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Abstract

The purpose of the project is to use crystal field theory to find the form of the
potential. The potential experienced by the valence electrons of an ion that is
surrounded by a symmetric background a point charges, also known as a crystal
field. Different methods such as the multipole expansion, the Wigner-Eckart
theorem and group theory where used to determine the effect of the crystal field
on the orbital energies. We also considered the magnetization of an atom in the
crystal field which has an anisotropy spin Hamiltonian and the effect of crystal
field structure on the stability of the magnetization. As we will see the three-
and four-fold symmetric crystal field will have a long-lived spin and thus we can
store information for longer time.
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1 Introduction
Magnetic storage devices are widespread today. Much of the ongoing research in this
field is on various methods to reduce the data storage size to single atoms. Each mag-
netic moment represents a bit which, when magnetized in one direction, corresponds
to "0" and when magnetized in the opposite direction stores "1". This is represented
by the electron spin direction. The problem here is the challenge to keep the magneti-
zation fixed. In other words, electrons unable to hold the information in one of the bit
states for a meaningful amount of time due to fluctuations in the environment which
flip the spin. To counter this problem, an atom of the rare-earth element Holmium
has been used, since its electronic structure protects the magnetic moment from being
flipped [1]. The stability of the magnetic moment of the Holmium atom depends on
the symmetry of the crystal field. Crystal field theory is based on symmetry consid-
erations of the negative point charges around a central metal ion. Crystal field theory
is a broad subject, which is used to explain various phenomena in crystal structures.
For this we will highlight another concept called magnetic anisotropy, which is one
of the most important properties of magnetic materials. Magnetic anisotropy is the
case where it requires different amounts of energy to magnetize a crystal in different
directions, depending on the direction of the applied field relative to the crystal axes.
The Holmium atoms is explained via anisotropy spin Hamiltonian. Holmium atom
was only a motivation, since we did not look specifically at the rare-earth group. In
Figure 1, we can see different ways Holmium atom combined to the surface.

Figure 1: Holmium atom on 2 ML MgO/Ag(100). Ball-and-stick representation for
the Ho adsorption on top of O (A), on the O-bridge site (B), and on top of Mg (C)
[2].

2 Crystal field
Crystal field theory describes the change in energy levels of the valence orbitals of an
ion due to the displacement of a set of symmetric ligands which are regarded as point
charges around the ion. The presence of the point charges leads to an interaction
between them and the electrons of the ion. The general Hamiltonian for a many
electron system, neglecting all spin dependent interactions, takes the form [3]:

Ĥ =
∑
i

p2
i

2m
+

1

2

∑
i 6=j

e2

rij
+
∑
i

U(xi, yi, zi) (2.1)

The first term is the kinetic energy of electrons with momenta pi, where the electrons
interact via Coulomb interactions, whose energy is inversely proportional to distance
rij between electron i and j. The Hamiltonian of the d-electrons is given by the first
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two terms while the last term is the Coulomb potential due to the nuclear attraction.
The reason that all spin-dependent interactions are neglected is that the crystal field
effect is large compared to the LS coupling in iron-group (d-orbital), which make L and
S remain approximately good quantum numbers. As the crystal field influence is only
on the orbital position of the electrons, it will split the 2L+1 degenerate energy levels
into several groups, but will affect the spin degeneracy only via a weak spin orbit
coupling. We therefore ignore spin completely and work with the orbital splittings
[4]. The reverse is true in rare-earth elements (f -orbitals), which means that the LS
coupling is the larger than the crystal field effect, since the f -orbitals are located
closer around nucleus and thus the crystal field will be weaker due to f -orbitals are
not affected by the surroundings of the crystal. We will now start to consider a 3d1

positive ion which is surrounded by six O−2 ions to form a model for an octahedral
complex as shown in the diagram 2.

Figure 2: Spherical plot of the octahedral crystal field, where our 3d1 positive ion is
surrounded by six O−2 with a distance of ±a

By taking our origin at the center of the magnetic ion, the potential energy of an
ion of charge -q at (0,0,a) is

U(x, y, z) =
eq

[x2 + y2 + (z − a)2]
1
2

(2.2)

Where e is the elementary positive charge. We can then make a Taylor expansion of
this potential, by using the Legendre polynomials, which is valid when |t| < 1, |u| ≤ 1
and |t| < |u|

1

[1− 2tu+ t2]
1
2

=
∞∑
n=0

tnPn(u) (2.3)

Pn(u) =
1

2nn!

(
d

du

)n(
u2 − 1

)n
(2.4)

Where t = r
a
and u = z

r
.

P0(u) = 1, P1(u) = u, P2(u) = 1
2

(
3u2 − 1

)
,

P3(u) = 1
2

(
5u3 − 3u

)
, P4(u) = 1

8

(
35u4 − 30u2 + 3

) (2.5)

In order for equation 2.3 to be the same as equation 2.2 we multiply it by eq
a
.

U(x, y, z) =
eq

a

4∑
n=0

tnPn(u) =
eq

a

[
1+

z

a
+

1

2a2
(3z2−r2)+

1

2a3

(
5z3−3zr2

)
+

1

8a4

(
35z4−30z2r2+3r4

)]
(2.6)
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If another charge is located at (0,0,-a) there is inversion symmetry, which makes all the
odd powers of z drop out. If we then add the four charges at (0,±a,0) and (±a,0,0),
where t = r

±a and u = i
r
where i can be {x, y, z} we get

U(x, y, z) =
2eq

a

[(
1 +

1

2a2
3z2 − 1

2a2
r2 +

1

8a4
35z4 − 1

8a4
30z2r2 +

1

8a4
3r4

)
+

(
1 +

1

2a2
3y2 − 1

2a2
r2 +

1

8a4
35y4 − 1

8a4
30y2r2 +

1

8a4
3r4

)
+

(
1 +

1

2a2
3x2 − 1

2a2
r2 +

1

8a4
35x4 − 1

8a4
30x2r2 +

1

8a4
3r4

)] (2.7)

Since r2 = x2 + y2 + z2 the second and third terms cancel each other, and we do not
look at a potential higher than fourth order for d-electrons since it will give zero. Our
potential is then

U(x, y, z) =
6eq

a
[1 + (

35

24a4
)(x4 + y4 + z4 − 3

5
r4)] ≈ 35eq

4a5
(x4 + y4 + z4 − 3

5
r4) (2.8)

The first term is of little interest, since it is independent of x, y and z, and just gives
an energy shift. The free-ion energy states will split, because of crystal field effect. In
order to calculate the correction eigenenergy we use perturbation methods.

En = E0
n + E1

n + E2
n + ...

= εn +
〈
ψ0
n|U |ψ0

n

〉
+
∑
m6=n

| 〈ψ0
m|U |ψ0

n〉 |2

E0
n − E0

m

(2.9)

The first term is the unperturbed energy, which can only be calculated exactly for the
hydrogen atom and not for a many electron system. The second term is the first order
correction to the energy, which mixes states with the same n together. It can either
be calculated using the multipole expansion or the Wigner Eckart theorem. The third
term is the second order correction to the energy, which mixes states with different n
together. In our case, we only look at the d-multiplet, yet there may be some excited
state, which gives a great energy difference but this part will be very small so we can
ignore it

2.1 Multipole expansion

In order to do multipole expansion of our potential

U(x, y, z) = x4 + y4 + z4 − 3

5
r4 (2.10)

we start by writing the function in spherical coordinates

U(r, θ, φ) = r4[sin4(θ) cos4(φ) + sin4(θ) sin4(φ) + cos4(θ)− 3

5
] (2.11)

which we then expand in angular momentum eigenstates

U(r, θ, φ) =
∞∑
l

l∑
m=−l

ulm(r)Y m
l (θ, φ) (2.12)
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where l is the Taylor expansion angular momentum, m is the magnetic quantum
number, Y m

l (θ, φ) are the spherical harmonics and ulm are the expansion coefficients,
which is

ulm =

∫ 2π

0

dφ

∫ π

0

dθ sin(θ)Y m∗
l (θ, φ)U(r, θ, φ) (2.13)

After we have made multipole expansion, our potential will be

U(r, θ, φ) = r4U(θ, φ) = r4

[
2

3

√
2π

35
Y −4

4 (θ, φ) +
4
√
π

15
Y 0

4 (θ, φ) +
2

3

√
2π

35
Y 4

4 (θ, φ)

]
(2.14)

Our wave-function is factored into two parts, the radial part which is only a function
of distance from the nucleus and an angular part. We can now calculate the first-order
correction to the energy, which is equal to

E1
32mm′ =

35eq

4a5

〈
R32(r)Y m′

2 (θ, φ)|U(r, θ, φ)|R32(r)Y m
2 (θ, φ)

〉
=

35eq

4a5

∫ ∞
0

r2|R32(r)|2dr
∫ 2π

0

dφ

∫ π

0

dθ sin(θ)Y m′∗
2 (θ, φ)r4U(θ, φ)Y m

2 (θ, φ)

(2.15)
where n = 3, l = 2 and m = −l...l. The integral can be factorized into a radial and
an angular part. The radial factor is∫ ∞

0

r4r2|R32(r)|2dr =

∫ ∞
0

r6

∣∣∣∣ 4

81
√

30a3
0

(
r

a0

)2

e
− r

3a0

∣∣∣∣2dr (2.16)

as can be seen, the larger a0 is the greater this term becomes. For the angular part
since our ion is now in a crystal field will the d-orbitals no longer be degenerate, this
means that we have five different m

∫ 2π

0

dφ

∫ π

0

dθ sin(θ)Y m′∗
2 (θ, φ)U(θ, φ)Y m

2 (θ, φ) =


2

105
0 0 0 2

21

0 − 8
105

0 0 0
0 0 4

35
0 0

0 0 0 − 8
105

0
2
21

0 0 0 2
105


mm′

(2.17)
The matrix is diagonalised so that the eigenvalues can be found. With the matrix
rewritten in the diagonal basis, it can be seen that the energy has been split into two
levels, where one is twice degenerate, while the other is thrice degenerate.

4
35

0 0 0 0
0 4

35
0 0 0

0 0 − 8
105

0 0
0 0 0 − 8

105
0

0 0 0 0 − 8
105

 (2.18)

To explain that, we look at the five d-orbitals, which fall into two classes: the eg
orbitals which point along the x, y and z axes (which are dz2 and dx2−y2) and the t2g
orbitals which point between these axes, (which are dxy,dxz and dyz). Here we make
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use of crystal field theory, which is based on an ionic description of the metal-ligands
bond. The three t2g orbitals have a lower overlap with the O−2 neighboring p-orbitals
than the two eg orbitals and hence will have a lower electrostatic energy. The three t2g
orbitals will then be lowered in energy while the two eg orbitals will be raised in energy,
as shown in the Figure (3). One of the three t2g orbitals has a linear combination which
is Y 2

2 (θ, φ)−Y −2
2 (θ, φ) while the two others are Y −1

2 (θ, φ) and Y 1
2 (θ, φ). Also one of the

two eg orbitals has a linear combination which is Y −2
2 (θ, φ) + Y 2

2 (θ, φ) and the other
one is Y 0

2 (θ, φ).

Figure 3: The energy levels of the 3d-orbitals in a Octahedral crystal field

2.2 Wigner-Eckart theory

Wigner-Eckart theory has the same principle as a multipole expansion. We will intro-
duce something called an irreducible tensor operator (T kq ) which is the same as Y m

l in
our case, where q = m and k = l. The matrix elements of irreducible tensor operators
can be expressed as the product of two factors. The first factor is the Clebsch-Gordan
coefficient, and the second factor is the reduced matrix element, which is independent
of the magnetic quantum numbers.〈

γ′j′m′|T (k)
q |γjm

〉
= 〈j′m′|jkmq〉

〈
γ′j′||T (k)||γj

〉
(2.19)

j, j′ are the angular momenta and γ stands for all other quantum numbers. In our case
we consider an atom in a crystal field, so that γ = n and j = l. The Wigner-Eckart
theorem is useful to use since Clebsch-Gordan coefficients involving the coupling of
angular momenta l and l′ to obtain total angular momentum L. We are interested
in that because tensor operators transform into themselves under rotations, and these
rotations are generated by angular momentum. We will now calculate the Clebsch-
Gordan coefficients 〈l′m′|lkmq〉 Where l′ = l = 2, m′ = m = −l...l, k = 4 and
q = −4, 0, 4. For that we will get the same as equation 2.17 but multiplied by 2

3

√
2π
7π2 ,

which we then diagonalize and get equation 2.18, and the reduced matrix element will
give the same as the radial part of the multipole expansion.

2.3 Tetragonal symmetry

Assuming that the octahedral structure with ions at its apices producing the crystal
field is distorted along one of the principal axes, here taken to be z-axis, by multiplying
±a with α. The potential becomes
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U(x, y, z) =
2eq

αa

[ 3

2a2

( z2

α2
+ αy2 + αz2

)
− 30r2

8a4

( z2

α4
+ αy2 + αz2

)
+

35

8a4

( z4

α4
+ αy4 + αz4

)
− r2

2α2a2

(
1 + 2α3

)
+

3r4

8a4

( 1

α4
+ 2α

)] (2.20)

We do the same as before, rewriting our potential in spherical coordinates and then
calculating the first order correction to the energy, where we get five energies, three of
them are different and two of them are the same. If we now assume that the octahedron
of our ion producing the crystal field is distorted along two of the three principal axes,
it means that all symmetries are broken and we therefore get five different energies.
The energy levels corresponding to the three different symmetries of the 3d-orbital are
shown in Figure 4. The differences in energies in the diagram depend on a and α, and
as can be seen, the larger a is the smaller is the splitting between eg and t2g, and the
larger α is the greater is the splitting of eg and t2g.

Figure 4: The energy levels of the 3d orbitals.

2.4 Group theory

We can also obtain the degeneracy of an atom in a field of a given symmetry directly
by use of group theory, instead of rewriting our potential in spherical coordinates and
then considering perturbation theory or instead of using the Wigner-Eckart theorem.
The point group for an octehedral symmetry is Oh. This group contains the elements
of O = {Ê, 8Ĉ3, 3Ĉ2, 6Ĉ2, 6Ĉ4} and other elements that have to do with the mirror
plane. Oh has twice as many elements as O, we can then express (Oh) group as a
direct product of the simpler group (O) with the group of the inversion Oh = O ⊗ i.
Where we only need to look at rotation groups. To explain that, we start by looking
at the three rotations around the principal axes of the orthogonal coordinate system
(x, y, z) given by

Γx̂(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

, Γŷ(α) =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

,
Γẑ(α) =

cosα − sinα 0
sinα cosα 0

0 0 1

 (2.21)

Γî is a given representation of a group G in our case Oh containing the rotation
elements. Γî are the rotation matrices for the three principal axes and the associated
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characters are

χi(α) = Tr Γi(α) = 1 + 2cosα for i ∈ {x̂, ŷ, ẑ} (2.22)

If we then combine an inversion with the rotation by α, the matrix will change sign
and the character will then be

χi(α, î) = −1− 2cosα for i ∈ {x̂, ŷ, ẑ} (2.23)

Since eq 2.22 and 2.23 are identical up to a sign change, by using both equations we
merely repeat each term. Hence we only have to look at rotations elements to find all
the possible splittings. If we now look at the character table for the O group.

χi Ê 8 Ĉ3 3Ĉ2 6 Ĉ2 6Ĉ4

A1 1 1 1 1 1
A2 1 1 1 -1 -1
E 2 -1 2 0 0
T1 3 0 -1 -1 1
T2 3 0 -1 1 -1

Table 1: The character table for point group O

The labels of the irreducible representations are A and B for one dimensional
representations, E for two dimensional representation and T for three dimensional
representations. The 24 elements are the identity operator, Ê, which leaves every-
thing unchanged and 23 Ĉn operators which are generators of cyclic groups of order n.
The rotational axes of the Ĉn operators are oriented as follows. There are four three-
fold rotation axes (belonging to Ĉ3) which pass through the center of the triangular
sides and the center of the octahedron. The rotations can be either in the positive
direction(Ĉ3

+
) or in the negative direction (Ĉ3

−
). Thus there are eight Ĉ3 operations.

There are nine twofold rotation axes, (belonging to Ĉ2) divided into two classes which
are not physically equivalent. The first class contains three of the Ĉ2 operators, with
rotations about the x, y and z axes, while the second class contains six Ĉ2 operators
with axes through the midpoints of opposite edges of the octahedron. There are six
Ĉ4 operations with the same three axes as the three Ĉ2, about the x, y and z axes,
where again there are 3 Ĉ+

4 and 3 Ĉ−4 . In order to compute the characters of the group
elements we use[5].

χL(α) =
sin(L+ 1)α

sin(α
2
)

(2.24)

Where L is the angular momentum. In the case of d-orbitals L = 2 and we get

χ2(C2) = χ2(π) = 1, χ2(C3) = χ2(2π
3

) =
sin( 5π

3
)

sin(π
3

)
= −1,

χ2(C4) = χ2(π
2
) =

sin( 5π
4

)

sin(π
4

)
= −1

(2.25)

So the character table for the reducible representation D2 is

χL Ê = (2L+ 1) 8 Ĉ3 3Ĉ2 6 Ĉ2 6Ĉ4

D2 5 -1 1 1 -1

Table 2: The character table for the reducible representation D2
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DL are the representations of the rotation group, which can be transformed into
block diagonal form, where the diagonal blocks are the irreducible representations of
the group O. To find out which irreducible representations spanning the basis set
we use the frequency formula given by (3-20) [5]. The characters of representation
matrices for operations acting on the basis sets are found by looking at how many of
the features go into themselves during the operation.

ai =
1

g

∑
k

NkχL(Ck)χi(Ck) (2.26)

Where χL(Ck) and χi(Ck) are characters of DL and the O group respectively, Nk is
the number of elements in each class and g is the number of elements in the whole O
group.

aA1 =
1

24
(1× 5 + 8× 1× (−1) + 3× 1× 1 + 6× 1× 1 + 6× 1× (−1)) = 0 (2.27)

By doing it for all the other irreducible representations, the calculations give aµ = 1
for µ = E, T2 where ν = D2 while aµ = 0 for µ = A1, A2 and T1 where ν = D2. We can
then decompose the representation DL into irreducible representations and express it
as

DL =
∑
i

aiΓi → D2 = E ⊕ T2 (2.28)

where ai denotes the number of times a given irreducible representation Γi occurs
in the block diagonal matrix DL. From this result we see that a d-state splits into
a twofold and a threefold degenerate energy level in an octahedral symmetric field.
Which indicates that the degeneracy can be worked out by using group theory.

Consider now the case of tetragonal symmetry, where the crystal field is distorted
along any of the three principal axes. The symmetry point group of the system is now
the dihedral group D4. Below is the character table for D4.

χi Ê 2 Ĉ4 Ĉ2 2Ĉ ′2 2Ĉ2
′′

A1 1 1 1 1 1
A2 1 1 1 -1 -1
B1 1 -1 1 1 -1
B2 1 -1 1 -1 1
E 2 0 -2 0 0

Table 3: The character table for point group D4

To facilitate the explanation of the group elements, consider a system distorted
along the z-axis. The two Ĉ4 operations have the same rotational axis as the Ĉ2

operations. The axis passes through the center of the xy plane and is perpendicular
to it. As usual we have Ĉ4

+
and Ĉ4

−
. Furthermore, there are two Ĉ ′2 about the x-

and y-axis, respectively. The two Ĉ2
′′
-axes lie in the xy-plane, and bisect the angles

made up by the Ĉ ′2-axes. By use of equation 4.24 the character table for the reducible
representation D2 is found to be



2.5 The Hamiltonian in terms of the angular momentum operator 9

χL Ê 2 Ĉ4 Ĉ2 2Ĉ ′2 2Ĉ2
′′

D2 5 -1 1 1 1

Table 4: The character table for the reducible representation D2 for the D4 point
group

Equation 2.28 is used to get D2=A1+B1 +B2 + E. It is seen that the d-state
splits into three non-degenerate levels and a twofold degenerate level under tetragonal
symmetry, when the crystal field is distorted along one of the principal axes, which
means that both the E and T2 irreducible representations from the octahedral must
split, where

T2 → E + A1 and E → B1 +B2 (2.29)

Thus the triply degenerate level in an octahedral structure splits into a doubly de-
generate and a non-degenerate level, while the doubly degenerate one splits into two
non-degenerate levels. The reason we do not just use group theory is that group the-
ory gives no information about the arrangement or magnitudes of the energy levels
splittings.

2.5 The Hamiltonian in terms of the angular momentum op-
erator

The importance of writing the potential in terms of the angular momentum operator
appear when we are in the same multiplet. This will allow us to evaluate its eigenvalue
relatively easily, since the angular momentum has some properties as the commutation
relation. Our potential is

U(x, y, z) = (x4 + y4 + z4 − 3

5
r4) (2.30)

Where we want to make an equivalent operator which depends on the angular momen-
tum and with the same matrix element, since the angular momentum is eigenstate for
this matrix element. Both the position vector and the angular momentum transform
as vectors, but the problem is that the angular momentum do not commute, therefor
we must symmetries. We start by substituting x, y and z with the angular momentum
Lx, Ly and Lz respectively

(x4 + y4 + z4 − 3

5
r4)→ (L4

x + L4
y + L4

z −
3

5
r4) (2.31)

where the last part

r4 = r2r2 = (x2 + y2 + z2)(x2 + y2 + z2) → (L2
x +L2

y +L2
z)(L

2
x +L2

y +L2
z) (2.32)

may be rewritten as all the possible combinations relations between the angular mo-
mentum:
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1

3

[
3L4

x + 3L4
y + 3L4

z + L2
yL

2
x + LyLxLyLx + LyL

2
xLy + LxL

2
yLx + LxLyLxLy

+L2
xL

2
y + L2

zL
2
x + LzLxLzLx + LzL

2
xLz + LxL

2
zLx + LxLzLxLz + L2

xL
2
z

+L2
zL

2
y + LzLyLzLy + LzL

2
yLz + LyL

2
zLy + LyLzLyLz + L2

yL
2
z

] (2.33)

This expression can be simplified by the use of a commutator relation. For example

LzLxLzLx = L2
zL

2
x + Lz[Lx, Lz]Lx = L2

zL
2
x − iLzLyLx (2.34)

the same thing will be done for

LxLzLxLz, LzLyLzLy, LyLzLyLz,

LxLyLxLy, LyLxLyLx
(2.35)

and we also use that

LzL
2
xLz = iLyLxLz + LxLzLxLz = iLyLxLz + L2

xL
2
z + iLxLyLz (2.36)

which is also applied to the similar, other parts. We then find that

−3

5
r4 = −1

5

[
3L4

x + 3L2
xL

2
y + 3L2

xL
2
z + 3L4

y + 3L2
yL

2
x + 3L2

yL
2
z + 3L4

z + 3L2
zL

2
y + 3L2

zL
2
x − L2

]
= −3

5

[
L4 − 1

3
L2

]
= −3

5

[[
L(L+ 1)

]2

− L(L+ 1)

3

]
= −1

5
L(L+ 1)(3L2 + 3L− 1)

(2.37)
Our potential is thus

x4 + y4 + z4 − 3

5
r2 → L4

x + L4
y + L4

z −
1

5
L

(
L+ 1

)(
3L2 + 3L− 1

)
(2.38)

Which has the same matrix element as U(r, θ, φ). Stevens operators make up a large
topic which will not be considered in this thesis [6].

3 Anisotropy spin Hamiltonian
In order to describe one ion anisotropy we consider the effective Hamiltonian. Where
we start by introducing the perturbative term due to the spin orbit coupling (LS-
coupling) and the Zeeman-effect (BS-coupling), which is:

V = λL · S + µBB · (2S + L) (3.1)

λ is the spin orbit coupling constant, L is the orbital angular momentum of the electron,
S is the spin angular momentum of the electron, where the spin couples to the crystal
field only when we take into account the LS coupling, µB is the Bohr magneton and
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B is the magnetic field. The second term, also known as the Zeeman energy, where
the presence of a magnetic field leads to a splitting of a spectral line into two lines.
We will now calculate the first and second order correction to the energies, in order to
find the effective Hamiltonian.

E1
n =

〈
ψ0
n|V |ψ0

n

〉
= λS·

〈
ψ0
n|L|ψ0

n

〉
+µBB·(2S

〈
ψ0
n|ψ0

n

〉
+
〈
ψ0
n|L|ψ0

n

〉
) = 2µBB·S = 2µB

∑
ij

BiδijSj

(3.2)
i and j represent position vectors. If we have a free ion, the ground state is degenerate,
but when we now have an electric field due to the crystal structure of the material,
the ground state will be non-degenerate (orbital state). The non-degenerate state is
represented by real wave functions, while the angular momentum is imaginary. The
angular momentum is a vector operator and can be written as L = (L̂x, L̂y, L̂z), where
the quantum mechanical operators for the components of the angular momentum are

L̂x = ŷp̂z − ẑp̂y, L̂y = ẑp̂x − x̂p̂z, L̂z = x̂p̂y − ŷp̂x (3.3)

both the position and the momentum operator pi = i~ ∂
∂i

are Hermitian operators and
thus L̂i is also Hermitian. The expectation value of the angular momentum over a
non-degenerate ground state will be imaginary, but since our angular momentum is
Hermitian, and has real eigenvalues, the expectation value must be zero, 〈ψ0

n|L|ψ0
n〉 =

0, which means that the orbital angular momentum is quenched. With the quenching
of L, we eliminate L and then the magnetic moment of the ion is just given by the
spin. The reason for the spin is left as an operator in this perturbation calculation, is
that the spin wave function is independent of the orbital part. For the second order
energy we get

E2
n =

∑
m6=n

| 〈ψ0
n|V |ψ0

m〉 |2

E0
n − E0

m

= −
∑
ij

[λ2ΛijSiSj + 2λµBΛijBiSj + µ2
BΛijBiBj] (3.4)

because it is a change in the ground state energy so it is always negative since E0−Em <
0, and Λij is

Λij =
∑
n

〈ψ0
n|Li|ψ0

m〉 〈ψ0
m|Lj|ψ0

n〉
Em − En

(3.5)

By adding the first and the second order energies we get the effective Hamiltonian for
a non-degenerate ground state

HS = E1
n + E2

n =
∑
ij

[−λ2ΛijSiSj + 2µBBi(δij − λΛij)Sj − µ2
BΛijBiBj] (3.6)

The first term is the anisotropy spin Hamiltonian, the second term is the effective
Zeeman term where we use the g matrix (g = δij−λΛij) and the third term comes from
the second order perturbation of the Zeeman energy. The ansiotropy spin Hamiltonian
may be expressed as in Appendix B

H = DS2
z + E

(
S2
x − S2

y

)
= DS2

z +
E

2

(
S2

+ + S2
−
)

(3.7)
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D and E are called longitudinal (uniaxial) and transversal (biaxial) anisotropy, respec-
tively. While Sx, Sy, and Sz are the three components of the spin operator. Finally
S+ and S− are raising and lowering spin operator. The value of D and E depends
on the material for example in this article D and E is around the order 0.292 K and
0.046 K respectively [7], but the magnetic anisotropy of interfaces is in the range of
10−4 to 10−3 eV.atom−1 [8]. After we have found our anisotropy spin Hamiltonian, we
want to see how it depends on the spin. We look at both integer spin and half integer
spin. To know how the anisotropy spin Hamiltonian depends on the spin, we must
first know how Sz and S± work. The eigenvector equation for the spin component
along the z-axis is

Sz |sms〉 = ~ms |sms〉 (3.8)

Which is eigenstate for Sz so it produces only diagonal elements in our Hamiltonian.
In the following, we set ~ to be one for simplicity. For integer spin the first term
of the equation 3.7 will split the energy levels into doubly degenerate states Sz =
±s,±(s− 1), ...,±1 and a non-degenerate one Sz = 0, whereas half integer spin gives
only doubly degenerate states, which means the energy of states with same absolute
value of ms. If we then look at the Hamiltonian of (3.7) with E = 0 meV, the energy
of the eigenstates of the Ĥ is

εms = Dm2
s (3.9)

and will lie on a parabola, as shown in Figure 5. Depending on the sign of the
longitudinal anisotropy, our parabola will either have its legs pointing up or down. If
we then set E 6= 0 the second term in the anisotropy spin Hamiltonian in (3.7) will
not vanish, and has finite matrix elements between states with ∆Sz = ±2. Thus, the
raising and lowering spin operators will contribute

S± |sms〉 = ~
√
s(s+ 1)−ms(ms ± 1) |s(ms ± 1)〉 (3.10)

The spin raising and lowering operators acting on these eigenstates give another func-
tion with the same value of the spin quantum number, but another spin projection
quantum number (ms), which is greater for step up or lower for step down. For integer
spin, the doubly degenerate energy states Sz = ±M , which are produced by the first
term in the Hamiltonian 3.7, are split by the second term, that they are no longer sym-
metrical. But for half-integer spin the difference between the doubly degerate states
Sz = ±M is an odd numbers, and then there will not be a matrix element between

-6 -4 -2 0 2 4 6

-50

-40

-30

-20

-10
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E[meV]
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10

20

30

40

50

60

m

E[meV]

Figure 5: Energy levels of the Hamiltonian as a function of spin projection quantum
number, when E = 0 for D < 0 and D > 0 respectively
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these states. In other words there will not be a linear combination between the
doubly degenerate energy states. This is called the Kramers theorem. Kramers the-
orem says that half-integer spin has a double degenerate ground state, when there is
no magnetic field as it would break it, while Kramers doublet is a double degeneracy
of the ground state if there is half-integer spin, that is, the ground state and its time
reversal state with the same energy for B = 0T. When we apply a magnetic field the
Hamiltonian will be

H = DS2
z +

E

2
(S2

+ + S2
−) + B̃ · Si (3.11)

Where the last term describes the Zeeman energy associated with an applied field,
where B̃ = gµBB. The time reversal symmetry will be broken when there is a magnetic
field, as we said before.

3.1 Magnetization

We have so far considered the magnetic anisotropy Hamiltonian. For a crystal ex-
hibiting magnetic anisotropy, it requires different amounts of energy to magnetize the
crystal in certain directions than in others, depending on the direction of the applied
field relative to the crystal axes. We will calculate the magnetization, which is the
same as the thermal average of the spin operator Ŝi. Where the magnetization may
be expressed as in Appendix A

M = gµB

〈
Ŝi

〉
(3.12)

The temperature is normally in the range 10 to 100 mK and B̃ = 0.1 meV for B = 1
T. For the plots in this subsection, we have used values for the parameters that are
not necessarily physically realistic in order to illustrate the nature of the physical
phenomena. If E = 0 meV the Zeeman term will be defined in the z-direction, and
the two parameters that we can changes are the longitudinal anisotropy (D) and the
temperature.

H = DS2
z + gµBBSz (3.13)

Depending on the sign of the longitudinal anisotropy, we can either have an easy or a
hard axis. Easy axis (D < 0) means that it is easy to have the spin in the z-direction.
Easy axis is the same as hard plane, which means that it is difficult to put the spin in
the xy-plane. We will get the opposite for hard axis (D > 0), which means that it will
be difficult to have the spin in the z-direction but easy to have it in the xy-plane. The
two opposite directions along an easy axis are equivalent, and the actual direction of
magnetization can be along either of them.

The magnetization is considered as a function of the external magnetic field in
the z-direction. If D = 0 only the Zeeman term is present. The interval where
magnetization is not approximately S or −S depends on the temperature, and the
greater the temperature is the greater is the interval. In an experimental available
temperature such as 10−2K, there will be a spin polarization already at zero external
field. For S = 1

2
the magnetization will behave as a hyperbolic tangent, as shown

M = −gµB
2

tanh

(
gµBBz

2kBT

)
(3.14)
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Where gµB
kB
≈ 1K

T
. If T >> Bz the magnetization will approximately be

M(T →∞) = −gµBBz

4T
∼ χB̃z (3.15)

In this case, if B̃ is small our magnetization will go to zero. What happens is that the
energy levels of spins are split up into different levels by the external magnetic field,
and if T >> B̃, these levels will be occupied with the same probability and thus the
magnetization will be zero. Which also means that small change in the external field
leads to a great change in the magnetization. However when B̃ >> T , only the lowest
energy levels are occupied, since there is not enough thermal energy in the system
to excite electrons into states of higher energy. The same applies for both integer
and half-integer spin. In relation to our spectra there will not be any changes with
temperature changing as shown in figure (6.a and 6.b). When we have an easy plane,
will the spin be in the xy-direction, while we have the field in the z-direction, thus if
|D| = T it will require more external field to get spin polarization since the spin is not
in the same direction as the external field. However if we have an easy axis there will
be an internal polarization, as shown in figure (7.a), where mu ib the figures stands
for µB. If |D| < T , will we get the same behavior as for |D| = T for both easy axis and
easy plane but with the need of more field to get spin polarization as seen in figure
7.b.
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Figure 6: M
µB

as function of B̃ for S = 2. The blue and red plots indicate T=10−2K
and T = 15K. Figure b is the energy as a function of B̃ for S = 2, D = E = 0 meV
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Figure 7: M
µB

as function of B̃ for S = 2 and |D| = 5meV, where the blue and red plots
indicate easy axis and easy plane. For figure a T = 5K, while in b T = 10 K.

When |D| > T we will get a staircase. The difference between the half-integer and
integer spin in this cases is illustrated in the figure 8. This difference occurs since the
integer spin have an odd number of energy levels, where all the sates are degenerate at
B̃z = 0 meV. When |D| > 0 will just each two of the levels be degenerate at B̃z = 0meV
and the last level will stay along the B̃z axis. There will also be other degeneration at
Bz > 0, which increases with increasing the number of the spin operator. We will see
the same for the half-integer spin, except for the level which was along the B̃z axis,
which is illustrated in figure 9. In cases where we have easy axis, we will not get any
staircase, since the spin is in the same direction as the external field and we will get
the same behavior as in |D| > T .

-30 -20 -10 0 10 20 30

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

B
˜
[meV]

M

μ

(a)

-30 -20 -10 0 10 20 30

-2

-1

0

1

2

B
˜
[meV]

M

μ

(b)

Figure 8: M
µB

as function of B̃. In figure a S = 3
2
and D = 10meV, where the red and

blue plots indicate T = 10−2K and T = 1K, while in figure b the red and blue plots
indicate T = 10−2K and T = 1K for S = 2 and D = 10meV.
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Figure 9: The energy as a function of B̃. In Figure a S = 2 and D = 3 meV, while
figure b has S = 7

2
and D = 6 meV.

In the case where both D 6= 0 and E 6= 0, we have eq. 3.11, where the Zeeman
term is now B̃ ·Si = B̃xSx+ B̃ySy + B̃zSz. For both the case where we have easy plane
or easy axis and |D| = T or |D| < T , will the change in E hardly be seen, the same
will happen when there is an external field in both the x and y direction, as shown in
Figure 10. Compared to the energy spectrum, once the tranversal anisotropy E ≥ 0.01
meV is raised, we will start to have an avoided crossing point, and the higher E is the
higher is the distance between the avoided crossing point. An avoided crossing point
is defined as the case when two or more eigenvalues cannot become equal in value. We
will see the same for half-integer spin but with higher number of these avoided crossing
points, as shown in Figure 11. From that we can conclude that if the spin is along the
magnetic field, the magnetic will not have a large impact on the spin, since they are
in the same direction, which means that it is an energetically favorable direction, and
it goes toward a state of minimum energy, in contrast to if the spin is in a different
direction than the magnetic field, thus we need more external magnetic field to get
spin polarization, which means that it goes toward a state of maximum energy.
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Figure 10: M
µB

as function of B̃ for S = 2, |D| = 5 meV and T = 5K, where the blue
and red plots indicate easy axis and easy plane. In figure a E = 2 meV and in figure
b B̃x = B̃y = 2 meV
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Figure 11: The energy as a function of B̃, where D = 6 meV and E = 1 meV. Figure
a is for S = 2 and b for S = 5

2

3.2 Stabilizing the magnetic moment of single Holmium atoms
by symmetry

We are interested to know the probability of transition per unit time for a spin reversal
between the ground states, affected by a perturbation, where we have three different
symmetry-fold we will look at. The n-fold symmetry means a rotation by an angle
of 360◦

n
between atoms. We start by looking at the twofold symmetry which can be

written as
H = DS2

z +
E

2
(S2

+ + S2
−) + B̃Sz (3.16)

Where we put B̃ = 0meV in all cases. For half integer spin the raising and lowering
spin operators will contribute to get a linear combination of the various Sz eigenstates
as seen here

|ψ+
2 〉 =

Ŝ∑
n=0

c+
n |S − 2n〉 and |ψ−2 〉 =

S∑
n=0

c−n |−S + 2n〉 (3.17)

We will look at the energy of the eigenstates of the H, when D < 0 with respect to the
expectation values of

〈
Ŝz

〉
, which will lie on an inverted parabola, with two degenerate

ground states as shown in Figure 12. Where a complete magnetization reversal over
the full barrier is oppressed when E = 0 meV because it requires at least 2S. Besides
that the direct tunnel coupling between the ground states is not allowed when E 6= 0
meV , which means that

〈
ψ±2 |Sz|ψ∓2

〉
= 0, since the ground states belonging to different

combination of eigenstates. Thus the main mechanism for reversal are spin-flip by the
exchange interaction with substrate electrons, wherein the perturbed Hamiltonian is

Ĥ ′ = JS · τ = J [
1

2
(S+τ− + S−τ+) + Szτz] (3.18)

τ is the spin of the scattering electron (substrate spin) and J is the exchange interaction
between these two spins. This exchange interaction with a single metal electron leads
to spin flip which are described by the matrix elements of S±. To figure out this
probability, we use Fermi’s golden rule

Γf←i =
∑
kk′

2π

~

∣∣∣ 〈f ∣∣∣Ĥ ′∣∣∣i〉 ∣∣∣2δ(Efk′ − Eik)nF (εk)(1− nF (εk′)) (3.19)
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The first part is the matrix element of the perturbation Ĥ ′, which is the matrix between
the final and initial states which is needed to get spin reversal. That means that a
single electron could flip the magnetic moment of the atom, if the matrix element
calculated between the two ground states is non-zero.

∣∣∣ 〈f ∣∣∣Ĥ ′∣∣∣i〉 ∣∣∣2 =
∣∣∣ 〈f ∣∣∣JS · τ

∣∣∣i〉 ∣∣∣2 =
∣∣∣ 〈f ∣∣∣J [

1

2
(S+τ− + S−τ+) + Szτz]

∣∣∣i〉 ∣∣∣2 (3.20)

This matrix element gives only something for half-integer spin, when we have a twofold
symmetry, since the integer spin is protected from the direct tunneling coupling be-
tween to ground states with a single electron, it need two or more electrons for that.
For half-integer spin and E = 0.1D, the higher the spin is the lower is the matrix
element. We will get the same when E = 0.01D multiplied by 10−2x−1 where 10−x is
what we got from E = 0.1D and for E = 0.001D will we get 10−3x−2.

The crystal field symmetry has a large effect on the magnetization reversal. By
placing an Holmium atom on the surface of a metal, it will give rise to a threefold
symmetry [9], which have the point groups C3v. Holmium atom is a part of the rare-
earth group with electron configuration Ho = [Xe]4f 116s2. Thus the quenching is not
important in Ho atom, since the effect of LS coupling is larger than the crystal field
and the electronic states specified by the total angular momentum. For Holmium atom
J = 8 but for simplicity we set S = 8 as we do not see especially on the rare-earth
group. If we start looking at the Hamiltonian for the threefold symmetry

H3 = D3S
2
z + B̃Sz + E3[Sz(S

3
+ + S3

−) + (S3
+ + S3

−)Sz] (3.21)

We just include the lowest non-vanishing order of multi-axial anisotropy, which we
refer to as the hexaxial anisotropy quantified by its E3 [10]. For integer spin there we
will be three distinctive groups of linear combination of eigenstates, which are

|ψ+
3 〉 =

b 2S
3
c∑

n=0

c+
n |S − 3n〉 , |ψ−3 〉 =

b 2S
3
c∑

n=0

c−n |−S + 3n〉 and |ψ0
3〉 =

bS
3
c∑

−S
3

c0
n |3n〉

(3.22)
floor(S)= bSc is the largest integer less than or equal to S. Each coupling |Sz〉 states
with ∆Sz = 3, which leads to a direct tunneling between the ground states for integer
multiple of three, while it is avoided for other integer spin. The difference in threefold
from the twofold symmetry is that the eigenstates of |ψ0

3〉 are located in the barrier,
which means that 〈ψ0

3|Sz|ψ0
3〉 = 0, as illustrated in the figure 12. In threefold symmetry

the single electron can not have a spin switching between the ground states, since two
or more electrons are needed, which means that

〈
ψ±3 |S+|ψ∓3

〉
=
〈
ψ±3 |S−|ψ∓3

〉
= 0, only

if there is a magnetic field will this two terms not be zero, since it will break the
time reversal symmetry. Thus the special in the threefold compared to the twofold
symmetric system is that its symmetry protect it from a spin switching by a single
electron, since it need two or more electron for doing that which is impossible to get
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Figure 12: The energy levels of the three different fold symmetry as a function of the
expectation value of Sz, where D = −1 meV and E = 10−4 meV

two or more electron at the same time. Therefor the probability of keeping the
spin magnetized higher. When we have two electrons will the probability to get spin
switching being lower the lower E is.

Compared to the fourfold symmetry which have the point group C4, the Hamilto-
nian is

Ĥ4 = D4S
2
z + B̃Sz + E4(S4

+ + S4
−) (3.23)

E4 is the coefficient of the multiaxial anisotropy. For odd integer spin there we will be
four distinctive groups of linear combination of eigenstates, which are

|ψ+
4 〉 =

∑b Ŝ
4
c

n=0 c
+
n |S − 4n〉 , |ψ−4 〉 =

∑b Ŝ
4
c

n=0 c
−
n |−S + 4n〉

|ψ0
4〉 =

∑b 2S−1
4
c

n=0 c0
n |S − 1− 4n〉 , |ψ1

4〉 =
∑b 2S−3

4
c

n=0 c0
n |S − 3− 4n〉 ,

(3.24)

The reason for choosing odd integer spin, is in order to have the ground states belonging
to different combination of eigenstates. Similar to the threefold the fourfold symmetric
system is protected from direct tunneling between the two ground states with a single
electron when B̃ = 0. We will again see that there will be some states located in the
barrier, which are the eigenstates for both |ψ0

4〉 and |ψ1
4〉.

In order to find the density of the final states, we must calculate the Fermi–Dirac
distribution as shown in Appendix C, where we get

Γf←i ∝ ρ2
F

∆

exp( ∆
kBT

)− 1
≈

{
ρ2
F∆ exp(− ∆

kBT
) T « ∆

ρ2
FT T» ∆

(3.25)

where J2ρ2
F = 0.1. The density of the final states is a constant, while the the Bose-

Einstein distribution [∆nB(∆)] will only give something if the matrix element is not
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zero. If the matrix element is not zero, will Bose distribution depends on the temper-
ature. The larger the temperature is the larger is the overlap between the finial and
initial states which can seen in the Fermi-Dirac distribution (13.a), while figure (13.b)
show the Bose distribution which start having an exponential decay and then growing
linearly with the temperature.
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Figure 13: Figure a is the Fermi-Dirac distribution as a function of the Fermi energy,
with ∆ = 12 meV and T = 2K. The second figure is the Bose distribution with ∆ = 12
meV.

4 Conclusion
As we have shown the crystal field has a large influence on the free atom. Depending on
the crystal field structure we will get different energy states splitting. The symmetry of
the crystal field has also a great influence on keeping the magnetic moment magnetized,
it determine if the spin is long-lived or not. The probability of transition per unit time
is proportional to the matrix element, which is zero when we have a single electron
for both three- and fourfold symmetry, and thus they have a long-lived spin. While
for twofold symmetry the matrix element will not give zero with a single substrate
electron, thus it does not have a long-lived spin.
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Appendix

A Magnetization

The The magnetization may be expressed as

M = gµB
∑
i

〈
Ŝi

〉
= gµB

Tr[Ŝiexp(−βĤ)]

Z

=
gµB
Z

S∑
m,n=−S

〈
m|Ŝi|n

〉〈
n| exp(−βĤ)|m

〉
(A.1)

=
gµB
Z

S∑
n=−S

〈
n|Ŝi|n

〉
δmnexp(−βEn)

=
gµB
Z

S∑
n,m̃,m̃′=−S

〈n|m̃〉
〈
m̃|Ŝi|m̃′

〉
〈m̃′|n〉 exp(−βEn)

=
gµB
Z

S∑
n,m̃,m̃′=−S

U †nm̃Ŝ
i
m̃m̃′Um̃nexp(−βEn) (A.2)

Um̃n is the eigenvectors of our Hamiltonian transpose, and when we complex conjugate
and transpose our Um̃n we gets U †nm̃. Z is called the partition function.

Z =
N+1∑
i=1

exp(−βEi) (A.3)

Ei is the energy of the ith configuration of the system, β = 1
kBT

where kB ∼ 10−23 J
K
.

The energy of the system is given by the Hamiltonian. The partition function of our
Hamiltonian is thus

Z =
s∑

n=−s

exp(−βEn) =
s∑

n=−s

〈
n| exp(−βĤ)|n

〉
= Tr[exp(−βĤ)] (A.4)

The trace is the sum of the diagonal values (the eigenvalues) of Ĥ.
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B Anisotropy spin Hamiltonian

The anisotropy spin Hamiltonian represent the anisotropy energy for the spin direction.
If take the principal axes of the crystal as our x-, y- and z-axis and by splitting Λ into
x- y- and z-components our anisotropy spin Hamiltonian can be rewritten as

H = ΛxSx
2 + ΛySy

2 + ΛzSz
2 (B.1)

since it only produce diagonal elements. This is the same as

Ĥ = −λ2

[
1

3

(
Λx + Λy + Λz

)
S

(
S + 1

)
+

1

3

[
Λz −

1

2

(
Λx + Λy

)][
3S2

z − S(S + 1)

]
+

1

2

(
Λx − Λy

)(
S2
x − S2

y

)] (B.2)

The ansiotropy Hamiltonian lifts the (2S + 1)-fold degeneracy of the spin. Omitting
the constant term, we obtain from (B.2) [4].

Ĥ = DŜ2
z + E(S2

x − S2
y) (B.3)

C Fermi–Dirac distribution

In order to calculate the density of the final states, we start to find the Fermi–Dirac
distribution which will only give something when we have∑

kk′

δ(Efk′ − Eik)nF (εk)(1− nF (εk′))

= V

∫
d3k

(2π)3
δ(Efk′ − Eik)V

∫
d3k′

(2π)3
δ(Efk′ − Eik)

( 1

exp( εk−µ
kbT

) + 1

)(
1− 1

exp( εk−∆−µ
kbT

) + 1

)
(C.1)

Which only will give something when

Efk′ = Eik → Ef + εk′ = Ei + εk → εk′ = εk + Ei − Ef = εk −∆ (C.2)

Ei and Ef is the energy of the states initial and final states respectively while εk and
εk′ are the fermi energy. The Fermi–Dirac distribution when we replace εk′ with εk is
then

nF (εk)(1− nF (εk′)) =
( 1

exp( εk−µ
kbT

) + 1

)(
1− 1

exp( εk−∆−µ
kbT

) + 1

)
=
( 1

exp( εk
kbT

) + 1

)( 1

exp(−εk+∆+µ
kbT

) + 1

)
=

1

exp( εk−µ
kbT

) + exp( ∆
kbT

) + exp(∆−εk+µ
kbT

) + 1

(C.3)

If we then replace C.3 in C.1 we get



C Fermi–Dirac distribution 23

V

∫
d3k

(2π)3
δ(Efk′ − Eik)V

∫
d3k′

(2π)3
δ(Efk′ − Eik)

∫
dε

1

exp( εk−µ
kbT

) + exp( ∆
kbT

) + exp(∆−εk+µ
kbT

) + 1
=

ρ2
f

∫
dε

1

exp( εk−µ
kbT

) + exp( ∆
kbT

) + exp(∆−εk+µ
kbT

) + 1

(C.4)
We put

x =
εk − µ
kBT

and ∆̃ =
∆

kBT
(C.5)

Then we get

∫ −∞
−∞

dx
kBT

exp(x) + exp(∆̃) + exp(∆̃− x) + 1
=

ln(1 + exp(x))− ln(exp(∆̃) + exp(x))

exp(∆̃)− 1

=
∆

exp( ∆
kBT

)− 1
≈

{
∆ exp(− ∆

kBT
) T « ∆

T T» ∆

(C.6)


