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Abstract

The field of optical atomic clocks is of great scientific interest, as the stability and
accuracy of the atomic clocks are significantly greater in the optical spectrum than
in the microwave spectrum. To achieve high stability it is important to stabilize the
frequency of the clock laser and characterize it as well as the transition line width
of the reference atoms. In this thesis the clock laser and the reference atoms of
the 24Mg atomic clock setup, at the laser group at the Niels Bohr Institute at the
University of Copenhagen, has been characterized.

The master laser line width was determined to be in the kilohertz regime by
two different methods. First by analyzing the Pound-Drever-Hall error signal, and
secondly by analyzing the amplitude noise of the reflection of the master laser from
a Fabry-Pérot cavity. The line width of the clock transition was measured to be in
the megahertz regime by spectroscopy and further characterized. The ac Stark shift
of the ground level was investigated.

It was observed that the Doppler broadening must be highly reduced, or even
eliminated, to achieve higher stability of the atomic clock. Finally the future per-
spectives and applications of optical lattices has been discussed.

Resumé

Forskningsfeltet inden for optiske atomure er af stor videnskabelig interesse, da
stabiliteten og nøjagtigheden af atomure er markant højere i det optiske spektrum
end i mikrobølge spektret. For at opnå høj nøjagtighed er det vigtigt at stabilisere
frekvensen og karakterisere linjebredden af clock-laseren såvel som linjebredden af
reference atomerne. I dette projekt blev clock-laseren og referenceatomerne i 24Mg
atomuret i laserlaboratoriet på Niels Bohr Institutet ved Københavns Universitet
karakteriserede.

Linjebredden af master-laseren blev bestemt til at være i kilohertz området ved
hjælp af to forskellige metoder. Først ved analyse af Pound-Drever-Hall errorsignalet
og dernæst ved analyse af amplitudestøjen af master-laserens reflektion fra en Fabry-
Pérot kavitet. Linjebredden af clock-overgangen blev karakteriseret og fundet til
at være i megahertz området. Derudover blev ac Stark-skiftet af grundtilstanden
undersøgt.

Det blev yderligere observeret, at Doppler bredden skal reduceres kraftigt, el-
ler helst elimineres helt, for at opnå højere stabilitet. Slutteligt blev de fremtidige
perspektiver af optiske fælder diskuteret.
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1 Introduction
If you want to build a clock you basically need two elements: an oscillator with a well
known frequency and a counter to count the oscillations. The first well known frequency
standards were the oscillation of day and night, and the annual return of the seasons.
These defined accurate time units to keep track of time. A frequency standard is a well
known stable frequency from an oscillating system which can be used as a reference for a
clock. As time units were developed by dividing the time in smaller intervals, such as the
24 hours of a day, higher frequency standards were needed.

In the 17th century mechanical pendulum clocks with great stability and accuracy
were developed losing only one minute per day.
Later on in the 20th century the clock development accelerated. First by use of quartz
crystals with a precision of losing only one second in three years, but even more impor-
tantly by the invention of the Caesium atomic clock which, in the beginning of the 21st
century, had a loss of only one second in 30 million years! [1].

In atomic clocks the electric field of a laser is used as an oscillator. To ensure that
the laser can be used as a frequency standard it is tuned into at a well defined frequency.
Narrow banded atomic transitions are here used as references [1], such as the hyperfine
transition in the Caesium clock or the forbidden singlet ↔ triplet transition in the mag-
nesium optical clock. The former is with a number of atomic clocks in the JILA institute,
Colorado USA, and in the SYRTE department of the Paris Observatory currently used
in the SI definition of the second [2, 3]. The latter is investigated in the laser laboratory
of the Niels Bohr Institute at the University of Copenhagen (NBI) as a possible optical
clock transition similar to the optical Sr-atomic clocks in JILA and SYRTE [2, 3]. From
now on we will refer to the laser used for the atomic clock at NBI as the clock laser.

A 24Mg atom in Copenhagen is from quantum mechanics known to be identical with
a 24Mg atom in Paris or on Mars [4]. Hence by using well defined atomic transitions it
is possible to have the exact same reference in experimental setups in different parts of
the world, as long as the atoms are shielded from external perturbations such as electric
and magnetic fields. This is one of the great advantages of the atomic clock, besides from
being both more accurate and precise than any other type of clocks ever invented.

All clocks are characterized by their accuracy and stability. The accuracy of an atomic
clock describes how well the frequency of the clock laser, νL, corresponds to the frequency
of the atomic transition, ν0. The stability describes how much the measured clock fre-
quency fluctuates over a given averaging time, τ [5]. The latter depends on the stability
of the reference atoms and their lack of stability can be described by the Allan devia-
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tion [5–7]:

σ(τ) = χ

2πQS/N

√
tc
τ
∝ 1
Q

√
tc
Naτ

. (1)

Q = νcl/δνcl is the quality factor of the clock transition with δνcl being the line width of
the clock transition. S/N is the signal-to-noise ratio which in most cases is proportional
with

√
Na, where Na is the number of reference atoms. Finally tc is the measuring time

and χ is a constant close to unity dependent on the probing method.

The Allan deviation is an analytically derived ideal statistical measure of frequency stabil-
ity. Besides the quantities present in the expression for the Allan deviation, the stability
of an atomic clock is determined by the frequency line width of the clock laser, δνL, as
a narrow transition line width requires a laser with a narrow line width to be measured.
The stability is also determined by experimental conditions such as the floating of the
clock laser frequency νL during the averaging time τ .

The development of atomic clocks in the microwave region has played a major role in
various fields of science. The duration of one second has since 1967 been defined as
9 192 631 770 periods of the oscillating electric field from transition of the two hyper-
fine levels of the ground state of the Caesium-133 atom as mentioned above [2, 3]. The
predictions of Einstein’s theory of special relativity has been verified to a precision of
10−10 [1, pp. 244]. Furthermore the atomic clocks have made major improvement in
navigation accuracy and the Global Positioning System (GPS) based on more than 24
satellites with atomic clocks is now applied everywhere in our everyday life.

1.1 Challenges
The attempt to obtain more stabilized atomic clocks gives us a number of challenges.
Historically, the first atomic clocks were based on clock lasers in the microwave regime,
ν ∼ 10 GHz. The reason being that the experimental setup did not allow measurements
of oscillations faster than microwave frequencies [8]. In 2005 a Nobel prize was given
for the development of an optical frequency comb [9], which made it possible to measure
optical frequencies. The possibility for improvement of the atomic clock stability by using
optical frequencies, ν ∼ 5·1014 Hz, is obvious when looking at the Allan deviation, Eq. (1),
since σ(τ) ∝ ν−1

0 through the Q-factor and σ will be significantly decreased for greater
clock transition frequencies. The stability can also be improved through the S/N -ratio by
increasing Na. This will increase the collisional shift of the the energy levels of the clock
transition. Hence decrease both the accuracy and the stability of the atomic clock.
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1.2 This thesis
In order to build an atomic clock we basically need a well defined and stabilized clock
laser, a large amount of atoms, and a way to measure the oscillation of the clock frequency.
Unfortunately the extend of this thesis do not us to go through all three subjects here, so
we have chosen the first two.

The stabilization of the clock laser is of great importance for the stability of the clock
and we will start in section 2 by investigating the laser system used at NBI. Here the clock
laser is produced by frequency doubling a 914 nm laser, referred to as the master laser,
which is stabilized by the Pound-Drever-Hall laser locking technique. The line width of
this stabilized master laser is determined by two different methods in section 2.2 and 2.3
respectively.

The reference atomic system of laser cooled magnesium atoms trapped in a Magneto
Optical Trap (MOT) is examined in section 3, and the line width of the clock transition
is characterized. The Doppler broadening caused by the thermal movements of the mag-
nesium atoms is of great importance, as the line width of the clock transition is strongly
broadened by this. This broadening is determined in section 3.3.1. Magnesium atoms are
laser cooled to reduce this broadening but since this cooling technique is based on the
Doppler effect there is a lower limit for the temperature achieved [10].

A way of eliminating the Doppler broadening below the above mentioned limit, and one
of the main topics in the atomic clock research field of today, is the use of an optical lattice.
This uses a standing electromagnetic wave pattern inside a cavity system simulating a
harmonic potential, in which the magnesium atoms can be trapped.

The reason for using atoms as frequency standards for atomic clocks were that the
atomic systems are identical as long as the environments are well understood. However,
if optical lattices are used for trapping atoms the atomic transition levels will be shifted
by the ac Stark effect. If this shifted atomic transition is to be used as a reference for an
atomic clock, the frequency of the clock transition needs to remain the same. Hence the
energy levels need to be shifted equally. This ac Stark shift is investigated in section 3.4.

2 Characterization of the clock laser
In this chapter we are going to measure the line width of the 914 nm master laser which,
after being frequency doubled to 457 nm, is used for the 24Mg clock transition 3P1 ↔ 1S0

1.
. We have used two different methods. The first one is based error signal obtained from
the Pound-Drever-Hall (PDH) technique, while the second one uses photo detection of the
reflected signal from the PDH reference cavity to analyze the noise amplitude of the signal,
see Fig ??. Common for both methods is that we need to know the reference cavity line

1Now and throughout the whole text 3P1 and 1S0 is used as abbreviations for (3s3p)3P1 and (3s2)1S0

respectively.
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Figure 1: Sketch of the PDH setup. Solid lines are used for optical paths and dashed
lines are used for signal paths. BS: Beam splitter, λ/4: λ-quarter plate, SHG: Second
harmonic generator, DBM: Doule Balance Mixer, AOM: Acousto-Optical Modulator,
EOM: Electro Optical Modulator.

width to perform our data analysis. Therefore we start by going through measurements
of the reference cavity ring-down from which we find its line width.

2.1 Reference cavity line width
To stabilize the frequency of the master laser we used the PDH technique, described in
more details in the next section 2.2. This setup uses a very stable Fabry Pérot cavity
as a narrow band width reference by which the master laser can be locked to, see Fig 1.
The reference cavity has a line width due to the finite photon lifetime [11] and may be
broadened by residual noise on the cavity such as vibrations and temperature fluctuations.
As the cavity is used as a reference to the master laser its total line width contributes to
the master lasers line width.

Stabilizing the cavity is done by placing it inside a vacuum chamber. The components
of the cavity consists of, roughly speaking, two identical mirrors optically contacted onto
a hollow glass rod (ultra low expansion (ULE) cavity). The ULE rests on another glass
rod through two stabilizing Viton® O-rings [12], see Fig. 2.

To measure the reference cavity line width we used the technique of cavity ring-down.
In a bare cavity, i.e., a cavity with no gain medium such as the reference cavity, the
intensity decays exponentially as [11]:

Ic(t) = Ic(0) e−δωct . (2)



2.1 Reference cavity line width 8

Figure 2: Sketch of the reference cavity. The beam of the master laser is send in along
the horizontal axis through the ULE cavity. [12].

The finite photon lifetime inside the cavity is τc = 1/δωc and depends on the cavity length
L, its index of refraction n and its losses from transmission and scattering at the mirrors.
By Fourier transforming the time-dependent cavity intensity the frequency spectrum is
obtained and can be shown to have a Lorentzian lineshape

Ic(ν) = Ic(0) 1
(2π)3/2

(
δνc

(ν − ν ′)2 + δν2
c

)
, (3)

where the factor of 1/2π comes from the relation ω = 2πν and the factor of 1/
√

2π
from the definition of the Fourier transform. The cavity line width is obtained from the
Lorentzian function as the half width at half maximum (HWHM):

HWHM = δνc = 1
2πτc

. (4)

Performing the measurements of the cavity ring-down we detected the reflected light from
the reference cavity with a photodetector. This gave us a dc voltage signal on an oscillo-
scope with 10,000 data points each separated in time by 20 ns. At the day we performed
our measurements we had problems triggering the signal. This prevented us from record-
ing the cavity ring-down as scheduled. Instead we measured the build-up intensity inside
the reference cavity, (Fig. 3). This does, however, not affect our results regarding the
reference cavity line width since the characteristic time for the photon build-up process
is equivalent to the decaying life time [13].

Starting with the master laser unlocked to the reference cavity, we tuned its frequency
until the system was locked and then collected data with the oscilloscope. We made five
measurements and fitted them to the intensity build-up equation:

Ic(t) = Ic(t0)(1− e−δωc(t−t0)) + C , (5)
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Figure 3: Example of data print of a build-up measurement. The black dots are data
points, the blue line is the exponential fit, the red vertical line is the limit of the excluded
points and the red circles mark points that were considered to be excluded due to their
fluctuations.

by the method of robust nonlinear least squares with bisquare weights. Here Ic(t0) is
the initial intensity, t0 is the locking starting time (cf. t0 ≈ −8 µs in Fig. 3), C is
some constant and δωc is the angular frequency cavity (HWHM) line width satisfying the
relations δωc = 1/τc and δωc = 2πδνc, all are used as parameters in the fit.

Before fitting we excluded all data points lying before t0, such that it did not affect
the fit (cf. the interval t ∈ [−60 µs,−8 µs] in Fig. 3). We did not, however, exclude the
seemingly large fluctuations encapsulated in circles in Fig. 3, since they do not change
our obtained results.

We found that the fitted values depends strongly on where we choose to set the limit,
t0 before performing the fit. For example changing the limit by only 5 µs we found that
the fitted value could be changed by up to ∼ 12 %. Performing several fits of each
measurement, where we deviated the limit of excluded points by 5 µs in the interval
t ∈ [−25 µs, 0 µs], we obtained from each fit the reference cavity line width, δνc. For
every series of fits, concerning one build-up measurement, we estimated a value for δνc
with minimal influence from the region before the build-up and with the largest number
of data points still being contained in the fit.

To calculate the weighted average and uncertainty of the fitted values of the reference
cavity line width, we have used the formulas [6]:

δν = 1
2π

∑
wiδωi∑
wi

and σν = 1
2π

1√∑
wi
, (6)

where the weight wi is being calculated from the uncertainties σi of the fitted value of
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δωc:
wi = 1

σ2
i

. (7)

The factor of 1/2π in Eq. 6 comes from the fitted values to be given in units of rad/s
whereas we are interested in having our results expressed in units of Hertz. From our five
measurements we find the weighted average for the reference cavity (HWHM) line width
to be:

δνc = 5.61± 0.02 kHz . (8)

The fitted values and their fit uncertainties as error-bars has been plotted together with
δνc in Fig. 4.
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Figure 4: Plot of the fitted values and fit uncertainties of the reference cavity (HWHM)
line width as blue crosses with error-bars. The black horizontal line shows the weighted
average with the weighted uncertainty as the grey area, δνc.

Measurement 1 deviates almost 30 % from δνc, whereas the other four measurements
deviates by less than 8 %. Comparing the build-up plot of measurement 1 with the other
plots it was seen to fluctuate more. This, together with its large deviation, made os
discard if from our further analysis. From Fig. 4 is it also seen that none of the results
coincides with δνc, suggesting that their individual uncertainties are too small. This is
most likely due to the MATLAB fitting method underestimating the uncertainties by
using N ∼ 10 000 data points to calculate the uncertainty as ∝ 1/

√
N .

To obtain a more reasonable value of the reference cavity line width we calculate in-
stead the mean value and standard deviation (SD) of mean by [6]:

δν = 1
2πN

N∑
i=1

δωi and σν = SD√
N

= 1√
N

√√√√ 1
N − 1

N∑
i=1

(
δωi
2π − δν

)2

. (9)

From this we now obtain the reference cavity (HWHM) line width to be:

δνc = 5.8± 0.2 kHz . (10)
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This value for the reference cavity line width is the one used for further analysis in the
next sections. A plot of the fittet values with the SD as error-bars together with δνc is
shown in Fig. 5. All four values are seen to coincide with δνc.
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Figure 5: Plot of the fitted values and SD uncertainties of the reference cavity (HWHM)
line width as blue crosses with error-bars. The black horizontal line shows the mean value
with the SD of mean as the grey area, δνc.

2.2 PDH error signal
The (HWHM) line width of the reference cavity is now established to be δνc = 5.8±0.2 kHz
and we can proceed to find the line width of the master laser by using the Pound-Drever-
Hall laser stabilization technique [1, 14].

In the Pound-Drever-Hall setup we apply two sidebands, with frequencies νL ± νm, to
the master laser, with frequency νL, by using an Electro Optical Modulator (EOM), cf.
Fig 1. These sidebands are applied by modulating the phase of our electric field periodi-
cally with a frequency νm = 1 MHz.

The master laser with the two sidebands are sent into the reference cavity and a
photodetector measures the reflected light consisting of all the reflections from both the
first and second mirror in the reference cavity. At resonance frequency the phase shift
of the electromagnetic field from one round trip in the reference cavity is π. The sum
of all round trip components inside the cavity is now making standing waves, while the
reflected beam outside the cavity is canceled out by destructive interference [14].

The signal detected by the photodetector is sent into a double balance mixer (DBM)
and mixed together with a signal from the EOM with the frequency νm. The outcoming
error signal, V (∆ν), is the product of the two signals and is proportional to [1]:

V (∆ν) ∝ −4 ν2
m(Γ/2)∆ν[(Γ/2)2 −∆ν2 + ν2

m]
[(Γ/2)2 + ∆ν2][(∆ν − νm)2 + (Γ/2)2][(∆ν + νm)2 + (Γ/2)2] , (11)

where Γ = 2πδνc and ∆ν = νL−νc is the detuning of the frequency of the master laser, νL,
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and the cavity resonance frequency, νc. This unitless coefficient is called the D-coefficient
throughout the text and it has maximum/minimum values of Dmax/min = ±2.
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Figure 6: Plot of V (∆ν) = CpD(∆ν).

The experimental setup did not allow us to scan the error signal for different values
of ∆ν and thus measure the V (∆ν) profile. However, the maximum and minimum value
of the error signal can be estimated by detecting the peaks of the error signal. From
this we found Vmax/min ∼ ±100 mV. Knowing these values and the shape of V (∆ν)
we can multiply the D-coefficient with a proportionality constant Cp = Vmax/Dmax =
100 mV/2 = 50 mV, and obtain the calculated signal as V (∆ν) = CpD(∆ν) (Fig. 6).
This allows us to make further calculations of the frequency line width of the master
laser.

A measurement of the error signal over time reveals a Gaussian distribution of the
ac signal from the photodetector. This corresponds to Gaussian distributed fluctuations
in the reflected intensity from the reference cavity which corresponds to fluctuations of
the detuning ∆ν. To find the full width half maximum (FWHM) of the frequency of the
error-signal we can project the error signal onto the profile of V (∆ν), see Fig. 7.
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Figure 7: (a) Signal distribution of measurement 2 projected onto the linear approxi-
mation (blue line) of the error-signal (red curve) (b). Each projected point gives a point
on the frequency axis for the master lasers intensity distribution (c).

For simplicity we assumed that V (∆ν) is linear in the interval ∆ν ≈ 0 and approx-
imated it with the linear function V = (70 mV/1013 Hz)∆ν, see Fig. 7(b). This ap-
proximation has some limitations. Outside the interval [-70 mV,70 mV] the difference of
the frequency value from a projection onto the linear approximation and onto the V (∆ν)
profile reveals a difference up to ∼ 50%. A minor fraction of our data points of the error
signal is even outside the interval [-100 mV,100 mV]. Hence it is not possible to project
signals outside this interval onto the V (∆ν) profile. However, 95% of the error signal lie
inside the interval [-70 mV,70 mV]. Data points outside this interval will thus not give
any significant contribution to the line width and can be neglected.

We performed six measurements of the error signal and found the mean value of the
master laser (FWHM) line width and the SD of mean, using Eq. (9), to:

δνL = 1.2± 0.2 kHz . (12)

The relative uncertainty of σν/δνL ≈ 0.2 is an acceptable result considering the linearly
approximation of the predicted error signal profile and the very imprecise measurement
of Vmax for which we found a variation of 10 % resulted in a corresponding variation of
the FWHM of ≈ 10 %.
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Figure 8: Plot of the fitted values of the master laser (FWHM) line width and their
uncertainties rising from the uncertainty of the reference cavity line width. The black
horizontal line shows the mean value with the SD of mean as the grey area.

δνL is together with the six fits of the error signals plotted in Fig. 8. The error-bars
represent the propagated uncertainties from the PDH reference cavity line width used in
Eq. (11) for V (∆ν).

2.3 Reflected amplitude noise signal
A second way by which we determined the master laser line width, is by analyzing the
amplitude noise of the reflected light from the reference cavity in the PDH setup (cf.
the previous section 2.2). The reflected light from the cavity can be detected by a high
bandwidth photodetector and used to generate a dc signal on an oscilloscope fluctuating
with the laser frequency [14]. Note that contrary to the PDH error signal, this signal is
not mixed with the modulation signal, but is the pure reflected signal from the reference
cavity.

The beam hitting the reference cavity consist of both the master laser frequency, νL,
and its sidebands frequencies from the EOM, νL±νm. When the master laser is locked to
the reference cavity the reflected light, arising from all the roundtrip contributions of the
master laser, interfere destructively with itself. Hence the locked reflected signal consist
only of the sideband reflections [14]. When the master laser is unlocked to the reference
cavity the reflected signal will therefore be greater opposed to when it is locked.

For each measurement we noted the mean values of both the locked and unlocked
signal for further use in our data analysis, since these quantities can be used to set a scale
of the intensity, I, letting the locked signal Vlocked → I/Imax = 1 and Vunlocked → I = 0.
In practice we have used the conversion factor:

I/Imax = V − Vunlocked

Vlocked − Vunlocked
, (13)
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where V is the data point of our signal of which we would want to know the correspond-
ing intensity. We use I/Imax instead of just I such that the intensity is scaled to be a
dimensionless quantity between 0 and 1. This is sufficient since we are only interested in
the line width and not the intensity as such.

We expect the intensity distribution of the master laser as a function of frequency to
be a Gaussian distribution with maximum value, I/Imax = 1, at the frequency νL. Any
frequency fluctuation, δ, from νL, i.e., any amplitude noise in the detected signal, is thus
expected to be seen as a greater signal than the signal for νL, regardless of the sign of δ.
The profile is thus expected to have a shape as in Fig. 9(a) with a cut-off at the signal
value corresponding to Imax. Note that a greater signal corresponds to a greater negative
signal on the oscilloscope.

When plotting our measured signal distribution and fitting them we found a Lorentzian
distribution on the left side of the mean value, i.e., Vlocked, and a Gaussian distribution
on the right side, cf. Fig. 9(b).
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Figure 9: (a) Histogram showing the expected distribution of the reflected signal. (b) 28
bin histogram over the signal fluctuations. The grey curve is a Lorentzian fit, and is
seen to match the histogram to the left of the mean value marked with a black vertical
line. The red curve is a Gaussian fit and is seen to fit the right side of the histogram.

Since the signal to the right of Vlocked is not expected, we can immediately recognize
this Gaussian distribution as frequency noise coming from the electronic or other devises
in our setup and not as noise from the master lasers frequency. The electronic noise is a
symmetric convolution through the whole signal [1]. For further analysis we have approx-
imated the Gaussian noise to be a delta Dirac function, thus neglecting it.

With the conversion factor in hand, Eq. (13), we can for each bin in the histogram find
the corresponding deviation in the frequency from νL, by projecting it onto the Lorentzian
plot of the reference cavity intensity distribution found in section 2.1, see Fig. 10.
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Figure 10: Signal distribution of measurement 1 (left) projected onto the reference
cavity intensity distribution (right). Each data point gives two points on the frequency
axis for the master lasers intensity distrubution. On the right figure the (FWHM) line
width of the master laser has been marked as ranging from δ = −1.3 kHz to δ = 1.3 kHz.

For each histogram projected onto the reference cavity intensity distribution, we fitted
the obtained master laser intensity distributions with a Gaussian function, Eq. (17), and
found the master laser (FWHM) line width, using Eq. (9), to be:

δνL = 2.2± 0.1 kHz . (14)

The fitted values with their individual uncertainties, rising from the uncertainty of the
reference cavity line width, as error-bars has been plotted together with δνL in Fig. 11.
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Figure 11: Plot of the fitted values of the master laser (FWHM) line width and their
uncertainties rising from the uncertainty of the reference cavity line width. The black
horizontal line shows the mean value with the SD of mean as the grey area.

2.4 Clock laser
With the 914 nm master laser now stabilized in the kilohertz regime, it can sent into
an external ring cavity and frequency doubled by second harmonic generation (SHG)
to a wavelenght of 457 nm. This is done using a non linear potassium niobate crystal
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(KNbO3) [15] (cf. Fig. 1). Hereby the FWHM line width of the clock laser is estimated
to be twice the line width of the master laser:

δνL ± σν → δν457 = 2δνL ± 2σν (15)

A blue 457 nm laser can also be achieved using infrared Ti:Saphire lasers. However,
the frequency control of a Ti:Sapphire laser is done mechanically by use of geometric or
piezoelectric elements and this sets an upper limit for the frequency control bandwidth
in the 10 kHz region. The frequency control of a diode laser is much faster as it is based
on current control. This frequency control bandwidth is approximately 10 MHz and the
feedback time is thus much less than what can be achieved by the Ti:Sapphire laser.
Because of this the diode laser is preferred.

3 Characterization of the 24Mg atoms in the MOT
With the characterization of the clock laser we can now examine the properties of the
magnesium atoms used as reference for the atomic clock. The following chapter is con-
cerning two different measurements. As the stability of an atomic clock depends on the
absorption line width of the clock transition it is of great interest to measure this. How-
ever, many broadenings are contributing to this line width and the Doppler broadening
from the thermal fluctuations will here be of special interest. This will be discussed in
section 3.3.

Another subject of great importance for the accuracy and stability of the atomic clock is
the environment of the reference atoms to be well defined. If an uncharacterized external
perturbation is applied to the clock transition, and this shifts the transition frequency,
then the clock frequency and thereby the accuracy of the clock will be changed. An ex-
ternal perturbation to be mentioned is the ac Stark shift. The extent and importance of
this effect is discussed in section 3.4 and 4.

3.1 Laser cooling
Consider a neutral magnesium atom as a two level atom with a transition frequency ν0

placed at rest in an electromagnetic field. If the frequency of the electromagnetic field, ν,
is tuned below the transition frequency ν0 nothing will happen.

11

Figure 2.2: a) Laser cooling of atoms between two counter-propagating and red-
detuned laser beams. b) Atomic level scheme with two levels. c) The photon
absorption rates as a function of atom velocity is shown for the two laser beams.

A positive velocity corresponds to an atom moving to the right.

the detuning of the cooling laser from the atomic resonance of an atom at
rest, and S = I/Is is the saturation parameter of the radiation. Thus, an
atomic thermal beam can be efficiently slowed down, if we are able to keep
the atoms resonant with the laser during the deceleration by compensating
the Doppler shift. This result can be achieved by tuning the atomic absorb-
tion frequency by the Zeeman effect, produced by an axial magnetic field B
of appropriate intensity along the beam [43]: Fig.2.2 shows the basic idea
behind laser cooling of atoms in one dimension. Two counter-propagating
laser beams are overlapped with the atomic sample. The laser frequencies
are tuned to the "red", which means that the photons in the beams do not
have enough energy to excite an atom at rest. Therefore, when an atom
moves towards one of the laser beams, this atom will see Doppler shifted
laser frequencies. In this situation the atom will be closer to resonance
with the counter-propagating photons and further off-resonance with the
photons propagating in the same direction as the atom.

As a result, the moving atom will mainly absorb photons from the
counter-propagating laser field. In each photon absorbtion, the photon

Figure 12: Laser cooling in one dimension using the Doppler effect [12].
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If the atom is now traveling with a velocity, ~v, in the opposite direction of the prop-
agation of the electromagnetic field, as in Fig. 12 for the atom and laser beam 2, then it
will experience the Doppler shifted frequency [11]:

ν ′ = ν
(
1 + v

c

)
, (16)

where c is the speed of light v � c. If ν ≈ ν0 then, for a given velocity, the frequency ν ′

will be shifted up to ν0. The atom will now absorb a photon from laser beam 2 and thus
receives a momentum, ~~k, pointing in the opposite direction of ~v. Hence slowing the atom
down due to conservation of momentum. The re-emission of the photon by spontaneous
emission occurs in an arbitrary direction. If the laser intensity is much less than the
saturation intensity of the transition, the spontaneous emission will dominate compared
to stimulated emission (see Eq. (19) for the expression of the saturation intensity). The
spontaneous emitted photons from a cloud of atoms transfer more energy out of the
system than the system receives from the trapping laser. This gives a negative shift
of the velocity distribution of the atoms and the temperature will fall according to the
Maxwell-Boltzmann distribution [11].

If the process is continued an atom will eventually have its velocity reversed and
therefore another laser beam is needed working in the opposite direction. This is laser
beam 1 in Fig. 12. At NBI six laser beams are used for cooling a cloud of 24Mg atoms
which have first been trapped by the MOT. For the clock transition 3P1 ↔ 1S0 in 24Mg,
investigated in this thesis, the two levels 1P1 and 1S0 are used for laser cooling by a 285 nm
trapping laser.

3.2 Spectroscopy of the Mg 3P1 ↔ 1S0 transition
With our characterization of our laser system we are now ready to investigate the proper-
ties of the clock transitions of magnesium for the atomic clock. We will extend our work
with the magnesium by characterizing the different broadenings.
The transitions of interest in our work are the 3P1 ↔ 1S0 (transition) and the 1P1 ↔ 1S0

(transition), see Fig. 13. The latter transition is a broadband singlet ↔ singlet transition
(∼ 80 MHz) [15] used for laser cooling. The first transition, on the contrary, is a singlet
↔ triplet transition which is forbidden to all orders by the LS-coupling selection rules for
∆S = 0 [10]. Thus, the natural bandwidth of this transition is very narrow (∼ 30 Hz) [12].
The 3P1 ↔ 1S0 transition wavelength is 457 nm.
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Figure 13: The 3P1 ↔ 1S0 transition and the 1P1 ↔ 1S0 transition

This makes the 3P1↔ 1S0 transition an ideal clock transition as a small clock transition
line width improves the precision of the atomic clock, cf. Allan deviation from Eq. (1).
As we send our PDH stabilized 457 nm laser into the MOT we will eventually excite some
of the atoms to the 3P1 state.

The intensity of the fluorescence due to the spontaneous emission from the 1P1 ↔ 1S0

transition for laser cooling is dependent of the number of 24Mg atoms in the ground state
1S0. Since we measure the intensity of the fluorescence a loss of the number of atoms in
the ground state induced by scanning over the 3P1 ↔ 1S0 transition can be directly seen
as a reduction in the fluorescence intensity. So by measuring the intensity of the 1P1 ↔
1S0 fluorescence, we can measure the line width of the 3P1 ↔ 1S0 transition.

The scan of the 1P1 ↔ 1S0 fluorescence was performed using an Acousto-Optical Mod-
ulator (AOM). The AOM modulates the 914 nm laser twice by a frequency νAOM before
it is frequency doubled by being sent through a non-linear crystal generating second har-
monics [11]

The total modulation of the 457 nm laser is thus 4νAOM, cf. Fig. 1. By modulating
the frequency we vary the loss of the number of the 1S0 state induced by the clock laser
and we measured a drop in the intensity in the modulation range 270-290 MHz. Our
measurements revealed in each case a double peak. Making Gaussian fits,

G(ν) = 1
σ
√

2π
e
−(ν−ν0)2

2σ2 , (17)

for each of the two peaks we obtain the two different full width at half maximum FWHM =
2σ
√

2 ln 2. When fitting the peaks separately with Gaussian fits we excluded data points
from the other peak just as we excluded obvious experimental errors caused by disturbing
elements and sudden noise present in the experimental environment at the experiment
sessions, see Fig. 14.

In many experiment series we excluded a number of the first data points as they were
fluctuating from the steady level of the fluorescent of our magnesium cloud.
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Figure 14: Gaussian fits for each peak. In green: Excluded data points.

This splitting of the peaks was not expected. This could be caused by a Doppler
shift of the transition frequency and the two separate peaks indicate that there are two
different velocity components for the magnesium atoms in the MOT. The difference of
the two peaks δνpeaks is δνpeaks ≈ 4 MHz. From the Doppler theory, ∆ν/ν = v/c, this
difference corresponds to a speed difference in the MOT of ∆v ≈ 1.8 m s−1. Rotational
movements of the magnesium cloud in the MOT did not cause the two separate velocities
as the 457 nm clock laser was sent into the magnesium cloud from only one direction and
the velocity distribution of a rotational cloud should be continuous. If the clock laser was
sent in from two different directions, different velocity components could occur. However,
the clock laser was aligned such that possible reflections of the clock laser was aligned
away from the magnesium cloud. Another possibility is that the clock laser was locked
on the TEM1,0-mode instead of the TEM0,0. At the experimental setup the florescent was
constantly monitored by a CCD camera and it is very unlikely that the clock laser was
locked on the TEM1,0-mode. However, a TEM1,0 will correspond to two parallel beams
and they will excite atoms in different parts of the magnesium cloud. If the cloud is
rotating the two parts of a TEM1,0-mode will experience different velocity components.
We have calculated the weighted average and the weighted uncertainty of the clock tran-
sition (FWHM) line width by using Eq. (6) and have listed the results for each peak in
Table 1.

Peak δνcl [MHz]
Left 11.24± 0.28
Right 12.28± 0.32

Table 1: The FWHM of the two peaks of the absorption spectrum of the clock transition.

This choice of Gaussian fits will be discussed later in this section. The above results
are calculated from the measurements with the 285 nm trapping laser turned off when
the clock laser was tuned on as required for a scan measurement. The measurements with
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both the trapping laser and the clock laser turned on simultaneously for measuring the
ac Stark shift is discussed in section 3.4.

3.3 Contributions to the atomic line width
The width of the peaks must consist of contributions from different kinds of broadenings
where the most significant are Doppler broadening δνD, power broadening δνp, the laser
line width of the 457 nm clock laser δν457 and the natural line width of the 3P1 state δν0.
Assuming that all the contributions are independent of each other, we expect that the
final line width can be written on the form [6]:

δνcl =
√
δν2

0 + δν2
457 + δν2

p + δν2
D . (18)

The natural line width is δν0 ∼ 30 Hz [12], the clock laser line width was measured in
section 2.2 to δν457 = 2 · 1.2 kHz= 2.4 kHz and the power broadening can be calculated
as [10]:

δνp = δν0

√
1 + I

Isat
= 59.0 kHz for Isat = π

3
hc

τλ3 . (19)

We found the measured width of absorption profile to be in the MHz regime. From
the three expected contributions to the line width of the 3P1 ↔ 1S0 transition plus our
measured value of the line width, we are now, from Eq. (18), able to predict that the
Doppler width should be in the MHz regime, since

δνD =
√√√√δν2

cl︸︷︷︸
MHz

− δν2
0︸︷︷︸

Hz

− δν2
457︸ ︷︷ ︸

kHz

− δν2
p︸︷︷︸

kHz

=

 11.24 MHz for left peak
12.28 MHz for right peak

(20)

It is seen that the Doppler broadening is dominating and δνD ≈ δνcl. The Doppler profile
is a Gaussian distribution [11], so the use of Gaussian fits is consistent with our theory.

3.3.1 Doppler width

The contribution to the FWHM from the Doppler broadening can be calculated from the
Maxwell-Boltzmann distribution [11, pp. 103]:

δνD = 2ν0

c

√
2kBT

m
ln 2 , (21)

where ν0 is the transition frequency between the 1P1 and 1S0 states, c is the speed of
light, kB is the Boltzmann constant and T and m are the temperature and the mass of
the magnesium atoms respectively.

From our results in Table 1 we can calculate a temperature for the MOT:
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Peak T [mK]
Left 14.0
Right 16.6

Table 2: Temperatures corresponding to the two transition (FWHM) line widths of the
absorption spectrum, cf. Table 1.

The temperature of the MOT in the setup is in previous experiments measured to
be approximately T ∼ 5 mK [15]. The temperatures calculated from the two measured
FWHM are both above this value, and a Doppler width corresponding to the temperature
of 5 mK should be δνD ∼ 6.76 MHz. However, this high temperature can be caused
by too high detuning of the 285 nm trapping laser or alignment problems for the six
trapping lasers. Since the intensity profile of the trapping laser is not purely Gaussian,
alignment problems can have caused asymmetric distribution of the 24Mg atoms and
rotational movements in the MOT. This could explain both the high temperature and the
double peak structure. In any case the Doppler broadening is in the megahertz regime
and this supports the assumption that the Doppler width is the dominant contribution
to the absorption line width of the contributions presented in Eq. (18).

We have mentioned that an ideal clock transition has a small natural line width in
the hertz region. However, we have in the previous section shown that the Doppler width
in the temperature of our experimental setup is in the megahertz region and the natural
line width of the clock transition will be negligible in the presence of Doppler broadening.
Further cooling by laser cooling is not an option since the lower limit for temperature
achieved by laser cooling is the Doppler temperature [10]:

TD = ~Γ
2kB
≈ 2 mK . (22)

This corresponds to a Doppler width of ≈ 4 MHz. A method for eliminating the Doppler
broadening is, by use of optical lattices, based on the ac Stark shift of the transition
frequencies. The ac Stark shift will be examined in the following section 3.4 and the
future perspectives of the optical lattice will be discussed in chapter 4.

3.4 ac Stark shift
In the preceding development of the atomic clock, it has been found that trapping the
atoms in a standing wave light pattern, i.e., an optical lattice, can improve both the
accuracy and stability of the atomic clock [16,17]. When the atoms are being restricted to
this simulated harmonic potential they are confined in the Lamb-Dicke regime, meaning
that they are localized within a range smaller than an optical wavelength [18]. Hence
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eliminating the broadening and frequency shift of the atoms by, e.g., the Doppler effect
and recoil motion.

Aside from acting as a dipole trap for the atoms, the electric field of the standing wave
also perturbs the energy levels of the clock states, thus inducing a light shift (actually the
light shift is the dipole potential) [10]. This is the ac Stark shift and the shifted frequency
of the clock transition is given by the difference in the perturbed energy levels as [19]:

δνStark(ωL) = 1
h

[δEe(E, ωL)− δEg(E, ωL)] , (23)

with δEi being the frequency shift of level i, the indices e and g representing the upper
and lower level of the clock transition respectively, i.e. 3P1 and 1S0, and ωL and E being
the angular frequency and polarization of the trapping laser.

457 nm

S0
1

P1
3

457 nm
Unperturbed

Perturbed

466 nm
Magic

wavelength

Figure 15: Energy diagram showing the ac Stark shift of the 24Mg clock levels 1S0 and
3P1 when perturbed by the magic wavelength.

If the trapping laser is such that E and ωL satisfy δνStark = 0, then the optical lattice
can be very advantageous as an atomic clock and may set new frequency standards with
a stability of ∼ 10−15 [7, 20]. This condition is called the magic wavelength, see Fig. 15.

S0
1

P1
3

P1
1

285 nm
Trapping laser

≠ 457 nm
Clock laser

Figure 16: Energy diagram showing the ac Stark shift of the 1S0 ground state. The
frequency of the perturbed clock transition is greater than for the unperturbed case. ∆
is the detuning of the 285 nm trapping laser from the 1P1 level.
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Figure 17: Absorption spectra of two measurements of the Mg 3P1 ↔ 1S0 clock tran-
sition for (i) regular spectroscopy (black crosses) and (ii) ac Stark induced spectroscopy
(black circles). Both spectra (i) and (ii) has been fittet by the Gaussian blue and red
curves respectively. The detuning δ is set to zero at the peak of the regular clock spec-
trum.

Measuring the ac Stark shift we used the same setup as for measuring the line width
of the Mg 3P1 ↔ 1S0 clock transition, but without turning off the 285 nm trapping laser
while scanning. This should induce the ac Stark shift, and we expect to find the same
absorption profile as before. Calculating the ac Stark shift of the clock states yields a
much greater shift of the lower state than the upper state, such that the shift of the upper
level can be neglected, cf. Fig. 16. The clock transition frequency will now be shifted since
the, now perturbed, ground state eigenenergy will be shifted. This is seen as a shifted
peak value of the absorption spectrum in Fig. 17. Note that we measure the ac Stark
shift of the ground state, ∆νStark, and not of the clock transitions frequency, δνStark. The
red-tuned trapping laser gives a negative ac Stark shift of the ground state energy [18].

Performing 3 measurements and using the same fitting and calculation method as in
section 3.2, we have calculated the peak value of the clock transitions frequency. Taking
the difference of the peak value of the unperturbed measurements we obtain an ac Stark
shift of the ground state given as ∆νStark = 1.96± 0.27 MHz.

The plot in Fig. 17 also reveals a change of the clock transitions line width having
a greater value. This effect could be caused by amplitude and frequency noise from the
285 nm trapping laser now being on during the whole measurement.

To validate the experimental values of the ac Stark shift of the clock transition we have
calculated the light shift of the 1S0 ground state using the expression [18]:

∆ωStark = 1
2

[Ωn(∆)−∆] , (24)

here ~Ωn(∆) and ~∆ are the energy difference between the perturbed and unperturbed
states respectively. ∆ = ω0 − ω is the detuning of the 24Mg 1P1 ↔ 1S0 cooling transition
with ω0 being the frequency difference between the two levels and ω the 285 nm trapping
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laser frequency. Ωn(∆) is the Rabi frequency given by [18]:

Ωn(∆) = [Ω2
n(∆ = 0) + ∆2]1/2 . (25)

Ωn(∆ = 0) depends on the number of photons in the field and the coupling strength
between field and atoms. Both of these quantities are difficult to work with, so instead
of using the quantum mechanical description of the Rabi frequency we approximate it by
its analogous classical quantity, Ω, which can be expressed [10]:

Ω = Γ
(

I

2Isat

)1/2
, (26)

where Γ is the line width of the 1P1 ↔ 1S0 transition and I and Isat are the intensity and
saturated intensity of the 285 nm trapping laser respectively (cf. Eq. 19 for the expression
of Isat). The above approximation is allowed as long as the light field contains n � 1
photons. Furthermore, laser light is a coherent state, i.e., the most classical state of light
also supporting the approximation [18]. The ac Stark shift can now be given as:

∆ωStark = 1
2

[(
Γ2
(

I

2Isat

)
+ ∆2

)1/2
−∆

]
. (27)

Before the trapping laser is sent into the vacuum chamber where the MOT is localized, its
beam is split into three equal sized beams, which are then sent into the vacuum chamber
from three orthogonal directions. After passing through, all three beams are reflected back
into the vacuum chamber such that the magnesium atoms are laser cooled as described
in section 3.1. Measuring the power of all six beams, we estimated the loss through the
windows of the vacuum chamber to be ∼ 10% per window. We measured the power of the
trapping laser to P285 ≈ 15 mW before it was split into three, and we then found a total
power inside the MOT to be PMOT ≈ 26 mW. The beam size diameter was measured to
d = 5.6 mm and we obtain the intensity inside the MOT to be I ≈ 1 kW/m2.

With Isat = 4.52 kW/m2, Γ = 2πν0 ∼ 2π · 80 MHz and ∆ = 2π · 130 MHz we obtain
∆νStark = ∆ωStark/2π ≈ 1.4 ± 0.3 MHz. We have determined the uncertainty on ∆νStark

from estimating the uncertainty of the power to be ∼ 25 %. This estimation is based on
our approximation of PMOT and on the power-meter yielding an absolute value but being
hard to calibrate to less than ∼ 20 %.

The calculated ac Stark shift overlap with the measured value. This greatly indicates
that is was the ac Stark shift we measured as expected.

4 Discussion
In the preceding sections we have characterized different aspects of the Mg 3P1 ↔ 1S0

atomic clock. Starting with the laser system we measured the build-up intensity of the
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reference cavity to obtain its line width, δνc used in the PDH setup. After fitting and
calculating the weighted average of our measurements, we obtained results for δνc. How-
ever, uncertainties due to problems in trigging the signal and defining the starting time
occurred. With more time on hand we would have made an effort reducing these uncer-
tainties. δνc was used in further data analysis and thus this uncertainty was included in
all further calculations in section 2.

With this result on hand, we move on to the results obtained for the 914 nm master
laser. In section 2.2 the (FWHM) line width of our master laser was determined by use
of the Pound-Drever-Hall laser stabilization technique. One way to perform an analysis
of the error signal was to perform a fast Fourier transform on the error signal. This was
not possible due to lack of equipment and we used an alternative analyzing method.

By making a linear approximation of the D-coefficient and projecting the distribution
of the error signal onto this linear approximation, we obtained a line width for the master
laser with uncertainties corresponding to the uncertainty of the reference cavity line width
and our approximations. The obtained master laser line width is an upper limit as the
error signal consists of the signal from the cavity reflection and from electronic noise in
the measurement devices.

The most preferable way of measuring the master laser line width would be to have
two identical master lasers beating against each other. We only had one, so to obtain
another result for the master laser line width for comparing, we analyzed the reflected
amplitude noise signal from the reference cavity instead. This was done in section 2.3

The two results for the master laser line width differ by almost a factor 2. The reasons
could be several. The line width of the master laser can fluctuate up to ∼ 1 kHz due
to residual effects, the success of alignment that particular day and temporal material
variations [1, pp. 115]. Furthermore, the Gaussian noise, cf. Fig. 9, was approximated
with a delta Dirac function and δνL is thus most likely overestimated.

In section 3.2 spectroscopy of the 3P1 ↔ 1S0 clock transition was performed and the
transmission line width was investigated. By these measurements a line width in the
megahertz region was revealed and the Doppler broadening dominated the line width.
Calculations of the temperature revealed a higher temperature than expected. This could
indicate that other broadenings in the megahertz region were present, but it is most likely
that the temperature was high due to the environment of the experiment.

The spectroscopy also revealed some unanswered questions, since it revealed two peaks
instead of one. This can be caused by two different velocity components for the 3P1 excited
magnesium atoms in the MOT and would then result in a Doppler shift of the transition
frequency. Two different velocity components could be induced by reflections of the clock
laser and asymmetric alignments.

From the magnitude of the Doppler broadening compared to the other contributions
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to the line width it is clear that the Doppler effect should be reduced for reaching higher
precision for the atomic clock. By using the ac Stark effect an optical lattice can be
constructed to reduce the Doppler broadening.

For the ac Stark shift we only made three measurements and in spite of this, the magni-
tude of the calculated and the measured values of this ac Stark shift are very similar and
the ratio between these values is ∆νcalc/∆νmeas = 0.7. This is a very satisfactory result,
considering the calculation depends on an approximated value of the intensity inside the
MOT. If we approximate the power to be 6 mW greater the result will be inside the un-
certainty limit of our measurements. Our main achievement here is that we did measure
the ac Stark shift and not just some deviation from the non-shifted values due to poor
statistics of the measurement.

4.1 The future
After analyzing the line width of the clock transition in section 3.2 to 3.3.1 is it clear that
a great reduction of the Doppler broadening is necessarry to reach higher precision with
the 24Mg clock.

The laser lab group at NBI is, as this thesis is handed in, preparing a setup of an
1D optical lattice to eliminate the Doppler broadening and improve their atomic clock
to an accuracy of 10−14 to 10−13, maybe even to 10−15 by a 2D optical lattice. For the
clock transition described in this thesis the success for the group depends on the magic
wavelength to be found at the theoretically predicted value ∼ 466 nm [21].

To trap the atoms in the optical lattice the magnesium atoms have to be cooled to
at least T ∼ 1 mK. Once the atoms are trapped in this harmonic potential the Doppler
effect and recoil motion is eliminated as mentioned is section 3.4. This reduces the clock
transitions line width greatly, going from a value ∼ 10 MHz to ∼ 10 kHz from the power
broadening, cf. Eq. 18. Hence improving the clock accuracy.

To increase the atoms lifetime inside the MOT, they can be tightly bound in the optical
lattice by the side-band cooling technique. Right after trapping in the harmonic potential
they will be distributed around the nz ≈ 30 level of the harmonic potential. For an atom
sitting in the nth level of the ground state, 1S0, the clock laser can be used to excite it to
the nz − 1 level of the 3P1 state. The strongest transition is for ∆nz = 0 [7]. This makes
the atom drop back to the nz − 1 level of the ground state. Exciting the atoms in this
manner an appropriate number of times, the distribution of the atoms can be brought
down from having a mean value of nz ≈ 30 to nz ≈ 1. Hence effectively cooled down to a
temperature T ∼ 1 µK [3].
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5 Conclusion
In this thesis we have characterized some of the main properties of the 24Mg atomic clock.

In section 2 we measured the line width of the 914 nm master laser by two different
methods. We found δνL = 1.2±0.2 kHz from the PDH error signal and δνL = 2.2±0.2 kHz
from analyzing the amplitude noise of the reflected signal from the reference cavity in the
PDH setup.

In section 3 we measured the line width of the 24Mg 3P1 ↔ 1S0 clock transition and
found it to be greatly dominated by the Doppler broadening since δνcl = 11.24±0.28 MHz
and δνcl = 12.28± 0.32 MHz. From this result we calculated the temperature inside the
MOT to be in the range: 14.5 to 16.6 mK. in section 3.3.1. Finally we measured and
calculated the ac Stark shift of the clock transition, when perturbed by the 285 nm
trapping laser, to ∆νStark = 1.96± 0.27 MHz and ∆νStark ≈ 1.4± 0.3 MHz respectively.
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