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Abstract

We study the properties of single and double quantum dots. We focus on the transport of electrons
between the dots and the source/drain, and between the first and second dot, in the case of the double
dot. We analyse the systems of single dot, double dot without spin and double dot with spin. We find
the possible states of each system and the transition rates between its states. We calculate the Master
equations, which lead us to calculate the current, produced by the electron transfer, in each system.
Finally, we create two programs, where one simulates the double dot system for electrons with and
one for electrons without spin, and we compare qualitatively our results with the experimental data.
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Chapter 1

Introduction

1.1 Mathematical Tools

1.1.1 Second Quantization

The main tool, used to describe many particle physical systems, is the second quantization. Main
features of which are the creation and annihilation operators, which add or remove a particle (boson
or fermion) to many-body wave functions, respectively. Below is presented the basic notation used in
this thesis.

c†kσ: creation fermion operator, creates an electron in state k with spin σ
ckσ: annihilation fermion operator, annihilates an electron in state k with spin σ

And they act as following in the many-body wave-functions

c†|n1...ni..〉 = (−1)

∑
i (1− i)C+(nνj )|n1...n(i+1)..〉

c|n1...ni..〉 = (−1)

∑
i (1− i)C−(nνj )|n1...n(i−1)..〉

Anticommutation relations of fermion operators

{c†νj , c
†
νk
} = 0

{cνj , cνk} = 0

{cνj , c†νk} = δνjνk
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Chapter 2

2-D Electron Gas

Electron gases of reduced dimensionality play a very important role in modern experimental physics.
Especially two-dimensional electron gases in heterostructures are a fundamental part of semiconductor
nanostructures.
The most recent type of them is the gallium arsenide/gallium-aluminium-arsenide (GaAs/GaAlAs)
heterostructure.

Figure 2.1: Layer sequence in a typical GaAs/AlGaAs heterostructure with remote doping.

Firstly we will examine the electrostatic properties of this structure, which is shown in the image
above. We choose the z axis in the growth direction of the crystal, with its origin, z=0. For z � 0
the electric field in the sample is zero and the conduction band edge is flat. If we place a cylindrical
close surface along z with one end face in the region z � 0 and the other in the region -s<z<0, we
can apply Gauss’s law of electrodynamics and find the electric field in the spacer layer.

E =
|e|ns
εε0

and the corresponding electrostatic potential

Φ =
|e|(ns −Nd)

εε0

If we extend the cylinder further in the negative z-direction, we include the
δ-doping layer and we find the new value

E =
|e|(ns −Nd)

εε0
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Figure 2.2: Effective potential for electrons in the conduction band in a typical GaAs/AlGaAs heterostructure with
remote doping.

Owing the Fermi level pining at the metal/GaAs interface the electro-chemical potential (Fermi level)
at the surface is at the energy:

µG = Ec(−s− d)− Φb

where Φb is the built-in potential, which is half the band gap. Within the the electron gas the
electrochemical potential which is given by the sum of the quantization energy and the Fermi energy:

µ2DEG = E0(ns) + EF (ns)

As a consequence, the relation between an applied gate voltage UG between top gate and electron gas
is

−eUG = µG − µ2DEG = −e
2ns
εε0
− e2(ns −Nd)

εε0
d− Φb − E0(ns)− EF (ns)
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Chapter 3

Quantum Dots

3.1 Quantum Dots

3.1.1 General Features

A quantum dot is an artificially structured system that can be filled with electrons (or holes). It can
be coupled with tunnel barriers to reservoirs, with which electrons can be exchanged.

Figure 3.1: Schematic picture of a quantum dot in a lateral geometry.

As shown in figure 3.1, by applying voltage on these reservoirs, we can measure the electronic proper-
ties of the dot, examining the produced current. The dot is also coupled with a gate electrode, which
is used to tune the electrostatic potential of the dot, with respect to the reservoirs.
The most popular quantum dots for experimental studies, are constructed from heterostructures of
GaAs nad AlGaAs grown by molecular-beam epitaxy. Whereas by doping the AlGaAs layer with Si,
free electrons are introduced, forming a two-dimensional electron gas that can only move along the
interface.

Figure 3.2: Lateral quantum dot device defined by metal surface electrodes. (a) Schematic view. (b),(c)Scanning
electron micrographs of (b) a few-electron single-dot device and (c) a double dot device.
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The electronic properties of quantum dots are dominated by two effects. Firstly, the Coulomb repulsion
between electrons, leads to an energy cost in order to add an extra electron. Due to this fact tunnelling
of electrons to or from the reservoirs can be suppressed at low temperatures, this phenomenon is called
Coulomb blockade and we will focus on it later. The second effect is that the confinement in all three
directions leads to quantum effects that influence the electron dynamics, resulting in a discrete energy
spectrum.
The constant interaction model, is the model used to describe the electrostatic properties of quantum
dots. It is based on two assumptions. First, the interactions among electrons in the dot and those
in the environment are parametrized by a constant capacitance, which is the sum of the capacitances
between the dot and the source, and the drain, and the gate, C = CS + CD + CG.
The second assumption is that the single-particle energy-level spectrum is independent of these inter-
actions and therefore of the number of electrons. Under these assumptions, the total energy U(N) of
a dot with N electrons in the ground state, with voltages VS , VD, VG applied to the source, drain, gate
respectively is given by the equation

U(N) =
(−|e|(N −N0) + CSVS + CDVD + CGVG)2

2C
+

N∑
n=1

En(B).

Where N0 |e| is the charge in the dot compensating the positive background charge originating from
the donors in the heterostructure and B is the applied magnetic field. The terms CSVS , CDVD, CGVG,
can be changed continuously and represent an effective induced charge that changes the electrostatic
potential of the dot. The last term of the equation is a sum over the occupied single particle energy
levels En(B) which depend on the characteristics of the confinement potential. So, the electrochemical
potential µ(N) of the dot is defined as

µ(N) = U(N)− U(N − 1) = (N −N0 −
1

2
)EC −

EC
|e|

(CSVS + CDVD + CGVG) + EN

3.1.2 Hamiltonian

The Hamiltonian describing the quantum dot system is

H = HL +HR +HD +HT

where HL and HR are the Hamiltonians for the left and the right leads, respectively (source and
drain), HD is the Hamiltonian describing the dot region abd HT is the tunnelling Hamiltonian, that
couples these three subsystems.

HT = HTL +HTR

with
HTL =

∑
νDνL

(tL,νL,νDc
†
νL
cνD + t∗L,νL,νDc

†
νD
cνL)

HTR =
∑
νDνL

(tR,νR,νDc
†
νR
cνD + t∗R,νR,νDc

†
νD
cνR)

where t is a tunnelling coefficient (e.g. tL,νL,νD is the tunnelling coefficient from the state νL of left
lead, to the state νD of the dot, whereas t∗L,νL,νD is its complex conjugate, describing the exact opposite

process) and the fermion operators c†νD , c
†
νL , c

†
νR define the states in the uncoupled dot, the left lead

and the right lead, respectively.
Finally, the dot Hamiltonian includes a single particle part and an interaction part HD = H0 +Hint,
where the non interacting part is typically HD =

∑
νD

ξνDc
†
νDcνD , while the interaction part is to be

specified. In our system the dot Hamiltonian is

HD =
∑
σ=↑↓

ξdσc
†
dσcdσ + Und↑nd↓.
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3.1.3 Double Quantum Dots

We will now describe a system, where two quantum dots exist, dot 1 and dot 2, whose electrochemical
potentials are controlled independently by the gate voltages VG,1 and VG,2, respectively.

Figure 3.3: Network of resistors and capacitors representing two quantum dots coupled in series.

If the dots are completely uncoupled, their stability diagram, (N1, N2) as a function of VG,1 and
VG,2, where N1, N2 are the number of electrons in dot 1 and 2, respectively, is shown on the figure
3.4(a). The lines indicate the values of the gate voltages, at which the number of the electrons in
the ground state changes. We see that these lines are exactly horizontal and vertical on the the left
diagram, since the electrochemical potential in each dot is independent of the charge in the other dot
and each gate voltage only affects one of the dots.

Figure 3.4: Schematic stability diagram of the double-dot system for (a) infinitesimal, (b) considerable inter-dot
coupling.

If now the dots are capacitively coupled, addition of an electron on one dot, affects the electrostatic
energy of the other dot. Also, the gate voltage of one dot, has also a direct capacitive coupling to
the other dot. The resulting charge stability diagram, is shown right above, on figure 3.4(b). We
see that each cross point is split into to so called ”triple points”. The triple points together form a
hexagonal or ”honeycomb” lattice. The fact is that at a triple point, three different charge states are
energetically degenerate and the distance between the triple points is set by the capacitance between
the two dots.

3.2 Pauli Blockade

Pauli blockade is a quantum effect, we encounter in the double quantum dots and is a result of the
Pauli exclusion principle. At negative bias electrons are transferred through the device in the sequence
(0, 1)→ (0, 2)→ (1, 1)→ (0, 1). In this cycle the right dot always contains a single electron. Assume
this electron is spin up. Then, in the transition (0, 1) → (0, 2) the right dot can only accept a spin-
down electron from the leads due to Pauli exclusion, and a S(0,2) state is formed. Similarly, only a
spin-up electron can be added if the first electron is spin down. From S(0,2), one electron can tunnel
to the left dot and then out to the left lead. In contrast, when the bias voltage is positive charge
transport proceeds in the sequence (0, 1)→ (1, 1)→ (0, 2)→ (0, 1) and the left dot can be filled from
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the Fermi sea with either a spin-up or a spin-down electron, regardless of the spin of the electron
in the right dot. If the two electrons form a singlet state S(1,1), the electron in the left dot can
transfer to the right dot forming S(0,2). However, if electrons form one of the triplet states T(1,1),
the electron in the left dot will not be able to tunnel to the right dot because T(0,2) is too high in
energy. The system will remain stuck in a (1,1) charge state until the electron spin relaxes. Since the
T1 time can approach milliseconds, the current in this direction is negligible and the dot is said to be
in spin blockade. Because it is the Pauli exclusion principle that forbids electrons to make a transition
from a T(1,1) state to S(0,2), this blockade is also referred to as Pauli blockade. This effect leads to
an asymmetry of the current as function of source-drain voltage, so it can be easily observed in an
experiment.

Figure 3.5: (a)Current (I) measured as a function of source-drain voltage (V) in a vertical double dot system. Nonzero
current is measured over the entire range of negative voltage. For positive bias, current is blocked in the range 2<V<7
mV. At bias voltages exceeding 7 mV, the (0,2) triplet state becomes accessible and Pauli blockade is lifted. (b)Different
ways of transport and Pauli blockade effect shown on the blue box.

3.3 Coulomb Blockade

The other effect that we encounter during the studying of quantum dots is the Coulomb blockade.
On a qualitative level the Coulomb blockade effect can be described in a very intuitive and yet very
general way.

Figure 3.6: (a) Schematic representation of a quantum dot system with source and drain contacts and a plunger gate.
(b) Energy level structure of the system in the Coulomb blockade. (c) Position of the energy levels that allows current
to flow between source and drain if a very small bias voltage is applied.

Figures 3.6(b),(c) show the energetic situation in the three subsystems source, drain, and dot. At
low temperature the electronic levels in the source (drain) contact are filled from the bottom of the
conduction band up to the electrochemical potential µS(µD). In the quantum dot we can also define
an electrochemical potential. It describes the energy necessary to add an electron to the dot, given
that it is both initially and after the addition in its ground state. For example, if we consider a
quantum dot with N-1 electrons initially, we define the electrochemical potential for adding the Nth
electron as

µN (Vpg) = EN (Vpg)− EN−1(Vpg)
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The plunger gate voltage allows us to shift the levels µN (V pg) in energy. We find for the voltage
dependence µN (Vpg) = µN (Vpg) − |e|αpg∆Vpg which is independent of the electron number N. Using
the plunger gate voltage we can tune the quantum dot electrochemical potentials into the position
shown in the right side of the image above, where we have µS ' µN+1(Vpg)µD. In this case, the energy
gain µS from removing an electron from the source contact is exactly equal to µN+1(Vpg), the energy
required to add an electron to the dot. Once the electron is in the dot, the energy gain µN+1(Vpg) for
removing it again is exactly equal to the energy µD required to add it to the drain contact. Therefore,
elastic electron transport through the quantum dot is possible and the conductance measurement
shows a large current at the respective plunger gate voltages. However, electrons can only tunnel one
after another through the dot, because the energy difference E0

N+2(Vpg)−E0
N (Vpg) to add two electrons

to the dot at the same time is significantly higher than the energy for a single electron. We therefore
talk about sequential single-electron tunnelling. The situation of the current blockade is shown in
figure 3.6(b), as well as in figures 3.7(a),(b),(c) for levels µN+1, µN−1. At this plunger gate voltage
the dot is filled with N + 1 electrons. In order to fill the (N +2)th electron more energy is required
than the energy gain from removing an electron from the source contact, i.e., µN+2(V pg) > µS, µD.
The current flow is therefore blocked and we talk about Coulomb blockade. The separation ∆Vpg of
neighbouring conductance resonances is found:

∆Vpg =
µN+1V

0
pg − µN(V 0

pg))

|e|αpg

Figure 3.7: Schematic representation of a quantum dot system with finite applied bias for various plunger gate voltages.
The energy region in light gray represents the so-called bias window. Arrows indicate electron transfer. (a) Current onset
for µS = µN (Vpg). (b) Situation with µS > µN (V pg) > µD (region of current flow). (c) Current onset at µD = µN (Vpg).
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Chapter 4

Master Equations

4.1 Sequential Tunnelling

The sequential tunnelling regime, is equivalent to the weak tunnelling regime and it assumes that the
time spent in the dot is much longer than the time between tunnelling events. So, in this regime, we
can treat the mesoscopic system as an isolated system and describe it by a distribution function P(α),
that gives the probability of finding the system in a particular state, α. In equilibrium P(α) is the
Boltzmann distribution function

P (Eα) =
1

Z
exp(−βEα)

where Eα is the energy of state α, β is the inverse temperature and Z the normalization factor.
However, when a voltage bias is applied across the system, we are no more in equilibrium conditions, so
we analyse the transitions between the various α states, and according to the weak interaction model,
we can use Fermi’s golden rule with the tunnelling Hamiltonian as a perturbation. The transition
from state α to state β due to tunnelling through the left junction is

ΓLβα = 2π
∑
fβiα

|〈fβ|HTL|iα〉|2Wiαδ(Efβ − Eiα),

where the sum over initial states runs over all configurations of the internal degrees of freedom, iα,
that give state α, each weighted by a thermal distribution function Wiα . Similarly, we sum over
configurations of the final states that give the final state β. As for the 2πWiLδ(Efβ −Eiα) it changes

into ΓLnF (EβN+1
−EαN−µL) while a transfer adds an electron and into ΓL(1−nF (E−βN−1

+EαN−µL))
while a transfer removes an electron, ΓL = 2π|tL|2dL, while

nF (x) =
1

exp(x/T ) + 1
.

Knowing the transition rates, we can set up the so called Master equations, for the dynamical behaviour
of the distribution function P(α).

d

dt
P (α) = −

∑
β

ΓβαP (α) +
∑
β

ΓαβP (β),

where the first term represents the tunnelling out of state α and the second the tunnelling into state
α.
We are going to focus on the steady state, where dP(α)/dt=0, and consequently

0 = −
∑
β

ΓβαP (α) +
∑
β

ΓαβP (β)

Using the set of the master equations (for every state) in combination with the normalization condition∑
α
P (α)=0, the distribution function can be determined.
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4.2 Single Quantum Dot, with spin

We have a single quantum dot, so we define the four possible states of the system, as P(0),P(1u),P(1d),P(2),
where the first state is empty, the second is singly occupied with one electron spin up, the third singly
occupied with spin down and the fourth doubly occupied. About the energies of each state E0=0, E1u

and E1d depend only on the gate voltage (VG) and E2 = E1u + E1d + U , where U is the interaction
energy, between the electrons in the dot.
The transition rates are:

Γ1u0 = ΓL|〈1u|c†1u|0〉|
2nF (E1u − E0 − µL) + ΓR|〈1u|c†1u|0〉|

2nF (E1u − E0 − µR)

Γ1d0 = ΓL|〈1d|c†1d|0〉|
2nF (E1d − E0 − µL) + ΓR|〈1d|c†1d|0〉|

2nF (E1d − E0 − µR)

Γ01d = ΓL|〈0|c1d|1d〉|2(1− nF (E1d − E0 − µL)) + ΓR|〈1d|c1d|0〉|2(1− nF (E1d − E0 − µR))

Γ01u = ΓL|〈0|c1u|1u〉|2(1− nF (E1u − E0 − µL)) + ΓR|〈1u|c1u|0〉|2(1− nF (E1u − E0 − µR))

Γ21u = ΓL|〈2|c†1d|1u〉|
2nF (E2 − E1u − µL) + ΓR|〈2|c†1d|1u〉|

2nF (E2 − E1u − µR)

Γ21d = ΓL|〈2|c†1u|1d〉|
2nF (E2 − E1d − µL) + ΓR|〈2|c†1u|1d〉|

2nF (E2 − E1d − µR)

Γ1u2 = ΓL|〈1u|c1d|2〉|2(1− nF (E2 − E1u − µL)) + ΓR|〈1u|c1d|2〉|21− nF (E2 − E1u − µR)

Γ1d2 = ΓL|〈1d|c1u|2〉|2(1− nF (E2 − E1d − µL)) + ΓR|〈1d|c1u|2〉|21− nF (E2 − E1d − µR)

Once we calculate the inner products, the rest are constants referred to the natural properties of the
system, found in the eight transition equations above, we form the four master equations:

Γ01uP (1u) + Γ01dP (1d)− (Γ01u + Γ01d)P (0) = 0

Γ1u0P (0) + Γ1u2P (2)− (Γ01u + Γ21u)P (1u) = 0

Γ1d0P (0) + Γ1d2P (2)− (Γ01d + Γ21d)P (1d) = 0

Γ21uP (1u) + Γ21dP (1d)− (Γ1u2 + Γ1d2)P (2) = 0.

Because we have four unknown distribution functions P(0),P(1u),P(1d),P(2) and three out of these
four equations are linearly independent, we also use the normalization equation, replacing one of the
previous four with it, in order to have a 4-linearly independent equations system.

P (0) + P (1u) + P (1d) + P (2) = 1

In order to solve this 4-equation system we define the P row vector, P =


P (0)
P (1u)
P (1d)
P (2)

, so the system

can be now written as a matrix product of a 4x4 matrix A and vector P equals a constant.

So A =


−(Γ1u0 + Γ1d0) Γ01u Γ01d 0

Γ1u0 −(Γ01u + Γ21u) 0 Γ1u2

Γ1d0 0 −(Γ01d + Γ21d) Γ1u2

1 1 1 1

 and C =


0
0
0
1

 the constant.

So now we can write the 4-equations’ system as AP = C, and in order to find P which is the vector
of the distribution functions, we just have to calculate P = A−1C.
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Having calculated the values of the distribution functions, we can now measure the value of the
current due to the transport of electrons between source and drain, by the sum of the transition rates
that add an electron to the dot minus the sum of those that remove one from the dot, towards one
direction (in this case ”left”) and multiplied by the electron’s charge. A value that can be compared
with experimental results and show us, to what extent, our model corresponds to reality.

I = (−e)
∑
N

(ΓLN+1,N − ΓLN−1,N )P (N)

I = (−e)(ΓL21dP (1d) + ΓL21uP (1u)− ΓL1u2P (2)− ΓL1d2P (2))

4.3 Double Quantum Dot, without spin

In this section we will describe a double dot, which is a structure of two dots in a row, the first
coupled with the left lead and with the second dot, while the second dot is coupled with the right
lead, apart from the first dot. The problem we encounter in this system is that the tunnelling between
dot 1 and dot 2, cannot be described with the transitions rates explained above, because there is
no electron sea (as it happens with the rest transitions e.g. in source-dot 1 transition, the source is
an electron sea), and the Fermi’s golden rule cannot be applied. In order to overcome this problem,
we use the Hamiltonian of the system in order to find the two eigenstates, which will be uncoupled
between them, but coupled with the left and right lead, making it possible to use Fermi’s golden
rule and furthermore the transition rates equations, used above. The Hamiltonian of the system is

H1e =

(
|〈Φ1|H|Φ1〉| |〈Φ1|H|Φ2〉|
|〈Φ2|H|Φ1〉| |〈Φ2|H|Φ2〉|

)
=

(
ε1 −t
−t ε2

)
, where t is the coupling of the wave functions of the

two dots and Φ1,Φ2 are the wave functions of the dot 1 and 2, respectively. Finding the eigenvalues
and eigenvectors of this Hamiltonian, we find the energies and eigenstates of the system. The energies
of the two states are

EA =
ε1 + ε2 +

√
ε1 − ε2)2 + 4t2

2

EB =
ε1 + ε2 −

√
(ε1 − ε2)2 + 4t2

2

and the two states are found as |A〉 = u1|1〉 + v1|2〉 and |B〉 = −v1|1〉 + u1|2〉, where u1, v1 the
normalized elements of the eigenvectors, and |1〉 and |2〉 are the states describing dot 1 and dot 2.
So now, the system states can be rewritten, using second quantization, in the language of fermion
operators as

|0〉
|A〉 = c†A|0〉
|B〉 = c†B|0〉
|2〉 = c†Ac

†
B|0〉

where c†A = uc†1 + vc†2 and c†B = −vc†1 + uc†2.
Using the new state operators, we calculate the transitions rates, the results are listed below.

ΓA0 = ΓLu2nF (EA − E0 − µL) + ΓRv2nF (EA − E0 − µR)

ΓB0 = ΓLv2nF (EB − E0 − µL) + ΓRu2nF (EB − E0 − µR)

Γ2A = ΓL((u2 − v2)v)2nF (E2 − EA − µL) + ΓR((u2 − v2)u)2nF (E2 − EA − µR)

Γ2B = ΓL((u2 − v2)u)2nF (E2 − EB − µL) + ΓR((v2 − u2)v)2nF (E2 − EB − µR)

Γ0A = ΓLu2(1− nF (EA − E0 − µL)) + ΓRv2(1− nF (EA − E0 − µR))

Γ0B = ΓLv2(1− nF (EB − E0 − µL)) + ΓRu2(1− nF (EB − E0 − µR))

ΓA2 = ΓL((u2 − v2)v)2(1− nF (E2 − EA − µL)) + ΓR((u2 − v2)u)2(1− nF (E2 − EA − µR))

ΓB2 = ΓL((u2 − v2)u)2(1− nF (E2 − EB − µL)) + ΓR((u2 − v2)v)2(1− nF (E2 − EB − µR))

14



where, E2 = EA + EB + U12, where U12 is the energy of the interaction between the electron in
dot 1 and the one in dot 2 and E0 = 0.

Using the values of the transition rates we end up with the Master equations:

P (0)(ΓLu2nF (EA − E0 − µL) + ΓRv2nF (EA − E0 − µR)

+ΓLv2nF (EB − E0 − µL) + ΓRu2nF (EB − E0 − µR))

−P (A)(ΓLu2(1− nF (EA − E0 − µL)) + ΓRv2(1− nF (EA − E0 − µR)))

−P (B)(ΓLv2(1− nF (EB − E0 − µL)) + ΓRu2(1− nF (EB − E0 − µR))) = 0

P (A)(ΓL((u2 − v2)v)2nF (E2 − EA − µL) + ΓR((u2 − v2)u)2nF (E2 − EA − µR)))

+P (B)(ΓL((u2 − v2)u)2nF (E2 − EB − µL)) + ΓR((v2 − u2)v)2nF (E2 − EB − µR))

−P (2)(ΓL((u2 − v2)v)2(1− nF (E2 − EA − µL)) + ΓR((u2 − v2)u)2(1− nF (E2 − EA − µR))

+ΓL((u2 − v2)u)2(1− nF (E2 − EB − µL)) + ΓR((u2 − v2)v)2(1− nF (E2 − EB − µR))) = 0

P (A)(ΓL((u2 − v2)v)2nF (E2 − EA − µL) + ΓR((u2 − v2)u)2nF (E2 − EA − µR)

−(ΓLu2(1− nF (EA − E0 − µL)) + ΓRv2(1− nF (EA − E0 − µR))))

+P (0)(ΓLu2nF (EA − E0 − µL) + ΓRv2nF (EA − E0 − µR))

−P (2)(ΓL((u2 − v2)v)2(1− nF (E2 − EA − µL)) + ΓR((u2 − v2)u)2(1− nF (E2 − EA − µR))) = 0

P (B)(ΓL((u2 − v2)u)2nF (E2 − EB − µL) + ΓL((u2 − v2)u)2nF (E2 − EB − µL)

−ΓLv2(1− nF (EB − E0 − µL)) + ΓRu2(1− nF (EB − E0 − µR)))

+P (0)(ΓLv2nF (EB − E0 − µL) + ΓRu2nF (EB − E0 − µR))

−P (2)(ΓL((u2 − v2)u)2(1− nF (E2 − EB − µL)) + ΓR((u2 − v2)v)2(1− nF (E2 − EB − µR))) = 0

Using the exact same technique as for the single dot, exchanging one of the four Master equations
with the normalization principle, we end up with the distribution function vector P. By knowing all
these we can finally calculate the current produced during the electron transport.

I = P (0)(ΓLu2nF (EA − E0 − µL) + ΓLv2nF (EB − E0 − µL))

+P (A)(−ΓLu2(1− nF (EA − E0 − µL) + ΓL((u2 − v2)v)2nF (E2 − EA − µL))

+P (B)(ΓL((u2 − v2)u)2nF (E2 − EB − µL)− ΓLv2(1− nF (EB − E0 − µL)))

−P (2)(ΓL((u2 − v2)v)2(1− nF (E2 − EA − µL)) + ΓL((u2 − v2)u)2(1− nF (E2 − EB − µL)))

We use all the equations written above, in order to make a simulation program. Because the computer
works with numbers, without units, we use the following transformations of the parameters:

Ĩ =
I

E(ΓL + ΓR)

Γ̃L =
ΓL

E(ΓL + ΓR)

ε̃1 =
ε1
t

ε̃2 =
ε2
t

µL − µR = eV
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The first result we get is the plot of I=f(V), and is shown on figure 4.1(a),(b), where V is the
voltage applied between the source and the drain. As we can observe, the graph is symmetrical and
there is no current before a value V1 = |2, 5|, where the energy level of the source becomes equal to
the energy of the lower energy state. After that we have a constant current until we reach the second
important value V2 = |6, 5| where the current instantly takes a higher value and stays there for the
rest of the values of V. This second level is the point at which the energy level of the source becomes
equal to the higher state, so now, there are two ways, for the electrons from the source to reach the
drain (through eigenstate |A〉 and |B〉), for this reason the current is higher.

Figure 4.1: The resulting current as a function of drain-source voltage(I=f(V)) for (a) energy of dot 1 ε1 = 2 and
energy of dot 2 ε2 = 1, (b) doubled energy of dot 1 ε1 = 4 and the same energy of dot 2 ε2 = 1.

Another characteristic that we observed is that when we doubled the ε2 energy of the second dot, the
energy of the difference between V1 and V2 is doubled, as we can see on figure 4.1(b).

The second result that we get is the I = f(ε1, ε2), which is helpful in order to understand the quali-
tative behaviour of the charge capacity diagram which is the graph dI/dε1 = f(ε1, ε2). Unfortunately
we could not include this graph, because ε1, ε2, also affected the Hamiltonian, making difficult for us
to find the derivative.

Figure 4.2: 3D plot of the resulting current as a function of the energy of dot 1 (ε1) and the energy of dot 2 (ε2),
(a) each of the three elements is represented on an axis, (b) the dot energies energies are represented on axes and the
resulting current is displayed on colour scale.
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In figures 4.2(a),(b), we can get an idea of what the capacity diagram would look like, by watching
the first image and try to imagine the derivative of ε1, we can clearly see two main and powerful lines
of current, which refer to the two dots, by looking at the second dot, we can see that there is an angle
of the ε1 axis and the main current lines, if we imagine the derivative of the current lines, would clearly
have a curve. The other factor is that in between the two current lines you can see that while there is
almost no current in the center of the graph there is a small quantity of it, that is the current of the
interdot transport and we can imagine that with the curvature of the derivative of ε1, it could have
be even closer to the experimental results shown in figure 4.3. What we would have seen in a charge
capacity diagram, would have been like the part of figure 4.3, that is limited in the white box.

Figure 4.3: Colour scale displays dI/dVG1 calculated from dc current (IDC) at VSD = 500 µV. White lines are guides
to the eye showing the honeycomb pattern of peaks in conductance.(Experimental charge stability diagrams for the series
double quantum dot as a function of two gate voltages, each shifting the energy levels of a single dot)

4.4 Double Quantum Dot, with spin

We are now going to examine the last system in this thesis, the double quantum dot, taking the spin
of the electrons under consideration. The Hamiltonian that describes this system is

H =
∑
σ

ε1σc
†
1σc1σ + ε2σc

†
2σc2σ + t(c†1σc2σ + c†2σc1σ) + U12n1n2 + U2n2un2d

Where U12n1n2 is the energy of the interaction of an electron in dot 1 with one in dot 2 and U2n2un2d
is the energy of the interaction between two electrons in the second dot.

We calculate the matrix elements of the Hamiltonian in the same way as we did for the without
spin case. Whereas, now we have five possible states for the case of 2 electrons in the system:

|T0〉 =
1√
2

(c†1↑c
†
2↓ + c†1↓c

†
2↑)|0〉

|T+〉 = c†1↑c
†
2↑|0〉

|T−〉 = c†1↓c
†
2↓|0〉

|S〉 =
1√
2

(c†1↑c
†
2↓ − c

†
1↓c
†
2↑)|0〉

|02〉 = c†2↑c
†
2↓|0〉
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So the matrix Hamiltonian for 2 electrons is the on below:

H2e =


ε1↑+ε1↓+ε2↑+ε2↓

2 + U12n1n2 0 0 0 0
0 ε1↑ + ε2↑ + U12n1n2 0 0 0
0 0 ε1↓ + ε2↓ + U12n1n2 0 0

0 0 0
ε1↑+ε1↓+ε2↑+ε2↓

2 + U12n1n2
t√
2

0 0 0 t√
2

ε2↑ + ε2↓ + U12n1n2 + U2n2un2d


where ε1↑, ε2↓ are the energies of an electron in the first dot with spin up and an electron in the second
dot with spin down, respectively. We can observe that tunnelling can be achieved only between the
two singlet states, a result that was expected. We have two more Hamiltonians in this problem one
for three electrons and one for one electron. Although, there is no coupling between their states, so
we will just mention the states.

|2d〉 = c†2↓|0〉

|2u〉 = c†2↑|0〉

|21d〉 = c†1↓c
†
2↑c
†
2↓|0〉

|21u〉 = c†1↑c
†
2↑c
†
2↓|0〉

where |2d〉, |2u〉 are the states in which the second dot is occupied by one electron of spin down and
spin up, respectively and |21d〉,|21d〉 are the states in which the second dot is occupied by two electrons
(spin up and down, due to Pauli exclusion principle) and the first dot is occupied by one electron of
spin down and spin up, respectively.

Following the same steps as in the previous systems, we calculate the transfer rates, which are listed
bellow, which we use to the Master equations in order to find the distribution functions and calculate
the current.

ΓT02u = ΓL
1

2
nF (ET0 − E2u − µL)

ΓTp2u = ΓLnF (ETp − E2u − µL)

ΓTm2u = 0

ΓS12u = ΓL
u2

2
nF (ES1 − E2u − µL) + ΓRv2nF (ES1 − E2u − µR)

ΓS22u = ΓL
v2

2
nF (ES2 − E2u − µL) + ΓRu2nF (ES2 − E2u − µR)

ΓT02d = ΓL
1

2
nF (ET0 − E2d − µL)

ΓTp2d = 0

ΓTm2d = ΓLnF (ETm − E2d − µL)

ΓS12d = ΓL
u2

2
nF (ES1 − E2d − µL) + ΓRv2nF (ES1 − E2d − µR)

ΓS22d = ΓL
v2

2
nF (ES2 − E2d − µL) + ΓRu2nF (ES2 − E2d − µR)
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ΓT012u = ΓR
1

2
(1− nF (E12u − ET0 − µR))

ΓTp12u = ΓR(1− nF (E12u − ETp − µR))

ΓTm12u = 0

ΓS112u = ΓLv2(1− nF (E12u − ES1 − µL)) + ΓR
u2

2
(1− nF (E12u − ES1 − µR))

ΓS212u = ΓLu2(1− nF (E12u − ES2 − µL)) + ΓR
v2

2
(1− nF (E12u − ES2 − µR))

ΓT012d = ΓR
1

2
(1− nF (E12d − ET0 − µR))

ΓTp12d = 0

ΓTm12d = ΓR(1− nF (E12d − ETm − µR))

ΓS112d = ΓLv2(1− nF (ES1 − E12d − µL)) + ΓR
u2

2
(1− nF (ES1 − E12d − µR))

ΓS212d = ΓLu2(1− nF (E12d − ES2 − µL)) + ΓR
v2

2
(1− nF (E12d − ES2 − µR))

Γ2uT0 = ΓL
1

2
(nF (ET0 − E2u − µL))

Γ2uTp = ΓL(nF (ETp − E2u − µL))

Γ2uTm = 0

Γ2uS1 = ΓL
u2

2
(nF (ES1 − E2u − µL)) + ΓRv2(nF (ES1 − E2u − µR))

Γ2uS2 = ΓL
v2

2
(nF (ES2 − E2u − µL)) + ΓRu2(nF (ES2 − E2u − µR))

Γ2dT0 = ΓL
1

2
(nF (ET0 − E2d − µL))

Γ2dTp = 0

Γ2dTm = ΓL(nF (ETp − E2d − µL))

Γ2dS1 = ΓL
u2

2
(nF (ES1 − E2d − µL)) + ΓRv2(nF (ES1 − E2d − µR))

Γ2dS2 = ΓL
v2

2
(nF (ES2 − E2d − µL)) + ΓRu2(nF (ES2 − E2d − µR))

Γ12uT0 = ΓR
1

2
(1− nF (E12u − ET0 − µR))

Γ12uTp = ΓR(1− nF (E12u − ETp − µR))

Γ12uTm = 0

Γ12uS1 = ΓLv2(1− nF (E12u − ES1 − µL)) + ΓR
u2

2
(1− nF (E12u − ES1 − µR))

Γ12uS2 = ΓLu2(1− nF (E12u − ES2 − µL)) + ΓR
v2

2
(1− nF (E12u − ES2 − µR))

Γ12dT0 = ΓR
1

2
(1− nF (E12d − ET0 − µR))

Γ12dTp = 0

Γ12dTm = ΓR(1− nF (E12d − ETm − µR))

Γ12dS1 = ΓLv2(1− nF (E12d − ES1 − µL)) + ΓR
u2

2
(1− nF (E12d − ES1 − µR))

Γ12dS2 = ΓLu2(1− nF (E12d − ES2 − µL)) + ΓR
v2

2
(1− nF (E12d − ES2 − µR))
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Using the same process as before, but a bit more complicated, we end up with the following results.
Fist, we see clearly on the I=f(V) plot, the asymmetry, caused by the Pauli blockade (image shown
below on the left). Furthermore, we have only one possible current value, which can be observed and
that is, because as explained in the section 3.2, there is only one possible way for an electron to travel
from the source to the drain (in the energy values that our system is limited in). Below on the right,
we can see some experimental data of Pauli blockade. We care only about the first pick on the right,
because only this is within the energetic limit of our model.

Figure 4.4: (a)I-V curve of the double dot, no current is observed in the negative voltage as a result of Pauli blockade
effect, (b)I-V curve of the double dot, showing sharp resonances in the current when two discrete levels align.Upper inset:
I-V curve of dot 1. Lower inset: I-V curve of dot 2. Both insets show a suppression of the current at low voltages due
to the Coulomb blockade and a stepwise increase of the current due to the discrete energy spectrum of the dot.

The last plot is the one of I = f(ε1, ε2), although we won’t analyse this graph further in the present
thesis, because we cannot compare it with the experimental data, we would need the dI/dε1 = f(ε1, ε2)
diagram, in order to make a comparison with the charge stability diagram.

Figure 4.5: Current as a function of the two dots’ energies (I=f(ε1, ε2)) of the double double dot.
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Chapter 5

Conclusions

We explained the main features of single and double quantum dots. We found the Hamiltonians
describing each system and calculated the elements governing the electron transitions in the system.
Using these element, we created two simulation programs (they are available in the appendices), one for
the double dot, with spinless electrons and one for the double dot with electrons with spin. Although
we could not include in the present thesis, the dI/dV1 = f(ε1, ε2) diagram, which is the charge stability
diagram, we could see its qualitative characteristics being in agreement with the experimental results
from the I = f(ε1, ε2) graph. Furthermore we were able to identify the Coulomb blockade in the
I=f(V) diagram of both systems and the Pauli blockade in the second program, where we take spin
under consideration.
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Chapter 6

Appendices

6.1 Double dot without spin (Matlab program)

e1=1:1:20;
e2=1:1:20;
t=1;
U=0;
GL=1;
GR=1;
E0=0;
V=10;
mR=V/2;
mL=-V/2;
I=zeros(size(e1,2));
for i=1:1:size(e1,2)
clear A P
for j=1:1:size(e2,2)
Ea = (e1(i) + e2(j))/2 + sqrt((e1(i)− e2(j))2 + 4 ∗ t2)/2;
Eb = (e1(i) + e2(j))/2− sqrt((e1(i)− e2(j))2 + 4 ∗ t2)/2;
E2 = Ea+ Eb+ U ;
n = 1 + (e1(i)− Ea)2;
u = 1/(sqrt(n) ∗ t);
v = (e1(i)− Ea)/(t ∗ sqrt(n));
Ga0 = GL ∗ u2 ∗ nF (Ea− E0−mL) +GR ∗ v2 ∗ nF (Ea− E0−mR);
Gb0 = GL ∗ v2 ∗ nF (Eb− E0−mL) +GR ∗ u2 ∗ nF (Eb− E0−mR);
G2a = GL ∗ ((u2 − v2) ∗ v)2 ∗ nF (E2− Ea−mL) +GR ∗ ((u2 − v2) ∗ u)2 ∗ nF (E2− Ea−mR);
G2b = GL ∗ ((u2 − v2) ∗ u)2 ∗ nF (E2− Eb−mL) +GR ∗ ((v2 − u2) ∗ v)2 ∗ nF (E2− Eb−mR);
G0a = GL ∗ u2 ∗ (1− nF (Ea− E0−mL)) +GR ∗ v2 ∗ (1− nF (Ea− E0−mR));
G0b = GL ∗ v2 ∗ (1− nF (Eb− E0−mL)) +GR ∗ u2 ∗ (1− nF (Eb− E0−mR));
Ga2 = GL∗((u2−v2)∗v)2 ∗(1−nF (E2−Ea−mL))+GR∗((u2−v2)∗u)2 ∗(1−nF (E2−Ea−mR));
Gb2 = GL∗ ((u2−v2)∗u)2 ∗ (1−nF (E2−Eb−mL))+GR∗ ((u2−v2)∗u)2 ∗ (1−nF (E2−Eb−mR));
A(1, 1) = Ga0;
A(1, 2) = −(G0a+G2a);
A(1, 3) = 0;
A(1, 4) = Ga2;
A(2, 1) = Gb0;
A(2, 2) = 0;
A(2, 3) = −(G0b+G2b);
A(2, 4) = Gb2;
A(3, 1) = −(Ga0 +Gb0);
A(3, 2) = G0a;
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A(3, 3) = G0b;
A(3, 4) = 0;
A(4, 1) = 1;
A(4, 2) = 1;
A(4, 3) = 1;
A(4, 4) = 1;
C(4) = 1;
P=inv(A)*(C’);
I(i, j) = P (1) ∗GL ∗ u2 ∗ nF (Ea− E0−mL)− P (2) ∗GL ∗ u2 ∗ (1− nF (Ea− E0−mL)) + P (1) ∗
GL ∗ v2 ∗ nF (Eb−E0−mL)− P (3) ∗GL ∗ v2 ∗ (1− nF (Eb−E0−mL)) + P (2) ∗GL ∗ ((u2 − v2) ∗
v)2 ∗nF (E2−Ea−mL)−P (4) ∗GL ∗ ((u2− v2) ∗ v)2 ∗ (1−nF (E2−Ea−mL)) +P (3) ∗GL ∗ ((u2−
v2) ∗ u)2 ∗ nF (E2− Eb−mL)− P (4) ∗GL ∗ ((u2 − v2) ∗ u)2 ∗ (1− nF (E2− Eb−mL));
end
end
surf(e2,e1,-I)

6.2 Double dot with spin (Matlab program)

e1u=e1d=(-200:5:200);
e2u=e2d=(-200:5:200);
t=1;
U12=1;
U22=1;
GL=1;
GR=1;
E0=0;
V=30;
mR=V/2;
mL=-V/2;
I = zeros(size(e1u, 2));
for i=1:1:size(e1u,2)
clear A P
for j=1:1:size(e2u,2)
H2e(1, 1) = (e1u(i) + e1u(i) + e2u(j) + e2u(j))/2 + U12;
H2e(2, 2) = e1u(i) + e2u(j) + U12;
H2e(3, 3) = e1u(i) + e2u(j) + U12;
H2e(4, 4) = (e1u(i) + e1u(i) + e2u(j) + e2u(j)/2) + U12;
H2e(5, 5) = e2u(j) + e2u(j) + U22;
H2e(4, 5) = t/sqrt(2);
H2e(5, 4) = t/sqrt(2);
[S,E2] = eig(H2e); u=S(4,1); v=-S(5,1);
GT02u = GL ∗ (1/2) ∗ (nF (E2(4, 4)− e2u(j)−mL));
GTp2u = GL ∗ (nF (E2(2, 2)− e2u(j)−mL));
GTm2u = 0;
GS12u = GL ∗ (u2)/2 ∗ (nF (E2(1, 1)− e2u(j)−mL)) +GR ∗ (v2) ∗ (nF (E2(1, 1)− e2u(j)−mR));
GS22u = GL ∗ (v2)/2 ∗ (nF (E2(5, 5)− e2u(j)−mL)) +GR ∗ (u2) ∗ (nF (E2(5, 5)− e2u(j)−mR));
GT02d = GL ∗ (1/2) ∗ (nF (E2(4, 4)− e2u(j)−mL));
GTp2d = 0;
GTm2d = GL ∗ (nF (E2(3, 3)− e2u(j)−mL));
GS12d = GL ∗ (u2)/2 ∗ (nF (E2(1, 1)− e2u(j)−mL)) +GR ∗ (v2) ∗ (nF (E2(1, 1)− e2u(j)−mR));
GS22d = GL ∗ (v2)/2 ∗ (nF (E2(5, 5)− e2u(j)−mL)) +GR ∗ (u2) ∗ (nF (E2(5, 5)− e2u(j)−mR));
G2uT0 = GL ∗ (1/2) ∗ (1− nF (E2(4, 4)− e2u(j)−mL));
G2uTp = GL ∗ (1− nF (E2(2, 2)− e2u(j)−mL));
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G2uTm = 0;
G2uS1 = GL∗(u2)/2∗(1−nF (E2(1, 1)−e2u(j)−mL))+GR∗(v2)∗(1−nF (E2(1, 1)−e2u(j)−mR));
G2uS2 = GL∗(v2)/2∗(1−nF (E2(5, 5)−e2u(j)−mL))+GR∗(u2)∗(1−nF (E2(5, 5)−e2u(j)−mR));
G2dT0 = GL ∗ (1/2) ∗ (1− nF (E2(4, 4)− e2u(j)−mL));
G2dTp = 0;
G2dTm = GL ∗ (1− nF (E2(3, 3)− e2u(j)−mL));
G2dS1 = GL∗(u2)/2∗(1−nF (E2(1, 1)−e2u(j)−mL))+GR∗(v2)∗(1−nF (E2(1, 1)−e2u(j)−mR));
G2dS2 = GL∗(v2)/2∗(1−nF (E2(5, 5)−e2u(j)−mL))+GR∗(u2)∗(1−nF (E2(5, 5)−e2u(j)−mR));
GT01u = GR ∗ (1/2) ∗ (1− nF (E2(4, 4)− (e1u(i) + e2u(j) + e2u(j) +U12 +U22)−mR)); GTp1u =
GR ∗ (1− nF (E2(2, 2)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mR));
GTm1u = 0;
GS11u = GL∗ (v2)∗ (1−nF (E2(1, 1)− (e1u(i)+e2u(j)+e2u(j)+U12+U22)−mL))+GR∗ (u2)/2∗
(1− nF (E2(1, 1)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mR));
GS21u = GL∗ (u2)∗ (1−nF (E2(5, 5)− (e1u(i)+e2u(j)+e2u(j)+U12+U22)−mL))+GR∗ (v2)/2∗
(1− nF (E2(5, 5)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mR));
GT01d = GR ∗ (1/2) ∗ (1− nF (E2(4, 4)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mR));
GTp1d = 0;
GTm1d = GR ∗ (1− nF (E2(3, 3)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mR));
GS11d = GL∗ (v2)∗ (1−nF (E2(1, 1)− (e1u(i)+e2u(j)+e2u(j)+U12+U22)−mL))+GR∗ (u2)/2∗
(1− nF (E2(1, 1)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mR));
GS21d = GL∗ (u2)∗ (1−nF (E2(5, 5)− (e1u(i)+e2u(j)+e2u(j)+U12+U22)−mL))+GR∗ (v2)/2∗
(1− nF (E2(5, 5)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mR));
G1uT0 = GR ∗ (1/2) ∗ nF (E2(4, 4)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mR);
G1uTp = GR ∗ nF (E2(2, 2)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mR);
G1uTm = 0;
G1uS1 = GL ∗ (v2) ∗ nF (E2(1, 1) − (e1u(i) + e2u(j) + e2u(j) + U12 + U22) −mL) + GR ∗ (u2)/2 ∗
nF (E2(1, 1)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mR);
G1uS2 = GL ∗ (u2) ∗ nF (E2(5, 5) − (e1u(i) + e2u(j) + e2u(j) + U12 + U22) −mL) + GR ∗ (v2)/2 ∗
nF (E2(5, 5)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mR);
G1dT0 = GL ∗ (1/2) ∗ nF (E2(4, 4)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mL);
G1dTp = 0;
G1dTm = GR ∗ nF (E2(3, 3)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mR);
G1dS1 = GL ∗ (v2) ∗ nF (E2(1, 1) − (e1u(i) + e2u(j) + e2u(j) + U12 + U22) −mL) + GR ∗ (u2)/2 ∗
nF (E2(1, 1)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mR);
G1dS2 = GL ∗ (u2) ∗ nF (E2(5, 5) − (e1u(i) + e2u(j) + e2u(j) + U12 + U22) −mL) + GR ∗ (v2)/2 ∗
nF (E2(5, 5)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mR);
A(1, 1) = −(GT01u+GTp1u+GTm1u+GS11u+GS21u);
A(1, 5) = G1uT0;
A(1, 6) = G1uTp;
A(1, 7) = G1uTm;
A(1, 8) = G1uS1;
A(1, 9) = G1uS2;
A(2, 2) = −(GT01d+GTp1d+GTm1d+GS11d+GS21d);
A(2, 5) = G1dT0;
A(2, 6) = G1dTp;
A(2, 7) = G1dTm;
A(2, 8) = G1dS1;
A(2, 9) = G1dS2;
A(3, 3) = −(GT02u+GTp2u+GTm2u+GS12u+GS22u);
A(3, 5) = G2uT0;
A(3, 6) = G2uTp;
A(3, 7) = G2uTm;
A(3, 8) = G2uS1;
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A(3, 9) = G2uS2;
A(4, 4) = −(GT02d+GTp2d+GTm2d+GS12d+GS22d);
A(4, 5) = G2dT0;
A(4, 6) = G2dTp;
A(4, 7) = G2dTm;
A(4, 8) = G2dS1;
A(4, 9) = G2dS2;
A(5, 1) = GT01u;
(5, 2) = GT01d;
A(5, 3) = GT02u;
A(5, 4) = GT02d;
A(5, 5) = −(G1uT0 +G1dT0 +G2uT0 +G2dT0);
A(6, 1) = GTp1u;
A(6, 2) = GTp1d;
A(6, 3) = GTp2u;
A(6, 4) = GTp2d;
A(6, 6) = −(G1uTp+G1dTp+G2uTp+G2dTp);
A(7, 1) = GTm1u;
A(7, 2) = GTm1d;
A(7, 3) = GTm2u;
A(7, 4) = GTm2d;
A(7, 7) = −(G1uTm+G1dTm+G2uTm+G2dTm);
A(8, 1) = GS11u;
A(8, 2) = GS11d;
A(8, 3) = GS12u;
A(8, 4) = GS12d;
A(8, 8) = −(G1uS1 +G1dS1 +G2uS1 +G2dS1);
A(9, 1 : 9) = 1;
C(9)=1;
P = inv(A) ∗ (C ′);
I(i, j) = P (5)∗(GL∗(1/2)∗nF (E2(4, 4)−(e1u(i)+e2u(j)+e2u(j)+U12+U22)−mL)−GL∗(1/2)∗
(1− nF (E2(4, 4)− e2u(j)−mL))−GL ∗ (1/2) ∗ (1− nF (E2(4, 4)− e2u(j)−mL))) + P (6) ∗ (−GL ∗
(1−nF (E2(2, 2)− e2u(j)−mL))) +P (7) ∗ (−GL ∗ (1−nF (E2(3, 3)− e2u(j)−mL))) +P (8) ∗ (GL ∗
(v2)∗nF (E2(1, 1)−(e1u(i)+e2u(j)+e2u(j)+U12+U22)−mL)+GL∗(v2)∗nF (E2(1, 1)−(e1u(i)+
e2u(j) + e2u(j) +U12 +U22)−mL)−GL ∗ (u2)/2 ∗ (1−nF (E2(1, 1)− e2u(j)−mL))−GL ∗ (u2)/2 ∗
(1 − nF (E2(1, 1) − e2u(j) −mL))) + P (9) ∗ (GL ∗ (u2) ∗ nF (E2(5, 5) − (e1u(i) + e2u(j) + e2u(j) +
U12 +U22)−mL) +GL ∗ (u2) ∗nF (E2(5, 5)− (e1u(i) + e2u(j) + e2u(j) +U12 +U22)−mL)−GL ∗
(v2)/2 ∗ (1−nF (E2(5, 5)− e2u(j)−mL))−GL ∗ (v2)/2 ∗ (1−nF (E2(5, 5)− e2u(j)−mL))) +P (1) ∗
(−GL ∗ (v2) ∗ (1− nF (E2(1, 1)− (e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mL))−GL ∗ (u2) ∗ (1−
nF (E2(5, 5)−(e1u(i)+e2u(j)+e2u(j)+U12+U22)−mL)))+P (2)∗(−GL∗(v2)∗(1−nF (E2(1, 1)−
(e1u(i) + e2u(j) + e2u(j) + U12 + U22)−mL))−GL ∗ (u2) ∗ (1− nF (E2(5, 5)− (e1u(i) + e2u(j) +
e2u(j)+U12+U22)−mL)))+P (3)∗(GL∗(1/2)∗(nF (E2(4, 4)−e2u(j)−mL))+GL∗(nF (E2(2, 2)−
e2u(j)−mL)) +GL ∗ (u2)/2 ∗ (nF (E2(1, 1)− e2u(j)−mL)) +GL ∗ (v2)/2 ∗ (nF (E2(5, 5)− e2u(j)−
mL))) + P (4) ∗ (GL ∗ (1/2) ∗ (nF (E2(4, 4)− e2u(j)−mL)) +GL ∗ (nF (E2(3, 3)− e2u(j)−mL)) +
GL ∗ (u2)/2 ∗ (nF (E2(1, 1)− e2u(j)−mL)) +GL ∗ (v2)/2 ∗ (nF (E2(5, 5)− e2u(j)−mL)));
end
end
contourf(e1u,e2u,-I)
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