉ†k+q/2↑ĉk+q/2↑〉+ ξ−k+q/2↓〈ĉ†−k+q/2↓ĉ−k+q/2↓〉

−∆q(〈ĉ†k+q/2↑ĉ
†
−k+q/2↓〉+ 〈ĉ−k+q/2↓ĉk+q/2↑〉)] +

N2∆2
q

V

=
∑
k

[ξk+q/2↑〈(ukγ̂†k+q/2↑ + vkγ̂−k+q/2↓)(ukγ̂k+q/2↑ + vkγ̂
†
−k+q/2↓)〉

+ ξ−k+q/2↓〈(ukγ̂†−k+q/2↓ − vkγ̂k+q/2↑)(ukγ̂−k+q/2↓ − vkγ̂†k+q/2↑)〉

−∆q(〈(ukγ̂†k+q/2↑ + vkγ̂−k+q/2↓)(ukγ̂
†
−k+q/2↓ − vkγ̂k+q/2↑)〉

+ 〈(ukγ̂−k+q/2↓ − vkγ̂†k+q/2↑)(ukγ̂k+q/2↑ + vkγ̂
†
−k+q/2↓)〉)] +

N2∆2
q

V

(86)

Here we have used the Bogoliubov transformation given in Eq. (55). We will now use
〈γ̂†k,qσγ̂

†
k,qσ = 0〉, 〈γ̂k,qσγ̂k,qσ = 0〉 and 〈γ̂†k,qσγ̂k′,qσ′〉 = δkk′σσ′f(Ek,q,σ).

lim
T→0
〈H〉 =

∑
k

[ξk+q/2↑(u
2
k��

���:
0

f(Ek,q,↑) + v2
k(1−����

�:0
f(Ek,q,↓)))

+ ξ−k+q/2↓(u
2
k��

���:
0

f(Ek,q,↓ + v2
k(1−����

�:0
f(Ek,q,↑))

−∆q(−ukvk����
��:0

f(Ek,q,↑) + ukvk(1−����
�:0

f(Ek,q,↓)

+ ukvk(1−����
�:0

f(Ek,q,↓)− ukvk����
�:0

f(Ek,q,↑))] +
N2∆2

q

V

=
∑
k

[v2
k(ξk+q/2↑ + ξ−k+q/2↓ − 2ukvk∆q)] +

N2∆2
q

V

=
∑
k

[
2v2

kξ
(s)
k,q −

∆2
q

Ek,q

]
+
N2∆2

q

V
=
∑
k

[
ξ

(s)
k,q

(
1−

ξ
(s)
k,q

Ek,q

)
−

∆2
q

Ek,q

]
+
N2∆2

q

V

=
∑
k

[
ξ

(s)
k,q −

(ξ
(s)2
k,q + ∆2

q)

Ek,q

]
+
N2∆2

q

V
=
∑
k

[
ξ−k+q/2 − Ek,q,↓

]
+
N2∆2

q

V

(87)
In the last steps we have used that f(Ek,q,σ) → 0 for T → 0. Further we have used

Eq. (53), (54) and (58) and the fact that ξ
(s)
k,q−Ekq = ξ−k+q/2↓−Ek,q,↓. We do get the

same result as in Eq. (66) and (67).
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