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Abstract

The focus of this project is to understand the physical properties of marine
outlet glaciers. It also aims to build two dynamic glacier models to study the
effects of the climate forcings on marine outlet glaciers and how changes in is
this can cause instabilities in the glacier.

The simplest model is based upon the assumption, that the evolution of the
ice sheet can be described only by the length of the glacier and the climate
forcings. The second model takes a more complex approach in 3 dimensions
and is based upon the principle of mass conservation and Glen’s flow law.

The latter model is the main focus of the project and is used to model
conditions at the Helheim glacier in south-eastern Greenland. The model gives
nice results when exploring how changes in different parameters, can affect the
glaciers stability and result in mass gain or loss. However a number of flaws
where found, when it came to recreating the conditions of the Helheim glacier.
Here bottom sliding has a big influence on the behavior of the glacier and can
therefore not be neglected, as it has been in the model.
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2 DESCRIPTION OF THE MODELS

1 Introduction

Over the past decades, ice sheets all over the world have been retreating. And in the
last couple of years the process has sped up for especially the Greenland ice sheet.
As described in IPCC’s 2019 SROCC report [1], this has let to the Greenland ice
sheet surpassing Antarctica and now being one of the biggest contributors to the
global mass loss. According to the IPCC’s 2013 5th assessment report [2] this is due
to the warming of the oceans, causing the glaciers to melt faster than new ice can
accumulate. This results in a higher melt rate, leading to mass loss. This has sparked
a growing interest in the behavior of the Greenland ice sheet, because of its large
impact on the global sea level, coupled atmospheric and oceanic circulation in the
North Atlantic.

The focus of this project is to understand the parameters resulting in stability of
marine outlet glaciers and test how small changes can affect the balance. The goal is
to build a dynamic glacier model to study the effects of the climate forcings on ma-
rine outlet glaciers and how they can cause instability in the glaciers. In the IMBIE
Team’s 2019 article [3], they describe how the discharge for many years has been a
larger contributor to mass loss than the surface mass balance. However, in the past
couple of years the surface melting has increased, but it may also impact the marine
glaciers and cause further retreat.

Building a dynamic model of a marine outlet glacier can very quickly get compli-
cated, due to the sheer number of physical properties involved. This project takes
a simple approach to glacier dynamics, consisting of the building and testing of two
simple glacier models.

The simplest of the models relies on very few assumptions and is used here to
better understand the climate forcings that drives the advance and retreat of a marine
outlet glacier. This model is based upon the model discribed in Oerlemans and Nick
(2005) [4]. The more complicated model relies on more physical properties of glacier
dynamics, but still makes a number of approximations to simplify the process. This
model is based upon Oerlemans (1981) [5]. The latter model is the main focus of the
project and has been used to model conditions at the Helheim glacier in the south-
eastern Greenland. This is done in an attempt to mimic the behavior of Helheim as
described in Nick et. al. 2009 paper [6].

2 Description of the models

The physics of a marine outlet glacier is very complicated thus requiring a huge
amount of parameters to be taken into account when modeling the dynamics of such
a glacier. In an attempt to simplify the processes of such a marine outlet glacier,
this project deals with two simplified numerical models. One model is based upon
the simple assumption, that the evolution of the ice sheet can be described only by
the length of the glacier and the climate forcing, in this case the mass budget. The
second model takes a more complex approach in 3 dimensions and is based upon the
principle of mass conservation and Glen’s flow law.
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2.1 Minimal model 2 DESCRIPTION OF THE MODELS

2.1 Minimal model

This model is a very minimal glacier model described by Oerlemans and Nick in their
2005 paper [4]. The model is built on the basic assumption that the mean ice thickness
Hm and the ice thickness at the glacier front Hf can be related to the length L of the
glacier in these two simple equations:

Hm = αmL
1/2 (1)

Hf = max
{
αfL

1/2;−δd
}
. (2)

Here αm and αf are constants related to the bulk flow parameter, d is the elevation
of the bed and δ is the water to ice density ratio.

The evolution of the ice sheet is found from the conservation of mass, which can
be written as

dV

dt
= B + F, (3)

where B is the total gain or loss of ice at the surface and F is the ice flux at the
glacier front. F can be written as a function of the elevation of the bed d, the calving
rate c and the height at the glacier front Hf :

F = min
{

0; cdHf

}
. (4)

It is shown that the change in glacier length can be written as

dL

dt
=

2(B + F )

3αm
L1/2, (5)

The change in glacier length is determined by the total change in the mass budget
and the shape of the bed, where the total mass change is the calving rate and the
surface mass balance averaged over the whole ice sheet.

This entire model is build upon eq. 5, which finds the length of the current time
step based upon the length of the previous time step, the total gain of ice and the ice
flux of the previous time step. This new length is then used to find the new values for
B and F . Here B and F are two climate forcing parameters, that can be changed to
test the model. Since this model only relies on the length to grow, the glacier cannot
grow from nothing. The model requires an initial length of the ice sheet > 0. For this
project the initial value has been L = 1, since the model reacts quite fast.

2.2 Vertically integrated model

The grounds for this model are based upon a vertically integrated ice sheet model
described by Oerlemans in 1981 [5], which solves the zero-order shallow ice approxi-
mation of the stress equilibrium equations with Glen’s flow law:

ε = Aτn. (6)

This equation describes the relationship between the dominant shear stress τ and the
corresponding strain rate ε. The flow parameter A has a strong dependence on the
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2.2 Vertically integrated model 2 DESCRIPTION OF THE MODELS

ice temperature and the fabric of the ice, as well as crystal orientation and debris
content of the ice. Values that can differ from ice sheet to ice sheet. The power n is
approximately a constant ranging from about 1.5 to 4.2. In this case it is assumed
that n = 3, which is most consistent with field data.

This model is a three-dimensional model, meaning that it is dependent on the width
as well as the height of the ice sheet and can therefore not be described using only
the height and the laminar velocity. The evolution of the ice sheet is also depending
on the conservation of mass and can be written as

∂H

∂t
= − 1

W

∂(HuW )

∂x
+ b, (7)

where H is the ice thickness, u is the laminar velocity, W is the width of the ice sheet
and b denotes the mass balance.

Another way of looking at the evolution of the ice sheet is to see the transport of
mass, from accumulations to ablation zones, as a diffusive process. Knowing this eq.
7 can be written as

∂H

∂t
= − 1

W

∂

∂x

(
WD

∂S

∂x

)
+ b, (8)

where the diffusivity D is positive and found to be

D =
2A(ρg)n

n+ 2
Hn+2

(∂S
∂x

)n−1

. (9)

Here S is the ice surface, ρ is the ice density and g is the gravitational acceleration. So
now the spread of the ice sheet can be described using a nonlinear diffusion equation,
where the diffusivity increases with the slope of the surface and the thickness of the ice
sheet. This implies that D tends to be larger where the ice sheet is thicker. Therefore
to reduce variations in D, the ice sheet will have larger surface slopes where thickness
is smaller.

2.2.1 Ice shelf

When the glacier is grounded it ends in a steep slope towards the ground. But as
the glacier begins to advance into the ocean, the ice front will either have to break
off or begin to float. To make the model more realistic in this situation, an ice
shelf is attached at the tide water margin. This prevents the model from advancing
when the glacier isn’t grounded. The shelf is a confined shelf of uniform width and
follows the same rules as the shelf described in Cuffey and Paterson’s chapter 8.9.3 [7].

Figure 1 shows a cross-section of the ice shelf, where HM is the full height of the
shelf and HS is height of the shelf portion under water. Since the shelf is floating on
the seawater and not grounded HS is not equal to the water depth but can be written
as

HS =
ρHM

ρw
, (10)
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2.2 Vertically integrated model 2 DESCRIPTION OF THE MODELS

where ρ is the ice density and ρw is the seawater density. Since the condition of
floating equilibrium requires that

H
dS

dx
=
(

1 − ρ

ρw

)
H
dH

dx
, (11)

the driving force can be written as

FD =
1

2
ρg
(

1 − ρ

ρw

)
H2. (12)

Assuming that the shelf is in steady state with a constant width and mass balance
rate, we can neglect the friction at the sides and assume that the shelf is very wide.
With these assumptions the longitudinal spread can be written as

ε̇x = A
(ρg

4

(
1 − ρ

ρw

))n
Hn (13)

and the mass balance can be written as

M = H
∂u

∂x
+ u

∂u

∂x
. (14)

Figure 1: Cross-section of an ice shelf (dimensions not to scale). The figure is from Cuffey
& Paterson [7], chapter 8.9.3 page 374.

The shelf grows from the flow of ice flowing into the shelf from the whole area on
the ice sheet and looses mass due to melt and calving into the ocean. When the flow
of mass into the shelf is higher than the melt off M > 0, the shelf will become thicker
and at some point get grounded. When this happens the ice sheet will advance further
into the water. However when the flow of mass into the shelf is smaller than the melt
off M < 0, the shelf starts to thin out and the glacier will start to retreat and possibly
start floating further in.
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3 IMPLEMENTING THE MODEL

3 Implementing the model

To implement the vertically integrated model, all the physical properties of the glacier
have to be in a format that can work within a computer model. This means that all
the equations have to be rewritten so that they can work on a grid structure. In
this grid the i = 0, ..., n refers to the x-coordinates and j = 0, ..., k refers to the
time-coordinates.

The model is driven by an accumulation rate, which can be constant as well as
vary over time and the model is not dependent on having an initial height profile.
This means that the ice sheet can grow from no ice and still reach a steady state
profile within a reasonable amount of time, depending on accumulation and ablation.

3.1 Staggered grid

To avoid problems with the growth of the ice sheet the spatial discretization is done
on a staggered grid, where the surface, height and bottom of the glacier is calculated
with a collocated grid. Where as the diffusivity and the surface slope is calculated
with a staggered grid. This means that the values S, H and B are evaluated at the
regular grid points, where D and ∂S

∂x
are evaluated exactly halfway between the grid

points. Using a staggered grid instead of only a collocated grid allows for a more
accurate assessment of the equations, as well as providing the most simple geometry
needed for solving different equations simultaneously. The staggered grid makes sure
that the height of the glacier is never H = 0 at where ∂S

∂x
is calculated, since this

would result in an infinite velocity.

3.2 The physics of the model

Since the height of the glacier is calculated on a collocated grid, rewriting eq. 7 is
quite simple (∂H

∂t

)j
i

=
Hj+1
i −Hj

i

dt
. (15)

From eq. 9 we know that the diffusivity is depending on the height, therefore H has
to be calculated on a staggered grid as well

Hj

i+ 1
2

=
Hj
i+1 +Hj

i

2
. (16)

The surface slope ∂S
∂x

has to be calculated on the staggered grid as well and can be
written as (∂S

∂x

)j
i+ 1

2

=
Sji+1 − Sji

dx
. (17)

When these two values are calculated on a staggered grid, it is important to remember
that they can only be calculated up to i = n− 1, where as the values calculated on a
collocated grid can be calculated up to i = n.
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3.2 The physics of the model 3 IMPLEMENTING THE MODEL

Now using the expressions for H and ∂S
∂x

on the staggered grid, the diffusivity from
eq. 9 can be written as

Dj

++ 1
2

=
2A(ρg)n

n+ 2

(
Hj

i+ 1
2

)n+2
((∂S

∂x

)j
i+ 1

2

)n−1

(18)

and the width can be written as

Wi+ 1
2

=
Wi+1 +Wi−1

2
. (19)

Using the three expressions for ∂S
∂x

, W and D the following expression can be derived
from eq. 8 and can be written as[

WD
∂S

∂x

]j
i

=
1

dx

(
Wi+ 1

2
Di+ 1

2

(∂S
∂x

)j
i+ 1

2

−Wi− 1
2
Di− 1

2

(∂S
∂x

)j
i− 1

2

)
. (20)

To reduce the complexity of the following equations, a new expression for the diffu-
sivity including the width is introduced here

D̃j

i± 1
2

= W j

i± 1
2

·Dj

i± 1
2

. (21)

Using the new expression for diffusivity, we can derive an equation to describe the
height of the glacier at the same grid point for the next time step. The equation can
be written as

Hj+1
i = Hj

i + dt

[
bji +

1

(dx)2

[
Sji−1

D̃j

i− 1
2

Wi

− Sji

D̃j

i− 1
2

+ D̃j

i+ 1
2

Wi

+ Sji+1

D̃j

i+ 1
2

Wi

]]
. (22)

To make it easier for the model to compute a matrix called C of size [nxn] is intro-
duced. The different elements of the matrix are given as

Ci,i−1 =
D̃j

i− 1
2

Wi

, Ci,i =
D̃j

i− 1
2

+ D̃j

i+ 1
2

Wi

, Ci,i+1 =
D̃j

i+ 1
2

Wi

. (23)

Now the expression for glacier height eq. 22 can be written as the following vector
function

Hj+1 = Hj + dt
[
bj +

1

(dx)2
CjSj

]
. (24)

This function calculates all the glacier heights at all grid points in the same time step
simultaneously. This function is what drives the model and the main parameter to
change when testing the model will be the mass balance b.
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3.3 Growing profile 4 TESTING THE MODELS

3.3 Growing profile

When the surface profile of the model ends on land it grows by letting the front move
one grid point forward, when the ice is thick enough. When it moves forward this grid
point has a very small height resulting in a tiny triangle forming and growing, until the
height at this point is big enough to let the front move again, this can be seen in fig-
ure 2.a. This way of growing results in an oscillation of the height of the glacier front.

Figure 2: a) This figure shows how the glacier advances on land, by jumping to the next
grid point.
b) This figure shows how the glacier advances in the ocean, by jumping to the next grid
point.

When the surface profile ends in water, an ice shelf is put on the end of the glacier.
This shelf is basically passive and has no influence on the behavior of the ice sheet it
self. The shelf just makes sure that the glacier can float when the water is to deep
compared to the glacier height. When the model has to advance in water it grows the
ice shelf thicker until the point where the glacier is grounded and the model thereforee
is able to jump to the next grid point. When the grounding line of the glacier jumps
it allows the front of the shelf to thin out and jump to the next grid point, this can
be seen in figure 2.b.

4 Testing the models

To verify that the two models are giving reasonable results, they have been run through
two simple tests, both thought out by Oerlemans and Nick in their 2005 paper [4].
The first test considers a case with uniform mass balance through out the ice sheet
and calculates how the glacier evolves over time until it reaches steady state. In the
second case the mass balance is dependent on the altitude of the ice sheet, with an
equilibrium line that oscillates over time, with accumulation above it and ablation
below it.

For both the models the bottom topography has been chosen rather arbitrarily and
is calculated like this

d(x) = d0 − sx + λ e−[(x−xs)/σ]2 . (25)

This equation describes a bed with a linear downward slope, with a Gaussian bump.
The height of the bump is λ, the width is σ and the position of the bump is determined
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4.1 Test 1: The minimal model 4 TESTING THE MODELS

by xs. The reason for choosing a bedrock with a bump is to study how the glacier
evolves when it advances or retreats over increasing and decreasing water depths.

4.1 Test 1: The minimal model

The first test of the minimal model considers a case with uniform mass balance over
the ice sheet. For this case the total gain or loss of ice at the surface can be calculated
as

B = La (26)

where the accumulation rate a is increased by 0.0005 m yr−1 and the calving rate of
the glacier is c = 2.4 m yr−1. The Gaussian bump on the bed is located at xs = 40 km
from the ice divide, with a height of λ = 300 m and a width of σ = 10 km.

The model was set to run for 5000 years and gave the results shown in figure 3.a.
In the figure it is clearly seen how the length of the glacier grows over time, slowing
down at around L = 20 km when it reaches sea level and making a big jump forward
when the bump begins. When the glacier passes the bump the glacier approaches an
equilibrium, when the ocean becomes so deep, that the glacier cannot stay grounded.

The figure also shows the progression of the water depth, the height at the front
and the two components of the mass balance. Here there is also a clear growth until
the glacier reaches the bump and again after it passes the bump. As seen the total gain
of ice at the surface begins to increase and the negative flux decreases as expected.

4.2 Test 2: The minimal model

In the second test the mass balance is dependent on the altitude of the ice sheet,
with an oscillating equilibrium line. This is a more realistic approximation for marine
outlet glaciers located in a warmer climate and therefore have large ablation zones.
Here the flux is the same as for the first test (eq. 4), but the total gain of ice at the
surface is calculated as

B = β(hm − E)L, (27)

where the balance gradient is β = 0.005 yr−1 and hm is the mean surface elevation.
E is the equilibrium line which is calculated as

E = E0 + AE sin
(2πt

PE
+ f
)
. (28)

In this case E0 = 100 m, AE = 350 m, PE = 5 kyr and f = 1.6. The glacier has
accumulation below the equilibrium line and ablation above it.

The results of this test can be found in figure 3.b, where it is clear that the glacier
does not reach an equilibrium when it passes the bump, like it did in the other test.
This is due to the ablation of ice caused by the oscillating equilibrium line. When the
glacier reaches its maximum length, it slowly begins to loose mass until it passes the
bump, where the retreat increases rapidly until the glacier is gone again. This process
is cyclic and will repeat itself, with growing the glacier and melting it away again.
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4.3 Test 1: The vertically integrated model 4 TESTING THE MODELS

Figure 3: a) This figure shows the test on the minimal model, with an accumulation
rate increasing linearly over time by 0.0005 m yr−1. The first panel shows the length and
accumulation rate. The second panel shows the ice thickness and the water depth at the
front. The third panel shows the two components of the mass budget.
b)This figure shows the result for test of the minimal glacier with mass balance depending
on altitude and a linear balance gradient and periodic forcing (PE = 5kyr). The first panel
shows the glacier length and the equilibrium line altitude E. The second panel shows the
mean ice thickness, the thickness at the glacier front and water depth. The components of
the mass budget are plotted in panel three.

4.3 Test 1: The vertically integrated model

This model was also run through the same two test as the minimal model. The first
test was with a constant mass balance of 1 m y−1 on the ice sheet and −1 m yr−1 on
the shelf. The same bottom topography from eq. 25 was used here, with the Gaussian
bump located at xs = 350 km from the ice divide, with a height of λ = 1 km and
a width of σ = 35 km. Since this model reacts slower than the minimal model and
has a much larger distribution, the model was given an initial Vialov profile of length
L = 265km and set to run for 150 kyr. This length was chosen so the model would not
have to run unnecessarily long, but also ensuring the glacier would not have reached
sea level yet.

In figure 4.a the result for the test can be seen. Here it is clear that the glacier
grows steadily until it passes the bump. The fluctuations in the length and the height
at the front is due to the shelf building up and becoming grounded. When the glacier
passes the bump the growth slows down and comes to a stop as the seawater becomes
to deep for the shelf too be grounded.

Page 9 of 20 (32)



4.3 Test 1: The vertically integrated model 4 TESTING THE MODELS

Figure 4: a) This figure shows the test with constant accumulation and mass balance on
the vertically integrated model. The first panel shows the length of the glacier, the second
panel shows height at the glacier front and the water depth and the third panel shows the
total mass balance and the flux at the front.
b) This figure shows the test with mass balance depending on altitude in the vertically
integrated model. The first panel shows the length of the glacier and the equilibrium line
with a forcing period of PE = 80 kyr, the second panel shows height at the glacier front and
the water depth and the third panel shows the total mass balance and the flux at the front.

As seen in figure 4.a the height of the glacier at the front, looks to be very unstable
and oscillates up and down. This is due to the way the model advances (see figure 2).
Due to this Hf is not as smooth as expected, but jumps up and down as the glacier
moves forward. These jumps are only seen when the glacier is on land or grounded on
the ocean floor. This is because the glacier grows differently when on land compared
to the growth in water.

When the glacier front is floating in the water, the test shows downward spikes
in the water depth, this is due to the way the glacier grows in water. it does this by
making the shelf thicker, until it is thick enough to move to the next grid point. The
dips in water depth happens when the shelf moves forward (see figure 2).

Since the flux though the glacier front F is depending on the height at the front, the
flux also jumps up and down as the glacier moves forward. And it can be seen in the
figure that these jumps in flux and height happens at the same locations throughout
the test.
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4.4 Test 2: The vertically integrated model

In the second test the mass balance is depending on the altitude of the glacier. Here
the same formula (eq. 28) for the equilibrium line was used. In this case E0 = 1000 m,
AE = 2000 m, PE = 80 kyr and f = 1.6 and with a mass balance of 1 m yr−1 below
the equilibrium line and −1 m yr−1 above and on the shelf. The same bottom and
the same initial profile was used for this test as for the first test.

The results of this test is shown in figure 4.b, were it is seen how the glacier grows
with time and makes a jump when it reaches the bump. After the bump the growth
slows to a stop and then the ice sheet jumps back past the bump, resembling a length
like the initial profile. This process is also cyclic and will begin to repeat it self, when
the equilibrium line is at the right height.

5 Data analysis

To test how the vertically integrated model performs for real, a set of data for a flow
line for the Helheim glacier is used. The flow line can be seen in figure 5 and figure 6.
Helheim is one of Greenland’s largest outlet glaciers and as described in Moon et. al.
(2018) [12] and Nick et. al. (2009) [6], it has a very large overdeepening in the ocean
floor and ends in a very narrow fjord, resulting in a complex behavior of the glacier.

Figure 5: This figure was made by Christine Schøtt Hvidberg for this project and shows
the flow line for Helheim on a surface elevation map. The surface elevation data comes from
GIMPDEM version 1. by Howat et al. (2014) [10].

Page 11 of 20 (32)



5 DATA ANALYSIS

Figure 6: This figure was made by Christine Schøtt Hvidberg for this project and shows
the flow line (in the middle) for Helheim on a velocity map. The two other lines represent
the width of the glacier. The data for surface velocity comes from the complete map of
Greenland ice velocities by Joughin et al. (2017) [9].

The data used in this project comes from four different articles. The bottom to-
pography and the ice sheet thickness data, comes from the Bedmachine v3 article by
Morlighem et al. (2017) [8]. The surface velocity data, which is plotted with the flow
line in figure 6, comes from the complete map of Greenland ice velocities by Joughin
et al. (2017) [9]. The surface elevation data, which is plotted with the flow line in
figure 5, comes from GIMPDEM version 1. by Howat et al. (2014) [10]. And lastly
the surface mass balance data is from the regional climate model SMB from RACMO2
by Ettema et al. (2009) [11].

In figure 7 the different data for the Helheim flow line has been plotted. The top
panel shows the initial surface profile of the flow line and the flow lines bottom topog-
raphy, which consists of a fairly flat part over sea level. It slopes up toward the ocean
an ends in a plateau of about 500 m in height. The plateau ends in a steep slope
into the ocean followed by a high bump on the ocean floor. The surface profile is very
smooth over land, due to many years of accumulating snow and ice. The profile goes
into the water and ends right past the bump in the bed.

The second panel in the figure shows the flow lines surface mass balance and how
it changes towards the front. The surface mass balance is low towards the beginning
of the flow line, where the ice sheet is thickest and grows towards the coast as the
ice sheet thins. When the ice sheet reaches the ocean the surface mass balance falls
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5.1 Testing the model 5 DATA ANALYSIS

drastically but has a small peak around the bump in the ocean floor. The last panel
in the figure shows the surface velocity of the flow line. The velocity is very small
until the ice sheet reaches the coast and becomes thin, here the velocity grows rapidly
both down the plateau and over the bump.

Figure 7: The first panel of this figure shows the surface profile of the flow line (Howat et
al. 2014 [10]) and the bottom topography (Morlighem et al. 2017 [8]). The second panel
shows the surface mass balance of the flow line (Ettema et al. 2009 [11]) and the third panel
shows the surface velocity of the flow line (Joughin et al. 2017 [9]).

5.1 Testing the model

Figure 8 shows the surface profile after running the vertically integrated model for
5000 years. It also shows the surface profiles for four arbitrarily chosen values for the
temperature, with a surface mass balance of 1 m yr−1. The figure only shows about
the last 40-90 km of the ice sheet. The complete run for each temperature can be
found in appendix A.

The results in the figure shows that the lower the temperature is on the ice sheet,
the slower it will retreat. All the temperatures are so high that the ice sheet becomes
so thin over the bump, that it retreats past the bump and grounds it self on the
opposite side, where it again reach steady state if the conditions do not change. Due
to the low accumulation on the ice sheet, none of the temperatures are low enough
to reach steady state on the bump. Therefore a series of runs were done with higher
accumulation, which can be found in figure 10.
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Figure 8: This figure shows the model’s results for four different runs with different tem-
peratures. The red line is the observed profile. All runs were 5 kyr and had the flow line’s
surface profile as initial profile. The black line is the bottom topography and the light green
line is the sea level.

Figure 9 shows the surface profile after running the model for 5000 years, with the
observed surface mass balance and a temperature of −3 ◦C. It also shows the surface
profiles for five arbitrarily chosen values for the surface mass balance. The five chosen
surface mass balances are constant over the entire ice sheet, where as the observed
value is not constant. The figure only shows about the last 40-90 km of the ice sheet.
The complete run for each surface mass balance can be found in appendix B.
From the results in figure 9 it is clear, that when the surface mass balance is high, the
retreat of the ice sheet is slow and when the surface mass balance is low, the retreat
is faster. If the surface mass balance is set to be lower than 1 m yr−1, the ice sheet
will be so thin over the bump, that it will retreat past the bump and ground it self
on the opposite side. Here it will slowly stop retreating until it reaches steady state.
If the surface mass balance is 1 m yr−1 or higher, the ice sheet will ground it self on
the bump, where it will slowly reach steady state if the conditions do not change.

The observed surface mass balance on Helheim is not uniform all over the ice
sheet, as that of the other 5 runs. However if the surface mass balance should be
approximated to a constant, it is seen in figure 9 that a value of around 0.8 m yr−1

would be a reasonable approximation.

Figure 10 shows the model’s results for 4 different surface mass balances at a tem-
perature of −10 ◦C. In this figure the accumulation of ice is high enough to let all
the profiles ground on the bump, rather than after the bump near the coast. Here we
can see that a lower surface mass balance grounds the glacier higher up on the bump
than a higher value for surface mass balance. The full runs for the different surface
mass balances can be found in appendix C.
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Figure 9: This figure shows the model’s results for six different surface mass balances. The
red line is the observed and the rest have been chosen arbitrarily. All runs were 5 kyr and
had the flow lines surface profile as initial profile and a temperature of −3 ◦C. The black
line is the bottom topography and the light green line is the sea level.

Figure 10: This figure shows the model’s results for 4 different surface mass balances (smb)
at a temperature of −10 ◦C. All runs were 5 kyr and had the initial surface profile of the
flow line. The black line is the bottom topography and the light green line is the sea level.

Figure 11 shows three runs for three different values for n in Glens flow law (eq.
6). These values have been chosen because the model does not take bottom sliding
of the glacier into account. Choosing a value for n that is higher than 3, will make
the velocity profile of the glacier more steep and can make up for the lack of bottom
sliding. From the results in the figure, it is clear that a higher value for n lets the
glacier ground it self on the bump, as well as resulting in a thinner shelf.
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Figure 11: This figure shows the model’s results for 3 different values of n. All runs were
5 kyr, had a temperature of −3 ◦C and had the flow lines surface profile and observed mass
balance as initial profile. The black line is the bottom topography and the light green line
is the sea level

Figure 12 shows the model’s result for surface velocity of a glacier at −3 ◦C, with
the observed surface mass balance and the observed values for the surface velocity.
It also shows the model’s calculated velocities under the same conditions after 5 kyr
and with two different values of n. It is clear from the observed data that the velocity
grows rapidly as it nears the end of the plateau and again as it nears the glacier front,
with a distinct peak at the bump. Both the calculated velocities are far lower than
the observed values and the velocity profile for n = 4 does not show changes at the
end of the plateau. It is clear that the model does not give as high velocity values
near the glacier front as expected.

Figure 12: This figure shows the model’s result for surface velocity of a glacier at −3 ◦C,
with the observed surface mass balance. In blue is the observed surface velocity.
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6 Discussion

The two tests done on the model in section 4 clearly shows, that the minimal model
from Oerlemans and Nick (2005) [4] reacts much faster than the vertically integrated
model. In figure 3.a we see how the glacier can advance past the bump in the ocean
floor and reach steady state within 5000 years. In figure 4 we see how the vertically
integrated model needs 175.000 years to do the same.

The reason that the simple model is so much faster than the vertically integrated
model, is because it is so simple. It has less parameters that need to be at the right
values and it has no shelf to ground before it can advance further into the water.
The complexity of the vertically integrated model, although still simple compared to
a real glacier, results in more conditions to be just right, before the glacier can advance.

It is clear from the results in figure 8, that vertically integrated model has trouble
staying grounded on, or before, the bump in the ocean floor. Lowering the tempera-
ture below the −3 to −5 ◦C that has been used to model Helheim before (This has
among others been done by Nick et. al. in their 2009 paper [6]) did nothing to help
this problem. This points towards there being a problem with how the model grounds
itself, when the glacier ends in deep water.

Figure 9 also shows the same grounding problem in deep water. The results show
that when accumulation of ice resembles the observed values, the glacier will retreat
rapidly past the bump instead of grounding on or before the bump. This again is not
consistent with what is observed at Helheim, where the glacier is grounded further
out than the bump.

From the results in figure 10 it is clear, that for the model to behave as expected
both the temperature and the mass balance has to be changed drastically. The figure
shows that with much higher accumulation of ice and a much lower temperature the
model can ground it self on the bump. However this is still much further back than
what is actually observed at Helheim and therefore this can not help to explain the
problem.

A part of the problem might be due to the lack of bottom sliding in the model.
This was one of the physical properties neglected in this model, in order to keep it
as simple as possible. Bottom sliding however is an important factor in the dynamics
of Helheim and have to be taken in to account when modeling it, since it has a large
effect on the thinning of the ice sheet, as described in the 2009 article about Helheim
by Nick et. al. [6].

In order to try and make up for the missing sliding a series of runs for higher values
of n was done. Having a higher value of n = 4 or higher, will make the velocity profile
down through the ice sheet steeper and can mimic the effects of bottom sliding. The
results for this test can be seen in figure 11 and show that a higher value for n does
allow the glacier to ground on the bump. In figure 12 the surface velocities of n = 3
and n = 4 are plotted. This shows that even with a higher value the model cannot
mimic the high surface velocities, which are a result of the bottom sliding.

The velocity profile for n = 3 has a noticeable peak where the plateau ends and
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another one where the glacier ends, but the values are not nearly as high as the
observed values. The same goes for the velocity profile for n = 4, however this profile
does not have a peak at the end of the plateau. This is due to the fact, that the ice
sheet is so thick at the end of the plateau, as can be seen in figure 11. This shows
that giving n a larger value than 3, does not make up for the thinning of the glacier
towards the end of it. There is an offset in the placement of the peaks, because the
glaciers profiles ends at different lengths, due to the growth. It can however be seen
that all the peaks are placed at the points where the respective glacier profiles end.

The large velocities towards the end of the glacier in the observed profile, points
towards a large water pressure towards the bottom, due to the bottom sliding of the
glacier. Since there is no bottom sliding in the model and raising the value of n, did
not have the desired effect, it is not possible to recreate this high pressure resulting
in the high velocities.

Another reason for the models grounding issues can be due to the way the ice shelf
works. The shelf is passive and has a constant melting rate of −1 m yr−1 all over
the shelf. This is however not how an ice shelf actually works. In the 2018 paper by
Moon et. al. [12] and the 2019 paper by Shean et al. [13], it is described how the
melting rate of the shelf is lowest at the shelf front and highest at the grounding line.
This factor could result in the glacier having problems with grounding it self.

The topography surrounding Helheim probably also has a big impact on this prob-
lem. As described in Moon et. al. (2018) [12] and Nick et. al. (2009) [6], Helheim
ends in a very narrow fjord where the ice spreads to the coast on both sides. This
creates a large friction between the glacier sides and the fjord shore, resulting in the
glacier retreating much slower than it would otherwise do. Due to this the floating
shelf on Helheim is almost none-existing and the glacier is grounded at the very front.
This along with the lack of bottom sliding can explain why the model cannot stay
grounded far out in the fjord, when that is in fact what Helheim does in real life.

7 Conclusion

The vertically integrated model build for this project, is a very fine simple glacier
model and is useful when exploring how the changes in different parameters, can
affect the glaciers stability an result in mass gain or lose. The model works well
with complicated bottom topographies and surface mass balances and it behaves as
expected when advancing and retreating in both water and on land. It gave very
reasonable results in the two tests, despite reacting slower than the simple model.

However a number of flaws where found, when it came to recreating the conditions
of the Helheim glacier. Here bottom sliding has a big influence on the behavior of the
glacier and can therefore not be neglected, as it has been in the model. The bottom
sliding at Helheim, results in both thinning of the ice sheet and changes in the velocity
profile, which cannot be recreated with this model. Implementing bottom sliding in
the model would require many new parameters, as seen in Nick et. al (2009) [6] and
would take away from the simplicity of the model.
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Another flaw in the model is the passive shelf. The model would retreat less dras-
tically, if the shelf had a non uniform melting rate, resembling the actual melting rate
of a shelf. The retreat of the model, would also be slowed down if the model included
the friction between the glacier sides and the surrounding topography.

A way to move forward with this model in the future, would be to find a way to
include bottom sliding in the model, without compromising the simplicity of the
model too much. This would make the model more versatile and it would therefore
be more useful, when modelling many different glaciers.

Another way to continue the development of this model, would be to expand it,
so that it could cover more of or all of, the glaciers on Greenland all at once. This
would further the benefits of this model and make it more useful when looking at the
global mass lose and how the Greenland glaciers affect it.
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Mouginot, B. P. Y. Noël, C. O’Cofaigh, S. Palmer, S. Rysgaard, H. Seroussi, M.
J. Siegert, P. Slabon, F. Straneo, M. R. van den Broeke, W. Weinrebe, M. Wood,
and K. B. Zinglersen, (2017). BedMachine v3: Complete bed topography and ocean
bathymetry mapping of Greenland from multi-beam echo sounding combined with
mass conservation, Geophys. Res. Lett., 44, doi:10.1002/2017GL074954.

[9] Joughin, I., B. E. Smith, and I. M. Howat. (2017). A complete map of Greenland ice
velocity derived from satellite data collected over 20 years. Journal of Glaciology,
doi: 10.1017/jog.2017.73.

[10] Howat, I., A. Negrete, and B. Smith. (2014). The Greenland Ice Mapping Project
(GIMP) land classification and surface elevation data sets. The Cryosphere. 8.
1509-1518. doi: 10.5194/tc-8-1509-2014

[11] Ettema J., M.R. van den Broeke, E. van Meigaard, W.J. van de Berg, J.L.
Bamber, J.E. Box, and R.C. Bales (2009. Higher surface mass balance of the
Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res.
Lett., 36, L12501, doi:10.1029/2009GL038110

[12] Moon, T., Sutherland, D.A., Carroll, D. et al. (2018). Subsurface iceberg
melt key to Greenland fjord freshwater budget. Nature Geosci 11, 49–54. doi:
10.1038/s41561-017-0018-z

[13] Shean, David E. et. al. (2019). Ice shelf basal melt rates from a high-resolution
digital elevation model (DEM) record for Pine Island Glacier, Antarctica. The
Cryosphere 13,10, 2633-2656. doi: 10.5194/tc-13-2633-2019

Page 20 of 20 (32)



REFERENCES REFERENCES

Appendix A

Appendix A shows the models result for four different temperatures, with the ob-
served surface mass balance. All runs were 5000 years and the glacier profile has been
plotted every 1000 years.

Figure 13: This figure shows the models result for four different temperatures, with the
observed surface mass balance. All runs were 5 kyr.
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Appendix B

Appendix B shows the models results six different surface mass balances, with ta
temperature of −3 ◦C. All runs were 5000 years and the glacier profile has been
plotted every 1000 years.

Figure 14: This figure shows the models result for six different surface mass balances, with
ta temperature of −3 ◦C. All runs were 5 kyr.
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Appendix C

Appendix C shows the models result for 4 different surface mass balances, with ta
temperature of −10 ◦C. All runs were 5000 years and the glacier profile has been
plotted every 1000 years.

Figure 15: This figure shows the models result for 4 different surface mass balances, with
ta temperature of −10 ◦C. All runs were 5 kyr.
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Appendix D

Below is the code for the simple model.

[2]: import numpy as np

import matplotlib.pyplot as plt

This simulatin creates a glacier with a uniform mass balance, like the one from
Oerlemans og Nick. The mass balance is describe by B = aL, this means that the
mass balnce is independant of x.

7.0.1 Defining my functions

[3]: def dL(B, F, L, am):

return (2*(B+F)/(3*am)*L**(-0.5))

[4]: def B_func(a, L):

return a*L

[5]: def F_func(c, d, Hf):

return np.min([0, c*d*Hf])

[6]: def Hm_func(am, L):

return am*L**(0.5)

[7]: def Hf_func(af, L, eps, delt, d):

return np.max([af*L**(0.5), -eps*delt*d])

[8]: def d_func(x):

d_0 = 200 # m

s = 0.014

lam = 300 # m

xs = 40000 # m

sig = 10000 # m

return d_0 -s*x + lam * np.exp(-((x-xs)/sig)**2)

7.0.2 Defining constants
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[9]: N = 5001 # number of timesteps (yr)

am = 2 # constant related to the bulk flow parameter (m^1/

↪→2)

af = 0.7 # constant related to the bulk flow parameter (m^1/

↪→2)

delt = 1.127 # ratio of water density to ice density

c = 2.4 # calving rate (yr^-1)

eps = 1

dt = 1 # timestep (yr)

7.0.3 Creating arrays

Here I create arrays for all the values that change over time. Currently all elements
are 0.

[10]: L = np.zeros(N)

d = np.zeros(N)

Hm = np.zeros(N)

Hf = np.zeros(N)

F = np.zeros(N)

B = np.zeros(N)

a = np.zeros(N)

Here I set the starting values for all my arrays. This makes sure that I don’t just
get 0 for all my time steps.

[11]: a[0] = 0.0005

L[0] = 1

d[0] = L[0]

Hm[0] = Hm_func(am, L[0])

Hf[0] = Hf_func(af, L[0], eps, delt, d[0])

F[0] = F_func(c, d[0], Hf[0])

B[0] = B_func(a[0], L[0])

7.0.4 Creating simulation

I create my simulation using a forloop. I loope one less time, than my arrays are long.
I use the the current step of my arrays to create the next L and use that L to

create the next step of the rest.

[12]: for i in range(N-1):

a[i+1] = a[i] + 0.0005

L[i+1] = L[i] + dt * dL(B[i], F[i], L[i], am)

d[i+1] = d_func(L[i+1])

Hm[i+1] = Hm_func(am, L[i+1])

Hf[i+1] = Hf_func(af, L[i+1], eps, delt, d[i+1])

F[i+1] = F_func(c, d[i+1], Hf[i+1])
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B[i+1] = B_func(a[i+1], L[i+1])

Here i set my d values for over 0 too 0, so I can multiply by -1 later, and create a
time array.

[13]: d[d > 0] = 0

time = np.arange(N)

7.0.5 Plotting stuff

[23]: fig, ax = plt.subplots(3, 1, figsize=(6, 10))

ax[0].plot([1000,1001], [0,1], ’--’, label=’a’)

ax[0].plot([1000,1001], [0,1], ’w’, linewidth=2)

ax[0].plot(time, L/1000, label=’L’)

ax[0].set_ylabel(’L [km]’)

ax[0].legend(loc=2)

ax[0].text(-900, 45, ’a)’, fontsize=14)

axa = ax[0].twinx()

axa.plot(time, a, ’--’, label=’a’)

ax[1].plot(time, Hf, label=’$H_f$’)

ax[1].plot(time, -d, ’--’, label=’$d$’)

ax[1].set_ylabel(’$H_f$, $d_f$ [m]’)

ax[1].legend()

ax[2].plot(time, B, label=’$B$’)

ax[2].plot(time, -F, ’--’, label=’$-F$’)

ax[2].set_ylabel(’$B, -F$ [$m^2\ yr^{-1}$]’)

ax[2].set_xlabel(’Time [yr]’, fontsize=12)

ax[2].ticklabel_format(style=’sci’, axis=’y’, scilimits=(0,0))

ax[2].legend()

plt.savefig(’simple_uniform.png’, dpi=100, bbox_inches=’tight’)
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Appendix E

Below is the code for the simple model.

[247]: import numpy as np

import matplotlib.pyplot as plt

from sympy import diff

import pandas as pd

import matplotlib.patches as patches

[248]: dt = 0.01 # timestep

k = 100 # number of timesteps

time = 0 # current time

kstart = 0 #number of timesteps at start (for restarting a run)

kslut = kstart+k

# sea level varies over time

sl = np.zeros(kslut+1)

[249]: nf = 3 # Power in Glens flow law

g = 9.82 # Gravity [m s^-2]

rho = 918 # Ice density [kg m^-3]

rho_w = 1000 # water density [kg m^-3]

# Flow law rate factor A

isotemp = 270

ar = 1.35 * 10**(-5) * np.exp(-60000/8.3143/isotemp)

kfl = 2 * ar * (rho*g)**(nf)/(nf+2)

cs = ar * (rho*g/4*(1 - rho/rho_w))**nf

#kfl = np.zeros(k)

#kfl[0] = 2 * ar * (rho*g)**(nf)/(nf+2)

[250]: n = 1001 # Gridpoint

dx = 1000 # Distance in x

[251]: # Grid along x

x = np.zeros(n)

for i in range(n):

x[i] = ((i)*dx)

#[print(y) for y in x]

# staggered grid along x

xs = np.zeros(n-1)
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for i in range(n-1):

xs[i] = ((i)*dx) + dx/2

[252]: def bottom(X):

d_0 = 200 # m

s = 0.014

lam = 1000 # m

Xs = 350000 # m

sig = 35000 # m

bot = (d_0 -s*X + lam * np.exp(-((X-Xs)/sig)**2)) + 3500

for i in range(len(x)):

if bot[i] > 200:

bot[i] = -0.009*X[i] + 2450

if bot[i] > 300:

bot[i] = -0.004*X[i] + 1260

if bot[i] > 500:

bot[i] = 500

return bot

bed = bottom(x) # bottom topography

[253]: mb = np.zeros(n)

smb = np.ones(n) #surface mass balance

ms = -1.0 # surface mass balance shelf

lmax = 10000 # shelf max length

[254]: h = np.zeros([n,k]) # ice thickness

s = np.zeros([n,k]) # surface elevation

# H initial

hdiv = ((smb[0]/(2*ar))**(1/nf) * (nf+2)**(1/nf) * 2/(rho*g))**(1/

↪→(2+2/nf)) * 280000**0.5

h[:101,0] = (1-((x[:101])/100000)**(4/3))**(3/8) * hdiv

xs0 = x[101]

bed0 = bed[101]

b = np.zeros([n,k])

hinit = h

b[:,0] = bed

s[:,0] = h[:,0] + b[:,0] # surface

left = np.arange(n)*0.08

right = -np.arange(n)*0.08 + 100

w = right-left # width
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L = np.zeros(k)

L[0] = 200

[255]: lc = 0 # shelf length at start

lv = 0

imask = np.zeros(n) # land-water mask

for i in range(n):

if s[i,0] >= 0:

imask[i] = 1

else:

imask[i] = 0

mb = imask * smb

flux = np.zeros(n-1)

[256]: vol_tot = 0 # total volume

masbal_tot = 0 # total mass balance

for i in range(n-1):

masbal_tot = masbal_tot + 0.5 * (mb[i] + mb[i+1]) * dx

vol_tot = vol_tot + 0.5 * (h[i,0] + h[i+1,0]) * dx

dvol = 0

vol = vol_tot

[274]: difftest = 0

hsg = np.zeros(n)

dsdx = np.zeros(n)

diff = np.zeros(n)

timestep = np.zeros(k)

q = np.zeros([n-1,k])

Hf = np.zeros(k)

L = np.zeros(k)

las_ind = 0

d = np.zeros(k)

Bal = np.zeros(k)

F = np.zeros(k)

F1 = np.zeros(k)

fig, ax = plt.subplots(1, 1, figsize=(10, 6))

for j in range(kstart, kslut-1):

#kfl[j+1] = 0.5 + kfl[j]
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for i in range(n-1):

hsg[i] = (h[i+1,j]+h[i,j])/2

dsdx[i] = (s[i+1,j]-s[i,j])/dx

diff[i] = kfl*hsg[i]**5 * dsdx[i]**2

flux[i] = -diff[i] * dsdx[i]

difftest = np.max(diff)

if difftest > 0:

dt = dx * dx/difftest/6

dt = np.min([dt,1.0])

dt = np.max([dt,0.0001])

else:

dt = 0.0001

time = time + dt

timestep[j] = dt

c = np.zeros([n,n])

diffid = kfl/2 * h[0,j]*h[1,j]**4 * ((s[2,j] - s[0,j])/

↪→(2*dx))**2 * (1/2*(w[1]+w[0]))

c[0,0] = -diffid

c[0,2] = diffid

for i in range(1,n-1):

c[i,i-1] = diff[i-1]

c[i,i] = -diff[i-1]-diff[i]

c[i,i+1] = diff[i]

c[n-1,n-1] = 1

h[:,j+1] = h[:,j] + dt*(mb+1/dx**2*c.dot(s[:,j]))

h[0,j+1] = h[1,j+1]

b[:,j+1] = bed[:]

imask = np.zeros(n)

for i in range(n):

if h[i,j+1] <= 0 :

h[i,j+1] = 0

else:

imask[i] = 1

xs0 = 0

is0 = 0

ism = 0
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for i in range(n-1):

if is0 == 0:

imask[i] = 1

mb[i] = smb[i]

if bed[i]+sl[j+1]<0 and h[i,j+1]>0 and h[i+1,j+1]<=

↪→rho_w/rho*(sl[j+1]-bed[i+1]):

is0 = i

xs0 = x[i]

bed0 = bed[i]

h0 = h[i,j+1]

u0 = flux[i-1]/hsg[i-1]

if ms>= 0:

lc = lmax

else:

lc = np.min([h0*u0/abs(ms), lmax])

ism = i

else:

if x[i] < xs0+lc:

if ms == 0:

h[i,j+1] = (h0**(-nf-1)+cs*(nf+1)/h0/

↪→u0*(x[i]-xs0))**(-1/(nf+1))

else:

h[i,j+1] = ((u0/

↪→(ms*(x[i]-xs0)+h0*u0))**(nf+1)*(1-cs/ms*h0**(nf+1))+cs/ms)**(-1/

↪→(nf+1))

if h[i,j+1] >= rho_w/rho*(sl[j+1]-bed[i]):

imask[i] = 1

b[i,j+1] = bed[i]

else:

b[i,j+1] = -h[i,j+1]*rho/rho_w + sl[j+1]

imask[i] = 1

ism = i

mb[i] = ms

else:

h[i,j+1] = 0

b[i,j+1] = sl[j+1]

imask[i] = 0

mb[i] = 0

s[:,j+1] = b[:,j+1] + h[:,j+1]

q[:,j+1] = flux[:]

H = pd.Series(h[:,j+1])
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las_ind = H[H != 0].index[-1]

Hf[j+1] = h[las_ind,j+1]

L[j+1] = las_ind*1000

Bal[j+1] = smb[0]*(L[j+1]-10000)+(-1*10000)

F[j+1] = flux[las_ind-10]

F1[j+1] = flux[las_ind-1]

if bed[las_ind] < 0:

d[j+1] = -bed[las_ind]

else:

d[j+1] = 0

if j % 20 == 0:

ax.plot(x[:]/1000, s[:,j+1], linewidth=0.5)

ax.plot(x[:]/1000, b[:,j+1], ’b’, linewidth=0.5)

ax.plot(x/1000, 0*b[:,j+1]+sl[j+1], ’--c’)

#if xs0 > 0:

#ax[0].plot(xs0,bed0, ’.r’)

#ax[1].plot(xs/1000, q[:,j+1])

#if j == 0:

#ax.plot(x[:]/1000, s[:,j+1], ’w’, linewidth=20)

mb = imask * mb

s[:,j+1] = s[:,j+1] * imask[:]

h[:,j+1] = h[:,j+1] * imask[:]

b[:,j+1] = bed[:]

ax.plot(x/1000, bed, ’k’)

ax.set_xlim([98.8, 101.2])

ax.set_ylim([450, 1250])

#ax[1].set_xlim([0, 400])

ax.text(98.55, 1210, ’a)’, fontsize=14)

ax.set_xlabel(’x [km]’, fontsize=12)

ax.set_ylabel(’h [m]’, fontsize=12)

#ax[1].set_ylabel(’flux [£m^{3} yr^{-1}£]’)

plt.savefig(’front.png’, dpi=100, bbox_inches=’tight’)
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