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Abstract

I this project the Thouless-type topological states of matter are investigated, these states are
described by a topological invariant which play the role of the order parameter. As an ex-
ample the TKNN number for the time reversal breaking topological insulators are explicitly
constructed and it’s significants shown. A few models are taken up and used as examples.

The focus is on the two-dimensional Quantum Spin Hall (QSH) effect and in particular the
HgTe/CdTe quantum well. Quantum transport calculations are performed to investigate the
role of disorder on these states. This leads to the recently discovered topological Anderson
insulator (TAI).
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Resume

I dette projekt er topologiske faser af Thouless-typen undersøgt, disse faser er beskrevet af
en topologisk invariant der spiller samme rolle som en "ordens parameter". Som eksempel
TKNN tallet er tidsomvendings brudte topologiske insulatorer udledt og dets betydning vist.
Få simple modeler bliver taget op og brugt som eksempler.

Fokus er på det to-dimentionelle Quantum Spin Hall (QSH) effekt og især HgTe/CdTe
kvantebrønde. Kvante transport beregninger er udført for at undersøge påvirkningen af uren-
heder på disse tilstande. Dette leder til det nygligt opdaget topological Anderson insulator
(TAI).
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2 Time-reversal breaking band
insulators

2.1 Massless Dirac fermions and pseudo-relativistic field theories

As mentioned before a very exiting feature of topological insulators are their low energy ex-
citations. At these energies the dispersion is linear and electron transport is essentially gov-
erned by the relativistic Dirac equation for massless fermions. This allows access to subtle
and rich physics of quantum electrodynamics in a bench-top experiment [36]. It is of course
not true relativistic physics that emerging like a miracle at low energies. For example while
the true Dirac equation describes spin of fermions, these pseudo-relativistic equations de-
scribe pseudo-spin and the analog to the velocity of light has nothing to do with light. This
introduces some differences, for example pseudo-spin do not necessarily couple directly to
magnetic fields in contrast to real spin.1 Later, we will take low energy effective models for
granted and work out their properties from there, but I think it is a good idea to see a simple
example of such a system in order to get a feeling of how they emerge. Inspired by the amaz-
ing experimental work of Novoselov et al. [36], I will present a simple calculation on a single
sheet of graphene.

Graphene is made up of carbon atoms, which has six electrons occupying the atomic or-
bitals 1s2, 2s2 and 2p2. A quick read on Wikipedia reveals that electrons in the 1s2 orbital
is strongly bonded while the remaining orbitals tends to mix together to form hyberidizated
states. This results in σ state covalent bonds, giving rise to a honeycomb lattice (triangular
Bravais lattice with a two atom sub lattice), and π orbital with weakly bonded electrons. It
is therefore natural to model this in Wannier basis, as localized π orbitals on a honeycomb
lattice with nearest neighbor hopping.2

A triangular lattice can be described by the primitive lattice vectors a1 = a
2

(
1,
p

3
)

and a2 =
a
2

(−1,
p

3
)
. With a simple drawing it is easy to see that the three nearest neighbors can be

described by

δ1 = a

2

(
1,

1p
3

)
δ2 = a

2

(
−1,

1p
3

)
δ3 =

(
0,− ap

3

)
, (2.1)

where a = 2.46 Å for graphene. So the Hamiltonian takes the form

H =−t
∑

i

3∑
j=1

(
c†

Ri+δ j
bRi +b†

Ri
cRi+δ j

)
, (2.2)

1Nonetheless I imagine that it is possible to construct a pseudo-relativistic model which couples to magnetic
fields like real spin. The point is that the pseudo-spin must behave like a dipole.

2This is of course a crude unrealistic model, but it turns out to describe the correct low energy behavior found
experimentally.

2



CHAPTER 2. TIME-REVERSAL BREAKING BAND INSULATORS 3

where for π orbitals we may take t ≈ 2.8 eV. The b and c operators referee to the two sub-
lattice sites, A and B. Let us assume that our graphene sheet is infinite. Introducing the Fourier
transform c†

Ri
= 1p

N

∑
k e−i k ·Ri c†

k in (2.2) and using the identity 1
N

∑
i e i(k−k ′)·Ri = δkk ′ , we find

H =−t
∑
k

3∑
j=1

(
e−i k ·δ j c†

k bk +e i k ·δ j b†
k ck

)
=

(
c†

k b†
k

)(
0 −t f (k)

−t f ∗(k) 0

)(
ck

bk

)
, f (k) =

3∑
j=1

e−i k ·δ j . (2.3)

In the last equality we have written this in a pseudo-spin form. The sum is easily evaluated

f (k) = e i ap
3

k2 +2e−i a
2
p

3
k2 cos

( a
2 k1

)
and the eigenvalues are found to be

ε(k) =±t
∣∣ f (k)

∣∣=±t
√

f (k) f ∗(k)

=±t

√√√√1+4cos

(
a
p

3

2
k2

)
cos

( a

2
k1

)
+4cos2

( a

2
k1

)
. (2.4)

As seen in figure 2.1a the energy spectrum is not gaped, the valence and the conduction

- 1 0 1
- 1

0

1

k 2
a/2

p

k 1 a / 2 p

0 , 1

1

3

(a) (b)

Figure 2.1: The dispersion relation for an infinite graphene sheet and the Dirac cones giving rise to
pseudo-relativistic quasi-particles.

band meets at six points in the Brillouin zone though only two inequivalent, pick for example
the points K−1 = ( 4π

3a ,0) and K+1 = (−4π
3a ,0). If the fermi-energi is near ε ≈ 0 it is sufficient to

consider a lowest order expansion around K−1 and K1, f (k) = f (Kα+ q) ≈ ∑3
j=1 e−i Kα ·δ j (1−

i q ·δ j ) =−p3a/2(αq1 + i q2) for α= {−1,1}, leading to

ε(q) =±t

p
3

2
a
√

q2
1 +q2

2

=±~c∗q, c∗ = t a
p

3

2~
. (2.5)

This implies that at low energies, we may consider particles and holes to be massless since the
effective mass tensor involves a second derivative (see [30, p. 419]). Recall the dispersion for
free relativistic particles E(k) =±

p
c2~2k2 +m2c4 where for m = 0 ⇒ E(k) =±~ck, which is ex-

actly what we have. In figure 2.1b it is seen how a dirac cone emerges at low energies. Similarly
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an effective continuum Hamiltonian can be found from (2.3), written in first quantization

hαeff = t

p
3a

2

(
0 αq1 + i q2

αq1 − i q2 0

)
, (2.6)

which is very similar to the Dirac equation for massless spin- 1
2 fermions.3 The two compo-

nents describe the two sub-lattices and if spin is taking into account two more components is
needed (but the Dirac equation still governs the pseudo-spin, not the real spin).4

Putting in numbers, the effective "speed of light" is c∗ ≈ 9.1·105 m/s and this agrees sur-
prisingly well with the experimental value c∗ ≈ 106 m/s. Novoselov et al. [36] further finds
Shubnikov-de Haas oscillations and peculiar half-integer QHE where the plateaus are shifted
by a half. It could be an interesting exercise to incorporate graphene into the quantum trans-
port machinery build later in this work, to see if this simple tight-binding model describes
these effects.

2.2 Integer Quantum Hall Effect and the TKNN number

In time reversal breaking systems a topological invariant can exist, the so-called TKNN num-
ber first explored by Thouless et al. [39]. This invariant had great importance in understanding
the Quantum Hall (QH) effect, which was among the first discovered topological states of mat-
ter. In contrast to the topological numbers describing QSH effect, the TKNN number can be
derived in a physical language with little mathematical prerequisites.5 Therefore I hope af-
ter reading this section, the reader will have some idea about where the band topology shows
itself. All this topology is not only for the sake of elegance, it has been the source of deep phys-
ical understanding and made the path to the theoretical discovery of QSH effect and time re-
versal invariant topological insulators. This derivation will be a little sketchy and more or less
follow the approach of Kohmoto [25].

Consider a 2D non-interacting electron system in a uniform magnetic field perpendicular
to the plane, the Schrödinger equation read

Hψ(r ) =
[

1

2m
(p +e A)2 +U (r )

]
ψ(r ) = Eψ(r ), (2.7)

where p =−i~∇∇∇ and A ensures local U (1) gauge symmetry. Let R = na +mb, for (n,m) ∈ Z2,
be the Bravais lattice vector and assume that U (r ) is periodic in this lattice, U (r +R) =U (r ).
Furthermore, for simplicity assume that a and b are perpendicular and point along the x and
y axes, respectively. Define the discrete translation operator

TR f (r ) = exp
{
(i /~)R · p

}
f (r ) = f (r +R). (2.8)

The magnetic field is perpendicular to the plane and the system is clearly translational invari-
ant, but a quick look at equation (2.7) reveals that the Hamiltonian is not invariant under TR .

3This can be written in the form hαeff = ~c∗d ·σ, with d = (
q1,−q2,0

)
and σ are the Pauli matrices.

4In practice one probably needs to use a Hamiltonian like h−1
eff ⊕h+1

eff .
5In my opinion the derivation becomes most transparent, intuitive and almost trivial when formulated using

fiber bundle theory. But of course it requires lots of time and hard work to build up the intuition and therefore
I have avoided it here. But I encourage all physicist to learn these beautiful mathematical theories (differential
geometry, algebraic topology and Lie group theory), please spread the word.
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The problem occurs because the vector potential A(r ) is not uniform even though the mag-
netic field is (because B =∇∇∇× A) and A(r ) may not in general be periodic. But since a trans-
lation cannot alter the physics, it must only differ by a gradient of a scalar function A(r ) =
A(r +R)+∇∇∇g (r ). This problem can be solved by choosing the symmetric gauge6 (B ×r )/2 and
defining the magnetic translation operator

T̂R = exp
{
(i /~)R · [p +e(r ×B )/2]

}
= TR exp{(i e/~)(B ×R) ·r /2} , (2.9)

which is just (2.8) with the gauge field added to the momentum. One can now show that[
T̂R , H

] = 0. There is still one problem the translation operators do not commute with each
other, a calculation shows that7 T̂a T̂b = exp(2πiφ)T̂b T̂a where φ= (eB/~)ab is the number of
magnetic flux in the unit cell. When φ is a rational number p/q we can take out an Abelian
subgroup. We can enlarge the unit cell (magnetic unit cell) by defining a new Bravais lattice
vector8

R ′ = n(qa)+mb

and therefore there will be p (integer) magnetic flux quanta in each unit cell. It is now possible
diagonalize H and T̂R ′ simultaneously. Since Abelian groups have only one dimensional repre-
sentations one can show that T̂qaψ= e i k1qaψ and T̂bψ= e i k2bψ, where the generalized crystal
momenta are restricted in the magnetic Brillouin zone: 0 ≤ k1 ≤ 2π/qa and 0 ≤ k2 ≤ 2π/b. We
can now label eigenfunctions of H with the good quantum numbers k1 and k2 plus an addi-
tional band index α, thus in Bloch form we have ψ(α)

k (r ) = e i k ·r u(α)
k (r ).9 From equation (2.7)

one can find an effective k dependent Hamiltonian for u(α)
k

Ĥ(k)u(α)
k = 1

2m
(−i~∇∇∇+~k +e A)2 u(α)

k +U (r )u(α)
k = Eαu(α)

k ,

where the k dependence of the energy is implied. To make a connection to Quantum Hall
Effect, imagine we apply a weak electric field such that we are in the linear response regime.
The Hall conductivity perpendicular to the applied electric field may be calculated as10

σx y =−i e2~
∑

Eα<EF

∑
EF<Eβ

(vy )αβ(vx )βα− (vx )αβ(vy )βα(
Eα−Eβ

)2 , (2.10)

where (vi )αβ = 1
~

〈
α

∣∣∣ ∂Ĥ
∂ki

∣∣∣β〉
, i = 1,2, are the usual semi-classical velocities as derived from k · p

theory (see for example [30, P. 417]). After some calculations one finds that the conductivity
per fully occupied band is given as11

σ(α)
x y = e2

h

1

2π

∫
d2k

[∇∇∇k × Â(α)(k)
]

3 , (2.11)

6Other choices of the gauge will also work, for example the Landau gauge is used in the original TKNN paper
[39].

7In fact I do not get the 2πwhen calculating this. If it is me making a mistake, or Kohmoto [25] is not important
since with a small modification everything else follows.

8Again, other choices would also work. They would lead to different results, but physically equivalent.
9But with some generalized Bloch conditions uk1,k2

(α)(x + qa, y) = e−iπpy/b u(α)
k1,k2

(x, y) and uk1,k2
(α)(x, y +

b) = eiπpx/qa u(α)
k1,k2

(x, y).
10This formula is called the Nakao-Kubo formula and is different from the from Kubo formula based on current-

current correlations evaluated in thermal equilibrium (see [7, Chapter 6]).

11More explicitly the expression is given by σ(α)
x y = e2

h
1

2πi

∫
d2k

∫
d2r

(
∂u(α)

k
∗

∂k2

∂u(α)
k

∂k1
− ∂u(α)

k
∗

∂k1

∂u(α)
k

∂k2

)
. To avoid con-

fusion, note that our definition of Â(α)(k) i different from [25].
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where [ ]3 stands for the third component, the integral is over the magnetic Brillouin zone
and the vector field Â(α)(k) is defined as

Â(α)(k) =−i
∫

d2r u(α)
k

∗∇∇∇k u(α)
k =−i

〈
u(α)

k |∇∇∇k |u(α)
k

〉
. (2.12)

Equation (2.11) is the famous TKNN result. As the reader may have suspected from equation
(2.12), there is a connection to the Berry phase.12 There is now a crucial point to observe, the
magnetic Brillouin zone is homeomorphic (topologically equivalent) to a torus T 2.13 This is
due to the periodicity, the points at k1 = 0 (k2 = 0) is to be identified with k1 = 2π/qa (k2 =
2π/b). Just fold the square to connect identical sides. If Stokes’ theorem is used to change
equation (2.11) into a line integral one finds that σx y = 0 since a torus does not have any
boundaries. This disappointing result is of course in contrast to experimental observations.
Here is where topology comes into the picture.

First notice that a phase transformation

u(α)
k

′
(r ) = u(α)

k (r )e i f (k) ⇒ Â(α)′(k) = Â(α)(k)+∇∇∇k f (k), (2.13)

as is seen from equation (2.12). This is a local gauge transformation in the magnetic Bril-
louin zone but global in physical space, and it implies that Â(α)(k) can be thought of as a
U (1) gauge field with a corresponding "magnetic field" B̂ (α)(k) =∇∇∇k × Â(α)(k).14 More impor-
tantly the conductivity (2.11) is invariant under such transformations. Stokes’ theorem can
only be used as we did, if Â(α)(k) can be defined globally on T 2.15 But since the base space
T 2 is non-contractible and non-simply connected16 it is possible to have a non-trivial bundle
(where continuous Bloch functions cannot be defined globally). But T 2 can be split into sev-
eral contractible open sets with different phases assigned to each and then "glued" together
through a U (1)-transition function. Then one can use Stokes’ theorem in equation (2.11) lo-
cally and the phase mismatch at the boundaries of the different open sets contributes with a
non-zero Hall conductivity. More importantly when formulated on fiber bundles, the quan-
tity c1 = −1

2π

∫
d2k

[∇∇∇k × Â(α)(k)
]

3 is identified as the first Chern number which is a well known
(among differential/algebraic topologists) topological invariant. This explains the Hall quan-
tization.

A more elementary and explicit discussion of the last part is given in [25], but I have chosen
not to include it due to lack of space and because i do not find the argument transparent
enough for the reader to benefit from.

Finally the Hall conductivity as measured experimentally is σx y = νe2/h, with the filling
factor given as

ν= ∑
α:filled

∫
d2k

2π
B (α)

z (k). (2.14)

12The discussion of the Berry phase has been neglected, but for interested readers I recommend Berry’s original
paper [5] or the book [42]. Readers interested in a geometric fiber bundle formulation see [6] or [34] for different
approaches.

13A torus is a surface of a doughnut, inner tube, or bagel, depending on the readers background.
14This field can be explicitly constructed as a connection on a U (1) principal bundle with T 2 as the base space,

exactly like the electromagnetic gauge field (with the spacetime as the basespace).
15A general theorem states that a principal bundle is trivial iff it has a global section. See for example [3, 34, 12].

Trivial means that it is of the form T 2 ×U (1) globally and therefore not "twisted".
16It is intuitively seen that the first homotopy group π1(T 2) is isomorphic to Z×Z and T 2 is therefore not

contractible nor simply connected.
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This result shows that only by a change of the band topology, a phase transition in a QH system
can occur and the number ν plays the role of an order parameter.17

2.3 Topological Invariants and edge states

Not long after the discovery of Quantum Hall Effect Laughlin [26] presented a very elegant and
general explanation (now refereed to as Laughlin’s gauge argument) of why the Hall conduc-
tance is quantized in exact integer multiples of e2/h. Halperin [17] extended this argument
and emphasized on a very important implication about the existence of extended quasi-one
dimensional states at the edge which carry current and do not become localized in the pres-
ence of a disorder potential of moderate strength. This further implies that the Chern number
represents the number of chiral gapless edge states going around the sample edge. Namely the
existence of the gapless edge states is guaranteed by the Chern number. This comes from the
Laughlin argument; roll the two-dimensional system into an open cylinder by attaching two
edges on the opposite sides, and let a flux Φ penetrate the hole. The flux Φ is to be increased
adiabatically from 0 to a flux quantum. Then the number of electrons carried from one edge
of the cylinder to the other is equal to the Chern number. These carried electrons are on the
gapless edge states. Thus we can establish the correspondence between the number of chiral
edge states and the Chern number.18 For the details of these arguments, the reader is referred
to the original papers.

While we are at it let us introduces yet another twist in the story which was very important
in the discovery of the Quantum Spin Hall effect. In 1988 Haldane [16] introduced a simple
model based on the honeycomb lattice which showed that in principle one can have Quantum
Hall effect without any magnetic field, thus no Landau levels. The main idea is to have another
(intrinsic or extrinsic) mechanism to break the time reversal symmetry, because the Chern
number is odd under a time reversal transformation and it can therefore be non-zero only if
this symmetry is broken. The Hamiltonian reads as follows

HHaldane = t1
∑
〈i , j 〉

c†
i c j + t2

∑
〈〈i , j 〉〉

e−iνi jφc†
i c j +M

∑
i
ξi c†

i ci . (2.15)

The first term is a nearest neighbor tight-binding term giving rise to the massless dirac fermions
discussed earlier. The second term introduces a complex next-nearest neighbor hopping to
break the time reversal symmetry.19 Here νi j = sgn(d̂1 × d̂2) = ±1, where d̂1 and d̂2 are unit
vectors along the two bonds, which constitute the next-nearest neighbor hopping. Finally the
last term is a staggered on-site potential where ξi is ±1 depending on the i -th site being the
A or B sublattice, the effect of this term is to create a bulk gab. Haldane [16] was then inter-
ested to understand phase transitions in this model and to see if there exists any Quantum
Hall phases. This means that we have to calculate the first Chern number, but this is not an
easy task using Bloch functions.20 Instead one can observe that when φ= 0, the Hamiltonian

17The Chern number can also be formulated for many-body interacting systems like the fractional quantum
Hall effect, using twisted-boundary conditions [35]. But this discussion is beyond the scope of this project and
rather irrelevant.

18Edge transport in the Quantum Hall effect has been well studied. X. G. Wen discovered that the edge states in
the Fractional Quantum Hall effect is, at low energies, governed by a chiral Luttinger liquid. This has been a source
of rich and interesting physics.

19Recall the time-reversal operator which, including spin, may be written as θ =−iσy K . K stands for complex
conjugation.

20One can show that the TKNN formula still works without a magnetic field, but usually (in standard band
insulators) ν is zero due to the trivial topology of the occupied bands.
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is time reversal invariant and the Chern number is therefore ν = 0. The trick is now to see
how ν changes when a parameter is changed, it turns out that the boundary of the different
phases is described by M vs. ±3

p
3t2 sinφ. For a simple and elegant argument see Murakami

[32].21 The phase diagram is shown in figure 2.2 and it is seen that there are three different

Figure 2.2: Phase diagram of Haldane’s model, ν represents the Chern number.

phases, one topologically trivial and two topologically non-trivial. It is interesting to compare
the band structure of these different phases and to see how the gapless edge states, which
must exist according to Laughlin’s gauge argument, reveal themselves. For this we need a ge-
ometry with edges. We have chosen a zig-zag geometry which is infinite along one axes and
therefore have two edges, let us call them left and right (other choices, like arm-chair edges,
gives qualitatively the same results). One has to write the Hamiltonian in equation (2.15) in
terms of the zig-zag geometry and fourier transform along the infinite direction, then derive
an eigenvalue equation to be solved. More details are given in the next section where some-
thing similar is done. Spin has been neglected since it only contributes with a unimportant
degeneracy. In figure 2.3 the energy spectrum for three different values of φ is shown, with

(a) φ=π/2 (b) φ=−π/2 (c) φ=π/8

Figure 2.3: The energy spectrum of Haldane’s model in zig-zag geometry with the values M/t1 = 0.55
and t2/t1 = 1/(3

p
3). The shaded areas are the energy bands of the bulk and the colored lines are the

spectrum of the edge states. The red (solid) and blue (dashed) lines mean that the edge states are
localized near the left and right edges, respectively.

fixed M/t1 = 0.55 and t2/t1 = 1/(3
p

3) (compare with figure 2.2). The red (solid) and blue
(dashed) lines mean that the corresponding eigenvectors of equation (2.15) are localized near
the left and right edges, respectively. There have been experimenting with many different set

21The idea is that while the topological number involves an integral over the whole Brillouin zone, changes
happens locally. When ν = 0 there is a energy gap and the idea is to observe when the gap closes and a Dirac
fermion is formed.
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of parameters and a qualitative change happens only with phase transitions which follow very
accurately the diagram in figure 2.2.22

In figure 2.3c the Chern number is ν = 0 and a energy gap is seen, which is characteristic
for (topologically trivial) band insulators. Something interesting happens in figure 2.3a where
now ν = 1. While the bulk of the system is gaped, there are a gapless state near each edge
which are counter propagating (recall that the slope is proportional to the velocity of the Dirac
fermions, in the semi-classical picture). This is as predicted by Lauligh’s gauge argument. It is
worth noticing that for increasing k the red (blue) band is starting in the lower (upper) bulk
band and ending in the upper (lower) bulk band. This "inverted-ness" implies that there are
some sort of non-trivial band topology, which the number ν= 1 indeed verifies. In figure 2.3b
we now have ν = −1 and we again observe one current-carrying state at each edge. But the
velocity of the edge states have now changed sign, which again implies a change of topology.
It is not possible to continuously deform one of these spectrums into another, thus they are
part of different topological classes.

(a) m =− 1
2 (b) m = 3

2

(c) m = 0

Figure 2.4

A longer and deeper discussion of these topological time-reversal breaking insulators and
their connection to topological quantum field (Chern-Simon’s) theory, the Berry phase and
Laughlin’s gauge argument has been neglected. But a few figures I intended to use for this
purpose can be seen in figure 2.4, now I have spend time making them. I recommend the
reader to take a short artistic break in order enjoy this aesthetic piece of post-modern art.

22I have not been able to find anything in the literature to compare figure 2.3 with directly. But when t2 =
M = 0 we actually have a zig-zag graphene nano-ribbon. The dispersion is in good agreement with the graphene
literature (see [41]). Due to this and other reasons, I believe figure 2.3 is correct.



3 Quantum Spin Hall Effect

3.1 The Z2 topological number and Kane-Mele model

The QSH effect is a phenomena similar to the QH effect but with some key differences. The
QSH insulator state is invariant under time reversal, has a excitation gap in the two-dimensional
bulk, but with topologically protected gapless edge states that lie inside the bulk insulating
gap. The edge states have a distinct helical property: two states with opposite spin-polarization
counter propagate at a given edge, thus the name helical edge states. The edge states come
in pairs and due to Kramers degeneracy theorem the crossing of their energy levels at special
points in the Brillouin zone is secured, these points must remain degenerate because of the
time-reversal symmetry. Since the Chern number is odd under time-reversal transformations
it must vanish in QSH systems, but it turns out that another topological order exists.

The simplest way of realizing the QSH state is by superposing two QH systems with op-
posite spin, or put in another way, a QH system with its time-reversed counterpart. Use for
example the Haldane model to construct the Hamiltonian

H =
(

H↑ 0
0 H↓

)
=

(
HHaldane(φ=−π/2) 0

0 H∗
Haldane(φ=π/2)

)
.

The superposition (more precisely, direct sum) of the down-spin QH subsystem (σx y = e2/h)
and the up-spin QH subsystem (σx y =−e2/h) results in ν= ν↑+ν↓ = 0 (see figure 2.2). While
the sum vanishes due to time-reversal symmetry, the difference ν↑ − ν↓ ≡ 2νs is non-zero
and can be used to define a "spin Chern number", νs , that counts number of time-reversed
(Kramer’s) pairs of edge modes. In this simple example sz is conserved, which may not be the
case in a real system where spin-coupling terms will mix the two sub-systems. The question
is what happens when sz is no longer a good quantum number. To answer this question Kane
and Mele [23, 22] proposed a model on the honeycomb lattice, inspired by (2.15)

H =−t
∑
〈i j 〉

c†
i c j + iλSO

∑
〈〈i j 〉〉

νi j c†
i sz c j + iλR

∑
〈i j 〉

c†
i

(
s × d̂i j

)
z c j +λν

∑
i
ξi c†

i ci . (3.1)

The second terms is a mirror symmetric spin-orbit terms while the third term is a so-called
Rashba term which explicitly violates the z → −z mirror symmetry, and will arise due to a
perpendicular electric field or interaction with a substrate. The key ingredient turns out to
be the time-reversal symmetry, which gives rise to the Kramer’s pairs at k and −k . Kane and
Mele [23] found out that a Z2 topological number can be formulated, corresponding to if there
are an odd or even number of time-reversed pairs on each edge.1 If odd number of pairs, the
system is in the QSH phase otherwise the system is an trivial insulator. So even if spin is not
conversed the QSH phase is still well defined, since an odd number of time reversed pairs are

1Again most of the discussion has been neglected, interested readers might start with [23, 38, 13].
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on each edge. The edge states are therefore more fundamental than the spin Hall effect and a
more appropriate name would be topological Z2 insulator. The Z2 topological number, in it’s
different forms, has been used as a theoretical tool to track down realistic systems exhibiting
the QSH state. This has proven to be a very successful tool and already various candidates has
been found and experimentally realized.

(a) The phase diagram for
the Kane-Mele model, see
[23] for details.

(b) Structure of finite honeycomb
lattice with zig-zag edges. The
rectangle with the dashed line is
the unit cell.

Figure 3.1

To see any edge states in the Kane-Mele model, we need a geometry with edges. Just like
the last section we will choose a finite lattice in one direction with zig-zag edges while infinite
in the other. In figure 3.1b the structure of the lattice is shown and a unit cell is marked by
dashed lines. Now define the an operator c†

α(i ) (cα(i )), which creates (annihilates) a fermion
on the site i and unit cell α.2 Now it is straightforward to write equation (3.1) in this geometry,
for example

−t
∑
〈i j 〉

c†
i c j =−t

∑
α,m

[
c†
α(m A)

{
cα(mB)+ cα−1(mB)+ cα(m −1B)

}+h.c.
]

and

iλSO
∑

〈〈i j 〉〉
νi j c†

i sz c j = iλSO
∑
α,m

c†
α(m A)sz

{
cα(m −1A)+ cα−1(m +1A)+ cα+1(m A)

−cα−1(m A)− cα+1(m −1A)− cα(m +1A)
}

+same for sublattice B,

and similarly for the other terms. Because of translational invariance we introduce the Fourier
transform c†

α(i ) = 1p
L

∑
k e i krαc†

k (i ). Inspired by the method used in [41], we take a general one-

particle state
|Ψ(k)〉 =∑

m

[
ψm A(k)c†

m A(k)+ψmB (k)c†
mB (k)

]|0〉,
where |0〉 represents the ground state, and require that it must satisfy H(k)|Ψ(k)〉 = ε(k)|Ψ(k)〉.
These straightforward, though tedious, calculations leads to a set of coupled algebraic equa-

2Spin is included, c†
α(i ) =

(
c†
α↑(i ),c†

α↓(i )
)
.
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tions3

εψm Aσ = p1ψmBσ+ tψm−1Bσ+ sign(σ)p3
[
ψm+1Aσ+ψm−1Aσ

]+ [
λν− sign(σ)p2

]
ψm Aσ, (3.2)

εψmBσ = p1ψm Aσ+ tψm+1Aσ− sign(σ)p3
[
ψm+1Bσ+ψm−1Bσ

]+ [
sign(σ)p2 −λν

]
ψmBσ, (3.3)

where σ ∈ {↑,↓}, sign(↑) = 1, sign(↓) = −1, p1 = 2t cos
(p

3
2 ka

)
, p2 = 2λSO sin

(p
3ka

)
and finally

p3 = 2λSO sin
(p

3
2 ka

)
. In figure 3.2 these equations have been solved and some representatives

are shown.

(a) Energy dispersion for the Kane-Mele
model in the QSH phase for λR = 0, λSO =
0.06, λν = 0.12, t = 1. Red and blue color are
for spin up and down, respectively and the
circle/box are for different edges.

(b) Energy dispersion for the Kane-Mele
model in the topologically trivial insulator
phase for λR = 0, λSO = 0.06, λν = 0.4, t = 1.

(c) Edge states for the spectrum in figure (a). If
λR 6= 0 spin would not be conserved, but one time-
reversed pair on each edge would still exist.

Figure 3.2

3.2 HgTe/CdTe Quantum Wells

A very interesting and realistic QSH system was proposed by Bernevig et al. [4]. They con-
sidered a HgTe/CdTe quantum well and using a realistic 8 band Kane model (based on k · p-
theory) they observed that at a critical well thickness dc the electron and hole bands are in-
verted (see figure 3.3). For d < dc the system is topologically trivial but for d > dc the system
is in the QSH phase. A effective 4-band model can be derived which contains all the relevant

3For simplicity we show the case λR = 0.
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Figure 3.3

topological information (see [4] using the Kane model, or [24] using symmetry arguments)

H =
(
h(k) 0

0 h∗(−k)

)
(3.4)

h(k) = ε(k)I2×2 +d (k) ·σ (3.5)

ε(k) =C −D(k2
x +k2

y ) (3.6)

d (k) = (
Akx ,−Aky , M(k)

)
(3.7)

M(k) = M −B(k2
x +k2

y ) (3.8)

The parameters A, B , C , D and M depends on the QW geometry and can either be derived
from the Kane model or found experimentally. The Hamiltonian can be seen as describing
two massive Dirac fermions with a k dependent mass M(k).4 Most of the following sections
are devoted to explore some of the physical properties of this model.

We are mostly interested in studying this model numerically and for this purpose it is
most convenient to use a simplified tight-binding representation on a square lattice which
will give us the dispersions over the entire Brillouin zone torus. This enables us to reduce
the problem to simple linear algebra, rather than differential equations in the continuum
model.5 A lattice regularization can be obtained by the substitutions ki → a−1 sin(ki a) and
k2

i → 2a−2(1−cos(ki a)), where i ∈ {x, y}, so we now have

ε(k) =C −2Da−2[2−cos(kx a)−cos(ky a)], (3.9)

d (k) = (
Aa−1 sin(kx a),−Aa−1 sin(ky a), M(k)

)
, (3.10)

M(k) = M −2B a−2[2−cos(kx a)−cos(ky a)], (3.11)

which reduces to the continuum model for small k . Now our model consists of a square lattice
with four orbitals |s,↑〉, |px + i py ,↑〉, |s,↓〉, | − (px − i py ),↓〉 on each site [4]. The upper 2× 2
sub-block is for spin up, while the lower 2× 2 sub-block is for the time-reversed spin-down
partner.6 As discussed by König et al. [24], this lattice Hamiltonian has several critical points

4It is straightforward to find the dispersion E± = ε(k)±
√

dαdα = ε(k)±
√

A2k2 +M(k)2. Besides an unimpor-
tant energy shift ε(k), this is the dispersion of a massive relativistic particle.

5This is a very common trick in this sort of problems, see for example Datta [9]. It is also related to the finite
difference method, which is a widely used technique in solving differential equations numerically.

6Spin is conserved in this model. In reality spin mixing terms exists but they have little influence on the physics
[4, 24].
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but only one in the low-energy regime (for which it is valid). As we discussed in the last section
this model can be thought of as a superposition of two Quantum Hall systems. It turns out
that the Hall conductance of the massive Dirac model, σx y = c1e2/h with c1 ∈ Z, is given by
the Pontryagin widing number7

c1 =− 1

8π2

∫
d 2k

(2π)2 εabcεi j
da∂i db∂ j dc

d 3 ,

where εabc and εi j are the totally asymmetric Levi-Civita symbols.8 Numerical integration
show that c1 = 0 for M/2B < 0 and c1 = ±1 for 0 < M/2B < 2, where + (−) corresponds to the
h(k) (h∗(−k)) sub-block. In physical systems B is negative and large compared to M , thus the
condition M < 0 implies that the system is in the QSH phase and for M > 0 in the topologically
trivial phase. In the literature the parameter M is sometimes referred to as the topological
mass.

Without loss of generality take a = 1, which is nothing but a redefinition of units. It is
convenient to rewrite the Hamiltonian as9

H =∑
k

[ε(k)Γ0 + A sin(kx )Γ1 + A sin(ky )Γ2 +M(k)Γ5]c†
k ck , (3.12)

where Γ0 = I4×4 and Γα, α= 1, . . . ,5, form the Euclidean Clifford algebra ΓµΓν+ΓνΓµ = 2δµνI4×4.
For this model we use the parameterizations Γ(1,2,3,4,5) = (σx ⊗ sz ,−σy ⊗1,σx ⊗ sx ,σx ⊗ s y ,σz ⊗1),
where both the σ’s and s’s are Pauli matrices acting on the s/p-like orbital space and the spin
space (↑,↓), respectively. Just like the preceding sections we want to calculate the energy spec-
trum and choose to make the y-direction finite with Ny lattice sites. Having lost the trans-
lational symmetry in this direction, ky is no longer a good quantum number and we must
Fourier transform it to lattice space. Introduce the Fourier transformation (k ≡ kx )

ck = 1

L

Ny∑
j=1

e i ky j ck, j ,

in equation (3.12) and use 1
L

∑
ky

e i ky ( j ′− j ) = δ j , j ′ , sinky = e i ky −e−i ky

2i and cosky = e i ky +e−i ky

2 to
obtain

H =∑
k, j

(
M (k)c†

k, j ck, j +T c†
k, j ck, j+1 +T †c†

k, j+1ck, j

)
, (3.13)

M (k) = [C −2D(2−cosk)]Γ0 + A sinkΓ1 −2B [2−M/2B −cosk]Γ5, (3.14)

T = DΓ0 + i A

2
Γ2 +BΓ5. (3.15)

In the following we will use the experimental values from König et al. [24], A = 364.5 meV nma−1,
B =−686 meV nm2a−2, C = 0, D =−512 meV nm2a−2, M =−10 meV and a = 5 nm.

7One can also exploit the inversion symmetry and use the general formulation of the Z2 number to understand
the phase transitions. See Fu and Kane [13] for a readable account.

8This is just a fancy way of writing a combination of cross and scalar products.
9We will use the same symbol to denote the first and the second quantized operator as it introduces no con-

fusion.
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Energy spectrum, edge state wave functions and finite size effects

The Hamiltonian (3.13) is simpler than the Kane-Mele model on the honeycomb lattice and
it can be diagonalized directly. The energy spectrum is shown in figure 3.4 for two different
values of the topological mass M . As discussed earlier there is a energy gap for positive M
characteristic for the topologically trivial insulator phase, while for negative M there are gap-
less edge states in the bulk gap. Rather than repeating the discussions from earlier, it is better

(a) M =−10 (b) M = 2

Figure 3.4: Energy spectrum for a large HgTe/CdTe quantum well sample for two different values of the
topological mass M .

to show more directly why we use the terminology "gapless edge states", "bulk gap" and so
on. The Hamiltonian (3.4) consists of a two-band spin-up part h(k) and the time-reversed
counterpart h∗(−k) =Θh(k)Θ−1, where Θ=−iσy K is the time reversal operator and K stands
for complex conjugation. The two sub-systems are uncoupled can be treated separately. Take
a psudo-eigenspinor10 for the upper block h(k)ψ↑(k) = Ekψ↑(k), where

ψ↑(k) =
(
ψ↑+(k)
ψ↑−(k)

)
,

then it clear that for spin down part h∗(−k)ψ↓(k) = Ekψ↓(k), we must have ψ↓(k) = Θψ↑(k).
In figure 3.5, the probability distribution for spin up |ψ↑(k, y)|2 = |ψ↑+(k, y)|2+|ψ↑−(k, y)|2 and
spin down |ψ↓(k, y)|2 at a given energy is shown. On the left edge we have a counter propa-
gating pair ψ↑(k, y) and ψ↓(−k, y), while on the other edge we have another pair with reversed
propagation ψ↑(−k, y) and ψ↓(k, y). This verifies our claim, there are one counter propagat-
ing spin polarized pair on each edge in the energy range where the bulk is insulating. But as
one can see in figure 3.5, for smaller sample size the wave functions overlap. It can generally
be shown that backscattering is forbidden between time-reversed pairs in the QSH state, but
finite size effects can overturn this. For example in figure 3.5b around y = 0 the spin up states
on each edge overlap and this will definitely lead to backscattering since the fermions are
counter propagating (and they are not time-reversed partners). This indicates that although
time reversal symmetry is trying to keep the edge states gapless, a small gap may be induced
due to finite size effects. This is indeed verified in figure 3.6, where the energy dispersion
near the Dirac cone is shown. For L = 800 nm the cone is intact we have gapless edge states,
but for L = 200 nm a small gap shown up with a magnitude of about ∆(L = 200 nm) ≈ 0.5 meV

10Pseudo-spinor, since it describes pseudo-spin degree of freedom.
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- 2 5 0 0 2 5 0

| y u p ( - k , y ) | 2

y  [ n m ]

| y u p ( k , y ) | 2

(a) Spin Up, L = 500 nm

- 1 0 0 0 1 0 0
y  [ n m ]

| y u p ( k , y ) | 2 | y u p ( - k , y ) | 2

(b) Spin Up, L = 200 nm

- 2 5 0 0 2 5 0

| y D o w n ( k , y ) | 2| y D o w n ( - k , y ) | 2

y  [ n m ]

(c) Spin Down, L = 500 nm

- 1 0 0 0 1 0 0
y  [ n m ]

| y D o w n ( - k , y ) | 2 | y D o w n ( k , y ) | 2

(d) Spin Down, L = 500 nm

Figure 3.5: Edge state probability distribution for k = 0.01, solid red line is for k and dashed blue line
is for −k. It is seen that there is one counter propagating Kramer pair on each edge. For L = 200 nm
the wave functions on each edge overlap due to finite size effects, this can lead to back scattering and
a edge gap.

which might be measurable. These results are in agreement with the work of Zhou et al. [45].11

These finite size effects might restrict the range of nano-scale applications of these HgTe/CdTe
quantum wells. Linder et al. [29] has done a similar investigation on the surface states of the
three-dimensional (Z2) topological insulator and has found out that they show a remarkable
robustness towards finite-size. Only when the sample size is about a few nanometers, a mea-
surable gap shows up.

Another interesting feature of the time reversal invariant topological phases are that the
edge states are believed to give rise to a quantized conductance G = 2e2/h and this has actu-
ally been observed experimentally. Furthermore these edge states are predicted to be insen-
sitive to weak (time-reversal invariant) impurity scattering and even weak interactions. These
properties are characteristic for these type of topological states of matter and it is therefore
of our interest to investigate them further. To do this we need a machinery to perform non-
equilibrium quantum transport calculations, which is the subject of the next chapter.

11Zhou et al. [45] uses the continuum model with the substitution ky →−i∂y since ky is not a good quantum

number anymore. Then to solve the differential equations they use a trial functions of the form eλy where λ ∈ C.
By a straightforward though very tedious calculation they end up with a semi-analytical solution.



CHAPTER 3. QUANTUM SPIN HALL EFFECT 17

Figure 3.6: The figure to the left shows the energy spectrum near the Dirac cone, where the blue and
red plots are for L = 800 nm and L = 200 nm, respectively. A energy gap emerges due to finite size
effects. The figure on the right shows the gap as a function of the sample width, the gap opens up
exponentially.



4 Keldysh formalism and
non-equilibrium Green’s functions

Contrary to a system in equilibrium, in non-equilibrium one cannot assume that the sys-
tem returns to its ground state (or thermodynamic equilibrium at finite temperature) as time
evolves. This means that in general the symmetry between t =−∞ and t =+∞, which is very
important in the equilibrium theory, does not exist due to possible irreversible effects. In the
case of non-equilibrium one can avoid this problem by allowing the system to evolve from the
remote past, t =−∞, to the moment of interest, t = t0, and then continue back to t =−∞. To
be able to speak of time ordering one can define a contour in the complex plane, so a time τ1

can be earlier than τ2 on this contour even though their real-time projections may be of re-
versed order. Using this complex time contour allows one to treat the non-equilibrium prob-
lem in a similar fashion as in the equilibrium case, since all expectation values are defined
with respect to a well defined state, i.e. the state which the system was in the remote past.
There is though a price to pay, one has to treat the two time branches on an equal footing.

I have realized that giving an introduction to the non-equilibrium theory and sketch the
proof of structural equivalence to the equilibrium theory is too time consuming. Since this
is not a central part of this thesis, I will assume the reader is familiar with this formalism
and knows about the analytic continuation rules (either Langreth theorem or the Keldysh
approach). Uninitiated readers might want to look through the lecture notes [19, 40, 18]1

(which can be found on the Internet) or classical books on the subject (for example Meir and
Wingreed or Haug and Jauho).

4.1 Non-equilibrium Quantum Transport

To study the robustness of the edge states on topological insulators against localized impuri-
ties, we need to calculate the steady-state current through the system. The formulas we are
looking for in this section was first derived by Meir and Wingreen [31] and Jauho et al. [20],
and we will more or less follow their approach.

The idea is quite simple, imagine that in the remote past the unperturbed system consists
of three uncoupled regions: a left lead, a right lead and our sample of interest in the center.
At t = −∞ the three regions maintain their own thermal equilibrium and one can associate
chemical potentials, µL and µR , to the left and right lead, respectively. Without loss of gen-
erality we shall assume that µL > µR . As the two leads are coupled to the sample, due to the

1The last reference is for people interested in the Functional Integral point of view. The notes are quit shal-
low, so it is recommended to start with Altland and Simons [1] for a good introduction to functional integrals in
equilibrium.
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difference in chemical potential, a current J starts to flow from the left to the right lead. After
some initial transient effects, a steady state current emerges.

Define c†
α (cα) to be the fermionic creation (annihilation) operator in the leads, where the

index α includes all the relevant quantum numbers necessary to uniquely define a state in the
leads. Taking the electrons to be non-interacting, we can write the Hamiltonian of both leads
in a condensed notation as

Hlead s =
∑

α∈L,R
εαc†

αcα. (4.1)

Since we are not investigating effects of interactions in topological insulators, we can similarly
write the central region Hamiltonian as

Hcen = ∑
n∈cen

εnd †
ndn , (4.2)

where d †
n (dn) is the creation (annihilation) operator in the central region. In a real space

lattice representation one can easily include impurities as on-site potentials through εn . Cou-
pling these systems as discussed, will give rise to a tunneling term

HT = ∑
α∈L,R
n∈cen

(
Vα,nc†

αdn +h.c.
)

(4.3)

and finally the total Hamiltonian may be written as H = Hlead s+Hcen+HT . Note however that
we may have to assume that the leads are sufficiently large that they maintain their chemical
potentials.

The average electric current from the left lead to the central region is defined as the aver-
age rate of change of particles times the electron charge

J =−e〈ṄL〉, (4.4)

where NL =∑
α∈L c†

αcα is the occupation number operator of the left lead and the time evolu-
tion is with respect to H. The time derivative is given by

ṄL(t ) = d

dt

(
e

i
~ H t NLe−

i
~ H t

)
= i

~
[H , NL](t )+ (∂t NL) (t ),

and since Hcen and Hlead s commutes with NL we are left with

ṄL = i

~
[HT , NL] = i

~
∑

α∈L,R
n∈cen

∑
β∈L

({
Vα,nc†

αdn +V ∗
α,nd †

ncα
}

c†
β

cβ− c†
β

cβ
{

Vα,nc†
αdn +V ∗

α,nd †
ncα

})

= i

~
∑

α∈L,R
n∈cen

∑
β∈L

(
Vα,n[c†

α,c†
β

cβ]dn +V ∗
α,nd †

n[cα,c†
β

cβ]
)

. (4.5)

Using the general formula [C , AB ] = {A,C }B−A{B ,C } and the usual fermionic anti-commutator
relations in equation (4.5), one can reduce equation (4.4) to

JL = i e

~
∑
α∈L

n∈cen

(
Vα,n〈c†

αdn〉−V ∗
α,n〈d †

ncα〉
)

(4.6)

One way to proceed is to express the averages in equation (4.6) in terms of Green’s functions,
since there exists several methods to calculate them. Looking at (4.6), it is natural to define
the lesser Green’s functions

G<
n,α(t , t ′) ≡ i 〈c†

α(t ′)dn(t )〉 (4.7)

G<
α,n(t , t ′) ≡ i 〈d †

n(t ′)cα(t )〉 (4.8)
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with the useful property of the time diagonal elements [G<
n,α(t , t )]∗ =−G<

α,n(t , t ). Inserting this
in equation (4.6) we find the following expression for the current:2

JL = e

~
∑
α∈L

n∈cen

(
Vα,nG<

n,α(t , t )−V ∗
α,nG<

α,n(t , t )
)= e

~
∑
α∈L

n∈cen

(
Vα,nG<

n,α(t , t )+ [Vα,nG<
n,α(t , t )]∗

)
= 2e

~
Re

{ ∑
α∈L

n∈cen

Vα,nG<
n,α(t , t )

}
. (4.9)

In order to proceed we need an expression for G<
n,α(t , t ). If we are able to find an expression

for the contour-ordered Green’s function

GC
n,α(τ,τ′) =−i

〈
TC

{
dn(τ)c†

α(τ′)
}〉

, (4.10)

an expression for G<
n,α(t , t ) can be found through analytical continuation rules. For this we

can use that the non-equilibrium Green’s functions have the same form as their T = 0 equi-
librium counterparts, so instead we consider the time-ordered equilibrium Green’s function
G t

n,α(t , t ′) = −i 〈Tt {dn(t )c†
α(t ′)}〉. Using the usual zero temperature equilibrium equation of

motion technique (see [7, p. 140]) we arrive at3

−i∂t ′G
t
n,α(t − t ′) = εαG t

n,α(t − t ′)+ ∑
m∈cen

V ∗
α,mG t

n,m(t − t ′), (4.11)

where G t
n,m(t−t ′) =−i 〈Tt {dn(t )d †

m(t ′)}〉. In case of no coupling between the leads and the cen-

tral region we define the decoupled time ordered Green’s function g t
α(t1, t ′) =−i 〈Tt {cα(t1)c†

α(t ′)}〉
and again using the equation of motion technique we obtain

(i∂t ′ −εα)g t
α(t1, t ′) = δ(t1 − t ′). (4.12)

Multiplying equation (4.11) with g t
α(t1, t ′) and integrating with respect to t ′ gives∫

dt ′
[−i∂t ′G

t
n,α(t , t ′)

]
g t
α(t1, t ′) =

∫
dt ′εαG t

n,α(t , t ′)g t
α(t1, t ′) (4.13)

+∑
m

∫
dt ′V ∗

α,mG t
n,m(t , t ′)g t

α(t1, t ′).

In order to make use of equation (4.11), we need to move the differentiation in the left hand
side of equation (4.13) to g t

α(t1, t ′). So it is natural to integrate by parts∫
dt ′

[−i∂t ′Gn,α(t , t ′)
]

g t
α(t1, t ′) =−i

[
G t

n,α(t , t ′)g t
α(t1, t ′)

]t ′=∞
t ′=−∞ (4.14)

+
∫

dt ′G t
n,α(t , t ′)

[
i∂t ′g

t
α(t1, t ′)

]
.

We must omit the first term since correlations on infinite time-scales are unphysical.4 By in-
serting this into (4.13), making use of the δ-function in (4.12) and substituting t1 ↔ t ′ we find

G t
n,α(t , t ′) =∑

m

∫
dt1V ∗

α,mG t
n,m(t , t1)g t

α(t1, t ′). (4.15)

2It might appear as if the average current is suddenly time dependent, but in steady state only time differences

matter. This means that G<
n,α(t , t ′) =G<

n,α(t − t ′) ⇒G<
n,α(t , t ) =G<

n,α(0,0) = i 〈c†
αdn〉.

3This is basically a matter of differentiating and using the relevant (anti-)commutator relations.
4I must admit that this is not so rigorous, but I think that this requirement should be imposed as a boundary

condition on physical grounds. Meir and Wingreen [31] and [20] do this differently and do not have this problem,
but I have failed in understanding their method.
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We are now able to exploit the structural equivalence between the equilibrium and non-equilibrium
theory by changing the integration to be along the Keldysh contour

GC
n,α(τ,τ′) =∑

m

∫
C

dτ1V ∗
α,mGC

n,m(τ,τ1)g C
α (τ1,τ′). (4.16)

According to the analytical continuation rules we obtain [19, 40, 18]

G<
n,α(t , t ′) =∑

m

∫
dt1V ∗

α,m

[
GR

n,m(t , t1)g<
α (t1, t ′)+G<

n,m(t , t1)g a
α(t1, t ′)

]
, (4.17)

where the superscripts R and a stands for the usual retarded and advanced greens functions,
respectively. Using that only time difference matters (in steady state) and the convolution
theorem for Fourier transforms, the average current may now be expressed as5

JL = 2e

~
∑
α∈L
n,m

∫
dω

2π
Re

{
V ∗
α,mVα,n

[
GR

n,m(ω)g<
α (ω)+G<

n,m(ω)g a
α(ω)

]}
. (4.18)

Now note that6 g<
α (t−t ′) = i 〈c†

αcα〉e−iεα(t−t ′) = i fL(εα)e−iεα(t−t ′) and similarly g a
α(t−t ′) = iθ(t ′−

t )e−iεα(t−t ′), where fL(εα) is the fermi-distribution for the left lead. By putting the α summa-
tion and the V ’s inside the line-width function Γm,n(ω) we find after a straightforward but
tedious manipulation

JL = e

h

∫
dω[ fL(ω)− fR (ω)]Tr

{
G aΓRGrΓL

}
, (4.19)

where we have used matrix notation instead of the n, m summations and used that in steady
state J = JL =−JR = (JL − JR )/2. In the limit T → 0, fL(ω) and fR (ω) are step functions, and to
linear order in µL −µR we find

JL = e

h
Tr

{
G aΓRGrΓL

}
(µL −µR ) = e2

h
Tr

{
G aΓLGrΓR

}
(VL −VR ). (4.20)

Finally the linear conductance is then given by

G = JL/(VL −VR ) = e2

h
Tr

{
G aΓRGrΓL

}
. (4.21)

It is assumed that the spin is included in the n, m summations or else a factor of two is nec-
essary.

4.2 Self-energies

In studying the effects of disorder on the electronic state of HgTe/CdTe QW’s, we will model
the two leads as semi-infinite clean copies of the HgTe/CdTe sample. This introduces some
difficulties since semi-infinite leads will inevitably make the total Hilbert space (and thereby
Hamiltonian) infinite-dimensional. This problem can however be solved. The retarded Green’s
function of the central region can be calculated by, loosely speaking, renormalizing the contri-
bution of the leads into self energies and adding them to the central region Hamiltonian. This

5The factor eiω(t−t ′) is not present since t = t ′.
6Recall that these are Green’s functions in the isolated lead, thus the time-evolution and average is with respect

to the left lead Hamiltonian only.
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may be regarded as the effective Hamiltonian of the system, although it will not be hermitian
in general.7

The central region retarded Greens function is given by, [8, 9, 44]

Gr
cen = (E I −Hcen −ΣL −ΣR )−1 , (4.22)

where Hcen is the Hamiltonian matrix of the decoupled central region, and Σ[L,R] are the self-
energy terms due to the coupling with the leads. The self-energies can be expressed as

ΣL = H †
LC gL HLC ,

ΣR = HC R gR H †
C R , (4.23)

where HLC and HC R are the coupling matrices that are nonzero only for adjacent points in
the central region. The matrices gL and gR are the surface Green’s functions of the left and
right lead, respectively. The surface Green’s functions are to be understood as sub-blocks of
the semi-infinite leads’ retarded Green’s functions (infinite dimensional matrix). Finally the
matrices Γ[L,R] are related to the self energies by [8, 9]

Γ[L,R] = i
[
Σ[L,R] −Σ†

[L,R]

]
.

Clearly the key issue is how to calculate gL and gR , since getting them from the full Green’s
function would involve inverting infinite dimensional matrices.

In the literature many different numerical methods exits for this purpose, with the so
called recursive Green’s function method, being the most popular. However we will use the
method developed by Lee and Joannopoulos [27] since it is both faster and easier to imple-
ment than the usual recursive algorithm. Although the authors developed this method for
surface-band calculations, a small modification makes it also useful for transport problems
[44].8 We briefly summarize this scheme, for detailed derivation see [27].

Surface Green’s functions of semi-infinite leads

In the following we will concentrate on the right lead. Consider a semi-infinite two dimen-
sional system and assume that it can be described by localized orbitals on a lattice. Now de-
compose the leads into a semi-infinite stack of principal layers, where a principal layer is the
smallest group of neighboring atomic layers such that only nearest-neighbor interactions be-
tween principal layers exist. We will restrict ourself to systems with only one type of principal
layers, although it is no difficult to generalize to more complicated situations. Assume that
each principal layer has µ lattice points and let φα(l ) be an orbital in the l ’th principal layer9.
The Hamiltonian can then be written in a block-matrix form

H =


H00 H01 0 . . .
H10 H11 H12

0 H21 H22
. . .

...
. . .

. . .

 (4.24)

7Actually the conductance will vanish if the self energies are hermitian.
8This method can also straightforwardly be used to calculate LDOS of 3D topological insulator surfaces, useful

for explaining STM experiments.
9Each lattice site may of course contain several bands, as is the case with our HgTe/CdTe sample. In such

situations, φα(l ) can be thought of as a spinor.
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where each sub-block, Hl l ′ , is given by

[Hl l ′ ]αβ = 〈φα(l )|H |φβ(l ′)〉

for α,β = 1,2, . . . ,µ and l , l ′ = 0,1, . . . ,∞. In this picture Hl l describes the l ’th principal layer
while Hl l+1 and Hl+1l describes the interactions with the nearest neighbors. The matrix ele-
ments of the Green’s function are given by10

[Gl l ′(E+)]αβ = 〈φα(l )|(E+−H)−1|φβ(l ′)〉, (4.25)

where E+ = E + iη and η is an infinitesimal positive number. Since we have chosen the zeroth
principal layer as the surface of the semi-infinite lead, G00 is the surface Green’s function we
are looking for. Looking at (E+− H)G = I in the basis of equation (4.25), it is easy to see that
only the first column couples to G00. Thus the set of matrices {Gl0;0 ≤ l <∞} must satisfy

(E+−H00) −H01 0 . . .

−H †
01 (E+−H00) −H01

0 −H †
01 (E+−H00) −H01

... 0 −H †
01

. . .




G00

G10

G20
...

=


I
0
0
...

 (4.26)

where we have used that only one inequivalent principal layer is considered. Meaning that
H00 = Hl l , H01 = Hl l+1 and Hl+1l = H †

l l+1 for 0 ≤ l < ∞. Now define the transfer matrix as
follows:

T (E+) =
(

H−1
01 (E+−H00) −H−1

00 H †
01

I 0

)
, (4.27)

it is straightforward to see that (
G(n+1)0

Gn0

)
= T n

(
G10

G00

)
. (4.28)

Lee and Joannopoulos [27] proves that the outcome by affiliating an infinitesimal positive
imaginary part with E is that half of the eigenvalues of the 2µ×2µ matrices T (E+) have mod-
ulus less than 1 and half have modulus greater than 1. Let us assume that |λβ| < 1 when
1 ≤β≤µ and |λβ| > 1 when µ+1 ≤β≤ 2µ.

Equation (4.28) shows that the transfer matrix somehow contains information about the
Green’s functions on each principal layer and the main idea is that we want to express the
surface Green’s function in terms of the eigenvectors of T (E+). In order for the surface Green’s
function to satisfy (4.28) and remain normalizable, one must only retain the eigenvalues |λβ| <
1. This implies that

(
G(n+1)0

Gn0

)
can be expanded in terms of the eigenvectors eβ(E+) with 1 ≤λβ ≤

µ. In particular, we may write (
G10

G00

)
=

(
S2G 1

S1G 1

)
with

(S1)αγ = vα ·eγ,

(S2)αγ = uα ·eγ,

10Recall the definition (E+−H)G = I . Multiplication with identity matrices of correct size is implied.
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Figure 4.1: A more convenient way of numbering the lattice sites. The left lead corresponds to m =
−∞, . . . ,0, the central region m = 1, . . . , Nx Ny and the right lead m = Nx Ny +1, . . . ,∞.

where α,γ= 1,2, . . . ,µ, uα and vα are 2µ-dimensional column vectors with components given
by (uα)i = δα,i and (vα)i = δα+µ,i . The matrix G 1 represents the unknown expansion coeffi-
cients, while the eigenvectors with eigenvalues λβ < 1 are represented by S1 and S2. Finally it
can be shown that the surface Green’s function gR (=G00) is given by

gR = [
(E+−H00)−H01S2S−1

1

]−1
. (4.29)

To obtain the surface Green’s function of the left lead one has to make the substitution H01 →
H10 in equation (4.27) and (4.29), since the surface is along the other end.

The HgTe/CdTe Hamiltonian

All in all one needs the H00 and H01 matrices to calculate the surface Green’s functions of the
leads, then afterwards the central region Hamiltonian matrix plus the coupling matrices to
calculate the central region retarded Green’s function. Having found all that, equation (4.21)
finally gives the linear conductance. In order to obtain the needed matrices for our system of
interest we have to introduce the Fourier transform

ck = 1

Ω

∑
i j

e i k ·R cR ,

in equation (3.12), where R = (i , j ), to get the Hamiltonian

H =∑
i j

(
M c†

i j ci j +Ty c†
i j ci j+1 +T †

y c†
i j+1ci j +Tx c†

i j ci+1 j +T †
x c†

i+1 j ci j

)
, (4.30)

M = [C −4D]Γ0 + [M −4B ]Γ5, (4.31)

Ty = DΓ0 + i A

2
Γ2 +BΓ5, (4.32)

Tx = DΓ0 + i A

2
Γ1 +BΓ5, (4.33)

where the sum is over all the sites. This may be written in the form H =∑
i j Hi i ′ j j ′c

†
i j ci ′ j ′ with

Hi i ′ j j ′ =Mδi i ′δ j j ′ +Tyδi i ′δ j+1 j ′ +T †
y δi i ′δ j j ′+1 +Txδi+1i ′δ j j ′ +T †

x δi i ′+1δ j j ′ . (4.34)

Taking the leads to be along the x-direction, the blocks in the matrix (4.24) is constructed
by defining (Hi i ′) j j ′ = Hi i ′ j j ′ . In particular (H00) j j ′ = Mδ j j ′ +Tyδ j+1 j ′ +T †

y δ j j ′+1, (H01) j j ′ =
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Txδ j j ′ and H10 = H †
01 or in matrix form

H00 =


M Ty

T †
y M

. . .
. . .

. . . Ty

T †
y M

 H01 =


Tx

. . .
. . .

Tx

 , (4.35)

where both matrices are 4Ny ×4Ny .
Next we need to find the central region Hamiltonian which consists of the clean part (4.30)

and a part with randomly distributed impurities. It is convenient to reduce the two indices
i = 1, . . . , Nx , j = 1, . . . , Ny into one m = 1, . . . , Nx Ny , by the change of basis shown in figure

4.1.11 Thus Hcen =∑Nx Ny

m,m′=1 hmm′c†
mcm′ with

(Hcen)mm′ ≡ hmm′ = (M +Wm)δmm′ +Tyδm+1m′ +T †
y δmm′+1 +Txδm+Ny m′ +T †

x δmm′+Ny ,
(4.36)

which is a 4Nx Ny ×4Nx Ny matrix. Here Wm is the on-site impurity potential

Wm =


W↑+,m

W↑−,m

W↓+,m

W↓−,m

 ,

where the coefficients are disorder energies uniformly distributed in the range [−W
2 , W

2 ], for
non-magnetic impurities we have W↑+,m = W↓+,m and W↑−,m = W↓−,m . Finally by looking at
figure 4.1 one can see that the tunneling between the leads and the central region is given
by12

HL↔C+HR↔C =
Nx Ny∑
m=1

0∑
m′=−Nx+1

(
T †

x δm,m′+Ny c†
mcm′ +h.c.

)
+

Nx Ny∑
m=1

(Nx+1)Ny∑
m′=Nx Ny+1

(
Txδm+Ny m′c†

mcm′ +h.c.
)

,

(4.37)
which is written in a form easy to implement.

4.3 Numerical implementation

By looking at the steps involved in implementing this calculation, it appears to be a very sim-
ple and straightforward task. And indeed it is. But one quickly realizes that even for very small
systems, say a 30×20 lattice, calculating the conductance just one time is almost impossible
even for a rather fast modern computer. But we are interested in calculating the conductance
for, say 100 different values of W , using much bigger systems and averaging several hundred
times for each fixed W . Other authors, for example [21], have had access to huge clusters with
several hundred processors and many gigabytes of ram. It is therefore impossible to do any-
thing useful with a naive implementation. The single most challenging and time consuming

11In this representation we only need one set of annihilation cm and creation c†
m operators.

12We have to use Tx since the leads are connected to the central region only in this direction. The sum has to
be over all sites in the central region but only over the surface sites of the leads to get the correct sized matrices

(see equation (4.23)), off course only the coupling between the surfaces are non-zero. Whether to use Tx or T †
x

depends on which way the fermions "jump".
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part of this project was to optimize the code.13 A detailed account of what was done is beyond
the time and space limit of this work, but I will mention a few of the most important aspects.

Three 64 bit computers, each with 8 cores ∼ 3 GHz and 2 Gigabytes of RAM, were available.
The strategy was to make use of multi-threaded programming in well-chosen places and keep
the RAM usage low.14 First of all, in equation (4.22) we have to invert some huge matrices.
Using a 200×80 lattice, the size of the matrices will be 4Nx Ny ×4Nx Ny = 64.000×64.000 which
is impossible even if we had much more RAM available.15 A simple analysis reveals that in
equation (4.21) only the upper right 4Ny × 4Ny sub-block of the Green’s function is needed
and not the whole matrix. For this part the algorithm proposed by Drouvelis et al. [10] was
used, but with some small modifications (be aware of some crucial misprints in their paper).
This algorithm reduces the numerical complexity from about (4Nx Ny )3 to about 7Nx N 3

y for a
single processor (and even more if the multi-threaded version is utilized).

Another problem is that just writing for example Hcen once for a 200×80 lattice without
any calculation, takes more than one minute. Since we need to average over many systems of
randomly distributed impurities, only this (almost trivial) operation will take several weeks to
accomplish. Furthermore it eats up all the RAM. The way to solve this problem is to rewrite
this, and many other matrices, as sparse matrices and thereby make these operations ridicu-
lously fast with almost no RAM usage.16 Other type of problems are matrix multiplications
which also have a N 3 numerical complexity. For example the multiplication in equation (4.23)
can be made much faster and more RAM friendly by noticing that due to the form of the cou-
pling matrices, only a few elements end up being non-zero. So by some clever tricks, this sort
of problems are easily solved.

Parallel programming is used many different but strategically chosen places, for example
while calculating the self energies and averaging over different random configurations. In-
stead of averaging uniformly as a function of W , a special function has been constructed to
average more when it is needed and less when it is not. This function has some parameters
which can be used to adjust the profile to meet ones needs. A final thing worth mentioning
is that in order to calculate local density of states, another part of the Greens functions are
needed. The algorithm proposed by Drouvelis et al. [10] will not be useful anymore. For this I
have used a modified version of the algorithm proposed by Godfrin [14].

All this hard work does not only make this calculation possible to perform, but it also
makes it more environmental friendly. Who knows, maybe this sacrifice will be the reason
why the earth and humanity survives in the end?

13Well, another time consuming task was to find an apparently invisible bug in the code. After a month of
stagnation it turned out to be a small misprint in an article and not the code.

14Mainly because the RAM is one the few weaknesses of the computers available and by using 8 threads on
each computer, the ram usage gets 8 times bigger.

15Note that although E I −Hcen −ΣL −ΣR is sparse, the inverse will we a dense matrix in general.
16The transfer matrices should not be converted to sparse matrices, since eigenvalue/vector algorithms for

dense matrices are much faster for large matrix size.



5 Topological Anderson Insulator

We are now able to perform non-equilibrium quantum transport calculations to see whether
the conductance of the edge states is quantized in exact units of 2e2/h and whether this
quantization is insensitive to weak non-magnetic impurities. To summarize, we have a two-
dimensional HgTe/CdTe system with Nx × Ny lattice sites which is connected to two leads
with different chemical potentials. The leads are modeled as two semi-infinite clean copies
of the HgTe/CdTe sample, while non-magnetic impurities are spread randomly on the central
region. The impurities are taken to be simple on-site potentials with energies in the range
[−W

2 , W
2 ], spread according to the uniform distribution. This setup is widely used in the An-

derson localization literature.

5.1 Results of transport calculations
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Figure 5.1: The average conductance 〈G〉 and standard deviation δG as a function of the disorder po-
tential W for different values of the Fermi energy E f . The lattice size is 200×80 and there have been
averaged over up to 180 random configurations.

In figure 5.1 the average conductance 〈G〉 and fluctuations δG as a function of the disorder
potential W is shown for different values of the Fermi energy E f . It is recommendable to
take a look at the energy spectrum in figure 3.4 to understand where the Fermi level lies. As
predicted, when the sample is in the QSH state (M = −10) and the Fermi energy in the bulk

27



CHAPTER 5. TOPOLOGICAL ANDERSON INSULATOR 28

gap (E f = 7) the conductance is exactly G = 2e2/h. This is due to a spin up and one spin down
current on opposite edges, each contributing with e2/h.1 As the Fermi energy is raised above
the bulk gap, the conductance naturally grows since the bulk channels are also conducting
(for W = 0).

When impurities are introduced the remarkable topological stability of the edge states
(E f = 7) are seen, the conductance remains perfectly quantized for a large range of W . Only
above a high level of impurities, the conductance begins to fall and the edge states become
localized. This property is a key signature for experimental identification of the QSH phase.
It is also worth noticing that the standard deviation is identically zero while the conductance
is quantized, and only at large W , fluctuations are observed. This means that the edge states
remain insensitive for any impurity configuration and not only on average. Of course this is a
clear sign that no scattering occurs and the edge flow is dissipationless. For all Fermi energies
in the bulk gap there is no qualitative change of this behavior.

For energies above the bulk gap the conductance falls due to impurity scattering, which is
expected. Highly surprising at a critical Wc (which clearly depends on E f ) the conductances
are getting quantized with G = 2e2/h, where usually Anderson localization is observed. Fur-
thermore as long as this quantization maintains, the fluctuations are identically zero. This
resembles the case with the Fermi energy lying the in bulk gap and with some courage one
may postulate that topologically robust edge states have emerged due to impurities. Even
more surprising, when M = 2, and the HgTe/CdTe QW is in the trivial insulating state, the
exact same phenomenon is seen. Remember that for M = 2 (W = 0) there are no topologi-
cal effects, even when the Fermi energy lies in the bulk gap (see figure 3.4) and seeing these
effects emerge due to impurities are more surprising than in the M = −10 case. It is natural
to suspect that at this critical Wc a topological phase transition occurs. Another puzzling as-
pect is that when the Fermi energy is below the bulk gap, nothing interesting happens other
than Anderson localization (not shown on the figures). These surprising effects were recently
discovered by Li et al. [28] in numerical simulations similar to ours and later verified by Jiang
et al. [21] by a new set of simulations. Li et al. [28] baptized the phase as Topological Anderson
Insulator.2

Of course the question remains, does this conductance quantization have anything to do
with edge states? To answer this question the average conductance has been calculated for
different sample width Ly = aNy at a fixed Fermi energy (E f = 15). In figure 5.2 this is shown
for M = −10 (left figure) and M = 2 (right figure). For no impurities the conductance grows
for larger sample width, since more conducting channels become available (for E f = 15, the
sample is conducting). When W is increased a phase transition occurs at a critical Wc to the
TAI state, the conductance is G = 2e2/h with δG = 0 and Wc does not depend on the sample
size. This indicates that when the system is in the TAI state the conducting channels might
be living near the sample edge, if the bulk was conducting the conductance should grow for
larger width.3 For M = 2 the same thing happens, but although Wc is independent of the
length it clearly depends on M .

A way to see were these conducting states are localized is by calculating the local density
of states (LDOS), which is given by the usual formula ρ(y) =− 1

π
1

Nx

∑Nx
x=1 G(x, y), here we have

1When the system is in non-equilibrium, the states propagating in the other direction are not occupied.
2Our simulations are in great agreement with other similar works.
3Of course, this is not a proof. The conducting channel could as well be in the middle of the sample. Or

maybe the whole bulk is conducting but the current is redistributed as the width is increased, such that the overall
conductance is quantized and unchanged.
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Figure 5.2: The average conductance 〈G〉 and standard deviation δG as a function of the disorder po-
tential W for different sample width Ly = aNy . The Fermi energy is fixed at E f = 15 and there have
been averaged over up to 150 random configurations. The left figure is for M = −10 and the right for
M = 2.

average over the sites in the x-direction.4 This is shown in figure 5.3 for a 200×80 lattice with
M = −10, but for different values of E f and W . As expected, in the case with no impurities
and the Fermi level lying in the bulk gap (E f = 7), states are only present along the edges of the
sample while the bulk is insulating. When the Fermi energy is raised to E f = 15, states become
available in the bulk since we are in the conduction band. Now impurities are introduced
with W = 50, such that the system is not in the TAI state (see figure 5.1). The bulk states
seem to be affected by the impurities, again expected. We are not averaging over different
impurity configurations so calculating ρ twice for W = 50 gives two different results due to
fluctuations, but nothing changes qualitatively. Finally when W = 100 and we are in the TAI
state, the bulk states are gone while only edge states are present. No fluctuation are seen when
this is calculated for different impurity configurations, in agreement with figure 5.1.

In order to convince the reader even more we have implemented local current calculations
into our program, but due to lack of computational power we are unable to perform these
calculations for big enough lattices such that TAI state is seen clearly.5 Jiang et al. [21] have
done similar calculations and we have borrowed some of their figures, only the spin up sub-
system is shown. They use the same setup as us except that they only put impurities in a
region in the middle of the sample, furthermore they average 500 times since they have access
to more computational power. In figure 5.4 (left) the system is in the QSH state and it is seen
that current is only non-zero along the upper edge (spin down along the lower edge). As long
as the system remains is this phase (see figure 5.1) the edge states are preserved. In figure

4Here we are in the equilibrium situation (no leads present). The Green’s function in equilibrium is given by

G = [
(E + iη)I −Hcen

]−1, and G(x, y) is then given by the diagonal elements of G . Since this is written in the basis
shown in figure 4.1, one has to construct a simple function translating between the lattice coordinates (x, y) and
m.

5Local current calculations require the whole central region Green’s function and as described earlier this is
impossible to calculate directly for large systems unless a huge cluster is available. But I have some ideas which
might make this task possible to perform, but it requires too much time to implement and test through. Maybe
this will be implemented in the future.



CHAPTER 5. TOPOLOGICAL ANDERSON INSULATOR 30

0 2 0 4 0 6 0 8 0
x

(a) E f = 7 and W = 0.

0 2 0 4 0 6 0 8 0
x

(b) E f = 15 and W = 0.

0 2 0 4 0 6 0 8 0
x

(c) E f = 15 and W = 50.

0 2 0 4 0 6 0 8 0
x

(d) E f = 15 and W = 100.

Figure 5.3: Local density of states ρ(x) for a 200×80 lattice in equilibrium, meaning no leads present.
For all figures M =−10.

5.4 (right) the Fermi energy is in the conduction band and bulk transport exists. But after a
transition into the TAI phase (compare with figure 5.1) the bulk states are localized and no
local transport is seen, but along the upper edge current is still flowing. The same qualitative
behavior is seen when M > 0 [21]. Thus we conclude that topologically robust edge states
emerges as the result of impurities, which gives rise to a ideally quantized conductance.

5.2 Disorder induced band inversion mechanism

The topological Anderson insulator is a amazing and unexpected state of matter which will
hopefully be experimentally observed. So far we have only discussed numerical calculations
and an understanding of the underlying mechanism is still missing. The figures 5.1 and 5.2
gives us a few important clues. It is observed that the critical disorder strength Wc is indepen-
dent of the sample size, but clearly depends on the Fermi energy E f and the topological mass
M . When E f is in the valence band, TAI is not observed. When E f is in the conduction band
Wc grows for larger E f , so even bigger disorder strength is required when the Fermi level is
farther away from the QSH edge states (the bulk gap). From the figures 5.3 and 5.4 we see that
the TAI state looks very similar to the QSH state.

An explanation consistent with these observations is that the chemical potential6 and the
topological mass is decreased because of impurities, so for a fixed W the system has a effective
chemical potential µ̄ and topological mass M̄ . By this way E f is dragged down to the bulk gap
where edge states exists, for larger E f more "down dragging" has to be done (larger Wc )7 All

6At T = 0 the chemical potential is identical to the Fermi energy.
7And if the system is in the trivial insulating phase, the topological mass M is decreased to flip sign, so that

the system get into the inverted band regime. This creates edge states in the bulk gap.
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(a) (a) W = 0, (b) W = 50, (c) W = 110, (d) W =
220.

(b) (a) W = 0, (b) W = 65, (c) W = 100, (d)
W = 250.

Figure 5.4: Local current calculations for a 200× 80 lattice with impurities distributed in 40a < X <
160a. The Fermi energy for the left figure is E f = 7 while for the right E f = 18, furthermore we have
M =−10 for both figures. Only the spin up subsystem is shown. The colors represent the length of the
local current vectors. These figures are taken from [21].

the stated observations can be explained by this idea.
To understand the origin of this mechanism, take the continuum Hamiltonian for the spin

up sub-system (3.5) (the spin down sub-system is given by time reversal) and replace k → p =
−i∇∇∇ since the translational symmetry is broken,

h =α(
pxσx −pyσy

)+ (
m +βp2)σz +

(
γp2 +U (x, y)

)
σ0, (5.1)

where α = A, β = −B , γ = −D , m = M have been introduced to keep the signs of the pa-
rameters positive (compare with experimental values) and have the same notation as [15].
U (x, y) represents the impurity potentials.8 Elastic scattering by a disorder potential causes
states to become localized, meaning that they will exponentially decay as a function of space
φ(x, y) → φ(x, y)e−(x+y)/λ. Therefore term βp2σz = −β∇2σz adds a negative correction −δm
to the topological mass, while the term γp2σ0 shifts the chemical potential. The the renor-
malized topological mass m̄ = m − δm may have opposite sign than the bare mass m and
effectively cause a phase transition. This idea was proposed by Groth et al. [15] soon after the
discovery of the TAI state.9

Let H0 (H) denote the spin-up lattice Hamiltonian for the clean (dirty) system in momen-
tum representation and define a self-energy Σ through(

E f −H0 −Σ
)−1 =

〈(
E f −H

)−1
〉

, (5.2)

where 〈· · · 〉 is the disorder average. Now H0 −Σ can be thought of as an (in general non-
hermitian) "effective Hamiltonian". Decompose the self-energy into Pauli matrices Σ=Σ0σ0+

8Again, these potential are uniformly distributed in the interval [−W
2 , W

2 ].
9At this moment, only three papers have been published concerning TAI, namely [28, 21, 15].
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Σxσx +Σyσy +Σzσz . Groth et al. [15] argue that only the topological mass and the chemical
potential are renormalized and given by (compare with equation 5.1)

m̄ = m + lim
k→0

ReΣz , µ̄= E f − lim
k→0

ReΣ0. (5.3)

Using the self-consistent Born approximation, Σ is given by the integral equation [15]

Σ= 1
12W 2 (a/2π)2

∫
dk

[
E f + iη−H0(k)−Σ]−1 , (5.4)

where the integral is over the first Brillouin zone.
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(a) 200×80 lattice with M =−10, averages up to 180
times.
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(b) 200×90 lattice with M = 1.5, averages up to 250
times.

Figure 5.5: Phase diagram calculated using the quantum transport code. The blue "islands" corre-
spond to the TAI phase, where G = 2e2/h.

In figure 5.5 the phase diagram is numerically calculated for M =−10 and M = 1.5.10 Due
to time constrain, we have not solved equation (5.4) numerically. But Groth et al. [15] have
done so and plotted the two branches corresponding to m̄ changing sign and µ̄ being inside
the bulk gap (see figure 3.4) as function of E f and W . Quit amazingly the E f and W for which
these two conditions are fulfilled, corresponds exactly to the areas shown in figure 5.5 (see [15]
for more details).

This mechanism for the conversion of an ordinary insulator into a topological insulator
is not restricted by dimension, it relies only on the Dirac equation with quadratic momen-
tum terms. Narrow-band semiconductors with strong spin-orbit coupling are generally, for
low energies, described by this type of Dirac equations. As discussed earlier, the HgTe/CdTe
quantum well has an intrinsic mechanism for band inversion. This is done by changing the
well thickness. Other materials described by similar equations may not have any intrinsic
mechanism to do this, for these materials disorder can be the key to access topological states.
New and exiting topological insulators without an intrinsic band inversion mechanism may
be found in the near future.

10In figure 5.5 for M = 1.5 one cannot see any TAI phase when E f is in the gap. In reality this phase also exists
there (for W ≈ 100), but since our lead are exact copies of the sample it is gaped for theses energies. If we had
doped our leads or used metallic leads, the TAI phase would be slightly bigger.



Conclusion

In this project we have demonstrated that completely states of matter exist, which cannot be
explained by Landau’s symmetry breaking paradigm. These states are described by topological
invariants which play the role of an "order parameter". We have shown how edge states, the
most fundamental property of these phases, are seen in the energy spectrum for both time
reversal breaking and time reversal invariant systems.

Furthermore we have build a useful program able to perform non-equilibrium quantum
transport calculations. This has been used to study Anderson disorder on the HgTe/CdTe
quantum well and the topological Anderson insulating phase was shown explicitly and ana-
lyzed. As discussed, this disorder induced band inversion mechanism may proof useful in cre-
ating and controlling new topological insulators without any intrinsic band inversion mecha-
nism and thereby expanding the class of topological matter. I am however not sure if it correct
to classify the TAI as a distinct phase than the QSH state. The topological "order parameter"
are in both cases the same, it is the Z2 topological invariant and they are clearly not topologi-
cally distinct. The TAI is only a new non-intrinsic but disorder induced mechanism to obtain a
QSH system. But in the end, it depends on how we choose to define a "phase". Is the topolog-
ical/symmetrical order the defining element, the mechanism for phase transition or maybe
something completely different?

Our program can easily be used to study the TAI and the QSH system even further. For
example studying the response to magnetic fields, or magnetic impurities which both are time
reversal breaking perturbations.
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