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1 Abstract

In this thesis we have investigated the topological insulating state in zinc blende heterostructures. We �nd that
by varying thickness one can tune a normal band structure into an inverted band structure. By use of k · p
and envelope function theory we obtain the band structure of two quantum wells. The HgTe well is solved by
neglecting spurious solutions and we obtain an inverted band structure in the regime 6.7nm< L < 8.66nm. By
use of Foreman's ordering and scattering matrices we derive the band structure of the InAsGaSb quantum well
and obtain an inverted band structure in the regime 8.7nm< d < 14.5nm. We then develop the BHZ Hamiltonian
for HgTe in the inverted regime to obtain time reversal protected helical edge states. Finally we discuss transport
measurements which can verify the existence of helical edge states and we conclude that we can achieve the
quantum spin hall e�ect in the HgTe quantum wells.
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2 Introduction

Within that last couple of years the topological insulating state has been proposed and realized [2][1]. This new
state of matter supports the existence of edge states without breaking time reversal symmetry. In the topological
insulating state one �nds an odd number of Kramer's pairs at open interfaces. These helical edge states leads to
novel transport e�ects such as the quantum spin hall phase [7].

The �rst veri�ed topological insulator was the inverted HgTe quantum well [1]. Recently the InAsGaSb broken
gap quantum well have also been proposed as a topological insulator [5] and veri�ed experimentally [22]. New
transport measurements of weird magneto-resistance makes development of e�ective models a essential part of
understanding this new phase [19].

In this thesis we will investigate the topological state in zinc blende heterostrucutres. The purpose of this
work is to �nd inverted regimes in di�erent quantum wells in order to achieve the topological insulating state.
In this regime we wish to obtain e�ective Hamiltonians describing the bands interactions. We will then develop
and investigate the helical edge states located at open interfaces. In order to achieve this we need to derive an
e�ective Hamiltonian for zinc blende crystals and �nd proper boundary conditions for heterostructurs.

3 k · p approximation

Using symmetry arguments and k · p theory we will here develop a second order Hamiltonian describing the
interactions between the conduction band and the valence band. These deviations are based on the work of [11]
and [9]. First we de�ne the principal elements of this theory.

Since the crystal is invariant to any discrete translations composed of lattice vectors we express our wavefunc-
tion in terms of Bloch waves

ψ(r) = eik·ru(k, r)⇒ ψ(r +G) = eik·(r+G)u(k, r). (3.1)

Here u(k, r) is a function periodic with G and G is composed of linear combinations of lattice vectors. We insert
this into the Schrödinger equation and obtain

Hψ =

[
p2

2m0
+ V (k, r)

]
ψ ⇒ Hu(k, r) =

[
p2

2m0
+

~2k2

2m0
+

~k · p
m0

+ V (k, r)

]
u(k.r). (3.2)

which we separate into k dependent terms and k independent terms. The k independent terms describe the
electrons energy due to motion around the atoms while the k dependent terms describe the wave packet moving
as a whole. The k independent terms determines the energy of the band at the k = 0 point:[

p2

2m0
+ V (k, r)

]
u(k, r) = E0u(k, r). (3.3)

In order to develop an e�ective theory we need to do perturbations around the k · p term from Eq.3.2. We will
use group theory to identify which terms that are non zero. A quick review and explanation of group theory for
the zinc blend crystal is provided in appendix A. Here we will just present the character table for the point group
Td to which the zinc blende crystal belongs:

In the type of semiconductors we are interested in the valence band is composed of atomic p orbitals, while
the conduction band is made of s orbitals and the Fermi energy is centered between these orbitals. The s orbitals
are fully symmetric and therefore invariant under all transformations, since transformations consist of rotations
or re�ections. Therefore they belong to the Irreducible Representation (IRR) Γ1. p orbitals are atomic orbitals
that are anti-symmetric in one direction. They are triply degenerate and must be described by a 3 dimensional
IRR. Using a antisymmetric basis x, y and z we have already constructed a matrix for S4 with trace −1 (Eq.A.1).
So since the p states are triply degenerate and must have the character −1 for S4 we see from table.1 that they
belong to the IRR Γ4. Since they transform as the basis x, y and z we label them with Cartesian coordinates.

E 3C2 6S4 6σ 8C3

Γ1 1 1 1 1 1
Γ2 1 1 -1 -1 1
Γ3 2 2 0 0 -1
Γ4 3 -1 -1 1 0
Γ5 3 -1 1 -1 0

Table 1: Character table for point group Td
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Other states belonging to the rest of the IRR and more distant p and s bands will only be treated as
perturbations to the p and s states near the Fermi surface.

We derive Lowdin's perturbation theory which allows us to treat distant bands as perturbations. First we
split the states into two groups: A and B. Where A are the bands close to the Fermi surface and B are the
distant bands treated only as perturbations [11]. We de�ne a Hamiltonian with a approximate set of orthogonal
eigenstates:

Hψ = Eψ and ψ =
∑
n

cnψ
0
n. (3.4)

In our work, these eigenstates would correspond to zone-center wavefunctions for di�erent bands. We insert the
approximate set and multiply the left side with ψ0

m to obtain∑
n

cn
〈
ψ0
m

∣∣H ∣∣ψ0
n

〉
= cmE. (3.5)

De�ning
〈
ψ0
m

∣∣H ∣∣ψ0
n

〉
= Hmn and removing state m from the summation leaves us with∑

n 6=m

cnHmn = cm(E −Hmm)⇒ cm =
∑
n 6=m

cnHmn

E −Hmm
, (3.6)

which we separate into sums for states A and B. Latin indices span the subset A and greek the subset B.
Considering the case of m belonging to A and m belonging to B independently yields

cm =
∑
n 6=m

cnHmn

E −Hmm
+
∑
α

cαHmα

E −Hαα
and cα =

∑
α

cnHαn

E −Hαα
+
∑
β 6=α

cβHαβ

E −Hββ
. (3.7)

We then use an iterative procedure where we insert cα into the equation for cm to obtain a perturbative approx-
imation. We multiply by E −Hmm and insert Hmm back into summation we get

Ecm =
∑
n

Hmncn +
∑
αn

HmαHαn

E −Hαα
cn +

∑
αβ,β 6=α

HmαHαβ

E −Hαα
cβ (3.8)

By pulling out cn and ignoring the rest we would have up to second order perturbation. By continuing insertion
of Eq.3.7 into the third term we would obtain higher order perturbations. So up to second order

H(2)
mn = Hmn +

∑
α

HmαHαn

E −Hαα
. (3.9)

The next challenge is then to identify which terms that contribute to this sum. Group theory provides an easy

way of �nding terms of H
(2)
mn that are zero. We do this by utilizing selection rules.

Treating the k · p term as a perturbation with k as a vector and p as a operator we want to calculate terms
of the form

Pk = 〈Ψ2| p |Ψ1〉 k. (3.10)

with Ψn as a set of degenerate eigenfunctions of the Hamiltonian that transforms according to an Irreducible
representation (IRR). Now lets assume that Ψ1 belongs to the IRR Γ4 and since the momentum operator trans-
forms the same way as x, y and z we know that p must also transform as Γ4. Taking the product between them
would therefore result in nine new wave functions generating a new representation. This representation would
then be tensor product Γ4⊗ Γ4.

This corresponds to every matrix representations of each IRR being multiplied together. So by taking the
trace we obtain: ∑

µµ′

Dj
µµ(A)Di

µ′µ′(A) =
∑
µµ′

Di
µµ(A)Di

µ′µ′(A)⇒ χ1
iχ

2
i . (3.11)

The last index on χ is just to indicate that even though the χ's belong to the same symmetry operator, they can
have di�erent characters in di�erent IRR.

Now lets assume that this new representation is reducible. Then the characters of this representation would
consist of the sum of the characters of the IRR since characters are de�ned as the trace.

So if we could guess the combinations of characters from IRRs that ad up to the characters of the new
representation we would have reduced it to irreducible form. This method is easily applied if the group does not
consist of a huge number of IRRs. In our example a look at the table.1 shows that

Γ4⊗ Γ4 = Γ1⊕ Γ3⊕ Γ4⊕ Γ5. (3.12)
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Where the direct sum is the way of combining di�erent IRR into a single representation. Now this representation
must also have a set of basis functions which we call Ψ3. So Eq.3.10 reduces to

Pk = 〈Ψ2|Ψ3〉 k, (3.13)

and since basis vectors from di�erent IRR are orthogonal to each other this equation will only have a value if the
IRR corresponding to Γ2 is one of the 4 IRRs of Eq.3.12. So for the p and s bands we have the selection rules

Γ4⊗ Γ4 = Γ1⊕ Γ3⊕ Γ4⊕ Γ5 and Γ4⊗ Γ1 = Γ4, (3.14)

so to �rst order the interaction between s and p orbitals is given by

~
m0

∑
i,j

〈s| pi |j〉 ki =
~
m0
〈s| pi |i〉 ki = Pki. (3.15)

Where i and j are the coordinates x, y and z and where we used the following pairing rule: since our group
contains the symmetry C2 which changes sign of 2 axis's and leaves 1 unchanged, all terms that contains unpaired
(antisymmetric) terms of x, y and z will be 0. These terms must have equal strength since they are invariant
under symmetry operations. To �rst order we then have the following Hamiltonian:

Hk |Ψ〉 =


Ec + ~2k2

2m0
Pkx Pky Pkz

Pkx Ev + ~2k2

2m0
0 0

Pky 0 Ev + ~2k2

2m0
0

Pkz 0 0 Ev + ~2k2

2m0



s

x

y

z

 . (3.16)

Where P is known as the Kane parameter and the matrix is known as the 4× 4 Kane Hamilton. This Hamilton
is inversion symmetric since parity changes sign of p states but leaves s states unchanged.

3.1 Second order perturbations

We will now consider second order terms from Lowdin's perturbation Eq.3.9. These terms are corrections from
the distant bands B to bands A. We will encounter 4 di�erent terms. The �rst contribution is,

~2

m2
0

∑
n,i,j

〈s| pi |n〉 〈n| pj |s〉
Ec − En

kikj =
~2

m2
0

∑
n,i

〈s| pi |n〉 〈n| pi |s〉
Ec − En

k2i = A(k2x + k2y + k2z). (3.17)

Where we used the pairing rule and because of the symmetries all directions must contribute equally. The second
term reads,

~2

m2
0

∑
n,i,j

〈x| pi |n〉 〈n| pj |x〉
Ev − En

kikj =
~2

m2
0

∑
n,i

〈x| px |n〉 〈n| px |x〉
Ev − En

k2x = Lk2x +M(k2y + k2z), (3.18)

since the p state x has a chosen direction the term in the x direction can give another contributions then the z
and y direction. The third interaction is

~2

m2
0

∑
n,i,j

〈x| pi |n〉 〈n| pj |y〉
Ev − En

kikj =
~2

m2
0

∑
n,i

〈x| px |n〉 〈n| py |y〉
Ev − En

kxky +
~2

m2
0

∑
n,i

〈x| py |n〉 〈n| px |y〉
Ev − En

kykx = Nkxky,

(3.19)
which follows from the pairing rule. Finally we consider the fourth term:

~2

m2
0

∑
n,i,j

〈s| pi |n〉 〈n| pj |x〉
1
2 (Ec − Ev)− En

kikj . (3.20)

This term stems from the second order interaction between the conduction band s and the valence bands p. The
energy of this interaction is chosen to be 1

2 (Ec − Ev) as an approximation. First we focus our attention on the
term 〈s| pi |n〉. Since all characters of IRR Γ1 are 1 it follows from the selection rules that n must be a distant
band belonging to the IRR Γ4. Now that we have three unpaired basis functions of Γ4 its impossible to pair
them up. The only way to keep it invariant under C2 is to have them belong to three di�erent directions, so it
will invariant when changing sign of two directions. The full interaction is then given by,

~2

m2
0

∑
n,i,j

〈s| pi |n〉 〈n| pj |x〉
1
2 (Ec − Ev)− En

kikj =
~2

m2
0

〈s| py |y′〉 〈y′| pz |x〉
1
2 (Ec − Ev)− Ey′

kykz +
~2

m2
0

〈s| pz |z′〉 〈z′| py |x〉
1
2 (Ec − Ev)− En

kzky = Bkykz. (3.21)
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where the two terms contribute equally because of the symmetries. Its worth to notice that this term breaks
inversion symmetry since the p orbitals are anti-symmetric. So if our group also contained an inversion symmetry
this term would be 0. Because of this the B term is often called the Bulk Inversion asymmetric (BIA) contribution
up to second order [11]. The diamond structure is the same structure as zinc blende except that is also contains an
inversion symmetry between the two atoms in the structure, so this term is e�ectively zero in diamond structures
[9].

With all interactions considered the second order Hamiltonian is,

HDKK |Ψ〉 =


A(k2x + k2y + k2z) Bkykz Bkxkz Bkxky

Bkykz Lk2x +M(k2y + k2z) Nkxky Nkxkz
Bkxkz Nkxky Lk2y +M(k2x + k2z) Nkykz
Bkxky Nkxkz Nkykz Lk2z +M(k2x + k2y)



s
x
y
z

 , (3.22)

known as the Dresselhouse-Kip-Kittel (DKK) Hamilton. We still know nothing about the value of these terms,
but these are often found experimentally or estimated from pseudo-potential methods which we will not engage
in. Until now we neglected spin and since our Hamiltonian consists of no terms that break spin symmetry our
bands are spin degenerate.

3.2 Spin-Orbit Coupling

The spin-orbit coupling stems form the relativistic e�ect of the electrons motion around the atoms. In this
project, we will be working with zinc blende structures consisting of heavy elements, therefore the atoms have a
large electrical �eld, which will give a signi�cant contribution to the spin-orbit coupling. We will treat this term
as a perturbation that lifts the spin degeneracy. A explicit deviation is given in [20]. To low order the spin-orbit
coupling is

Hso =
~

4m2
0c

2
(∇V × p) · σ =

~
4m2

0c
2

(σ ×∇V ) · p, (3.23)

So when we apply Bloch states we obtain

Hsou(k, r) =

[
~

4m2
0c

2
(σ ×∇V ) · (p+ ~k)

]
u(k, r) (3.24)

where we disregarded the k dependent term since the orbital motion of the electrons around the atoms is usually
much faster then the group velocity k. Looking at the �rst form of Eq.3.23, we notice that both ∇V and p
transforms as basis vectors for Γ4 and there cross product must therefore transform as a axial vector.

The symmetry group of Td contains a re�ection around the plane [1,1,0]. This re�ection interchanges the
coordinates x and y so for a axial vector which has the form,

∇V × p = εαβγ
dV

dα
pβ γ̂ we �nd the representaion of σ :

 0 −1 0
−1 0 0
0 0 −1

 (3.25)

Where the index span the Cartesian coordinates. This shows that the character for the re�ection class must be
−1 for axial vectors. These vectors generate a 3 dimensional IRR and it is recognized from table.1 to be Γ5.

We now want to obtain selection rules for this perturbation working on our p and s states:

Γ5⊗ Γ1 = Γ1 and Γ5⊗ Γ4 = Γ2⊕ Γ3⊕ Γ4⊕ Γ5 (3.26)

From here we se that there is no spin-orbit coupling term between the valence and the conduction band. We will
ignore spin orbit terms from distant bands. Since there is only one conduction s state it will be unchanged as it
does not couple with the valence bands.

The degenerate valence band couple and this could lift their degeneracy. The coupling between x and y is,

〈x| εαβγ
dV

dα
pβ |y〉σγ = 〈x| dV

dx
py −

dV

dy
px |y〉σz, (3.27)

since we have the pairing rule. The pairing rule cannot be met for perturbations between x and x states since
they contain isolated y and z terms. We apply symmetries that interchange coordinates and �nd:

〈x| dV
dx

py −
dV

dy
px |y〉 = 〈y| dV

dy
pz −

dV

dz
py |z〉 = 〈z| dV

dz
px −

dV

dx
pz |x〉 =

4m2
0c

2

3i~
∆ (3.28)
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Why this choice of constant is smart will come apparent soon. So the full interaction matrix can be expressed as

∑
n,m

〈n|Hso |m〉 =
∆

3i


0 0 0 0
0 0 σz −σy
0 −σz 0 σx
0 σy −σx 0



s
x
y
z

 (3.29)

Since a Pauli matrix connects a spin up state with a spin down state, we can write our the full interaction and
diagonalize it:

∆

3i



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 i
0 0 0 0 0 −1 −i 0
0 0 −1 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 0 −i 0 −1 0 0
0 0 i 0 −1 0 0 0





s ↑
s ↓
x ↑
x ↓
y ↑
y ↓
z ↑
z ↓


→ ∆

3



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 −2





Ec ↑
Ec ↓
Hh ↑
Lh ↑
Lh ↓
Hh ↓
Sp ↑
Sp ↓


. (3.30)

Where the arrow indicates a transformation to a diagonal form. Here Ec is the conduction electron, Hh is the
heavyhole, Lh is the lighthole and Sp is the split-o� hole. Notice that the degeneracy of the valence bands has
been lifted. They are now split into two degenerate bands each associated with a spinor room. This can be seen
more clearly if we consider the transformation matrix:

Ec ↑
Ec ↓
Hh ↑
Lh ↑
Lh ↓
Hh ↓
Sp ↑
Sp ↓


=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1√

2
0 i√

2
0 0 0

0 0 0 1√
6

0 i√
6
−
√

2
3 0

0 0 − 1√
6

0 i√
6

0 0 −
√

2
3

0 0 0 − 1√
2

0 i√
2

0 0

0 0 0 1√
3

0 i√
3

1√
3

0

0 0 − 1√
3

0 i√
3

0 0 1√
3





s ↑
s ↓
x ↑
x ↓
y ↑
y ↓
z ↑
z ↓


(3.31)

We now show that these states corresponds to states of total angular momentum from spin and movement around
the atom. Inspired by atomic physics we de�ne states by their angular momentum [9] as

|1, 1〉 =
1√
2
x+

i√
2
y, |1, 0〉 = −z, |1,−1〉 = − 1√

2
x+

i√
2
y, (3.32)

which we combine with the spin half Hilbert space to obtain the total angular momentum j. There is only one
combination that gives a total angular momentum of j = 3

2 ,∣∣∣∣32 , 3

2

〉
= |1, 1〉A ⊗

∣∣∣∣12 , 1

2

〉
S

and

∣∣∣∣32 ,−3

2

〉
= |1,−1〉A ⊗

∣∣∣∣12 ,−1

2

〉
S

(3.33)

so applying the lowering operator on this state we obtain the next state

J−1

∣∣∣∣32 , 3

2

〉
=

√
3

2

∣∣∣∣32 , 1

2

〉
= A−1 |1, 1〉A ⊗

∣∣∣∣12 , 1

2

〉
S

+ |1, 1〉A ⊗ S−1
∣∣∣∣12 , 1

2

〉
S

(3.34)

= |1, 0〉A ⊗
∣∣∣∣12 , 1

2

〉
S

+ |1, 1〉A ⊗
1√
2

∣∣∣∣12 ,−1

2

〉
S

⇒
∣∣∣∣32 , 1

2

〉
=

√
2

3
|1, 0〉A ↑ +

1√
3
|1, 1〉A ↓ (3.35)

Comparing this to our transformation matrix Eq.3.31, we clearly see that our states correspond to

Hh ↑=
∣∣∣∣32 , 3

2

〉
, Lh ↑=

∣∣∣∣32 , 1

2

〉
, Lh ↓=

∣∣∣∣32 ,−1

2

〉
, Hh ↓=

∣∣∣∣32 ,−3

2

〉
(3.36)

These states correspond to the four times degenerate spinor space j = 3
2 . The two split-o� holes are part of

another spinor space. We �nd these states by noting that it must be a j = 1
2 space and that its states must be

orthogonal to the spinor 3
2 space. A state in this state is therefore described by∣∣∣∣12 , 1

2

〉
= A |1, 0〉 ↑ +B |1, 1〉 ↓ and

〈
3

2
,

1

2

∣∣∣∣12 , 1

2

〉
= 0 (3.37)

⇒ A

√
2

3
+B

1√
3

= 0⇒
∣∣∣∣12 , 1

2

〉
=

√
2

3
|1, 1〉 ↓ − 1√

3
|1, 0〉 ↑ (3.38)
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It follows likewise for the spin down split-o� hole. We also recognize these states from the transformation so,

Sp ↑=
∣∣∣∣12 , 1

2

〉
, Sp ↓=

∣∣∣∣12 ,−1

2

〉
. (3.39)

The total angular momentum space is then the space that diagonalizes the spin-orbit interaction.
Our total Hamiltonian is then given by,

H = I2×2 ⊗Hk + I2×2 ⊗HDKK +Hso (3.40)

and diagonalizing this matrix according to spin yields our �nal Hamiltonian. This is done using the transformation
matrix Eq.3.31 and we obtain:



Ec +Ac 0 T ∗ − V ∗
√

2(W + U) − 1√
3
(T + V ) 0 −(W + U)

√
2
3 (T − V )

0 Ec +Ac 0 1√
3
(T ∗ − V ∗)

√
2(W ∗ + U) −(T + V )

√
2
3 (T ∗ − V ∗) W ∗ + U

T − V 0 P +Q+ Ev R S 0 1√
2
R

√
2S

√
2(W ∗ + U) 1√

3
(T − V ) R∗ P −Q+ Ev 0 S −

√
2Q

√
2
3R

− 1√
3
(T ∗ + V ∗)

√
2(W + U) S∗ 0 P −Q+ Ev −R −

√
2
3R
∗ √

2Q

0 −(T ∗ + V ∗) 0 S∗ −R∗ P +Q+ Ev −
√

2S∗ 1√
2
R∗

−(U +W ∗)
√

2
3 (T − V ) 1√

2
R∗ −

√
2Q∗ −

√
2
3R −

√
2S P + Ev −∆ 0√

2
3 (T ∗ − V ∗) W + U

√
2S∗

√
2
3R
∗ √

2Q∗ 1√
2
R 0 P + Ev −∆


Using the basis:[∣∣ 1

2 ,
1
2

〉
c

∣∣ 1
2 ,−

1
2

〉
c

∣∣ 3
2 ,

3
2

〉
v

∣∣ 3
2 ,

1
2

〉
v

∣∣ 3
2 ,−

1
2

〉
v

∣∣ 3
2 ,−

3
2

〉
v

∣∣ 1
2 ,

1
2

〉
v

∣∣ 1
2 ,−

1
2

〉
v

]
(3.41)

This is the full Luttinger-Kohn Hamilton up to second order in perturbation theory [18]. The de�nitions of the
terms follow here:

Ac = (A+
~2

2m0
)k2, P = − ~2

2m0
γ1k

2, Q = − ~2

2m0
γ2(k2x + k2y − 2k2z), R = 2

√
3

~2

2m0
γ3kzk−,

S =
√

3
~2

2m0

[
1

2
(γ3 + γ2)k2− −

1

2
(γ3 − γ2)k2+

]
, T = − 1√

2
Pk−, V =

1√
2
Bkzk−, U =

1√
3
Pkz,

W =
i√
3
Bkxky, k− = kx − iky, k+ = kx + iky, Ev = Ekanev − 1

3
∆

These terms are expressed in the parameters known as Luttinger parameters since its convention. They can be
expressed from the DKK parameters as follows,

γ1 = −2m0

3~2
(L+ 2M)− 1, γ2 = −m0

3~2
(L−M), γ3 = −m0

3~2
N. (3.42)

With the �nal form of the full second order Hamiltonian we are ready to deal with quantum wells which is the
topic of the following sections.

4 Heterointerfaces

In order to a achieve a inverted band gap which is one of the characteristics of the topological state, we need
to �nd solutions for quantum wells. A quantum well is a structure consisting of minimum three materials. Our
energy bands are located in a host material which is con�ned by two barrier-materials where the waves decay as
they move away from the well. In such a structure only certain k's are allowed because of the �nite size of the
well. So this e�ectively reduces the system by one dimension to a two dimensional electron gas (2DEG):

It order to treat such structures properly we need a theory for heterointerfaces, which is the boundary between
two di�erent kind of materials. Lets assume that we grow our quantum well along the [0,0,1] direction then kx
and ky will still be good quantum numbers, but kz is not. So our Bloch wave functions are no longer a correct
description, so we generalize it to,

ψ(r) = eik·ru(k, r)→ ψ(z, r||) = eik||·r||F (z)u(k, r), (4.1)
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where F (z) is a slowly varying function in the bulk of the crystal called, the envelope function and k|| is a vector
in the yz plane. The full solution for the Hamiltonian must consist of a linear combination of such functions. We
are only interested in solutions at the Γ point (k = 0). So the full wave-function can be expressed as

Ψ(z, r||) =
∑
n

eik||·r||Fn(z)un,k=0(z). (4.2)

Where n is the number eigenstates for a given E. The full wave function must be continuous across the whole
structure and a often used approximation is to set the zone-center functions un,k0 equal in all materials and to
neglect the behavior of the envelope function at the interface [21]. This leads to continuation of the envelope
function at the interface,

ΨA(z, r||) = ΨB(z, r||) ≈
∑
n

FAn (z0) =
∑
n

FBn (z0). (4.3)

from which we obtain n equations where n is the dimension of the Hamiltonian. This approximation is only valid
if the structure of the di�erent materials closely resemble one another.

Another set of boundary conditions can be obtained by integration of Schrödinger's equations across the
interface. Remembering the origin of the kz operators we set kz → −i∂z in our Hamiltonian. Since our materials
change across the z direction so does our band parameters, so kz does not commute with the band parameters.
Since our Hamilton is hermitian we need to determine a ordering of these di�erentials which leads to a hermitian
form.

We consider two methods and use the DKK (eqn.3.22) Hamilton as an example. First we consider the standard
symmetrization procedure [20]. We order our terms as follows:

Ak2z → kzAkz, Pkz →
1

2
(Pkz + kzP ), Nkzkx →

1

2
(kzNkx + kxNkz). (4.4)

This method achieves a hermitian form but is not the only way of doing this. The arbitrariness of the symmetriza-
tion lead many to believe it was wrong. Instead Burt developed a method for obtaining the correct ordering of
terms by developing a wave-function, with arti�cial zone-center functions that are similar in all materials of the
heterostructure [3].

He found that the ordering of k's is determined from its origin in perturbation. If we consider second order
Lowdin perturbation, the ordering is found to be

~2

m2
0

∑
n,i,j

〈x| pi |n〉 〈n| pj |y〉
Ev − En

kikj → ki
~2

m2
0

∑
n,i,j

〈x| pi |n〉 〈n| pj |y〉
Ev − En

kj (4.5)

This obtains the same result as symmetrization when i = j. But for o� diagonal B and N terms ordering will
change. The ordering of B is easy, since their is only contributions from one band (Eq.3.21). The ordering of N
can be found if you neglect contributions from the Γ5 bands. This was done by Foreman in [4]. For HDKK

X,Y he
found the terms,

HDKK
X,Y = Nkxky ⇒ kxN+ky + kyN−kx where N− = M, N+ = N −N−. (4.6)

with HDKK
X,Y describing the interaction between the x valence and the y valence band. Both these methods reduces

to the bulk Hamiltonian when kz commutes with band parameters which is true far from the interface. We are
�nally able to integrate the Schrödinger equation across the interface. To show how we consider the following
example: ∑

n

−∂zA∂zFn,c(z)−∑
j

i∂zBkxFn,j(z)−
∑
j

ikxC∂zFn,j(z)

 = E
∑
n

Fn,c(z). (4.7)

Where the interface is considered to abrupt so our band parameters change as deltafunctions. By integration
over a in�nitesimal length across the interface all terms that are not deltafunctions will go to zero. Which leaves,

∑
n

AA∂zFAn,c − i∑
j

BAkxF
A
n,j

−∑
n

AB∂zFBn,c − i∑
j

BBkxF
B
n,j

 = 0. (4.8)

from this we obtain nmore boundary conditions, so we now in total have 2n boundary conditions at each interface.
Now treating the DKK hamiltonian (Eq.3.22) by using Eq.4.8 we �nd a current operator for both Burt's ordering
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and symmetrization:

JB =


A∂z iB2 ky iB2 kx 0

iB2 ky M∂z 0 iN−kx

iB2 kx 0 M∂z iN−ky

0 iN+kx iN+ky L∂z

 , JS =


A∂z iB2 ky

B
2 kx 0

iB2 ky M∂z 0 iN2 kx

iB2 kx 0 M∂z iN2 ky

0 iN2 kx iN2 ky L∂z

 . (4.9)

Here we notice that the old symmetrization method produces a symmetric current operator while Burt's method
produces a non-symmetric. It has been found that Burt's JB , derived from �rst-hand calculations produce better
results then JS , where symmetrization is just assumed to obtain a symmetric current operator [17].

Now that we have our boundary conditions we can chose a trial function for the envelope function,

F = eikzz

f1...
fn

 with kz given by |H(kz)− E| = 0 (4.10)

This determinant gives an n order polynomial for k2z which in total gives 2n envelope functions in each material.
Since we have m − 1 interfaces, where m is the number of materials, we have enough boundary conditions to
determine the envelope function if the in- and out-going waves are set to zero. We will now use this theory to
obtain 2DEGs.

5 HgTe inverted band model

Figure 1: Dispersion near the fermi energy. HgTe to the
left. CdTe to the right.

The zinc blende structure HgTe is characterized by a
inverted band gap [13]. This inverted gap is partly
due to the large spin-orbit interaction which pushes
the valence band up by ∆/3. The inverted band is a
prerequisite for a topological state, but HgTe is not by
itself a topological insulator, since the Fermi energy is
placed at the degenerate intersection between the Lh
and the Hh band. The topological phase requires a
band gap to obtain isolated edge states. In order to
make this into a topological insulator we need to sep-
arate the Lh from the Hh states. This can be done in
a quantum well where �nite size will separate bands
of di�erent curvature. The HgTe layer will be placed
between 2 layers of CdTe which will act as outer bar-
riers.

We are looking for a region where the �rst Ec state
have lower energy then the �rst Hl state. Here the Hl
will be behaving as a standing wave and the Ec as a
localized state at the CdTe edges.

Following the method of [2] we begin by �nding
ground-states in each material by assuming the crystal

is grown in the z direction and setting kx = ky = 0. These states will then be treated as a basis for perturbation
around kx, ky 6= 0 from which we derive an e�ective model for the electron-heavyhole interaction.

In our Hamiltonian we ignore the Bulk Inversion Asymmetric (BIA) term B, since this is very small in HgTe
structures [13]. Our quantum well is also structural symmetric since the barriers on each side of the well are
identical.

In the kx = ky = 0 direction our Hamiltonian Eq.3.41 separates into a spin-up and a spin-down part. Consider
the spin up,

H↑(0, 0,−i
∂

∂z
)Ψ(z) =


Ec − ∂zAc∂z −i

√
2
3P∂z

i√
3
P∂z 0

−i
√

2
3P∂z Ev − ∂zhl∂z

√
2Q 0

i√
3
P∂z

√
2Q Ev −∆− ∂zhsp∂z 0

0 0 0 Ev − ∂zhh∂z




∣∣ 1
2 ,

1
2

〉
c∣∣ 3

2 ,
1
2

〉
v∣∣ 1

2 ,
1
2

〉
v∣∣ 3

2 ,
3
2

〉
v

 . (5.1)
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We clearly see that the Hh decouple from the rest of the bands, so we solve it separately. We will treat the split-o�
hole as a distant band since its placed far from the region of interest due to the large spin-orbit coupling [2]. We
will correct the conduction band energy using perturbation theory. So we need to modify our band parameters
as follows,

AC = Ac +
1

3

P 2

Ec − Ev + ∆
, hl =

~2

2m0
(γ1 + 2γ2), hh =

~2

2m0
(γ1 − 2γ2). (5.2)

where we have taken our band parameters from [13].
We start by solving the Ec-Lh envelope, we know that both of these states are decaying in the region between

the valence and conduction band. We choose the trial function

Ψec−ll = eλz
(
f
g

)
, (5.3)

and insert it into our Hamiltonian ∣∣∣∣∣∣Ec −ACλ
2 − E −i

√
2
3Pλ

−i
√

2
3Pλ Ev + hlλ

2 − E

∣∣∣∣∣∣ = 0 (5.4)

and shift notation to,

C =
Ec + Ev

2
, A =

Ec − Ev
2

, D =
AC + hl

2
, B =

AC − hl
2

, EC = E − C (5.5)

so by solving for λ2 we get

λ2+,−=1,2 = F ±
√
F 2 −

A2 − E2
C

G
with G = B2 −D2 and F =

2
3P

2 + 2(AB + ECD)

G
. (5.6)

From this we obtain 4 λ, labeled 1 and 2 which satisfy the equations. For the given material parameters F is

positive and F 2 >
A2−E2

C

G . By Eq.5.6 we see that our solutions are either completely imaginary or completely
real. From numerical calculations within the region of interest we �nd that λ1 is always real and much larger then
λ2. These large λ1 values behaves unphysical and we classify them as spurious solution. Spurious solutions are
a common problem in k · p theory and arise from the non-parabolic terms of high order, like AChlλ

4. Di�erent
methods for treating them is discussed by several authors [16][17] but no general way of eliminating them has
been found. In the next section we will present a method for removing them when AC ≈ 0 but this is not the
case for HgTe. It has been shown that e�ective models for quantum wells can be obtained simply by removing
all spurious solutions [16].

We now consider the eigenvectors which are determined by:A+ (D +B)λ2 − EC −i
√

2
3Pλ

−i
√

2
3Pλ −A+ (D −B)λ2 − EC

f
g

 = 0,

f(λ)

g(λ)

 =

−A+ (D −B)λ2 − EC
i
√

2
3Pλ

 (5.7)

This eigenvector is correct since it reduces the matrix to the determinant equation. Notice that the top part of
the eigenvector is symmetric in γ while the bottom part is antisymmetric in γ. We label our constants according
to the material they are in as Ahg or Acd. Following standard procedure we set ingoing terms in the barrier
material equal to zero, since we are looking for con�ned states. Also to utilize the symmetry of the well we will
be describing our wave functions in terms of hyperbolic functions.

So in the three region the waves are

(a+ b)eλ
cdz

(
f(λ)
g(λ)

)cd
(I) c

(
f(λ) cosh(λz)
g(λ) sinh(λz)

)hg
+d

(
f(λ) sinh(λz)
g(λ) cosh(λz)

)hg
(II) (a− b)e−λ

cdz

(
f(λ)
−g(λ)

)cd
(III)

(5.8)
The symmetric and the anti-symmetric part will be solved separately. They split into two systems

aeλ
cdz

(
f(λ)
g(λ)

)cd
(I) c

(
f(λ) cosh(λz)
g(λ) sinh(λz)

)hg
(II) ae−λ

cdz

(
f(λ)
−g(λ)

)cd
(III) (5.9)

beλ
cdz

(
f(λ)
g(λ)

)cd
(I) d

(
f(λ) sinh(λz)
g(λ) cosh(λz)

)hg
(II) be−λ

cdz

(
−f(λ)
g(λ)

)cd
(III) (5.10)

In this problem our set of linear equations are overdetermined since we have 12 boundary conditions and only
6 coe�cients after removing the spurious solutions. Following the calculations of [2] we ignore continuation of
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probability current and only use continuation of envelope functions. We eliminate the parameters a,c and d in
each equation to obtain a transcendent equation for λ for each symmetry and obtain

Ec-sym Eq.5.9
f(λ)hgg(λ)cd

f(λ)cdg(λ)hg
= − coth

(
λhgd

)
Lh-sym Eq.5.10

f(λ)hgg(λ)cd

f(λ)cdg(λ)hg
= − tanh

(
λhgd

)
(5.11)

Here d is two times the length of the well. By using Eq.5.6 to determine λ we obtain two transcendent equations
for energy. Using these equations we can for a given length of the well, �nd the energies for the Ec and Lh band
numerically.

The Hh is more simple to solve. From Eq.6.1 and using the same trial solution we have the expression

µ = ±
√
Ev − E
hh

(5.12)

Where µ is kz. We split this into a symmetric and a antisymmetric equation. Since we the �rst Hh state is
symmetric we only consider the envelopes

ae−µ
cdz (I) b cosh

(
µhgz

)
(II) aeµ

cdz (III) (5.13)

For a one band model the probability current reduces to

hcdh
∂ψcd

∂z
= hhgh

∂ψhg

∂z
and we obtain:

hhgh µ
cd

hcdh µ
hg

= − tanh
(
µhgd

)
(5.14)

We are able now to �nd the states numerically. We want to �nd at what length of the well will the �rst Ec band
cross the �rst Hh band. We solve this numerically by iterating over di�erent quantum well lengths and we obtain
a crossing at Lc = 6.73nm. If L > Lc we obtain an inverted band where the Hh band acts as a conduction band

(a) Energy of bands at di�erent quantum well lengths.
Crossing of HH and Ec band happens at Lc ≈ 6.73nm.
The crossing of the Ec band with the second HH band
happen at L ≈ 8.66nm

(b) The distribution of the envelope functions in the quan-
tum well at kx = ky = 0 and L=7nn

Figure 2: Numerical results of HgTe well

and the Ec band acts as a hole band. At L ≈ 8.66nm the Ec band crosses the second Hh band and the system
enters a normal insulating state where the Fermi energy is placed between two Hh states.

5.1 The BHZ hamiltonain

Now that we have the crossing we want to �nd a e�ective Hamiltonian for the Hh and the Ec state close to the
crossing, where all other bands can be ignored. This is done by perturbation theory. First we normalize the
envelope function across the well, which is split into the 3 regions. We show these calculations for the Hh state

1 =

∫ ∞
−∞

dzΨ∗Ψ => 1 = a2h

[∫ −d
−∞

dze2µ
cdz +

∫ d

−d
dz

cosh
(
µhgz

)2
cosh(µhgd)

2 e
−2µcdd +

∫ ∞
d

dze−2µ
cdz

]

ah = eµ
cdd

[
1

µcd
+

tanh
(
µhgd

)
µhg

+
d

cosh(µhgd)
2

]−1
. (5.15)
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L(nm) C(eV ) M(eV ) D(eV · nm2) B(eV · nm2) A(Ev · nm)
7 0.282 -0.0033 0.0278 -0.147 -0.383
6 0.291 0.0107 0.0207 -0.154 -0.408

Table 2: Parameters for the BHZ Hamiltonian

For the electron state we obtain

ae = eλ
cdd

[
(f cd)2 + (gcd)2

λcd
+ (fhg)2

tanh
(
µhgd

)
λhg

+ (ghg)2
coth

(
λhgd

)
λhg

+
d(fhg)2

cosh(λhgd)
2 −

d(ghg)2

sinh(λhgd)
2

]−1
. (5.16)

For spin-down we obtain precisely the same. Now we will use perturbation around kx, ky 6= 0 using the spin-up
and spin-down Ec and Hh state as our basis.

Heff
n,m(kx, ky) =

∫ ∞
−∞

dz 〈Ψn|H(kx, ky)6×6 |Ψm〉 (5.17)

Here H(kx, ky)6×6 is the same matrix as Eq.3.41 with B = 0 and removing the two split-o� states. First we �nd
the zero couplings. Listed here are the zero coupling arising from their interaction matrix elements being 0:
1. Hh↑ Hh↓ 2. Lh↑ Lh↓ 3. Ec↑ Ec↓ 4. Ec↑ Hh↓

So now there are only two couplings between spin-up and spin-down. The Lh↑-Ec↓ coupling and the Hh↑
−Lh ↓ coupling. But since Hh and Ec is symmetric with respect to z, and Lh is anti-symmetric in z the integrals
vanishes. So there is no coupling between spin-up and spin-down states. If the quantum well was asymmetric we
could not guarantee that the wavefunctions would be symmetric/antisymmetric so this would generate a coupling
between the spin up and spin down states. As a example consider the integral

Heff
hh,hh(kx, ky) =

∫ ∞
−∞

dz 〈Ψhh|H(kx, ky)6×6 |Ψhh〉 (5.18)

=

∫ −d
−∞

dz
〈
Ψcd
hh

∣∣Hcd(kx, ky)6×6
∣∣Ψcd

hh

〉
+

∫ d

−d
dz
〈

Ψhg
hh

∣∣∣Hhg(kx, ky)6×6

∣∣∣Ψhg
hh

〉
+

∫ ∞
d

dz
〈
Ψcd
hh

∣∣Hcd(kx, ky)6×6
∣∣Ψcd

hh

〉
(5.19)

= a2he
−2µcdd

[
hcdh (kx, ky)

µcd
+ hhgh (kx, ky)

tanh
(
µhgd

)
µhg

+ hcdh (kx, ky)
d

cosh(µhgd)
2

]
. (5.20)

Then evaluating the o�-diagonal element∫ ∞
−∞

dz 〈Ψhh|H(kx, ky)6×6 |Ψec〉 =

∫ ∞
−∞

dz 〈ψhh| −
1√
2
Pk− |ψec〉+

∫ ∞
−∞

dz 〈ψhh|R |ψhl〉 , (5.21)

Where the de�nition of the R term is

R = − ~2

2m0

√
3k− {γ3,−i∂z} and ∂zγ3 = γcd3 (δ(z + d) + δ(z − d)) + γhg3 (δ(z + d)− δ(z − d)), (5.22)

and the derivatives of band parameters are delta functions, since they change as heavy-sides: It should be stated
that in our calculations we have neglected the κ term also given with the material parameters [13]. This term is
due to the asymmetric ordering of the N term from Burt's theory, which at the heterointerface also produces a
coupling of Lh↑ and Lh↓ due to the asymmetry of the interface. In our deviation of Eq.3.41 these terms are not
present since we have not started from Burt's envelope function approach. We use a symmetric ordering which
changes γ → γ3. These delta functions can then be evaluated by integration. After all these calculations we
obtain the e�ective Hamiltonian for the Ec-Hh coupling,

HBHZ =


C +M − (D +B)k2|| Ak− 0 0

Ak+ C −M − (D −B)k2|| 0 0

0 0 C +M − (D +B)k2|| −Ak+
0 0 −Ak− C −M − (D −B)k2||

 (5.23)

In tabel.2 we present the parameters for two di�erent lengths. The �rst is in the inverted regime and the second
is in the normal regime. This model is known as the Bernevig-Hughes-Zhang (BHZ) model and is one of the
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simplest models for a topological insulator. In the calculations of [2] a crossing at 6.4nm was found, which is
close to what we obtain.

It is important to notice that the hybrid states of the BHZ model can still be labeled according to their
symmetry. The electron/light-hole transform as s orbital (Γ1) since the electron has always been symmetric and
the Lh anti-symmetry is �xed by the anti-symmetry of its envelope function. While the Hh is still anti-symmetric.

6 InAs/GaSb broken band gap model

It was proposed that the InAsGaSb quantum well could have a topological insulating regime [5]. In this section
we will try to verify this prediction by �nding where the crossing into the topological regime occurs and develop
a e�ective Hamiltonian describing the band interactions close to this crossing. None of the materials of this well
have a inverted gap. The unique feature of the InAsGaSb well is the broken band gap where the conduction band
InAs has lower energy then the valence band of GaSb.

AlAs is simply a barrier material with a giant gap between its valence and conduction band so we obtain
decaying solutions in this material. We will search for bound states in the region between the bottom of the

(a) Band structure of InAs and GaSb. InAs to the left, and
GaSb to the right.

(b) The energy levels across the quantum well. The two ends
are the barrier material AlSb.

Figure 3: The InAsGaSb quantum well

conduction band of InAs and the top of the valence band of GaSb. Much of this project has been dedicated to
developing a model for this system, but many complication makes this analytically simple task quite bothersome.
The two main problems are:

• Numerical instability from evanescent waves.

• Spurious solutions from high order polynomials in kz.

The problem of numerical instability makes any calculation di�cult but can be reduced by use of scattering
matrices [14].

6.1 Forman method

In a famous article Foreman discovered a method to remove some of the spurious solutions for heterostructures,
when the distant bands contribution to the conduction band almost cancel out the electron mass [4]. As in HgTe
we want to solve for a crystal structure grown in the z direction and we treat kx and ky as a perturbation to this
model. The spin-up and spin-down direction split into 2 blocks and the heavy-hole decouple from the rest of the
bands, so we have the Hamiltonian

H↑(0, 0,−i
∂

∂z
)Ψ(z) =


Ec − ∂zAc∂z −i

√
2
3P∂z

i√
3
P∂z

−i
√

2
3P∂z Ev − ∂zhl∂z −

√
2∂zq∂z

i√
3
P∂z −

√
2∂zq∂z Ev −∆− ∂zhsp∂z



∣∣ 1
2 ,

1
2

〉
c∣∣ 3

2 ,
1
2

〉
v∣∣ 1

2 ,
1
2

〉
v

 (6.1)

q =
~2

2m0
γ2, hl =

~2

2m0
(γ1 + 2γ2), hh =

~2

2m0
(γ1 − 2γ2). (6.2)
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Where Ac is given in terms of the e�ective mass of the electrons. We take our material parameters from [12].
Since the parameters are measured as e�ective mass's where other bands are only considered as perturbations,
we need to modify our parameters since we consider these bands explicitly. [4]

γ1 = γ1,m −
EP
3Eg

, γ2 = γ2,m −
EP
6Eg

, γ3 = γ3,m −
EP
6Eg

, EP =
2m0P

2

~2
(6.3)

Ac =
~2

2mc
− 2P 2

3Eg
− P 2

3(Eg + ∆)
. (6.4)

Here Eg is the gap between the valence bands and the electron band. In these materials Ac is small, so solving
the Hamiltonian for kz will lead to 6.order polynomial and since AC is small spurious solutions of a very high
kz will be present. Foreman proposed to set Ac = 0 thereby making a �atband model for Ec. Following his
procedure we eliminate Ac by modifying P . We set AC = 0 and solve Eq.6.4 for P 2:

P 2 =
~2

2mc

[
2

3Eg
+

1

3(Eg + ∆)

]−1
(6.5)

Now we can generate a table comparing the modi�ed P with the P from [12]. The only material where this

Ep = ~2

2m0
P 2 InAs GaSb AlSb

eqn.6.5 20.3eV 23.0eV 14.0eV

[12] 22.2eV 22.4eV 18.8eV

Comparison 9.11% 2.80% 33.3%

Table 3: Comparison of di�erent P

approximation is bad is in AlSb. This is not problematic since AlSb is only a barrier material and changes of Ac
will only alter the decay rate, which only modi�es the band structure a little.

So we set Ac = 0. Now we have reduced our polynomial for kz to fourth order. Using the continuation of the
envelope function and probability current we have in total 18 boundary equations. We only have 12 kz when the
ingoing waves are set to zero, so at the moment our system is overdetermined.

When Ac = 0 we can express the Ec band as

f1 =
1

E − Ec

(√
2

3
Pkzf2 −

1√
3
Pkzf3

)
(6.6)

The Ec envelope then plays a passive role since its completely determined by the holes and will be eliminated
from the Hamiltonian. by inserting Eq.6.6 into our Hamiltonian we �nd:

H =

(
Ev +Hlk

2
z Qk2z

Qk2z Ev −∆ +Hspk
2
z

)
(6.7)

Hl = hl +
2

3

P 2

E − Ec
, Hsp = hsp +

1

3

P 2

E − Ec
, Q =

√
2q +

2

3

P 2

E − Ec
(6.8)

In the theory for heterostructures developed by Burt the Kane matrix element P was set to the same value in all
materials which leaves the ordering of the term insigni�cant. Since we have broken this assumption the ordering
is no longer trivial. In order to �nd a self-consistent Hamiltonian we need to eliminate 3 equations from the
probability current. This can be done by choosing the ordering,

H12 = −i
√

2

3
P∂z, H21 = −i

√
2

3
∂zP, (6.9)

and by integration we obtain the probability current,

J =


Ackz 0 0√

2
3P hlkz

√
2qkz

1√
3
P
√

2qkz hspkz

 let Ac = 0 → J =

(
Hlkz Q1kz

Q2kz Hspkz

)
, (6.10)

so we end with 12 coe�cients and 12 equations, which is self-consistent. Foreman assumed this ordering to be
the correct even though it is not derived, since it keeps the system self-consistent [4].
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6.2 Scattering matrices

Inspired by the work of [6], we use scattering matrices to obtain the band structure of this well. We will here
present a review of the work which lead to the necessity of the method and show how one uses scattering matrices
to obtain solutions for a quantum well. Using the same method as in calculations of HgTe we �nd the polynomial
equations for kz and eigenvectors to be,

k2z = F ±
√
F 2 −

E2
C −A2

G
, f+j = f−j =

(
−A+ (D −B)k2z,j − EC

Qk2z,j

)
(6.11)

G = D2 −B2 −Q2, F =
AB + ECD

G
, (6.12)

EC = E − C, C =
Ev + Ev −∆

2
, A =

Ev − Ev + ∆

2
, D =

Hl +Hsp

2
, B =

Hl −Hsp

2
. (6.13)

We express our envelope function as

Ψn =
∑
j

aj,nf+j,ne
ikj,n(z−dn−1) + bj,nf−j,ne

−ikj,n(z−dn) (6.14)

Where dn is the coordinate for the right interface, while dn−1 is for the left interface and n label di�erent materials.
This wave gives a better normalization since it considers where each wave if starting from.

Consider an interface between material n and n+ 1 then we have the boundary conditions(
f+n f−n
J+
n J−n

)(
Dn 0

0 1

)(
an

bn

)
=

(
f+n+1 f−n+1

J+
n+1 J−n+1

)(
1 0

0 Dn+1

)(
an+1

bn+1

)
(6.15)

f+n = (f+n,1, · · · , f
+
n,j), J+

n = (J+
n,1f+n,1, · · · ,J

+
n,jf

+
n,j) (6.16)

Where Dn is a diagonal matrix describing the distance traveled by each wave to reach the interface. Its components
are

Dn,j,j = eikj,n(dn−dn−1) (6.17)

We de�ne the transfer matrix as(
an

bn

)
= T(n, n+ 1)

(
an+1

bn+1

)
→ T(n, n+ 1) =

(
D−1n 0

0 1

)(
f+n f−n
J+
n J−n

)−1(
f+n+1 f−n+1

J+
n+1 J−n+1

)(
1 0

0 Dn+1

)
(6.18)

These transfer matrices are 4.dimensional. With this formalism we are now able to construct a transfer matrices
from one end of the well to the other and by multiplying them together we obtain:(

a0

b0

)
= T(0, N)

(
aN

bN

)
. (6.19)

Since we are looking for bound states we set b0 = aN = 0. Then we obtain a solution for our bands whenever

T2,2(0, N) = 0. (6.20)

Where T2,2(0, N) is a submatrix of the full transfer matrix. Even though there are no spurious solutions present
this method is unusable since the presence of both evanescent decaying and growing waves within the same
transfer matrix leads to di�erences of 1020 between elements. The numerical work became unstable and �nally
the transfer matrix method was abandoned.

A method of separating the growing waves from the decaying waves can be obtained using scattering matrices
instead of the transfer matrices. Scattering matrices can be obtained from our known transfer matrices as
described in [14] by using:(

an

bm

)
= S(m,n)

(
am

bn

)
and

(
an

bn

)
= T(n, n+ 1)

(
an+1

bn+1

)
(6.21)

These matrices are split into submatrices and we obtain,(
T11an+1 + T12bn+1

bm

)
= S(m,n)

(
am

T21an+1 + T22bn+1

)
. (6.22)
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We then have

S11am + S12(T21an+1 + T22bn+1) = T11an+1 + T12bn+1 ⇒ (6.23)

(S12T21 −T11)an+1 = (T12 − S12T22)bn+1 − S11am (6.24)

bm = S21am + S22(T21an+1 + T22bn+1)⇒ (6.25)

bm − S22T21an+1 = S21am + S22T22bn+1 (6.26)

So we obtain: (
−S22T21 1

S12T21 −T11 0

)(
an+1

bm

)
=

(
S21 S22T22

−S11 T12 − S12T22

)(
am

bn+1

)
(6.27)(

an+1

bm

)
=

(
0 (T11 − S12T21)−1

1 S22T21(T11 − S12T21)−1

)(
S21 S22T22

S11 S12T22 −T12

)(
am

bn+1

)
. (6.28)

From the above equation we can determine recursive formulas. Assume we know scattering matrix S(m,n) then,

S11(m,n+ 1) = (1−T−111 S12T21)−1T−111 S11 (6.29)

S12(m,n+ 1) = (1−T−111 S12T21)−1T−111 (S12T22 −T12) (6.30)

S21(m,n+ 1) = S21 + S22T21S11(m,n+ 1) (6.31)

S22(m,n+ 1) = S22T22 + S22T21S12(m,n+ 1) (6.32)

Since S(m,m) must be identity matrices for arbitrary m we can construct scattering matrices for the whole
structure. Using these formulas we construct the following matrices S(0,m) and S(m,N) and use these to
determine the energy level by considering:

am = S11(m, 0)a0 + S12(m, 0)bm (6.33)

bm = S21(m,N)am + S22(m,N)bN (6.34)

and by setting the incoming waves equal zero (bN = a0 = 0) we get

0 = (1− S12(0,m)S21(m,N))am. (6.35)

By iterating over energy we obtain bound states whenever this determinant is zero. Then we can �nd the
coe�cients as eigenvectors of for scattering matrices. The coe�cients for the backwards traveling waves are given
by

bm = S21(m,N)am. (6.36)

Using these we can completely determine the Ec, Lh and Sp bands.
The separated Hh can be solved by using a propagating trial function and the following boundary conditions

obtained normally

Ψn = ane
iknz + bne

−iknz and Ψn = Ψn+1 and hh,nkn,±Ψn = hh,n+1kn+1,±Ψn+1 (6.37)

Setting the incoming waves equal zero and solving the linear system of equation we obtain the transcendent
equation

hInh kIn
G− 1

G+ 1
= hGah kGa

F − 1

F + 1
(6.38)

G = e2ik
Ind1

hInh kIn − hAlh kAl

hInh kIn + hAlh k
Al

and F = e−2ik
Gad2

hGah kGa − hAlh kAl

hGah kGa + hAlh k
Al

(6.39)

With this equation we �nd the energy of the heavy-hole states.

6.3 E�ectiv Hamiltonian for InAsGaSb

We are now ready to �nd the crossing between the �rst Hl state and the �rst electron like state. We �x the length of
the GaSb layer d2 = 10nm and vary the length of the InAs layer d1. In this model the energy levels of the Hl state
should be �xed, since these are localized in the GaSb layer. The Ec-Lh-Sp bands mix together and are present in
both layers. A band is electron like if its mainly in the InAs layer and lighthole like if its mainly in the GaSb layer.
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Figure 4: Energy levels of InAsGaSb quantum well.
Crossing occurs at dc = 8.73nm

Iterating over length of d1 and solving the energy equa-
tions in numerically we obtain a crossing at dc ≈
8.73nm. We determine it as the electron-like state by
noticing that its energy drops rapidly when we increase
d1, while the lighthole like state which is more localized
in GaSb, does not decrease so rapidly. These �nding
are in good agreement with the crossing found by [5]
where they found it at dc ≈ 9nm. The placement of
our Lh and Ec band is also in good agreement with
the �ndings of [6]. We �nd the electron crossing with
the second Hh state at d = 14.5nm where we leave the
inverted state, since the Fermi energy then is placed
between two Hh states. Getting a working script using
these methods where �rst achieved at the end of this
bachelor project. Sadly this did not leave time to �nd
the coe�cients of the wave functions which we would
use to obtain the normalized states. With these we
could easily identify the electron like state from the
lighthole like state by looking at their distribution in
the quantum well. We also need the wave functions to

develop a e�ective model for the k|| direction by doing a numerical integration across the well.
We will now discuss the form of the e�ective Hamiltonian without obtaining the precise coe�cients. Following

convention we will split our e�ective Hamiltonian into three parts so the total Hamiltonian is

Heff = HBHZ +HBIA +HSIA, (6.40)

where the �rst term is the same Hamiltonian as obtained in the HgTe model. There would be similar contributions
as calculated in HgTe but here we also include the Split-O� hole.

The HSIA is the Structural Inversion Asymmetry (SIA) terms. We have a o�-diagonal contribution from the
Ec/Lh, Ec/Sp and Lh/Sp couplings. HBIA is the Bulk Inversion Asymmetric contribution and is simply the
states interacting through the B dependent terms. These contributions takes the form

HSia =


0 0 ξek− 0
0 0 0 0

ξek+ 0 0 0
0 0 0 0

 , HBia =


0 0 ∆0k− 0
0 0 0 0

∆0k+ 0 0 0
0 0 0 0

 (6.41)

ξe =

∫ ∞
−∞

dz

[
〈Ec| 1√

3
T |LL〉+ 〈Ec|

√
2

3
T |SP 〉+ 〈LL|

√
2

3
R |SP 〉

]
, (6.42)

∆e =

∫ ∞
−∞

dz

[
〈Ec| 1√

3
V |LL〉+ 〈Ec|

√
2

3
V |SP 〉

]
. (6.43)

Since we want to describe our e�ective Hamiltonian in terms of kx, ky to second order we neglect o�-diagonal
contributions in second order of kx, ky, since they will enter the energy as a fourth order contribution. In this
model we need to be really careful about the parity of the states. The Hh is still antisymmetric, but classifying
the hybridized Ec-Lh-Sp hole is more tricky and would require detailed calculations from its components in each
material.

In [5] they found a Hamiltonian which contains additional terms where some can be contributed to the Rashba
e�ect which we will discuss shortly in the next chapter. They also �nd a k independent contribution to the o�-
diagonal elements. This contribution cannot be achieved by second order perturbation. In [5] they ascribe it to
BIA, but such terms should always be kx or ky dependent if they arise from k · p theory. Other authors ascribe
it to SIA breaking [7] so there seems to be some confusion on the subject.

7 2d topological insulators

In following subsection we will derive some of the most important characteristics of the topological insulator.
First we derive the helical edge states and show that their is only one solution for spin-up and -down states for a
interface. Then by studying the Time-reversal (TR) we conclude that these form a topological protected Kramer's
pair. Then by �nding representations for TR and parity (P) we discuss possible terms that could be added to the
BHZ model and what symmetries these break/conserve. Finally we discuss macroscopic transport measurements
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and how one can measure the helical edge states. We also �nd the existence of a quantized transverse spin current,
known as the quantum spin hall e�ect.

The tightbinding model is a easy way of solving topological systems and using this method we have obtained
plots of most e�ects described in the next sub-sections. An explanation of the tight-binding theory is provided
in appendix.B.

7.1 Egde states

In topological insulators one obtains edge states while conserving the TR symmetry which leads to TR protected
edge channels [7]. To study these e�ects we will use the BHZ model Eq.5.23 which will expressed in terms of
Pauli matrices as

HBHZ =

(
H(k) 0

0 H∗(−k)

)
, H(k) =

∑
i

diσi (7.1)

d0 = C +Dk2||, dx = Akx, dy = Aky, dz = M +Bk2||. (7.2)

Following the steps of [15] we seek edge state solutions at a open interfaces. We adopt periodic boundary conditions
for x so kx will still be a good quantum number and we place the open interface at y = 0 and substitute y → −i∂y.
We solve the spin up part of the Hamiltonian since the spin down part follows trivially. Since we are looking for
edge states we use the trial function

Ψ↑ =
∑
n

fne
γny, (7.3)

and using the now familiar equations for γ and eigenvectors we obtain

γ2 = k2x + F ±

√
F 2 − M2 − E2

B+B−
and fn =

(
−A(γn + kx)

M −B+(γ2n − k2x)− E

)
(7.4)

F =
2(MB + ED)−A2

2B+B−
, B+ = B +D, B− = B −D. (7.5)

For a open interface we know that Ψ(0) = Ψ(∞) = 0, so there are only two backwards decaying waves. At y = 0
we �nd

0 = f1 + f2 → M −B+(γ21 − k2x)− E
−A(γ1 + kx)

=
M −B+(γ22 − k2x)− E

−A(γ2 + kx)
, (7.6)

which we solve for E:
E = M −B+k

2
x −B+γ1γ2 −B+(γ1 + γ2)kx. (7.7)

We now set kx = 0 to �nd the necessary conditions for the existences of edge states in the center of the gap.
Using Eq.7.4 we get

E = M −B+γ1γ2 = M −B+

√
M2 − E2

B+B−
⇒M − E = B2

+ −
M − E
B+B−

⇒ E = −D
B
M (7.8)

γ1γ2 =
M − E
B+

=
M

B

D+

D+
=
M

B
(7.9)

(γ1 + γ2)2 = γ21 + γ22 + 2γ1γ2 = 2F + 2
M − E
B+

=
A2

B+B−
⇒ γ1 + γ2 =

√
A2

B+B−
(7.10)

To have a edge state at kx = 0 we need γ1 and γ2 to be real positive numbers. So we obtain the following
conditions for existence of edge states

M

B
> 0 and

A2

B+B−
> 0 (7.11)
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We see from tabel.2 that the inverted band gap of HgTe supports an edge state while the normal gap does not.
Now we expand our dispersion relation to �rst order in kx:

E = E0 + E1kx +O(k2x), E1 =
dE

dkx

∣∣∣∣
kx=0

= −B+
d(γ1γ2)

dkx

∣∣∣∣
kx=0

−B+(γ1 + γ2)|kx=0 = (7.12)

−B+

[
1

2γ1γ2|kx=0

d

dkx

M2 − E2

B+B−
+B+A

1√
B+B−

]
= −B+

[
−BE|kx=0

MB+B−

dE

dkx

∣∣∣∣
kx=0

+A

√
B+

B−

]
= (7.13)

−B+

[
D

B+B−

dE

dkx

∣∣∣∣
kx=0

+A

√
B+

B−

]
⇒ dE

dkx

∣∣∣∣
kx=0

= A

√
B+

B−

(
1 +

D

B−

)−1
= A

√
B+B−

B
= sgn(B)A

√
1− D2

B2

(7.14)

Since our model is already based on expansion around a small kx we will only go to �rst order in kx. So the
dispersion relation and e�ective velocity of edge states is given by

E↑,↓=± = −DM
B
± sgn(B)A

√
1− D2

B2
kx and v↑,↓=± = ±sgn(B)A

√
1− D2

B2
. (7.15)

The two spin blocks of the BHZ model have di�erent sign for the A term, so the solutions for di�erent spin runs
in opposite directions along the interface. Such states are known as a helical pair. These edge states are very
di�erent from the edge states of the quantum hall phase where all edge states run in the same direction. This is
due to the unique features of the topological insulator which creates edge states without breaking TR symmetry.
The two helical edge states of a topological insulator are shown in �g.5.

(a) HgTe at L=6nm with 400 unit cells along the x-axis. (b) HgTe at L=7nm with 400 unit cells along the x-axis. The
helical egde states are shown in red.

Figure 5: The topological state.

7.2 Time Reversal symmetry

Many of the unique features of helical edge states depends on TR symmetry. We will, based on the work of [8],
present some of the most striking features of unbroken TR symmetry.

We de�ne TR symmetry as: T : t→ −t and applying it yields

TxT−1 = x, TpT−1 = −p, TST−1 = −S. (7.16)

Where S is the spin operator for a particle, so S returns the spin quantum number when used on a state. The
last relation is true, since spin is a internal angular moment. Then by using TR on the fundamental commutator
we obtain

T [x, p]T−1 = Ti~T−1 = − [x, p] = −i~ → TiT−1 = −i (7.17)

So a given representation of time reversal symmetry must contain the complex conjugation operator. Since it
must also reverse the direction of spin it can be represented by a π rotation around a spin-axis and following
convention we choose the y-axis

T = e−iπSyK ⇒ T · T = e−i2πSy ⇒ T 2
int = 1, T 2

1
2 int

= −1 (7.18)
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Where K is the complex conjugation operator and int stands for integer spin space and 1
2 int is for half integer

spin space. In general T can be represented by T = UK where U is a unitary matrix. For a half-integer spin
space we get

T 2 = UU∗ = U(UT )−1 = −1⇒ U = −UT (7.19)

This important result leads to Kramer's degeneracy for TR symmetric half-integer spin spaces. Consider a TR
invariant Hamiltonian H with a eigenstate |ψ〉, then |φ〉 = T |ψ〉 must also be an eigenstate. We check if these
states are orthogonal:

〈ψ|Tψ〉 =
∑
n,m

ψ∗mUnmψ
∗
n = −

∑
n,m

ψ∗nUmnψ
∗
m = −〈ψ|Tψ〉 = 0 (7.20)

This implies that if our Hamiltonian is TR symmetric then each state is doubly degenerate with their partner
given by TR symmetry. We let T operate on a TR invariant Hamiltonian:

TH(k)T−1 = H∗(−k) = H(k) (7.21)

So if TR symmetry is present we must have spin degeneracy at k = 0. Spin-up and -down must then be re�ections
of each other through the k = 0 line.

Looking back at our BHZ Hamiltonian (Eq.7.1) we identify the spin-down block to be the TR transformed of
the spin-up block. It then follows that the helical pair found in the previous section form a Kramer's pair.

Now lets consider scattering between Kramer pairs resulting from TR invariant interactions V = TV T−1:

〈Tψ|V |ψ〉 =
∑
n,m,j

U∗mjψjVmnψn =
∑
n,m,j

U†jmψjVmnψn =
∑
n,m,j

U†jmψjTVm,nT
−1ψn (7.22)

=
∑

n,m,j,r,q

ψjU
†
jmUmrKVrqKU

†
qnψn = −

∑
n,j,r,q

ψjδjrV
∗
rqU

∗
nqψn = −

∑
n,m,j

ψjV
∗
jqU

∗
nqψn (7.23)

= −
∑
q,j,n

U∗nqψqVqjψj = −〈Tψ|V |ψ〉 = 0 (7.24)

This property is known as the TR protection, since it implies that helical states cannot scatter into their Kramer's
partner if the interaction is TR symmetric. It also states that no gap can be created between a Kramer's pair
without a perturbation breaking TR symmetry. If we were to calculate the probability that n states to scatter
into n time reversal partners we would obtain a factor −1n. So the states are only protected from odd particle
scattering events.

If our Hamiltonian is invariant to both TR and parity (P) we obtain: PTH(k)T−1P−1 = PH(−k)∗P−1 =
H(k)∗ = H(k). Which implies that the Kramer's pair is degenerate at all k.

7.3 Representations of the BHZ model.

In order to investigate the symmetries of the BHZ model we will construct matrix representations for TR and P
[8]. Using these we can determine what perturbations that breaks these symmetries. We are then able to guess
e�ects of di�erent kinds of perturbations without doing full band calculations.

We utilize a notation that only considers the symmetries of given terms. Here d(k) just represent the order
of k. In this notation the BHZ Hamiltonian and its TR transformed is expressed as

HBHZ(k) = d(k2)σ0 ⊗ (τ0 + τz) + d(k)σz ⊗ τx + d(k)σ0 ⊗ τy, (7.25)

H∗BHZ(−k) = d(k2)σ0 ⊗ (τ0 + τz)− d(k)σz ⊗ τx + d(k)σ0 ⊗ τy, (7.26)

with τi as a Pauli matrix describing the electron/hole subspace, while σ describe spin-up/spin-down subspace. For
a matrix to a representation of TR it needs to transform the Hamiltonian the same way as TR. This transformation
should preserve all terms except τz ⊗σx which changes sign. Since τ and σ belong to di�erent subspaces we have

(σi ⊗ τµ)(σj ⊗ τν) = σiσj ⊗ τµτν , (7.27)

and since Pauli matrices transform as

σjσiσj = −σi and σjσjσj = σj , (7.28)

we can determine how the combined space transforms. As an example we let the matrix A = σy ⊗ τz be
transformed by B = σy ⊗ τx:

BAB−1 = (σyσyσ
−1
y )⊗ (τxτyτ

−1
x ) = −σy ⊗ τy. (7.29)
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Using these relations we �nd representations for the TR symmetry which transform Eq.7.25 into Eq.7.26. These
are

T1 = −iσy ⊗ τ0K and T2 = σx ⊗ τ0K. (7.30)

Since this implies that T 2
1 = −1 and T 2

2 = 1 and we know that our electrons are half-integer the correct one for
our system must be T1. Because of the parity of our atomic s and p basis the parity representation must take
the form P = σz in basis. Expanding this for the full BHZ model with spin:

P = σ0 ⊗ τz. (7.31)

Applying this on our Hamilton THT−1 = 1, the BHZ model describes a inversion invariant system. So the edge
states are degenerate for all k. We can now verify it a given perturbation breaks either TR or parity symmetry
by considering the transformations: PHP−1 and THT−1.

In the InAsGaSb quantum well we obtained o�-diagonal terms Eq.6.41 which we could attribute to the
breaking of parity. Lets consider how they transform. We de�ne ∆ = φe + ∆0 and express HBIA and HSIA as

Hoff = HSIA +HBIA =
∆

2
kxσx ⊗ (τ0 + τz) +

∆

2
kyσy ⊗ (τ0 + τz). (7.32)

Since P and T sends k → −k they transform as THoffT
−1 = 1 and PHoffP

−1 = −1. So these terms does not
break TR symmetry but do break inversion symmetry. We name this type one inversion asymmetry. Following
the previous discussion these terms will lift the spin degeneracy away from the k = 0 point, but since the gap is
TR protected it will remain una�ected so our InAsGaSb model can contain topological states. The e�ects of this
perturbation is shown at �g.6.

We are able to construct additional terms that keep TR symmetry but breaks inversion symmetry. One of
the most interesting is

HP = ∆1σy ⊗ τy (7.33)

which clearly breaks parity but because of the double complex conjugation it keeps TR symmetry. Since this
term is k independent it will produce a gap, even at k = 0. But this cannot destroy the topological order. It can
be seen at �g.6 that this perturbation separates the TR invariant point for the two boundaries which forces the
crossings of the boundary terms to happen at k 6= 0. We call this type two inversion asymmetry.

(a) HgTe at L=7nm with 400 unit cells along the x-axis. The
helical edge states are shown in red. Here we have ∆0 =
0.1eVnm

(b) HgTe at L=7nm with 400 unit cells along the x-axis. The
helical egde states are shown in red. Here we have ∆1 =
0.003eV

Figure 6: Broken inversion symmetry.

By applying �elds across our quantum well we can also break symmetries. Application of a B-�eld should
break time-reversal symmetry, while a E-�eld should break inversion symmetry. We now consider these two e�ects
expressed as

HZ = g∗σ ·B and HR = α(σ · E × k. (7.34)

Where g∗ is the e�ective g factor and α the e�ective Rashba coe�cient for a given band. The second term is the
Rashba term arising from the spin-orbit coupling (Eq.3.23) when considering perturbation by a E-�eld to �rst
order (V = V0 + E · r) [20]. The Rashba contribution is especially important for the InAsGaSb well, since the
broken gap produces a intrinsic electrical �eld which couples to spin. The e�ective factors for such contributions
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can be found using Lowdin perturbation on our Hamilton Eq.3.41 to small order, but this is beyond the scope of
this project [20].

Since these terms only couple spin between states we can determine their position in the BHZ Hamiltonian.
Using the symmetry notation and allowing the �elds to point in all directions we get

HZ = d(0)(σx + σy + σz)⊗ (τ0 + τz) and HR = d(k)(σx + σy + σz)⊗ (τ0 + τz), (7.35)

which transforms as PHZP
−1 = HZ , THZT

−1 = −HZ , PHRP
−1 = −HR and THRT

−1 = HR. Just as expected
the Zeeman e�ect breaks TR but keeps inversion. While the Rashba term breaks inversion while keeping TR.
This could also been seen from their di�erent k dependence.

So by applying a E �eld we can change the structure of the topological states without destroying the topological
gap and by applying a B �eld we can open a gap between the Kramer's pair.

7.4 Finite Size e�ect

Finally we will talk about the �nite size e�ect. We showed earlier that there are precisely one Kramer's pair at
each boundary. For normal bulk states there are always an even number of Kramer pairs and this induces a gap
since they interact. In real systems our boundary at each end of the system are not in�nitely separated from each
other. So our previous calculations for a isolated open boundary is not completely valid. In real systems a gap
is formed from the interaction of Kramer pairs at each end of the system, which is proportional to the overlap
of the wave-functions. This will produces a gap intersection without breaking time reversal symmetry. In this
section we want to �nd the characteristic length scale of a helical state so we can estimate the e�ect of �nite size
gap openings.

From the de�nition of edge states we know that they decay as eγSy where we have chosen γL > γS . By using
Eq.7.15 we �nd our γ's up to second order in kx,

γ1γ2 = γ1γ2|kx=0 +
d(γ1γ2)

dkx

∣∣∣∣
kx=0

kx +
d2(γ1γ2)

d2kx

∣∣∣∣
kx=0

k2x =
M

B
+

D

B+B−

dE

dkx

∣∣∣∣
kx=0

kx − k2x =
M

B
+

2DN

B
kx − k2x

(7.36)

γ1 + γ2 = γ1 + γ2|kx=0 +
d(γ1 + γ2)

dkx

∣∣∣∣
kx=0

kx +
d2(γ1 + γ2)

d2kx

∣∣∣∣
kx=0

k2x = 2N (7.37)

Where N = A/2
√
B+B−. Now we solve for γ,

γ1(2N − γ1) =
M

B
+

2DN

B
kx − k2x ⇒ γ1 = N ±

√
N2 − M

B
− 2DN

B
kx + k2x = N ±

√
N2 + (kx − k+)(kx − k−)

(7.38)

with k± =
DN

B
±
√
D2N2

B2
+
M

B
(7.39)

We de�ne the anti-localization length as l = γ−1S where γS is the smallest of γ. then

l−1 = N −
√
N2 + (kx − k+)(kx − k−) (7.40)

When the anti-localization length goes to ∞ our edge states evolve into bulk states [15], which happens at
kx = k±. These are points where the edge state meets the top or bottom bulk bands. The size of the �nite size
gap decrease as Ly is increased. At the kx = 0 point the characteristic length is

l =

[
N −

√
N2 − M

B

]−1
. (7.41)

From our HgTe parameters we �nd l = 116.45nm for L = 7mn. Since most terminal structures used for transport
measurements are hundreds of micrometers wide [1] this e�ect is negligible for HgTe. The e�ects of �nite size on
the topological system can be seen at �g.7.

7.5 Transport

The topological state has a odd number of Kramer's pairs at each interface so it behaves as a 1.d helical liquid.
[7]. But all these e�ects are microscopic and we need a macroscopic way of determining if our system is indeed
in the topological phase. This can be done by transport measurements.
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(a) HgTe at L=6nm with 150 unit cells along the x-axis. The
helical egde states are shown in red.

(b) HgTe at L=7nm with 150 unit cells along the x-axis. The
helical egde states are shown in red. ∆1 = 0.003eV

Figure 7: Finite size e�ect.

In transport measurements one sends a current through the system and measures the conductivity. Consider
a topological insulator where x is large enough to ignore �nite size e�ect, so that we obtain a pair of gap-less
edge states. We set the temperature close to zero and the Fermi energy is placed in the gap of the bulk states so
they cant contribute to transport. All contributions now stems from edge states. Consider a two terminal device
with a potential di�erence between. Using Landau formalism we express the current as

I = −eveffTδN, (7.42)

where veff is the velocity of charge carriers, δN is the density of charge carriers and T is the probability that
a electron will transmit from one end to the other. Since these states are time-reversal protected from most
scattering and we assume the device to be small we set T ≈ 1. We assume the potential di�erence to be small so,

δN ≈ dN

dE
δE = −edN

dk
(Vl − Vr) = −edN

dE

dk

dE
(Vl − Vr) = − e

2π

dk

dE
(Vl − Vr), (7.43)

where Vl and Vr is the voltage at the left and right terminal. Using the de�nition of veff = dE/~dk, we obtain
the conductance G from the two channels as

I↑,↓ =
e2

h
(Vl − Vr) → Ic = Ic,↑ + Ic,↓ = 2

e2

h
(Vl − Vr) → G = 2

e2

h
. (7.44)

with conductance quantized to e2/h. If this quantization is found then current is transfered by 1.d edge states.
Unfortunately the normal quantum hall edge states, arising from landau level crossing the Fermi level, gives the
same result, if the number of crossing is ν = 2. So we want to obtain a measurement that separates the quantum
spin hall state from the quantum hall state. This can be achieved in four terminal measurements. In order to
show this we will use Landau-Buttiker formalism [7] which explicitly accounts for all contributions in a given
terminal. In this notation the current at a terminal is given by

Ii =
e2

h

∑
j

Ti,j(Vi − Vj). (7.45)

Di�erent spin gives di�erent contributions since they run in opposite directions so we obtain:
I↑1
I↑2
I↑3
I↑4

 =
e2

h


−1 0 0 1
1 −1 0 0
0 1 −1 0
0 0 1 −1



V1
V2
V3
V4

 and


I↓1
I↓2
I↓3
I↓4

 =
e2

h


−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1



V1
V2
V3
V4

 . (7.46)

The total transport is then given by the sum of these matrices. Since the quantum hall states run in the same
direction and our the topological run in opposite we �nd,

I1
I2
I3
I4


SH

=
e2

h


−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2



V1
V2
V3
V4

 and


I1
I2
I3
I4


H

= 2
e2

h


−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1



V1
V2
V3
V4

 . (7.47)
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Where SH is for spin hall, while H is for hall. We now send current from I1 to I3.

I2,H = 2
e2

h
(V3 − V2) = 0 and I2,SH =

e2

h
(V1 + V3 − 2V2) = 0. (7.48)

From which we obtain the conductance,

I1,H = 2
e2

h
(V3 − V1)→ GH = 2

e2

h
and I1,SH =

e2

h
(V2 + V4 − 2V1) =

e2

h
(V3 − V1)→ GSH =

e2

h
. (7.49)

So by �nding the conductance under these conditions one can separate the quantum hall state from the topological
state.

Finally we discuss the quantum spin hall e�ect. Consider the 4-terminal setup for SH with V2 = V4 = 0 and
V1 = −V3 6= 0. To obtain the spin conductance we change units by multiplying with ~/2e and since helical states
of di�erent spin travel in opposite direction we get the total spin current to be

IS = I↑S − I
↓
S =


I1
I2
I3
I4


S

=
e

4π


0 1 0 −1
−1 0 1 0
0 −1 0 1
1 0 −1 0



V1
V2
V3
V4

⇒ I2,S =
e

4π
(V3 − V1)⇒ G↑2 =

e

4π
(7.50)

So like the hall state where there is a transverse current, there is a quantized transverse spin current in the
quantum spin hall state. This new e�ect has potential applications in the construction of spin based systems.
From these calculations we can conclude that the HgTe well can be used to obtain isolated spin currents.

(a) The quantum hall e�ect with ν = 2. C is the charge
current and B is the magnetic �eld.

(b) The quantum spin hall e�ect. Di�erent spins is colored
di�erent colors. C is for charge current. S is for spin current

Figure 8: The 4 terminal setup.

8 Conclusion

In this thesis we have used k · p theory and selection rules to derive a Hamiltonian for the zinc blende crystal up
to second order in k. We use this Hamiltonian to obtain envelope functions in each material and by developing
proper boundary conditions we are able to obtain the band structure of two quantum wells. We then obtain a
inverted regime for each of these wells: HgTe is inverted for 6.76nm< L < 8.66nm and InAsGaSb is inverted
for 8.73nm> d > 14.5nm. We then show that this inverted regime leads to the formation of exactly one pair of
helical edge states at a open interface. This helical pair is shown to be protected from scattering and gap-opening
by Time reversal symmetry. For numerical work on InAsGaSb wells the transfer matrix formalism proved to be
unstable, this made it necessary to derive scattering matrices to obtain numerical stability. If we had more time
we would calculate the envelope functions for InAsGaSb numerically, in order to derive an e�ective Hamiltonian
describing the band interaction near the crossing. From this Hamiltonian we would be able to obtain helical edge
states with broken inversion symmetry.
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By developing an e�ective model for the HgTe quantum well we obtained a characteristic length of 116.45nm
for the helical edge states. Since most terminal structures are of the order of hundreds of micrometers, we
conclude that the helical edge states of HgTe are measurable by transport experiments and that we can achieve
the quantum spin hall e�ect in HgTe systems.

Further research into the inversion asymmetric contributions, especially from the Rashba e�ect, is also needed
in order to understand the InAsGaSb topological insulating state.

Appendices

A Crystal group theory of the Zinzblende structure

(a) Zinc blende conventionell cell. This is
taken [10]. [9]

(b) The zinc blende tetrahedron de�ned by
three orthogonal planes. This is taken from
[10]. (1,0,0),(0,1,0),(0,0,1)

From theory described in [10] and [10] we provide a quick review of crystal group theory. The zinc blende
structure consist of a tetrahedron with a atom in the center and four atoms of a di�erent type located in each
corner of the tetrahedron. The primitive lattice vectors of the system are not orthogonal and point to the nearest
atoms, which are not the ones we will use to describe the tetrahedron. Instead we will use the orthogonal basis
of the square unit cell. The four corner sites of the tetrahedron are described by the vectors [1,1,1],[1,-1,-1],[-1,1,-
1],[-1,-1,1]. The zinc blende crystal has 3 translational symmetries along the 3 cube axis. It is also symmorphic
which means that the order of rotation and translation are irrelevant. Therefore these can be split into two
independent subgroups, here we will only deal with rotations and re�ections, as the Bloch formalism covers the
translational symmetries. The point group symmetries of the tetrahedron are:

• E: Identity transformation. 1 total.

• C2: π rotation around a unit axis: [1,0,0], [0,1,0] or [0,0,1]. 3 total.

• C3:
2π
3 and − 2π

3 rotations around each atom:[1.1.1],[1,-1,-1],[-1,1,-1] or [-1,-1,1]. 8 total.

• σ: re�ection around the planes. [1,1,0],[1,-1,0],[1,0,1],[1,0,-1],[0,1,1] or [0,1,-1]. 6 total.

• S4:
π
2 and −π2 rotations around an axis followed by re�ection in the plane of the axis. [1,0,0], [0,1,0] or

[0,0,1]. 6 total.

Rotations are de�ned to be clockwise so minus rotations are counter clockwise. These symmetries are the elements
of the group Td. All elements can be represented by a unitary matrix working on basis vectors. To illustrate
we will use the basis vectors x,y and z. Here we will present two examples: S4 rotation around [1,0,0] and C2

rotation around [1,0,0]:

S4 =

−1 0 0
0 0 1
0 −1 0

 and C2 =

1 0 0
0 −1 0
0 0 −1

 . (A.1)

For a given set of symmetry operations A one can construct a set of matrices D(A) that represents the operation,
for a given basis, called an representation. The dimension of the representation is de�ned as the dimension of the
matrices it contains. However the representations are not unique, because a shift of basis done by a singularity
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transformation on the matrices will still be a representation of the same group. If a matrix D(A)i in a given
representation can be transformed into block diagonal form by a similarity transformation its called reducible.
If none of these blocks can be reduced further they are called irreducible. If any given similarity transformation
would transform all the elements of a representation into the same block form, then the representation is reducible.
Consider as a example two representations denoted by D(A) consisting of 2 matrix elements of dimension 3:

D(A) =
[(
D(A)13×3

)
,
(
D(A)23×3

)]
=> S−1D(A)S = B(A) =

[(
B(A)12×2

B(A)11×1

)
,

(
B(A)22×2

B(A)21×1

)]
(A.2)

This reducible representation can be split into two irreducible representations (IRR) of dimensions 1 and 2.
The matrices of a given IRR are not unique, but the traces of the contained matrices are, since a similarity
transformation conserves the trace. The trace will be called the character χ of the representation.

The class is de�ned as a subgroup of elements in an IRR which are conjugate to each other, which means its
elements must obey:

A = BCB−1 (A.3)

Where A,B and C are elements of the same class. From this it is clearly seen that all elements in a class must
have the same character, as B can be represented as a unitary matrix which conserves trace.

One of the central equations of group theory it what is known as Van Vleck's "Wonderfull orthogonality
theorem" for IRR [10]: ∑

A

Di
µν(A)Dj

µ′ν′(A
−1) =

h

lj
δi,jδµ,µ′δν,ν′ (A.4)

Here the index i and j runs over di�erent IRR's and lj is the dimension of matrices in IRR j. h is the total
number of elements in the group. Taking the trace of this, we obtain:∑

A,µ,µ′

Di
µµ(A)Dj

µ′µ′(A
−1) =

∑
A

χ(A)iχ(A−1)j =
h

lj
δi,j

∑
mu,µ′

δµ,µ′δµ,µ′ = δi,jh (A.5)

Now since characters are the same for each class, we will now change summation so we sum over classes instead
of elements. We also use A−1 = A∗. ∑

k

Nkχ(k)i
[
χ(k)j

]∗
= δi,jh (A.6)

Where k runs over the di�erent classes of the IRR and Nk is the number of elements in each class. We will not
proof it here, but this equation can be viewed as the dot product between two orthogonal basis vectors of length
k. If there were one more IRR then k, we would have k + 1 orthogonal vectors of k length which is not possible.
If the length of k is less then the number of IRR, the vectors would not span the space, which is the same as
saying that the set of IRR does not span the reducible representations. So the number of classes k must equal
the number of IRR.

Rotations of the same angle around the same base consist of one class and re�ections of the same base consist
of another class. We therefore see that the point group Td contains 24 elements divided into the 5 listed classes.
There are therefore �ve IRR of the group Td, which can be found by use of the orthogonality of classes:∑

i

χ(c)i
[
χ(k)j

]∗
= δc,k

h

Nk
and

∑
k

χ(k)i
[
χ(k)j

]∗
Nk = δi,jh (A.7)

We will here list the IRR in a table, with their character corresponding to a given class, shown in what is known
as Koster notation:

E 3C2 6S4 6σ 8C3

Γ1 1 1 1 1 1
Γ2 1 1 -1 -1 1
Γ3 2 2 0 0 -1
Γ4 3 -1 -1 1 0
Γ5 3 -1 1 -1 0

These IRR are the minimal basis that obeys all the symmetry operations. Since E is the identity operations it
must consist of unit matrices. The trace of E is therefore equal to the dimension of the IRR.
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The last thing we will talk about is basis vectors for the representations. Each IRR has a set of basis vectors of
the same dimension as the IRR, which is the minimal group that generates the IRR from the symmetry elements.
Suppose we have a group of symmetry operators A:

A |fn, i〉 =
∑
j

Dn(A)ij |fn, j〉 (A.8)

where |fn, i〉 is the i basis vector of the IRR denoted by n. Basis vectors belonging to di�erent representations
or di�erent basis vectors of the same IRR are orthogonal. This can be shown using eqn.A.4. This means we can
generate representations for symmetries using basis functions. We multiply the above equation with a di�erent
basis vector to get.

〈fm, a|A |fn, i〉 =
∑
j

D(A)ij 〈fm, a|fn, j〉 = D(A)iaδm,n (A.9)

This set of basis vectors is not a unique choice, but it will generate a unique representations of the group. The
basis vectors are de�ned to be generators of the IRR. But if we choose a arbitrary non-basis vector sec we would
generate a reducible representation. This representation could then be transformed to a IRR by a singularity
transformation, which would change the arbitrary vectors into linear combinations of the basis vectors.

By using symmetry arguments we can deduce much about the wave functions of a given hamiltonian even
before solving it. Since H must be invariant under any transformation that leaves the crystal invariant it must
follow that:

H = A−1HA⇒ AH |Ψn〉 = AEn |Ψn〉 ⇒ H |AΨn〉 = En |AΨn〉 (A.10)

This shows that both |Ψn〉 and |AΨn〉 are eigenvectors of H. So if we know one eigenfunction for a given energy,
we can by using the symmetries construct additional eigenfunctions with the same energy. Consider now that we
obtained a set of n degenerate eigenfunctions |ψ, i〉 with this method. Any linear combination of these functions
would then be a eigenstate of the Hamiltonian, therefore we can write:

A |ψn, i〉 =
∑
j=1..n

Dn(A)ij |ψn, j〉 (A.11)

Which is still an eigenstate of the Hamiltonian, but these states are also a generator for an IRR of the same
dimension as the degeneracy. So for every degeneracy there must be a IRR of corresponding dimensions and the
eigenvectors ψ must be basis vectors of the IRR. This important result lets us identify the degeneracies of the
states using only symmetry. We can also conclude that any eigenvector for the hamiltonian can be reduced to
linear combinations of basis vectors for the IRR.

B Tightbinding model

An easy way to visualize the di�erent e�ects of the topological insulator is to use a tight-binding model [7]. The
basis of tightbinding models is to substitute ki with functions periodic with the lattice constant and only consider
nearest neighbor interactions. We will use the usual substitution:

ki =
1

a
sin(kia) and k2i =

4

a2
sin2

(
kia

2

)
=

2

a2
(2− cos(kia)) (B.1)

Its easy to verify that when ki is close to zero we return to our old model. Now using these substitutions on the
BHZ model and setting C = 0 we obtain:

HBHZ =
[
−2D̄(2− cos(akx)− cos(aky))

]
σ0 +

[
M − 2B̄(2− cos(akx)− cos(aky))

]
σz + Ā sin(kxa) + Ā sin(ky)σy

(B.2)
Here the bar indicates that the term is expressed in length scale of the lattice constant. We now shift basis and
choose to express this in terms of creation and annihilation operators:

Ψ =

(
akx,ky
bkx,ky

)
and Ψ∗ =

(
a†kx,ky
b†kx,ky

)
(B.3)

We will now adopt the of boundary conditions of a cylinder, which is periodic in x, so kx is still a good quantum
number, and with a open interface at both ends of the y axis. We must fourier transform our Hamiltonian back
into real space along the y direction since kz is not a good quantum number. The fourier transforms are:

cj =
∑
k

cke
−ikaj → i

2
(cj+1 − cj−1) =

∑
k

ck sin(ka)e−ikaj (B.4)
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Now doing the fourier transformation on the BHZ model we obtain:

〈Ψ∗|H |Ψ〉 =
∑
j

[Hj,j +Hj+1,j +Hj,j+1] (B.5)

Hj,j =
[
−2D̄(2− cos(akx))

]
σ0 +

[
M − 2B̄(2− cos(akx))

]
σz + Ā sin(kx) (B.6)

Hj+1,j = D̄σ0 + B̄σz − i
Ā

2
, Hj,j+1 = H∗j+1,j (B.7)

and any perturbation is transformed the same way. We can now use this model plot the BHZ model at di�erent
regimes. We use our parameters from our envelope function calculations over the HgTe quantum well.
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