
Bound states in vortex cores of type-II
superconductors

Numerical solution of the Bogoliubov-de Gennes equations on a disc

Bachelor thesis
Written by Emil Jermiin Pedersen Frost
June 16, 2021

Supervised by
Brian Møller Andersen

University of Copenhagen



Faculty: Faculty of Science

Department: Niels Bohr Institute

Author: Emil Jermiin Pedersen Frost

Email: whj419@alumni.ku.dk

Title and subtitle: Bound states in vortex cores of type-II superconductors
- Numerical solution of the Bogoliubov-de Gennes equa-
tions on a disc

Supervisor: Brian Møller Andersen

Handed in: 16.06.2021

Defended: 23.06.2021

Name

Signature

Date



Abstract

This thesis reproduces and expands on some of the theoretical work on "Quantum Anoma-

lous Vortex and Majorana Zero Mode in Iron-Based Superconductor Fe(Te,Se)" by Jiang

et al. [2] while showing good qualitative agreement with their results. We show that a

magnetic impurity such as an interstitial Fe atom in Fe(Te,Se) may give rise to a sponta-

neously generated anomalous vortex (zero magnetic field) nucleated around the impurity

in a superconductor with strong spin-orbit coupling or long-ranged exchange interaction.

Additionally, we find that anti-ferromagnetic exchange interactions do not create favorable

conditions for a vortex state in zero magnetic field while extended ferromagnetic islands,

in some situations, do. Furthermore, we show the presence and isolation of a Majorana

zero-energy mode in the helical Dirac fermion topological surface state (TSS) coupled to

an impurity-induced anomalous vortex in a hole-like parabolic band of the bulk material.

An external magnetic field is calculated to cause no energy shift of the Majorana mode but

a noticeable shift in the energy of impurity-induced tuned zero-energy bound states of a

vortex-free state in both the parabolic band and TSS that are not topologically protected.
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1 Introduction

Many experiments have been conducted with the superconducting material Fe(Te,Se), ex-

ploring its remarkable properties. Some of these experiments probe the local density of

states (LDOS) near excess Fe impurities, revealing a robust zero energy bound state (ZBS)

present in zero external magnetic field with no energy shift when a strong magnetic field is

applied – consistent with a Majorana zero-energy mode (MZM) [1]. The theoretical work by

Jiang et al. [2] (referred to as ’QAV-paper’ in the rest of the thesis) explains this by coupling

a spontaneously generated anomalous vortex (no ext. magnetic field required) nucleated

around interstitial Fe impurity sites in the bulk material to the topological surface states

(TSS) of Fe(Te,Se), giving rise to the MZM. It has previously been shown that a helical

Dirac fermion TSS contains a MZM [3]. Their analysis provides the starting ground for this

thesis and presents logical opportunities for comparison. We will primarily be concerned

with the requirements for the realization of an anomalous vortex. In doing so, we will both

reproduce some of the results in the QAV-paper and explore both anti-ferromagnetic (AFM)

and extended ferromagnetic (FM) exchange interactions. We will also show the presence of

the MZM in the TSS and compare the Zeeman splitting to other possible impurity-induced

ZBSs in vortex-free states.

2 Theory

The foundation of this theoretical study of anomalous vortices and zero-energy bound states

in unconventional superconductors will be the model used in the QAV-paper which will be

outlined accordingly. The central element is, of course, the Hamiltonian which we will try

to diagonalize and in doing so, (re)discover the Bogoliubov-de Gennes equations that set

the stage for the inevitable numerical work.

2.1 Theoretical model

We give here a somewhat brief description of the theoretical model used in the QAV-paper

to model Fe(Te,Se) close to interstitial Fe impurities– see the article for details.

Consider a type-II s-wave superconductor with intrinsic spin-orbit coupling (SOC) in

the limit λ � ξ, where λ is the penetration depth and ξ is the coherence length. We

view the superconductor as a collection of stacked layers of 2-D superconducting material

and treat the bulk material separately from the surface layer. Due to the close proximity
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of the surface layer, superconductivity is induced in it from the bulk material. We focus

our attention on a single bulk layer with the 2-D geometry of a disc with radius R and

conveniently express the points on the disc in polar coordinates r = (r, θ). In the center at

r = 0, a single magnetic impurity ion is embedded with magnetic moment Iimp. This gives

rise to the so-called Elliot-Yafet SOC and an exchange interaction between the impurity

ion and the electrons in the metal. These effects imply that, close to the impurity, the

superconducting state is non-uniform and the order parameter is spatially dependent even

in the vortex-free case.

Superconductivity is, in itself, a many-body phenomenon which suggests the use of the

second quantization formalism. We will study this problem with a real space representation

of the Hamiltonian in terms of second quantization field operators. We denote the creation

and annihilation field operators by Ψ†σ(r) and Ψσ(r), respectively. They simply create or

annihilate an electron at point r of spin σ ∈ {↑, ↓} and satisfy fermionic anti-commutation

relations [4]:{
Ψσ(r),Ψσ′(r

′)
}

=
{

Ψ†σ(r),Ψ†σ′(r
′)
}

= 0,
{

Ψσ(r),Ψ†σ′(r
′)
}

= δ(r − r′)δσσ′ . (2.1)

The first δ is the Dirac delta function while the last is a Kronecker delta; the spatial variable

is continuous while spin is discrete.

In this theoretical model, we assume an effective Hamiltonian of the form:

H =

∫
drΨ†(r)ĤN (r)Ψ(r) +

[
∆(r)Ψ†↑(r)Ψ†↓(r) + h.c.

]
, (2.2)

expressed in spinor notation with Ψ(r) = (Ψ↑(r),Ψ↓(r))T and ∆(r) = −g
2 〈Ψ↓(r)Ψ↑(r)〉

being the pair potential with g the attraction strength. We return to the pair potential

in section 2.3. For the bulk states, the operator corresponding to the normal part of the

Hamiltonian (normal in contrast to the pairing part in square brackets) is given by

ĤN = Ĥkin + Ĥsoc + Ĥex,

Ĥkin = −(p− eA)2

2m∗
− µ, Ĥsoc = −λso(r)L · σ, Ĥex = −Jex(r)Iimp · J ,

(2.3)

in the continuum limit. The kinetic part describes simple parabolic dispersion of a hole-like

band with effective mass m∗ and canonical momentum as is required by gauge invariance.

The particle number is not conserved for this Hamiltonian if we look at the pairing part

so we consider a grand canonical ensemble and assert that the system is in thermodynamic

equilibrium with a large reservoir; this fixes the chemical potential µ and temperature T .
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We will only consider the case of zero temperature where the chemical potential equals the

Fermi energy εf .

Ĥsoc is the Elliot-Yafet SOC which couples the orbital and spin angular momentum of

the electrons. L = r × (p− eA) is the orbital angular momentum operator while ~
2σ is

the spin angular momentum operator with σ = (σx, σy, σz) being the Pauli matrices. The

magnetic moment of the impurity couples to the total angular momentum J = L + ~
2σ

of the electrons through the exchange interaction expressed in Ĥex with exchange coupling

Jex(r). SOC and exchange interaction only affect the electrons in close proximity to the

impurity ion. For simplicity, these two effects are assumed to be isotropic and, furthermore,

described by the same spatial dependence: λso(r),Jex(r) ∝ e−r/r0 with some characteristic

decay length r0. Moreover, we assume that the magnetic moment of the impurity ion is

perpendicular to the superconducting 2-D layer, i.e. Iimp = M ẑ. We’re restricting the

particles to move in two dimensions only, such that L · σ = Lzσz. Writing everything out

for clarity, we assume ĤN is given by

ĤN = −(p− eA)2

2m∗
− εf − λso(r)Lzσz −m(r)

(
Lz +

~
2
σz

)
(2.4)

for the bulk states where m(r) = Jex(r)M = m0e
−r/r0 and λso(r) = λ0e

−r/r0 .

For the surface layer in the vicinity of an impurity, we assume a so-called helical Dirac

fermion topological surface state (TSS) for the kinetic part such that the effective Hamil-

tonian is of the form

Ĥ ′N = Ĥ ′kin + Ĥ ′soc + Ĥ ′ex,

Ĥ ′kin = vD (σ × (p− eA)) · ẑ − ε′f , Ĥ ′soc = λ′so(r)Lzσz, Ĥ ′ex = −m′(r)Jz.
(2.5)

We use primed variables for the TSS. In general, λ′so(r) and m′(r) may be different from

the unprimed variables in the bulk layers.

2.2 The Bogoliubov-de Gennes equations

With the Hamiltonian in place, the next step is to find a transformation that diagonalizes

it. It’s possible to do this with a Bogoliubov transformation. This is an expansion of

the field operators in a set of fermionic operators γ†n, γn which have no spatial dependence

themselves. These operators create or annihilate Bogoliubov quasiparticles - the low energy
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excitations of the superconductor.

Ψσ(r) =
∑
n

unσ(r)γn + v∗nσ(r)γ†n, (2.6a)

Ψ†σ(r) =
∑
n

u∗nσ(r)γ†n + vnσ(r)γn. (2.6b)

These particular linear combinations can be considered an ansatz which will be justified

below. If the relations are inverted it becomes clear that the quasiparticles are superposi-

tions of electron and hole states (see appendix A and eq. (A.1) in particular). The index

n simply labels the states in whatever basis diagonalizes the Hamiltonian. The demand

that the operators γ†n, γn are, in fact, fermionic is manifested in similar anti-commutation

relations to eq. (2.1).

{γn, γn′} =
{
γ†n, γ

†
n′

}
= 0,

{
γn, γ

†
n′

}
= δnn′ . (2.7)

We postulate that this particular decomposition (2.6) will diagonalize the Hamiltonian

(2.2) for some functions unσ(r) and vnσ(r), i.e.

H = E0 +
∑
n

Enγ
†
nγn, (2.8)

where E0 is some constant and En is the energy spectrum of the Bogoliubov quasiparticles;

both measured from the Fermi energy. The method we will use to diagonalize H won’t give

us E0 but only the energy spectrum En. We will return to this point later when we need to

calculate the total energy of the system. The combination γ†nγn in eq. (2.8) simply counts

the number of particles in that state. In this diagonalized form, then, the energy of the

thermal state 〈H〉 is just a sum of the energies of the occupied quasiparticle states (and the

vacuum state energy). Since the particles are fermions, in thermal equilibrium, the average

particle number is given by the Fermi-Dirac distribution. The following mean value rules

apply [4]:

〈γnγn′〉 =
〈
γ†nγ

†
n′

〉
= 0,

〈
γ†nγn′

〉
= δnn′nF (En), (2.9)

where nF (En) = [exp(En/kBT ) + 1]−1 with kB being Boltzmann’s constant.

To determine the wave functions unσ(r) and vnσ(r) that diagonalize the Hamiltonian,

we evaluate the commutator [Ψσ(r), H] with both the original Hamiltonian (2.2) and the

diagonalized form (2.8). We begin with the original Hamiltonian. It’s helpful to use the

identity [A,BC] = {A,B}C − B{A,C} together with the fermionic anti-commutation re-

lations from eq. (2.1). We consider the general case in which ĤN is not diagonal which we
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need for the TSS. The following calculation is thus valid for both bulk and surface states.

We label the entries in the 2× 2 matrix ĤN by Ĥαβ
N .

[Ψσ(r), H] =

Ψσ(r),

∫
dr′
∑
αβ

Ψ†α(r′)Ĥαβ
N (r′)Ψβ(r′) +

(
∆(r′)Ψ†↑(r

′)Ψ†↓(r
′) + h.c.

),
=

∫
dr′
∑
αβ

{
Ψσ(r),Ψ†α(r′)

}
Ĥαβ
N (r′)Ψβ(r′)−Ψ†α(r′)

{
Ψσ(r), Ĥαβ

N (r′)Ψβ(r′)
}
,

+ ∆(r′)
({

Ψσ(r),Ψ†↑(r
′)
}

Ψ†↓(r
′)−Ψ†↑(r

′)
{

Ψσ(r),Ψ†↓(r
′)
})

,

=
∑
β

Ĥσβ
N (r)Ψβ(r) + ∆(r)

(
δσ↑Ψ

†
↓(r)− δσ↓Ψ†↑(r)

)
.

(2.10)

We can combine the cases for spin up and down in the following way:

[Ψ(r), H] =

(
[Ψ↑(r), H]

[Ψ↓(r), H]

)
= ĤN (r)Ψ(r) + ∆(r)iσy

(
Ψ†(r)

)T
. (2.11)

Using the Bogoliubov transformation defined in eq. (2.6) we can express this result in terms

of the quasiparticle operators γ†n, γn.

[Ψ(r), H] =
∑
n

[
ĤN (r)

(
un↑(r) v∗n↑(r)

un↓(r) v∗n↓(r)

)
+ ∆(r)

(
vn↓(r) u∗n↓(r)

−vn↑(r) −u∗n↑(r)

)](
γn

γ†n

)
. (2.12)

If we calculate the same commutator with the diagonalized Hamiltonian (2.8) using eqs.

(2.6) and (2.7), we find

[Ψσ(r), H] =
∑
mn

[
unσ(r)γn + v∗nσ(r)γ†n, Emγ

†
mγm

]
=
∑
n

En

(
unσ(r)γn − v∗nσ(r)γ†n

)
,

(2.13)

such that we may write

[Ψ(r), H] =
∑
n

En

(
un↑(r) −v∗n↑(r)

un↓(r) −v∗n↓(r)

)(
γn

γ†n

)
. (2.14)

The two expression for [Ψ(r), H] must be equal, for our Bogoliubov transformation to

diagonalize H. This restriction determines the wave functions and the energy spectrum of

the quasiparticles. The equality is met if we equate coefficients in front of γn and γ†n which
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gives us the Bogoliubov-de Gennes (BdG) equations.

ĤN (r)

(
un↑(r)

un↓(r)

)
+ ∆(r)

(
vn↓(r)

−vn↑(r)

)
= En

(
un↑(r)

un↓(r)

)
(2.15a)

ĤN (r)

(
v∗n↑(r)

v∗n↓(r)

)
+ ∆(r)

(
u∗n↓(r)

−u∗n↑(r)

)
= En

(
−v∗n↑(r)

−v∗n↓(r)

)
(2.15b)

We rewrite (2.15b) in the following way:

σyĤ
∗
N (r)σyσy

(
vn↑(r)

vn↓(r)

)
+ ∆∗(r)σy

(
un↓(r)

−un↑(r)

)
= Enσy

(
−vn↑(r)

−vn↓(r)

)
,

=⇒ − σyĤ∗N (r)σy

(
vn↓(r)

−vn↑(r)

)
+ ∆∗(r)

(
un↑(r)

un↓(r)

)
= En

(
vn↓(r)

−vn↑(r)

)
.

(2.16)

Using this expression we write the BdG equations as

H(r)Φn(r) = EnΦn(r),

H(r) =

(
ĤN (r) ∆(r)

∆∗(r) −σyĤ∗N (r)σy

)
(2.17)

where Φn(r) = (un↑(r), un↓(r), vn↓(r),−vn↑(r))T is a Nambu spinor. Diagonalizing the

original Hamiltonian (2.2) has thus been reduced to solving this eigenvalue problem. The

eigenvalues En are the energies of the quasiparticles while the corresponding eigenvectors

are the wave functions.

2.3 Mean field theory and self-consistency

The Hamiltonian given in eq. (2.2) is a mean field approximation of an interacting Hamil-

tonian Hint describing spin independent and local interactions between electrons [5]. This

is also the reason why we shouldn’t be alarmed by the fact that the particle number is

not conserved. In BCS theory, the ground state wave function for the mean field BCS

Hamiltonian is, in fact, a superposition of states with different numbers of particles [6].

The characteristic thermal average of mean field theory is hidden away in the pair

potential which we state again here:

∆(r) = −g
2
〈Ψ↓(r)Ψ↑(r)〉 . (2.18)
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This is really a self-consistency equation since the expectation value on the RHS depends on

∆(r) itself through the wave functions unσ(r) and vnσ(r) as is evident from our Bogoliubov

transformation (2.6) and the BdG equations (2.17).

In BCS theory, superconductivity arises from an interaction between electrons and

phonons in the metal [6]. There is an effective attraction between pairs of electrons with

time reversal symmetry mediated by phonons leading to the spontaneous formation of

Cooper pairs near the Fermi surface. This effective electron-electron interaction is only

attractive for electrons with energies within ~ωD of the Fermi surface and these are the

only electrons we should consider since at low temperatures such as the temperatures of

ordinary superconducting phases, only the electrons close to the Fermi surface can take

part in scattering processes. Here ωD is the Debye frequency; a characteristic frequency of

the phonons. Therefore, the thermal average in eq. (2.18) should only include states with

energy less than ~ωD.
We can write eq. (2.18) in terms of unσ(r) and vnσ(r) using our Bogoliubov transfor-

mation (2.6) and the mean value rules for the γ-operators (2.9):

∆(r) = −g
2

∑
|En|,|Em|≤~ωD

〈(
un↓(r)γn + v∗n↓(r)γ†n

)(
um↑(r)γm + v∗m↑(r)γ†m

)〉
,

= −g
2

∑
|En|≤~ωD

un↓(r)v∗n↑(r) (1− nF (En)) + v∗n↓(r)un↑(r)nF (En).
(2.19)

For our solution to be self-consistent, the pair potential we use as input to the BdG equations

(2.17) should equal the pair potential calculated from the eigenenergies and eigenvectors

with eq. (2.19).

2.4 Energy calculation

To uncover whether it’s energetically favorable for a system to have a vortex present or

not, we compare the total energy of the system in these two cases. The details of the

calculation of the total energy are left out, here; what follows is a summary of the important

points.1 The total energy is the expectation value of the physical, interacting Hamiltonian

Hint mentioned in the beginning of section 2.3 and not the BCS-like Hamiltonian H. We

neglected a constant term from the mean field approximation when we wrote the initial

Hamiltonian (2.2) which we need to include, i.e. 〈Hint〉 ' 〈H〉 + EMF . We also need to
1A summary of Hano Sura’s note on this topic [7]
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keep the constant energy shift E0 from eq. (2.8) in mind. This means the total energy is

given by

Etot = 〈Hint〉 =
∑
n

En

〈
γ†nγn

〉
+ E0 + EMF =

∑
n

EnnF (En) + E0 + EMF , (2.20)

EMF =
2

g

∫
dr |∆(r)|2, (2.21)

where, for the parabolic dispersion of the bulk states,

E0 =
1

2

∑
nσ

∫
dr u∗nσ(r)ĤN (r)unσ(r) + vnσ(r)ĤN (r)v∗nσ(r). (2.22)

We don’t need the total energy of the surface states in this study. These states have

a negligible influence on the total energy of the system due to the enormous amount of

bulk states in comparison and we treat the bulk and surface states separately in this low

energy model. Furthermore, we won’t deal with the question of whether vortices may form

spontaneously in only the surface layer. The term E0 stems from the interchange of field

operators that don’t anti-commute when rewriting the Hamiltonian as

H = E0 +
1

2

∫
drΨ†(r)H(r)Ψ(r), (2.23)

where H is given in eq. (2.17) and Ψ(r) =
(

Ψ↑(r) Ψ↓(r) Ψ†↓(r) −Ψ†↑(r)
)T

. We have

neglected a boundary term from partial integration and, thus, assumed there to be no

current passing through the boundaries of the system. Starting from eq. (2.23), then

using the Bogoliubov transformation (2.6), the BdG equations (2.17), and orthonormality

relations (A.2), (A.3), it may be shown that H is, in fact, diagonal in the basis of the

Bogoliubov quasiparticle operators γ†n, γn and equal to the expression in eq. (2.8).

3 Rephrasing the BdG equations

With the theoretical framework in place, we can proceed to solving the BdG equations.

The goal of this section is to lay the groundwork for the numerical work by rephrasing the

BdG equations. We will separate the angular and radial parts of the wave function and

expand the radial part in a basis of eigenfunctions of the kinetic operator. In the main text,

we will only consider this derivation in the case of a bulk layer with a magnetic impurity

ion. The derivation follows the one given by Jiang et al. [8]. The procedure for the TSS is

very similar – details can be found in appendix C.
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We control the presence of a vortex in the center of a superconducting layer by the

vorticity ν and write ∆(r) = |∆(r)|eiνθ. For notational simplicity, we write the pairing

profile |∆(r)| = ∆(r) as a real function which can be both positive and negative. If there

is no magnetic flux penetrating the superconductor, ν = 0 and ∆(r) is real. For a single

penetrating flux quantum Φ0 = h
2e through the vortex core, the pair potential remains

single-valued but with a winding phase: ν = ±1. The sign of ν depends on the direction

of the external magnetic field or the direction of the magnetic moment of the impurity in

the case of a quantum anomalous vortex that is spontaneously generated by the magnetic

impurity without an external magnetic field [2].

In the gauge in which ∆(r) = ∆(r)eiνθ, the wave function is single-valued so that

Φn(r, θ + 2π) = Φn(r, θ). We want to work with a real-valued pair potential which is

possible if we perform a gauge transformation of the BdG equations (2.17). We use the

unitary matrix

U = diag
(
e−i

ν
2
θ, e−i

ν
2
θ, ei

ν
2
θ, ei

ν
2
θ
)

(3.1)

to remove the phase of the pair potential. The transformed equations are

H̃(r)Ψn(r) = EnΨn(r),

H̃(r) = UH(r)U † =

 ˆ̃HN (r) ∆(r)

∆(r) −σy ˆ̃H∗N (r)σy

 , Ψn(r) = UΦn(r),
(3.2)

where ˆ̃HN (r) = e−iνθ/2ĤN (r)eiνθ/2. See appendix B for some details. The transformed

wave function satisfies Ψn(r, θ + 2π) = (−1)νΨ(r, θ). From now on we neglect the vector

potential A since we’re considering a type-II superconductor in the limit λ� ξ [8].

3.1 Bulk states

For a bulk layer with a hole-like parabolic band where ĤN is given by eq. (2.4), we have

H̃(r) = e−i
ν
2
θτ ′z

[
−τ ′z

(
p2

2m∗
+ εf

)
− λso(r)Lzτ ′zσ′z −m(r)

(
Lz +

~
2
σ′z

)]
ei
ν
2
θτ ′z + ∆(r)τ ′x,

(3.3)

where we have extended the Pauli matrices to 4 × 4 matrices indicated by the prime –

in particular σ′z =

(
σz 0

0 σz

)
– and defined τ ′z =

(
I 0

0 −I

)
, τ ′x =

(
0 I

I 0

)
as part of a

second set of Pauli matrices acting in the particle-hole channel. Here I = diag(1, 1) is the
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two-dimensional identity matrix. We used that −σyĤ∗Nσy = −Ĥkin − Ĥsoc + Ĥex for the

hole-like part to write eq. (3.3) in this way. The sign flips are taken care of by τ ′z.

We note that
[
e−iνθτ

′
z/2Aeiνθτ

′
z/2, Lz

]
= e−iνθτ

′
z/2[A,Lz]e

iνθτ ′z/2 for all operators A. Us-

ing this, it’s straightforward to show that
[
H̃(r), Lz

]
= 0 since the operators τ ′x, τ ′z, σ′z, p2

all commute with Lz. In the real superconductor, however, there would not be continu-

ous rotational symmetry about the z -axis; instead the Hamiltonian should only obey the

symmetries of the material. In this low energy continuum model there exist simultaneous

eigenstates of H̃ and Lz such that we may expand our wave function into partial waves for

the angular part.

Ψn(r) = eiµθΨnµ(r). (3.4)

To match the boundary condition Ψn(r, θ+2π) = (−1)νΨ(r, θ), we write µ = l−ν/2 where

l is an integer. We solve the BdG equations in a subspace of constant angular momentum

such that also the energies are labeled by the ’good’ quantum number µ. Inserting this de-

composition (3.4) in the BdG equations (3.2) and canceling the phases, we find an equation

for the radial part. Note that p2 = −~2∇2 = −~2(∂2
r + 1

r∂r + 1
r2
∂2
θ ) and Lz = −i~∂θ in

polar coordinates.{
τ ′z

[
~2

2m∗r2

(
r2∂2

r + r∂r −
(
µ+

ν

2
τ ′z

)2
)
− εf

]
− ~λso(r)

(
µ+

ν

2
τ ′z

)
τ ′zσ
′
z

−~m(r)

[(
µ+

ν

2
τ ′z

)
+
σ′z
2

]
+ ∆(r)τ ′x

}
Ψnµ(r) = EµnΨnµ(r). (3.5)

We choose to expand Ψnµ(r) in a set of orthonormal Bessel functions of the first kind.

This is the natural basis to work in since the Bessel functions are eigenfunctions of the

∇2-operator in polar coordinates.2 The set of Bessel functions are labeled by l, j and given

by

φlj(r) =

√
2

RJl+1(βlj)
Jl

(
βlj

r

R

)
, (3.6)

where Jl is the Bessel function of the first kind of order l and βlj is the j’th root of Jl.

They form an orthonormal set such that [9]∫ R

0
dr rφli(r)φlj(r) = δij . (3.7)

2Bessel’s equation has the form: x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0. Compare with eq. (3.5).
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To match eq. (3.5), we choose the following expansion:

Ψnµ(r) =
[
unµ1↑(r), unµ1↓(r), vnµ−1↓(r),−vnµ−1↑(r)

]T
,

unµ1σ(r) =

J∑
j=1

unµ1jσφµ1j(r), vnµ−1σ(r) =

J∑
j=1

vnµ−1jσφµ−1j(r),
(3.8)

where µτ = µ + ν
2τ is an integer. We may expand any reasonable function in the set of

Bessel functions since they are the eigenfunctions of a Hermitian operator and thus form

a complete set [9]. We are limited computational-wise, however, in that we must choose

a finite J when it’s time to crunch the numbers. The expansion is chosen such that the

Bessel functions are eigenfunctions of the kinetic part and we may use that(
r2∂2

r + r∂r −
(
µ+

ν

2
τ
)2
)
φµτ j(r) =

√
2

RJµτ+1(βµτ j)

(
x2∂2

x + x∂x − µ2
τ

)
Jµτ (x),

= −r2

(
βµτ j
R

)2

φµτ j(r),

(3.9)

where we changed variables to x = βµτ jr/R and used Bessel’s equation (see footnote 2).

Let’s introduce a new notation to label the components of the spinor Ψnµ(r).

Ψnµ(r) =
[
Ψ11
nµ(r),Ψ−11

nµ (r),Ψ1−1
nµ (r),Ψ−1−1

nµ (r)
]T
. (3.10)

The components Ψστ
nµ(r) are labeled with σ, τ = ±1 which have the same values as the

entries in the matrices σ′z, τ ′z that match the spinor Ψnµ(r). The components are expanded

in Bessel functions as given in (3.8).

Ψστ
nµ(r) =

J∑
j=1

fστnµjφµτ j(r), (3.11a)

f11
nµj = unµ1j↑, f

−11
nµj = unµ1j↓, f

1−1
nµj = vnµ−1j↓, f

−1−1
nµj = −vnµ−1j↑. (3.11b)

Using this notation and eq. (3.9), we write the radial equation (3.5) in the basis of Bessel

functions as

J∑
j=1

{
−τ

[
~2

2m∗

(
βµτ j
R

)2

+ εf

]
− ~λso(r)µττσ − ~m(r)

(
µτ +

σ

2

)}
fστnµjφµτ j(r)

+
J∑
j=1

∆(r)fσ−τnµj φµ−τ j(r) =

J∑
j=1

Eµnf
στ
nµjφµτ j(r). (3.12)
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The top row of the matrix equation (3.5) is equivalent to setting σ = τ = 1; second row:

σ = −1, τ = 1, etc.. Taking the inner product with φµτ i(r) we have

J∑
j=1

fστnµj

∫ R

0
dr r

{
−τ

[
~2

2m∗

(
βµτ j
R

)2

+ εf

]
− ~λso(r)µττσ − ~m(r)

(
µτ +

σ

2

)}
φµτ i(r)φµτ j(r)

+

J∑
j=1

fσ−τnµj

∫ R

0
dr r∆(r)φµτ i(r)φµ−τ j(r) =

J∑
j=1

Eµnf
στ
nµj

∫ R

0
dr rφµτ i(r)φµτ j(r). (3.13)

Using the orthonormality relation in eq. (3.7) to simplify the kinetic term and the RHS,

we find
J∑
j=1

{[
τ (Tµτ )ij − τσ (Λµτ )ij − (Lµτ )ij − σ (Mµτ )ij

]
fστnµj +

(
∆µτ ,µ−τ

)
ij
fσ−τnµj

}
= Eµnf

στ
nµi,

(3.14)

where the matrix elements are given by

(Tµ)ij = −

[
~2

2m∗

(
βµj
R

)2

+ εf

]
δij , (3.15a)

[(Lµ)ij , (Mµ)ij , (Λµ)ij ] =

∫ R

0
dr r

[
µ~m(r),

1

2
~m(r), µ~λso(r)

]
φµi(r)φµj(r), (3.15b)

(
∆µ,µ′

)
ij

=

∫ R

0
dr r∆(r)φµi(r)φµ′j(r). (3.15c)

We write eq. (3.14) as a 4J × 4J eigenvalue problem for each angular momentum value.
(T − L−M − Λ)µ1 0 ∆µ1µ−1 0

0 (T − L+M + Λ)µ1 0 ∆µ1µ−1

∆T
µ1µ−1

0 −(T + L+M − Λ)µ−1 0

0 ∆T
µ1µ−1

0 −(T + L−M + Λ)µ−1

Ψnµ = EµnΨnµ,

(3.16)

where Ψnµ = [u1↑, ..., uJ↑, u1↓, ..., uJ↓, v1↓, ..., vJ↓, ...,−v1↑, ...,−vJ↑]T with suppressed in-

dices n, µτ .

Solving the BdG equations to find the energy spectrum of the Bogoliubov quasiparticles

and the corresponding wave functions boils down to solving eq. (3.16) or eq. (C.15) for

a bulk layer with a magnetic impurity or a TSS in the vicinity of such an impurity. This

amounts to determining the eigenvalues and eigenvectors of the matrix on the LHS of these

equations. For the bulk layer, the pair potential needs to be self-consistent (cf. section 2.3).

This is not the case for the TSS where superconductivity is proximity-induced by the bulk

material.



4 ANOMALOUS VORTICES AND ZERO-ENERGY BOUND STATES 13

4 Anomalous vortices and zero-energy bound states

Now that we have rephrased the BdG equations, we move on to the numerical solution of

these. The process will be similar to the one outlined in the QAV-paper. We choose the

same material parameters as they use to model Fe(Te,Se) superconductors. The electronic

dispersion is described by a hole-like parabolic band around the Γ-point with effective mass

m∗ ' 4.08me and Fermi energy εf ' −4.52 meV for the bulk states (me is the electron

mass). The bulk value of the superconducting gap far from impurities and vortices is

∆ = 1.5 meV. We choose g = 69 meV and ~ωD = 4.7 meV to match this value.3 For

the TSS, we use the parameters ~vD = 0.216 eV·Å and ε′f = 4.5 meV. All equations and

parameters are written in dimensionless form by introducing an energy scale of 10 meV

and the corresponding length scale l0 defined by ~2
2m∗l20

= 10 meV =⇒ l0 = 0.966 nm.

Energies and lengths will be expressed in these units unless otherwise stated. The radius of

superconducting disc needs to be significantly larger than the coherence length ξ and range

of all impurity effects. The BCS coherence length [2] ξBCS = ~vF
π∆ ' 2.76 nm = 2.86l0 gives

us an estimate of the true coherence length of the material. We choose R = 250 for the

disc radius.

The wave functions are normalized such that the orthonormality relations in eqs. (A.2),

(A.3) are satisfied. Actually, (A.3) will always be satisfied due to the integral over the

angular part e2iµθ. Using the expansion (3.11a) for the bulk states or (C.8b) for the surface

states and the orthonormality of the Bessel functions (3.7), we write (A.2) as∫
dr
∑
σ

unσ(r)u∗mσ(r) + vnσ(r)v∗mσ(r) = 2π
∑
στj

fστnµjf
στ
mµj = δnm, (4.1)

which we explicitly check numerically.

As previously mentioned, we use a finite number J of functions in the basis of Bessel

functions. It is often enough to set J = 100 to find self-consistent solutions but all the

results given here are generated with J = 200. This cutoff determines the spatial resolution

of the wave functions and thereby the pair potential. We also use a cutoff in the number of

angular momenta channels such that only channels with |µ| < LC are considered. Note that

the normalized Bessel functions are symmetric under inversion of angular momentum, i.e.

φlj(r) = φ−lj(r). This limits numerical calculations to only non-negative values of angular

momentum. See appendix D for details.
3This value of g is 2π times greater than the attraction strength used in the QAV-paper. It might be

due to a different wave function normalization.
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A self-consistent solution is ensured by an iterative process. Initially, a guess of the

pair potential is used to calculate the matrix from the BdG equations (3.16) or (C.15).

Then, the matrix is diagonalized and the eigenvalues and eigenvectors are used to update

the pairing profile using eq. (2.19) (∆old(r)→ ∆new(r)). The new pairing profile is used to

update the matrix before it’s diagonalized again, and so on. The self-consistency process

continues until the pairing profile has converged. The convergence criteria is met when∫ R

0
dr |∆new(r)−∆old(r)| < α. (4.2)

We choose α = 0.001 as the convergence measure. The results seem to be insensitive to the

initial guess but a better guess needs fewer iterations before convergence is reached.

In experiments with scanning tunneling microscopy (STM), it’s possible to measure the

tunneling conductance between the tip of the STM apparatus and the material in question.

This quantity is proportional to the local density of states (LDOS) which we calculate as

[8]

dI

dV
(r, V ) ∝

∑
nµσ

u2
nµσ(r)n′F (Eµn − eV ) + v2

nµσ(r)n′F (Eµn + eV ), (4.3)

where eV is the bias energy and n′F (E) is the derivative of the Fermi-Dirac distribution.

4.1 Normal vortex in a bulk layer

In the simplest case of no magnetic impurity in a bulk layer with no vortex present, we

find a homogeneous self-consistent pair potential and a gap of 2∆ in the energy spectrum

and LDOS around the Fermi surface, as we would expect. This is shown in fig. 4.1(a-c).

∆(r) drops off around r = 150 owing to the angular momentum cutoff LC = 150. This is

purely a numerical problem along with the strong oscillations at the boundary; they have

no physical justifications. As shown with the dashed line, we use an average bulk value to

extrapolate and fix ∆(r > 50) = ∆bulk = 1.49 meV in all other calculations.

Adding a vortex to the system as shown in fig. 4.1(d-f), the pairing profile is zero in

the core and increases linearly, initially, before oscillating and reaching the bulk value for

r > 20. The energy spectrum shows in-gap Caroli-de Gennes-Matricon (CdGM) bound

states whose energies Eµ = ±0.36,±0.66,±0.84, ... meV are fairly close to the approximate

energies µ∆2
bulk
εf

= ±0.25,±0.74,±1.23, ... meV of CdGM states [10]. The expression is

given in the limit Eµ � ∆bulk, however, which is only valid for the first energy levels.
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Figure 4.1: Bulk layer with no magnetic impurity (J = 200, LC = 150). Top row: no vortex
(ν = 0), bottom row: vortex present at r = 0 (ν = −1). (a,d) Self-consistent pairing profile ∆(r);
dashed line shows the extrapolated cutoff value. Insets in (a,d) show zoomed in views in the same
units as (a,d) themselves. (b,e) Energy level spectrum showing spin-degenerate states. (c,f) 3-D
plot of the LDOS as a function of bias energy along a line through the center of the disc calculated
at T = 1.5 K. Note that the energy spectra and LDOS are calculated with the pairing profile cutoff.
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Wave functions for some of the vortex core bound states are found in fig. E.1. All states in

the energy spectra are doubly degenerate since, at this point, we have not included spin-

dependent effects. The LDOS is strongly peaked in the vortex core at E = −0.36 meV

before two symmetrically spaced ridges emerge when moving away from the core.4 The

core peak can almost be entirely attributed to the four bound states at µ = ±1
2 . The

asymmetry at r = 0 stems from the fact that for µ = −1
2 , only vnµσ(r = 0) is nonzero,

while for µ = +1
2 , only unµσ(r = 0) is nonzero and the Fermi terms on u, v in eq. (4.3)

come with opposite signs in the bias energy.

We noticed that LC should be picked with some caution due to boundary effects. The

bound states with very high angular momentum live close to the edge of the disc. Their

wave functions should extend beyond the edge but we are effectively cutting them off and

forcing them to vanish at the edge (see the right column of fig. E.1) due to the way the

Bessel functions are normalized (φlj(r = R) = 0). We treat all states as if they lie within

the edge of the disc and this large alteration of wave functions leads to undesirable boundary

effects. We want to include as many CdGM bound states as possible for energy comparisons

but also keep the extent of boundary effects to a minimum. With this in mind, we choose

LC = 100 as the angular momentum cutoff going forward (see also fig. E.2). This cutoff

does not affect the pair potential below its cutoff point r = 50.

4.2 Quantum anomalous vortex in a bulk layer

Now that we have discussed the normal case, we add the magnetic impurity ion to the

system. In the QAV-paper they find that above a critical exchange interaction strength

~mc
0 ' 6.1 meV and with strong SOC, a quantum anomalous vortex may spontaneously

nucleate around the impurity. They use parameters ~λ0 = 6.6 meV and r0 = 2 to model

the interaction with the impurity (see eq. (2.4)). We will reproduce the calculation here

and compare results.

The vortex may be generated spontaneously, meaning without an external magnetic

field, if the total energy of the system in the vortex phase Evortex is lower than in the

normal phase Evortex−free. We define the vortex binding energy as

Evb = Evortex − Evortex−free. (4.4)
4The symmetrically spaced ridges were found in experiments by Hess et al. [11] in 1990 and calculated

numerically by Gygi and Schlüter [12] a short time thereafter.



4 ANOMALOUS VORTICES AND ZERO-ENERGY BOUND STATES 17

Figure 4.2: Bulk layer with magnetic impurity (J = 200, LC = 100). Blue lines/dots: with SOC
(~λ0 = 6.6 meV); orange lines/dots: without SOC (~λ0 = 0). (a,b) Self-consistent pairing profile
with ~m0 = 8.0 meV (Inset: corresponding energy level spectrum). Vortex present in (b) (ν = −1),
not in (a) (ν = 0). (c) Vortex binding energy as a function of the exchange interaction strength m0

showing a critical value ~mc
0 ' 7.6 meV for the case with strong SOC.

The process is spontaneous if Evb < 0. We calculate the total energy of the system using

eq. (2.20). For the normal situation considered in section 4.1 without a magnetic impurity,

Evb = +16 meV and an external magnetic field is required to generate the vortex. The

pair potential vanishes in the vortex core, reducing the mean field correction term EMF

compared to the vortex-free phase. This, however, is not enough for Evb < 0 since all states

below the Fermi level are occupied and the CdGM states are raised in energy compared to

the scattering states in the vortex-free phase that would otherwise be filled. E0 is the same

for both phases in this case and negligible in almost all other cases, too.

We find the same qualitative results as in the QAV-paper when we add the magnetic

impurity which we will compare to the system without one (fig. 4.1). In the vortex-free

state shown in fig. 4.2(a), we see that the pair potential has been heavily suppressed near

the ion – more so for the case without SOC that displays a large dip. We find so-called

Yu-Shiba-Rusinov (YSR) in-gap bound states which are well-known defect excitations in

superconductors with magnetic impurities [13–15]. This raises the energy of the vortex-free

state compared to without the impurity even though the mean field term EMF is smaller

since the pair potential is suppressed.

In the vortex state (fig. 4.2(b)), the pairing profile with SOC shows enhanced oscilla-

tions compared to the case without the impurity; the pairing profile without SOC is more
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suppressed as in the vortex-free case. We see some YSR in-gap bound states just inside

the superconducting gap besides the CdGM states which have been pushed away from the

Fermi level. The exchange interaction Ĥex = −m0e
−r/r0Jz lowers (raises) the energy of

the states with jz > 0 (jz < 0) for m0 > 0. The effect is largest for the states with small

angular momentum due to the exponential decay. The vorticity ν = −1 is such that the

CdGM states have the right ’chirality’ sgn(εf )ν > 0 [2] and the exchange interaction lowers

the energy of the occupied states. Without SOC, the two CdGM states with jz = 0 are

only affected through the changed pair potential. From fig. F.1 showing the individual

energies of the two different states, we note that the decrease in binding energy is mainly

due to a decrease in the energy of the vortex state.

As shown in fig. 4.2(c), there exists a range of exchange interaction strengths, starting

from the critical value ~mc
0 ' 7.6 meV – not far from the value reported in the QAV-paper

– where quantum anomalous vortices may form in the bulk material with strong SOC.

Comparing the results with and without SOC, the stability of the vortex phase is clearly

helped by strong SOC – without SOC, Evb just barely becomes negative. The existence of

a critical value mc
0 depends on both the strength of the SOC and the interaction range r0.

The binding energy for other parameter choices is shown in fig. F.2. We find that SOC

is not needed if the decay length is longer (r0 = 4 was tested) but the vortex state is not

favored if the decay length is shorter (r0 = 1 was tested).

There seems to be an almost linear relation between Evb andm0 until some other critical

interaction strength mc′
0 when the first YSR state of the vortex-free phase crosses the Fermi

level which is correlated with a phase transition-like change of the pair potential that makes

Evb jump discontinuously. For m0 > mc ′
0 , the energy of the vortex-free state doesn’t change

in a simple increasing manner as seen in fig. F.1 and the binding energy depends in a

complicated fashion on m0. To fully understand the non-linear regime m0 > mc ′
0 , we would

need to study both the energy spectrum of the YSR states and the correlation between

Fermi level crossings of bound states and discontinuous changes in the pair potential in

much greater detail which is beyond the scope of this thesis (see appendix G for preliminary

notes on the second topic). We note, however, that SOC pushes the low angular momentum

YSR states away from the Fermi level, leading to a larger mc′
0 for the system with SOC

and, eventually, to a more favorable vortex state.
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4.3 Anomalous vortices in superconductors with (anti-)ferromagnetic
exchange interactions

Now that we have seen that a vortex may nucleate spontaneously in the bulk layers around

a magnetic impurity with simple exponential decay as the FM exchange interaction, we

investigate whether other types of exchange interaction may produce anomalous vortices

as well. We omit SOC for simplicity. It was found with neutron scattering experiments

by Thampy et al. [16] that an interstitial Fe impurity in Fe(Te,Se) induces Friedel-like

oscillations in the magnetic alignment of more than 50 neighboring Fe sites, motivating us

to try an AFM exchange interaction of the form m(r) = m0 cos(kr)e−r/r0 . We keep the

range at r0 = 2 and extract the wave number k = 8 nm−1 from the experiment.

Our results are gathered in fig. H.1 for these and other parameters. We find that it does

not give rise to anomalous vortices in the hole-like parabolic band – even for wavelengths

8 times longer, making it more similar to the previous case with m(r) = m0e
−r/r0 . The

vortex binding energy does decrease as m0 is increased but not in a simple linear form and

not enough for the vortex state to be favorable for the parameters considered here. We

have seen that a crucial element to generating anomalous vortices is pushing the CdGM

states away from the Fermi level. With the AFM exchange coupling considered here, this

is done inefficiently since Ĥex = −m(r)Jz only lowers the energy of some occupied CdGM

states while raising the energy of others due to oscillatory coupling.

Instead, we turn our attention to the investigation of whether a different shape of the

exchange coupling also makes the vortex state favorable for FM exchange interactions. We

try a circular FM island/puddle of aligned magnetic moments of radius r′, modeled by a

Fermi function with smooth decay at the edge of the island: m(r) = m0
1
2

(
1− tanh

(
r−r′
0.4l0

))
.

Three different radii r′ = 2, 5, 10 have been tested and the results are shown in fig. H.2.

We find that a radius of r′ = 10 gives rise to spontaneous vortex formation for a range of

exchange interaction strengths 0.5 meV . ~m0 . 0.7 meV.

Studying the energy spectra for the vortex and vortex-free states in the bulk layer in

fig. H.4 and H.3, respectively, we can explain the initial decrease in binding energy seen

in fig. H.2(c-d) with similar arguments as in section 4.2. YSR-like bound states in band-

like structures raise the energy of the vortex-free state compared to zero exchange field.

Meanwhile, the CdGM states are pushed away from the Fermi level, lowering the energy

of the vortex state. The jz = 0 CdGM states are only affected through the changing pair

potential. The YSR-like states play a significantly larger role in the vortex state than what
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Figure 4.3: Surface layer in the vortex state. (a) Energy level spectrum – open, black circles:
without magnetic impurity; filled blue circles: ~m0 = 8.0 meV, ~λ0 = 6.6 meV, r0 = 2. (b,c) LDOS
along a line through the center of the disc calculated at T = 1.5 K. Magnetic impurity present in
(c); no impurity in (b).

is seen in fig. 4.2(b) with the exponentially decaying exchange coupling, however. This

could account for the less steep energy decrease of the vortex state. As is evident from fig.

H.2(d), the initial decrease in binding energy seen in fig. H.2(c) is, to a larger degree, a

joint effort between the vortex and vortex-free states. At the minimum of Evb, the energy

of the vortex state is lowered by about the same amount as the vortex-free state increases

in energy. The mean field term does not change the binding energy significantly but does

lower the total energy of both states due to the suppression of the pair potential.

The energy spectra of the TSS do also contain some in-gap bound states introduced

by the exchange interaction but the surface states are affected to a smaller degree by the

impurity. In-gap states are most noticeable in the vortex-free state similar to the parabolic

band. The CdGM states in the vortex state are only affected very slightly.

4.4 Majorana zero-energy bound state in TSS

We consider now a surface layer – in the vicinity of a magnetic impurity – coupled to

the quantum anomalous vortex in the bulk layer due to proximity-induced superconduc-

tivity. Therefore, we take the pair potential ∆′(r) to be the self-consistent bulk layer

pair potential whose pairing profile ∆QAV (r) is shown in fig. 4.2(b) (blue curve), i.e.

∆′(r) = ∆QAV (r)eiθ.5 We find a zero-energy bound state (ZBS) among the CdGM states

since µ now takes integer values in the vortex state due to the extra Berry phase from the
5The vorticity ν′ = 1 has opposite sign from the bulk layer case in section 4.2 to preserve the chiralilty

of the CdGM states. [2]
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changed kinetic part of the Hamiltonian (see appendix C). The energy level spectrum given

in fig. 4.3(a) compares it to the case without the magnetic impurity. The impurity has a

similar effect of pushing CdGM states away from the Fermi level. Compared to the bulk

layer, however, the effect is not as strong in the surface layer. Note also that only the bound

states with nonzero angular momentum are affected; the ZBS stays put. This isolates the

ZBS from the other bound states which is also evident from the LDOS (fig. 4.3(b-c)).

Numerically, there are actually two degenerate ZBSs (in both the case with and without

the impurity) with energies E± = ±10−4 meV with which we form the linear combinations

Ψ+(r) = 1√
2

(ΨE+(r) + ΨE−(r)) and Ψ−(r) = 1√
2

(ΨE+(r)−ΨE−(r)). From the wave

functions depicted in fig. I.1, we see that Ψ+(r) is an edge state while Ψ−(r) is a localized

charge neutral Majorana zero-mode since it satisfies γ† = γ [8].6 The vortex core bound

states of the helical Dirac fermion TSS have previously been studied analytically without the

magnetic impurity by Deng et al. [3] where they found the Majorana mode, we also see here,

numerically. They also give an approximate expression for the bound state energies identical

to the CdGM result for the parabolic band: Eµ ' µ
∆2
bulk
εf

= 0,±0.49,±0.99, ... meV which

is not quite as close to the numerical result Eµ = 0,±0.81,±1.0, ... meV as the CdGM

states in section 4.1. The energies of the bound states with non-zero angular momentum

are, however, closer to ∆bulk = 1.5 meV which could account for the larger difference.

4.5 Zeeman splitting of Majorana mode and tuned YSR states

A vortex in the TSS is not the only way to produce a ZBS. By tuning the strength of the

exchange interaction, it’s possible to find YSR bound states with zero energy in a vortex-

free state. This is true for both the parabolic bulk band and helical Dirac fermion TSS. The

tuned YSR states do not share the robustness of the protected Majorana mode, though,

due to the finicky nature of the tuning. The energy of the Majorana mode is not affected

by the presence of an impurity as we saw in section 4.4. We turn off the SOC and choose

a smaller exchange interaction range r0 = 0.5 to isolate the ZBS. For the bulk band, the

tuned interaction strength is m0 = mc ′′
0 = 61.7 meV and m0 = 229 meV for the TSS. For

these values, the two l = 0 YSR states are calculated to have zero energy.

We calculate the Zeeman splitting by an external magnetic field B = Bzẑ parallel to

the impurity moment by adding the term ĤZ = −µ ·B ' −µBσzBz to the normal part of
6Expressions for the quasiparticle operators are given in eq. (A.1). The condition γ† = γ is satisfied if

u↑(r) = v↑(r) and u↓(r) = v↓(r) which is the case for Ψ−(r) (see fig. I.1).
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the Hamiltonian ĤN , assuming a g-factor of g ' 2. We treat this as a perturbation to the

zero-field Hamiltonian meaning that the pair potential is not self-consistent when Bz 6= 0.

We find that the zero-bias peak generated by the tuned YSR states in a LDOS measurement

of both bulk and surface layers shifts when an external magnetic field is applied to the tuned

YSR ZBS in contrast to the Majorana mode which stays pinned at zero bias (see figs. J.1

and J.2). Thus, these two different ZBSs should be easily discerned in experiments. The

Zeeman splitting in the TSS is smaller than bulk layers since the tuning value is greater

and thus a magnetic field of the same strength will have a smaller effect.

This perturbative approach does, however, cause some concern for the bulk YSR states,

specifically, since the system is tuned to a ’phase transition’ (m0 = mc ′′
0 ) where the pair

potential changes discontinuously for stronger exchange interactions (see appendix G and

figs. G.1 and G.3 in particular). The added magnetic field has a similar effect since we’re

effectively transforming the matrix element (Mµ)ij → (Mµ)ij + µBBzδij . A self-consistent

solution does, nevertheless, lead to the same conclusion; that the bulk YSR ZBSs split in

an external magnetic field, but they do so discontinuously if the field is parallel with Iimp,

forcing the transition, and continuously if the field is anti-parallel (see fig. J.3).

5 Conclusion

We have used the Bogoliubov-de Gennes (BdG) formalism and the theoretical model by

Jiang et al. [2] (QAV-paper) to numerically study s-wave superconductors with a hole-

like parabolic band for bulk states and helical Dirac fermion topological surface states in

which superconductivity is induced via a proximity effect, modeling iron-based Fe(Te,Se)

superconductors around the Γ-point. We have reproduced and studied some of the results

by Jiang et al. and found qualitative agreement with these. We find that the exchange

interaction from a single magnetic impurity Ĥex = −m0e
−r/r0Jz such as an interstitial

Fe atom gives rise to a spontaneous vortex generation at the site of the impurity if the

interaction strength m0 is in a certain critical range and the superconductor has strong

SOC or long-ranged exchange coupling. The effect of the exchange interaction is two-fold:

i) it pushes CdGM vortex core bound states away from the Fermi level, lowering the energy

of the vortex state and ii) introduces in-gap YSR bound states to the vortex-free state,

raising the energy of that state. The combined effect is a decreased vortex binding energy.

Additionally, we have studied other exchange interactions: antiferromagnetic Ĥex =

−m0 cos(kr)e−r/r0Jz which did not lead to anomalous vortices and extended ferromagnetic
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islands Ĥex = −m0
1
2

(
1− tanh

(
r−r′
0.4l0

))
Jz for which there exists a range of interaction

strengths m0 where spontaneous vortex formation occurs given a large enough radius r′ =

10.

We have also studied different zero energy bound states. Coupling the quantum anoma-

lous vortex of the bulk states to the TSS we find a Majorana zero mode among the CdGM

bound states. We find this bound state to be more isolated in the presence of a mag-

netic impurity ion in agreement with the QAV-paper. By tuning the exchange interaction

strength its possible to find YSR ZBSs in the vortex-free state in both the parabolic band

and the TSS. We find that the tuned YSR ZBSs split in a external magnetic field due to

the Zeeman effect but the Majorana zero mode does not. The YSR ZBSs in the TSS show

a smaller splitting with the same magnetic field strength than in the parabolic band due to

a much higher exchange interaction tuning value.

Further research into this topic could involve looking into other shapes for the exchange

coupling or a detailed analysis of the correlation between Fermi level crossings of bound

states and discontinuous changes in the pair potential which we have observed. This would

perhaps lead to a deeper understanding of how the the total energy of the vortex-free state

dependends on the exchange interaction strength.
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Appendices

A Bogoliubov quasiparticle operators

In this section we will prove that the inverted expressions for the Bogoliubov quasiparticle

operators γ†n, γn are given by [8]

γ†n =

∫
dr
∑
σ

unσ(r)Ψ†σ(r) + vnσ(r)Ψσ(r), (A.1a)

γn =

∫
dr
∑
σ

u∗nσ(r)Ψσ(r) + v∗nσ(r)Ψ†σ(r), (A.1b)

when we use the Bogoliubov transformation of eq. (2.6). We will prove this by ensuring

that the left and right hand sides of eq. (A.1) are equal when the original Bogoliubov

transformation (2.6) for Ψσ,Ψ
†
σ is used. To this end, we need two other results. Previously,

we asserted that the Bogoliubov quasiparticles are fermions and, therefore, that γ†n, γn
should obey the anti-commutation relations in eq. (2.7).

Suppose that eqs. (A.1) are true statements; that γ†n, γn really can be expressed in that

way. Then{
γ†n, γm

}
=

∫
dr

∫
dr′
∑
σσ′

{
unσ(r)Ψ†σ(r) + vnσ(r)Ψσ(r), u∗mσ′(r

′)Ψσ′(r
′) + v∗mσ′(r

′)Ψ†σ′(r
′)
}

=

∫
dr

∫
dr′
∑
σσ′

unσ(r)u∗mσ′(r
′)
{

Ψ†σ(r),Ψσ′(r
′)
}

+ vnσ(r)v∗mσ′(r
′)
{

Ψσ(r),Ψ†σ′(r
′)
}
,

=

∫
dr
∑
σ

unσ(r)u∗mσ(r) + vnσ(r)v∗mσ(r)
!

= δnm,

(A.2)

and{
γ†n, γ

†
m

}
=

∫
dr

∫
dr′
∑
σσ′

{
unσ(r)Ψ†σ(r) + vnσ(r)Ψσ(r), umσ′(r

′)Ψ†σ′(r
′) + vmσ′(r

′)Ψσ(r′))
}

=

∫
dr
∑
σ

unσ(r)vmσ(r) + vnσ(r)umσ(r)
!

= 0,

(A.3)

must also be satisfied; otherwise γ†n, γn as given in eq. (A.1) wouldn’t represent fermionic

particles.
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Inserting eq. (2.6) in the RHS of eq. (A.1a) and using eqs. (A.2) and (A.3), we have∫
dr
∑
σ

unσ(r)Ψ†σ(r) + vnσ(r)Ψσ(r)

=

∫
dr
∑
mσ

[unσ(r)u∗mσ(r) + vnσ(r)v∗mσ(r)] γ†m + [unσ(r)vmσ(r) + vnσ(r)umσ(r)] γm,

= γ†n.

(A.4)

Similarly for the RHS of eq. (A.1b), we have∫
dr
∑
σ

u∗nσ(r)Ψσ(r) + v∗nσ(r)Ψ†σ(r)

=

∫
dr
∑
mσ

[u∗nσ(r)umσ(r) + v∗nσ(r)vmσ(r)] γm + [u∗nσ(r)v∗mσ(r) + v∗nσ(r)u∗mσ(r)] γ†m,

= γn.

(A.5)

Here we have used the results from Hermitian conjugating eqs. (A.2) and (A.3). Thus, we

reach the conclusion that the inverted expressions for γ†n, γn given in eq. (A.1) are, in fact,

consistent with the Bogoliubov transformation defined in eq. (2.6).

B Gauge transforming the BdG equations

In this section we want to prove that the wave function Φn(r) and the gap pair potential

∆(r) transform as

Φn(r)→ Ψn(r) = exp

[
ie

~
χ(r)τ ′z

]
Φn(r), (B.1a)

∆(r)→ ∆̃(r) = exp

[
2ie

~
χ(r)

]
∆(r), (B.1b)

under a gauge transformation A → Ã = A + ∇χ(r). The transformation equations are

such that they leave the BdG equations invariant for any differentiable function χ(r). The

proof is only given for the bulk states but it is completely analogous for surface states. It

follows the one given by de Gennes [4].

For the Hamiltonian to remain gauge invariant, we have to use canonical momentum
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operators p→ p− eA. The BdG equations considered in eq. (3.3) become

H(A)Φn(r) = EnΦn(r), (B.2a)

H(A) = τ ′z

(
(p− τ ′zeA)2

2m∗
− εf

)
− τ ′zλso(r)

[(
r × (p− τ ′zeA)

)
· σ′
]
z

−m(r)

[
r × (p− τ ′zeA) +

~
2
σ′
]
z

+ ∆(r) exp
[
iνθτ ′z

]
τ ′x.

(B.2b)

Before proceeding, consider this calculation.(
p− τ ′zeÃ

)
Ψn(r) =

(
−i~∇− τ ′zeÃ

)
exp

[
ie

~
χ(r)τ ′z

]
Φn(r),

= exp

[
ie

~
χ(r)τ ′z

](
−i~∇+ τ ′ze∇χ(r)− τ ′zeÃ

)
Φn(r),

= exp

[
ie

~
χ(r)τ ′z

] (
p− τ ′zeA

)
Φn(r).

(B.3)

From this result, it follows that

H(Ã)Ψn(r) =

τ ′z

(
p− τ ′zeÃ

)2

2m∗
− εf

− τ ′zλso(r) [(r × (p− τ ′zeÃ)
)
· σ′
]
z

−m(r)

[
r × (p− τ ′zeÃ) +

~
2
σ′
]
z

+ ∆(r) exp
[
iνθτ ′z

]
exp

[
2ie

~
χ(r)τ ′z

]
τ ′x

]
Ψn(r),

= exp

[
ie

~
χ(r)τ ′z

]
H(A)Φn(r).

(B.4)

Here we have also used that τ ′x exp
[
ie
~ χ(r)τ ′z

]
= exp

[
− ie

~ χ(r)τ ′z
]
τ ′x. Multiplying eq. (B.2a)

by exp
[
ie
~ χ(r)τ ′z

]
, we find

H(Ã)Ψn(r) = EnΨn(r), (B.5)

in the new gauge. Thus, given a solution of the original equation (B.2a) (wave function

Φn(r) with energies En), the transformed wave function Ψn(r) will be a solution of the

BdG equations in the new gauge. The energies remain unchanged, of course.

To cancel the phase of the pair potential ∆(r) = ∆(r) exp[iνθ], we choose χ(r) = − ~
2eνθ

such that Ψn(r) = exp
[
−iν2θτz

]
Φn(r) and H(Ã) = H̃(r) in agreement with the unitary

transformation in eq. (3.2). With this choice of χ(r), the transformed vector potential is

given by

Ã = A− ~ν
2er

θ̂. (B.6)
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C Rephrasing the BdG equations for the TSS

For the helical Dirac fermion TSS where ĤN is given in eq. (2.5), H̃ from the (gauge

transformed) BdG equations (3.2) takes the form

H̃ = e−i
ν
2
θτ ′z
{
τ ′z
[
vD(σ′ × p) · ẑ − ε′f

]
+ λ′so(r)Lzσ

′
zτ
′
z −m′(r)Jz

}
ei
ν
2
θτ ′z + ∆(r)τ ′x, (C.1)

where we have used −σyσ∗σy = σ and p∗ = −p to find −σy(H ′kin)∗σy = −H ′kin for the

hole-like part. Note, however, that unlike the parabolic bulk band
[
H̃, Lz

]
6= 0 due to the

changed kinetic part. The (2-D) total angular momentum operator Jz = Lz + ~
2σ
′
z does,

however, commute with H̃. We note that
[
e−iνθτ

′
z/2Aeiνθτ

′
z/2, Jz

]
= e−iνθτ

′
z/2[A, Jz]e

iνθτ ′z/2

for all operators A and

[
(σ′ × p) · ẑ, Jz

]
=

[
σ′xpy − σ′ypx, Lz +

~
2
σ′z

]
= σ′x [py, Lz]︸ ︷︷ ︸

i~px

+
~
2

[
σ′x, σ

′
z

]︸ ︷︷ ︸
−2iσ′y

py − σ′y [px, Lz]︸ ︷︷ ︸
−i~py

−~
2

[
σ′y, σ

′
z

]︸ ︷︷ ︸
2iσ′x

px = 0.
(C.2)

Using these two results it should be fairly easy to show that
[
H̃, Jz

]
= 0 such that we may

find simultaneous eigenstates for the two operators.

H̃Ψn(r) = EnΨn(r), (C.3a)

JzΨn(r) = ~µΨn(r). (C.3b)

It’s straightforward to verify that

Ψn(r) = ei(µ−
1
2
σ′z)θΨnµ(r) (C.4)

satisfies eq. (C.3b). We will use this slightly different partial wave expansion (compare

with eq. (3.4)) for the TSS. Given the boundary condition Ψn(r, θ + 2π) = (−1)νΨ(r, θ)

from eq. (3.2), we write µ = l − ν−1
2 where l is an integer. This means µ = ±1

2 ,±
3
2 , ... is

now a half-odd integer when the vorticity ν is even, and µ = 0,±1,±2, ... is an integer for

odd ν which is opposite the bulk states.

In polar coordinates, we can write the kinetic part as

vD(σ′ × p) · ẑ − ε′f = i~vDσ′yeiθσ
′
z

(
∂r + iσ′z

∂θ
r

)
− ε′f . (C.5)
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We insert the partial wave expansion (C.4) in the BdG equations (3.2) with H̃ given in eq.

(C.1) and cancel the phase terms to find the radial equation for the TSS.{
τ ′z

[
i~vDσ′y

(
∂r − σ′z

µ− 1
2σ
′
z + ν

2τ
′
z

r

)
− ε′f

]
+ ~λ′so(r)

(
µ− 1

2
σ′z +

ν

2
τ ′z

)
σ′zτ

′
z

− ~m′(r)
[(
µ− 1

2
σ′z +

ν

2
τ ′z

)
+

1

2
σ′z

]
+ ∆(r)τ ′x

}
Ψnµ(r) = EµnΨnµ(r). (C.6)

Similarly to the bulk states, we expand Ψnµ(r) in a set of Bessel functions. We choose

the order of the Bessel functions to match the phase part exp
[
i(µ− 1

2σ
′
z + ν

2τ
′
z)
]
of the full

wave function Φn(r) in the old gauge, as before.

Ψnµ(r) =
[
unµ11↑(r), unµ−1

1 ↓
(r), vnµ1−1↓(r),−vnµ−1

−1↑
(r)
]T
,

unµσ1σ(r) =
J∑
j=1

unµσ1 jσφµσ1 j(r), vnµσ−1σ
(r) =

J∑
j=1

vnµσ−1jσ
φµσ−1j

(r).
(C.7)

We have introduced a similar notation as in the case of the parabolic bulk band, namely

µστ = µ− 1
2σ+ ν

2τ with σ, τ = ±1 matching the entries in the four-component spinor Ψnµ(r).

Analogously, we write

Ψnµ(r) =
[
Ψ11
nµ(r),Ψ−11

nµ (r),Ψ1−1
nµ (r),Ψ−1−1

nµ (r)
]T
, (C.8a)

Ψστ
nµ(r) =

J∑
j=1

fστnµjφµστ j(r), (C.8b)

f11
nµj = unµ11j↑, f

−11
nµj = unµ−1

1 j↓, f
1−1
nµj = vnµ1−1j↓, f

−1−1
nµj = −vnµ−1

−1j↑
. (C.8c)

Using this expansion, eq. (C.6) becomes

J∑
j=1

{[
−τε′f + ~λ′so(r)µστστ − ~m′(r)

(
µστ +

1

2
σ

)]
fστnµjφµστ j(r)

+ τσ~vD
(
∂r + σ

µ−στ
r

)
f−στnµj φµ−στ j(r) + ∆(r)fσ−τnµj φµσ−τ j(r)

}
=

J∑
j=1

Eµnf
στ
nµjφµστ j(r). (C.9)

We will need three Bessel function identities to simplify the kinetic part [9].∫ b

a
dxxJl(αx)Jl(βx) =

1

α2 − β2

[
βxJl(αx)J ′l (βx)− αxJl(βx)J ′l (αx)

]b
a
, (C.10a)

J ′l (x)± l

x
Jl(x) = ±Jl∓1(x), (C.10b)

Jl−1(x) + Jl+1(x) =
2l

x
Jl(x), (C.10c)
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where the prime denotes a derivative w.r.t. the variable x. When taking the inner product

of eq. (C.9) with φµστ i(r), the kinetic part presents us with the following integral (note

l′ = l ± 1 in our case):∫ R

0
dr rφli(r)

(
∂r ±

l′

r

)
φl′j(r)

(C.10b)
=

±2

R2Jl+1(βli)Jl′+1(βl′j)

βl′j
R

∫ R

0
dr rJl

(
βli

r

R

)
Jl′∓1

(
βl′j

r

R

)
,

(C.10a)
=

±2

R2Jl+1(βli)Jl′+1(βl′j)

βl′j
R

R2

β2
li − β2

l′j

[
−βliJl(βl′j)J ′l (βli)

]
,

(C.10b)
= ±

Jl(βl′j)

Jl′+1(βl′j)

2

R

βliβl′j
β2
li − β2

l′j

,

(C.10c)
= − 2

R

βliβl′j
β2
li − β2

l′j

.

(C.11)

Taking the inner product of eq. (C.9) with φµστ i(r) and using the above result, we write the

radial equation as

J∑
j=1

{[
−τε′fδij +

∫ R

0
dr r

(
~λ′so(r)µστστ − ~m′(r)

(
µστ +

1

2
σ

))
φµστ i(r)φµστ j(r)

]
fστnµj

+ τσ

(
−2~vD
R

βµστ iβµ−στ j

β2
µστ i
− β2

µ−στ j

)
f−στnµj +

[∫ R

0
dr r∆(r)φµστ i(r)φµσ−τ j(r)

]
fσ−τnµj

}
= Eµnf

στ
nµi.

(C.12)

We can simplify the notation if we introduce the matrix elements

(Vµ,µ′)ij = −2~vD
R

βµiβµ′j
β2
µi − β2

µ′j

, (C.13a)

[(Lµ)ij , (Mµ)ij , (Λµ)ij ] =

∫ R

0
dr r

[
µ~m′(r),

1

2
~m′(r), µ~λ′so(r)

]
φµi(r)φµj(r), (C.13b)

(∆µ,µ′)ij =

∫ R

0
dr r∆(r)φµi(r)φµ′j(r). (C.13c)

The radial equation then becomes

J∑
j=1

{ [
−τε′fδij + στ(Λµστ )ij − (Lµστ )ij − σ(Mµστ )ij

]
fστnµj

+ τσ(Vµστ ,µ
−σ
τ

)ijf
−στ
nµj + (∆µστ ,µ

σ
−τ

)ijf
σ−τ
nµj

}
= Eµnf

στ
nµi. (C.14)
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We may write this as a matrix eigenvalue problem similar to the parabolic bulk band.
−(L+M − Λ)µ11 − ε

′
f Vµ11,µ

−1
1

∆µ11,µ
1
−1

0

V T
µ11,µ

−1
1

−(L−M + Λ)µ−1
1
− ε′f 0 ∆µ−1

1 ,µ−1
−1

∆T
µ11,µ

1
−1

0 −(L+M + Λ)µ1−1
+ ε′f −Vµ1−1,µ

−1
−1

0 ∆T
µ−1
1 ,µ−1

−1

−V T
µ1−1,µ

−1
−1

−(L−M − Λ)µ−1
−1

+ ε′f

Ψnµ = EµnΨnµ,

(C.15)

where Ψnl = [u↑1, ..., u↑J , u↓1, ..., u↓J , v↓1, ..., v↓J ,−v↑1, ...,−v↑J ]T with suppressed indices

n, µστ . To solve the BdG equations, then, we diagonalize the matrix on the LHS numerically

in the subspace of constant angular momentum µ.
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D Symmetry of the basis functions

In this section we want to show that our normalized Bessel functions

φlj(r) =

√
2

RJl+1(βlj)
Jl

(
βlj

r

R

)
, l ∈ Z, j ∈ N (D.1)

which we use as an orthonormal basis are in fact symmetric under inversion of angular

momentum, i.e. φlj(r) = φ−lj(r).

For this we need two properties of the Bessel functions of the first kind of integer order

l [9]:

J−l(x) = (−1)lJl(x), (D.2)

Jl−1(x) + Jl+1(x) =
2l

x
Jl(x). (D.3)

The second property (D.3) actually applies to non-integer orders as well.

First note that the first property (D.2) implies that the roots of J−l(x) and Jl(x) must

be the same, i.e. β−lj = βlj . Then note that the second property (D.3) implies that

Jl−1 (βlj) = −Jl+1 (βlj) (D.4)

since βlj is a root of Jl(x).

We now use these observations to rewrite φ−lj(r).

φ−lj(r) =

√
2

RJ−l+1(β−lj)
J−l

(
β−lj

r

R

)
=

√
2

R(−1)l−1Jl−1(βlj)
(−1)lJl

(
βlj

r

R

)
,

=

√
2

RJl+1(βlj)
Jl

(
βlj

r

R

)
= φlj(r).

(D.5)

This property will be used extensively in the numerical calculations to reduce (almost

halve) computation time. Take a look at a generalized form of the integrals we need to

compute in the A’th block of the Hamiltonian for fixed angular momentum l :

(Al)ij = f(l)

∫ R

0
dr rw(r)φli(r)φlj(r), (D.6)

where f(l) and w(r) are some weight functions (e.g. f(l) = l and w(r) = ∆(r) or w(r) =

exp[−r/r0]). Effectively, we only need to compute the Bessel functions and integrals for

non-negative values of angular momentum.
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Figure E.1: Radial part of wave functions for some of the CdGM bound states shown in fig.
4.1(e). See upper left pane for legends.
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Figure E.2: Zoomed in view of the difference in energies between consecutive CdGM bound states
showing the boundary effects on high angular momentum states. The differences is between the
CdGM states shown in fig. 4.1(e).
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Figure F.1: Bulk layer with a single magnetic impurity. Energies of the vortex and vortex-free
states measured from the energy of the vortex-free state with m0 = 0 (LHS wo/ SOC; RHS w/
SOC). Vortex binding energy shown in fig. 4.2(c) is the difference of the two curves both with and
without SOC. The decrease in binding energy for increased m0 is primarily due to a lower energy
vortex phase which decreases almost linearly (causing Evb to do the same). The discontinuous
jumps in the vortex-free energy happen when the YSR bound states cross the Fermi level since
these are correlated with discontinuous jumps in the pairing profile (see appendix G). The energy
of the vortex-free state increases in a simple manner until the bound states cross the Fermi level.

Figure F.2: Bulk layer with a single magnetic impurity. Vortex binding energy as function of
exchange interaction strength for two different decay lengths. Vortex state is favored for r0 = 4

both with and without SOC when ~m0 & 2 meV. Vortex state is never favored for r0 = 1.
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G Qualitative features of the vortex-free pairing profile

Here we discuss, very briefly, some of the preliminary observations of correlations between

bound state Fermi level crossings and pair potential discontinuous jumps in the vortex-free

case. Figure G.1 shows some of these jumps where the qualitative features of the pairing

profile change substantially and discontinuously as in a first-order phase transition. There

seems to be a correlation between Fermi level crossings of in-gap bound states and these

discontinuous changes which also cause the total energy of the state to change discontinu-

ously. This is evident from comparing figs. F.1, G.1, and G.2 with SOC; vortex-free YSR

states cross the Fermi level at ~m0 = 8.1, 8.6 meV. It’s not quite clear whether these dis-

continuities are observed in the QAV-paper or if they are in a different parameter regime

where no Fermi level crossings occur for the YSR states in the vortex-free state.

Before the first Fermi level crossing 0 < m0 ≤ mc ′
0 , the pairing profile shows a broad

suppression by the presence of the impurity. The first crossing seems to give rise to a large

dip in the pairing profile near the core. It’s observed as a seemingly general feature that

the pairing profile switches sign discontinuously when the l = 0 YSR states cross the Fermi

level. This is the tuning value, denoted mc ′′
0 , used for the YSR ZBS in the parabolic bulk

band discussed in section 4.5. The sign-switching is shown, perhaps more clearly, in fig.

G.3. The same sign-switching qualitative behavior is also found by Flatté and Byers [17].

Figure G.1: Self-consistent pairing profiles for different exchange interaction strengths in the
vortex-free case with r0 = 2 showing discontinuous jumps. Left side: no SOC (λ0 = 0) and
~mc ′

0 ' 6.7 meV, ~mc ′′
0 ' 11.1 meV; right side: SOC (~λ0 = 6.6 meV) and ~mc ′

0 ' 8.1 meV (~mc ′′
0

above parameter range).
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Figure G.2: Energy level spectra showing YSR state Fermi level crossings and discontinuous
jumps in energies – with SOC (~λ0 = 6.6 meV). These should be compared with the RHS of fig.
G.1. Crossings occur between ~m0 = 8.1, 8.2 meV and between ~m0 = 8.6, 8.7 meV. Fermi level is
marked with a dashed line and the crossing states are outlined with a red circle. Units in titles are
10 meV/~ for m0, λ0.
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Figure G.3: Self-consistent pairing profile evaluated at impurity for different exchange interaction
strengths in the vortex-free case without SOC. The discontinuity at ~mc ′′

0 ' 11.1 meV from the
LHS of fig. G.1 is clearly visible.
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H (Anti-)ferromagnetic exchange interactions

Figure H.1: Vortex binding energy as function of the exchange interaction strengthm0 for the anti-
ferromagnetic exchange interaction m(r) = m0 cos(kr)e−r/r0 discussed in section 4.3 for different
parameters r0, k without SOC. The vortex state is never favored even in the case r0 = 4, k = 1

which is most similar to the simple exponential decay m(r) = m0e
−r/r0 of the single magnetic

impurity discussed in section 4.2.
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Figure H.2: Energy calculations for the extended ferromagnetic exchange interaction m(r) =

m0
1
2

(
1− tanh

(
r−r′
0.4l0

))
discussed in section 4.3 for different parameters r′ without SOC. (a-c) Vor-

tex binding energy as function of the exchange interaction strength m0 for radius r′ = 2, 5, 10. (d)
Energy of the vortex and vortex-free states measured from the vortex-free energy of them0 = 0 case
for radius r′ = 10. The vortex state is favored for r′ = 10 in the range 0.5 meV . ~m0 . 0.7 meV

but not for the two other radii.
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Figure H.3: Energy spectra, self-consistent pairing profiles, and exchange coupling profiles for the
vortex-free state with extended ferromagnetic exchange interaction m(r) = m0

1
2

(
1− tanh

(
r−r′
0.4l0

))
and r′ = 10 for different interaction strengths. The plots are matched row-wise with ~m0 =

0.2, 0.4, 0.6, 1.0 meV for row 1,2,3,4, respectively. Column 1,2 are energy spectra for the hole-like
parabolic bulk band and helical Dirac fermion TSS, respectively. Column 3 shows the self-consistent
pairing profiles and exchange couplings used to generate the energy spectra.
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Figure H.4: Energy spectra, self-consistent pairing profiles, and exchange coupling profiles for
the vortex state with extended ferromagnetic exchange interaction m(r) = m0

1
2

(
1− tanh

(
r−r′
0.4l0

))
and r′ = 10 for different interaction strengths. The plots are matched row-wise with ~m0 =

0.2, 0.4, 0.6, 1.0 meV for row 1,2,3,4, respectively. Column 1,2 are energy spectra for the hole-like
parabolic bulk band and helical Dirac fermion TSS, respectively. Column 3 shows the self-consistent
pairing profiles and exchange couplings used to generate the energy spectra.
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I Surface layer ZBS wave functions

Figure I.1: Wave functions for the linear combinations of the ZBSs discussed in section 4.4. Left
(right) pane is the radial part of the wave function for Ψ−(r) (Ψ+(r)).
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J Zeeman splitting of zero-energy bound states

Figure J.1: Perturbative Zeeman effect. Energy spectra for the tuned YSR ZBSs in both the
parabolic bulk band (first row) and TSS (second row) compared to the Majorana mode of the QAV-
coupled TSS (third row) for different impurity-aligned external magnetic field strengths. Both the
bulk and surface YSR ZBSs show Zeeman splitting whereas the two ZBSs in the TSS stay fixed at
zero energy. The exchange interaction tuning values are ~m0 = 61.7 meV and ~m0 = 229 meV for
the parabolic bulk band and TSS, respectively.
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Figure J.2: Perturbative Zeeman effect. LDOS corresponding to the energy spectra of fig. J.1.
It’s difficult to see in the figure, but the vortex-free TSS zero-bias peak shifts upward in bias energy;
the Majorana mode stays fixed.
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Figure J.3: Self-consistent Zeeman effect of tuned YSR ZBSs in the parabolic bulk band with
µBBz = 0.01 meV. The top row shows a magnetic field aligned parallel with the magnetic moment
of the impurity, changing the pairing profile significantly which leads to a discontinuous jump in the
energy splitting of the before ZBSs. The bottom row shows a magnetic field of the same strength
anti-aligned with the moment of impurity and a considerably smaller Zeeman splitting consistent
with a perturbative calculation. Note that the magnetic field µBBz = 0.01 meV is much smaller
than in fig. J.1 and J.2.
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